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Abstract—The computing continuum is growing because mul-
tiple devices are added daily. Edge devices play a key role in
this because computation is decentralized or distributed. Edge
computing is advanced by using AI/ML algorithms to become
more intelligent. Besides, Edge data protocols are useful for
transmitting or receiving data between devices. Since, compu-
tation efficiency is possible when the data is received at the Edge
timely, and it is possible only when the data protocols are efficient,
reliable and fast. Most edge data protocols are defined with
static set of rules and their primary purpose is to provide stan-
dardized and reliable data communications. Edge devices need
autonomous or dynamic protocols that enable interoperability,
autonomous decision making, scalability, and adaptability. This
paper examines the limitations of popular data protocols used in
edge networks, the need for intelligent data protocols, and their
implications. We also explore possible ways to simplify learning
for edge devices and discuss how intelligent data protocols can
mitigate challenges such as congestion, message filtering, message
expiration, prioritization, and resource handling.

Index Terms—Data protocols; Intelligent protocols; Edge Com-
puting; Computing Continuum; Edge Intelligence; Autonomous
decision-making

I. INTRODUCTION

In the computing continuum, many diverse devices are

connected, including tiny sensors, actuators, edge systems,

and cloud systems. In such an architecture, computations shift

from centralized to distributed and decentralized, processing

data in real-time and enabling faster decision-making [1].

Furthermore, Edge devices are a key storage and processing

element in the computing continuum. Although they are close

to the data source, they are tiny in size, limited in storage and

processing capacity, and low in power. But, efficient utilization

of edge devices improves privacy, reliability, and scalability

while minimizing latency, cost, and bandwidth requirements

[2]–[4]. In the recent years, machine learning (ML) and artifi-

cial intelligence (AI) have helped transitioning edge computing

to edge intelligence (EI) by providing advanced analytics and

smart and autonomous decision-making systems. In the recent

years, EI has become a frequent research topic because of its

growing use in various intelligent applications and services [5].

Currently, EI is limited to computation or decision-making.

As per our concern, EI necessarily consider several other

parameters (e.g., how smartly it can receive data, or forward

data or make decisions) in addition to the current intelligence

mechanisms [6]. Data protocols allow devices to communicate

with each other, so making them intelligent is one way to add

more intelligence to the Edge [7].

In general, protocols are a set of rules or standards defining

how two devices are connected and how they communicate

their data. Protocols are needed at the edge to communicate

with sensors and actuators, the cloud, or the data center

[8]. These protocols are categorized into network and data

protocols [9]. Network protocols enable connections between

devices (edge-to-edge, edge-to-cloud, or edge-to-things, or

vice versa). Most popular network protocols include Bluetooth,

WiFi, ZigBee, LoRa, LoRaWAN, or NB-IoT [10], [11]. Data

protocols control data exchange between devices. The majority

of these data protocols follow request-response or publish-

subscribe models [7]. In the request-response model, a client

interacts with the server in a synchronous communication

pattern, which means client wait for the server to respond

before continuing. The most popular request-response pro-

tocols for the edge are Hypertext Transfer Protocol (HTTP)

and Constrained Application Protocol (CoAP). In the publish-

subscribe model, publishers send their information to a mes-

sage broker in an asynchronous communication pattern, so

they do not wait for the broker’s response. Most popular

publish-subscribe protocols include Advanced Message Queu-

ing Protocol (AMQP), Message Queue Telemetry Transport

(MQTT), and Data Distribution Service (DDS) [12]. The

primary focus of this paper is on data protocols, and the rest

of the article focuses on them (further discussion on these

protocols is available in Section II).

Currently, available data protocols are composed of static

rules, and the primary goals of these protocols are efficient and

accurate data transmissions, reliability, scalability, and achiev-

ing optimized speed in data delivery. The computing contin-

uum is ever-growing rapidly with a huge variety of computing

devices connecting every day, the traditional protocols contin-

ually upgrade their rules according to the newly added devices

or the devices to be manufactured. Embedding intelligence into

data protocols makes the edge more intelligent with efficient

and reliable communications, adaptable to environments or

applications, predictive maintenance, autonomous decision-

making, and interoperability. Recent advances in AI/ML can

be used to achieve these goal. In this context, this paper

discusses intelligent data protocols for the next-generation

intelligent edge from a bird-eye-view perspective. The outline

of this paper is as follows:

1) Initially, we will discuss currently available popular data

protocols, their general structures or working models,

and their limitations. We summarize the different chal-

lenges of these protocols.

2) We discuss the possible ways or focuses to make existing

protocols intelligent, and the learning algorithms that can

372

2023 IEEE International Conference on Edge Computing and Communications (EDGE)

2767-9918/23/$31.00 ©2023 IEEE
DOI 10.1109/EDGE60047.2023.00060

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 E

dg
e 

C
om

pu
tin

g 
an

d 
C

om
m

un
ic

at
io

ns
 (E

D
G

E)
 | 

97
9-

8-
35

03
-0

48
3-

1/
23

/$
31

.0
0 

©
20

23
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
ED

G
E6

00
47

.2
02

3.
00

06
0

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 11,2023 at 09:50:42 UTC from IEEE Xplore.  Restrictions apply. 



be used to achieve it.

3) We summarize the challenges of using different learning

strategies on resource-constrained devices along with

possible future research directions.

This paper is organized as follows. Section II presents

existing data protocols for the edge along with their working

model and advantages. Section III highlights the various

challenges associated with traditional data protocols. Section

IV discusses the use of intelligent data protocols in next-

generation Edge computing and explores the implications of

adding intelligence to data protocols. Additionally, this section

examines possible ways to simplify learning for constrained

edge protocols. Finally, Section V concludes the paper.

II. EXISTING DATA PROTOCOLS FOR EDGE

There are several data protocols in the literature with their

own advantages and limitations. But, very few developments

have taken place in recent years due to constraints such

as the availability of resources, the complexity of designing

protocols for ever-growing edge networks (scalability and

applications), challenges associated with interoperability, and

lack of standardization. In this section, we discuss the most

popular data protocols and their recent enhancements.

A. HTTP

It is one of the most commonly used protocols for devices

connected over the Internet. It is a stateless protocol that does

not store or use its history in any way [13]. When an edge

device (client) sends a message to another edge/cloud (server),

servers respond according to the message [14]. Since it does

not use or store history, it is very difficult to apply AI/ML

or make this protocol intelligent. HTTP supports several

formats including plain text, documents, images, audio, and

video. Since HTTP supports larger file formats, it needs more

time to transfer, more buffer availability (temporary storage),

consumes more battery life,, and takes a high response or

turnaround time compared to other data protocols. It is a

reliable data delivery protocol, but not secure. In the past

decade, HTTP has improved version HTTPS with the security

enabled feature [15], [16].

B. CoAP

CoAP is a lightweight request-response protocol for con-

strained devices like the IoT or the Edge. This protocol

supports binary data and Extensible Markup Language (XML).

CoAP uses limited memory, energy, bandwidth, and compu-

tational requirements compared to the HTTP protocol, and

CoAP uses User Datagram Protocol (UDP). A CoAP ensures

data confidentiality, availability, and integrity as it traverses the

various nodes (Edge/Fog/Cloud) and gateways in a computing

continuum. In CoAP, an edge device can store a copy of

sent data locally until the server receives it. This feature

mitigates the risk of missing or lost data in any transmission

or further benefits analytics and decision-making. Considering

the low bandwidth and buffer, and the high number of devices

connected and exchanging data, this feature can cause a

high congestion level. Several enhancements are made in the

literature to mitigate congestion in the CoAP protocol [17].

Figure 1 summarizes a general congestion control model.

From Fig. 1, we notice that most CoAP congestion con-

trol strategies use minimum and maximum Retransmission

Time (RTT) and Retransmission Timeout (RTO) from history

to generate new RTO for future data transmissions. These

strategies include Binary Exponential Backoff (BEB) [18],

Variable Backoff Factor (VBF) [19], Probabilistic Backoff

Function (PBF) [20], and Fibonacci Pre-Increment Backoff

(FPB) [21]. Several approaches have recently been devel-

oped using machine learning [22] and Deep Reinforcement

Learning (DRL) [17] methods to determine efficient RTOs.

In the end, these protocols control the congestion, but they

are not able to predict or mitigate it completely. There are

several other approaches that focus on enhancing the CoAP

protocol further by adding features such as security, remote

accessibility, multimedia data transmission, and cache manage-

ment. But, there is huge research needed on CoAP according

to recent advancements in the computing continuum. These

advancements include computing dynamic RTO to avoid con-

gestion and latency, privacy and security mechanisms, working

according to the dynamic condition of the environment or

applications, and prioritizing data delivery. On the other hand,

the developments in 5G and 6G ensure solutions for bandwidth

problems in CoAP.

C. MQTT

MQTT is a publish-subscribe data protocol for low-

constrained devices. This is one of the most popular protocols

for IoT because of several benefits including reliable data

delivery, low bandwidth, lightweight (headers and control

messages are tiny in size), efficiency (fast delivery), and secure

[23]. MQTT enables the communication between the entire

computing continuum, for e.g., sensor nodes (MQTT-SN [24])-

to-Edge-to-Cloud and vice versa. The general working model

for MQTT is summarized in Figure 2. The primary compo-

nents of the MQTT protocol are the client (either Publisher

or Subscriber), and the broker. Any device in the computing

continuum (IoT/Edge/Fog/Cloud) can act as a client, and its

key responsibility is to send a message (called a publisher) to

a broker or receive a message from a broker (called a sub-

scriber). MQTT broker is a central entity, which authenticates

clients and authorizes their messages, receives messages from

publishers, filters messages according to the topics (topic is a

keyword used to filter messages), and sends these messages

to the appropriate subscriber. Each MQTT broker holds a

message according to its expiry time (called message expiry),

and this time varies depending on the application. It is also

responsible for deciding the priority of each message before

it is delivered. MQTT supports a range of formats, including

plain text, XML, and JSON formats. Since the broker is a

central entity responsible for most work, its failure causes

major damage.

Recently, researchers have added several features to MQTT

protocols for delay minimization [25], device location iden-
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Fig. 1: RTO estimation of CoAP and its enhancements to control high congestion
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Fig. 2: General message exchange model of MQTT protocol

tification [26], as well as several improvements to message

queues. The message queues include RabbitMQ, Mosquitto,

modified Mosquitto, HiveMQ, ZeroMQ, VerneMQ, HornetQ,

MicrosoftMQ, AmazonMQ, ApacheQPID, and OpenMQ [7].

RabbitMQ and Mosquitto are the most popular message

queues for the majority of applications because of their

flexibility. Although there have been many advancements in

MQTT over the past few years, no one has added intelligence

to it. To ensure efficient and reliable data delivery using the

MQTT protocol, there is a need for more development to make

it more intelligent, especially on dynamic priority and message

expiry depending on the dynamic conditions of the computing

continuum.

D. AMQP

AMQP is a publish-subscribe protocol for point-to-point

message exchange between two devices. It is designed to

provide a flexible and scalable way to send and receive

messages. It supports different message exchange patterns

and messaging topologies [27]. AMQP’s general message

transmission structure is similar to MQTT, but it contains

multiple queues to maintain each topic as shown in Figure 3.

The AMQP structure is composed of clients (both publishers

and subscribers), an AMQP broker, and multiple queues. The

publisher can send a message to the AMQP broker, specifying

the destination and any other relevant metadata. The AMQP

broker stores messages temporarily, filters them, and pushes

AMQP Broker

Exchange

Topic Queues

Publishers Subscribers

Publish
message to
Exchange

Client 1

Client 2

Client 3

Client 4

Client 5

Client 6

Client 7

Subscribe to QueueRequest a messageSend a message

Bind
ing

 1

Binding 2

Binding 3
Binding 4

Fig. 3: General message exchange model of AMQP protocol

them to the appropriate topic queues. Clients can subscribe

to a specific topic queue to receive messages in a timely

manner. Clients can also request messages even if they are not

subscribed to a specific topic queue. AMQP is widely used in

industrial applications because of its interoperability support.

AMQP provides a reliable message delivery and a scalable

message architecture. It also supports secure and high-quality

data exchange between devices [28]. Like MQTT, AMQP

supports binary data, plain text, XML, and JSON formats.

AMQP supports different message queues including Rab-

bitMQ, Apache ActiveMQ, RedHat AMQ, and Apache Apollo

MQ. Because AMQP delivers high-quality messages, it uses

more memory and computation. In addition, this process also

increases delay. This protocol is feasible for a large number

of devices, and not suitable for small-scale devices. This

protocol is highly scalable but not cost-effective. There is huge

potential for integrating intelligence in this protocol in large

environments like the computing continuum.

E. DDS

DDS is a data-centric topic-based publish-subscribe pro-

tocol that does not use message brokers for data exchange.

It delivers high Quality of Service (QoS) messages using

a multicasting approach. The message exchange process of

the DDS protocol is shown in Figure 4. Instead of message

brokers, DDS uses a global databus that shares space or is

distributed between all topics, which helps to avoid single

points of failure. But, like other publish-subscribe protocols,

clients play subscriber or publisher roles. Both publishers and
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subscribers share the DDS databus dynamically and can join or

leave anytime [29]. A DDS protocol can be used for a variety

of applications, ranging from IoT to Edge to Fog to Cloud.

It transmits data at ultra-high speeds (low latency), manages

thousands of devices, and is highly available and secure. It can

handle small to large systems. Security in DDS is distributed

across the continuum without affecting the performance of the

system. Data can be stored in the DDS databus until all the

subscribed clients receive it, so the publisher does not need to

store it locally with the application.

DDS is the first protocol developed with interoperability

features. Several other factors make this protocol chosen by a

vast number of computing continuum applications. There are

limited non-standard developments of DDS protocols focused

on security, and message filtering approaches. White et al. [30],

embedded a security mechanism for DDS protocols which is

applicable in industrial IoT, and supports identifying malicious

heartbeat messages and denial of service attacks. In general,

the standardized DDS supports Simple Discovery Protocol

(SDP), but it is inefficient when the application grows with

many devices in the computing continuum. There are a few

researchers who tried to overcome this challenge. A content-

based topic filtering strategy was introduced in [31] which

takes limited memory and less computing time with higher

filtering efficiency and timely message delivery. Mustaque et
al. implemented a message filtering strategy based on causality

to achieve higher availability and efficiency when multiple

similar services are connected [32]. To improve DDS SDP

scalability, a Bloom Filters (BFs) strategy is introduced in [33],

and they use the Hash function to represent the space-efficient

probabilistic datasets.

III. CHALLENGES OF EXISTING DATA PROTOCOLS

There are several challenges associated with existing data

protocols, which are summarized using Table I, and discussed

below:

A. Latency

Low latency is extremely critical for constrained devices

such as IoT or Edge. Several factors contribute to high latency

in the data protocols, including waiting for an acknowledgment

to send the packets to the server, delay at message brokers,

inefficient queue management, inefficient message expiry time,

and starvation due to prioritization. In some cases, high latency

causes further problems, such as congestion and inefficient

bandwidth use, which further complicate upcoming packets.

HTTP and AMQP result in high latency because of waiting for

the server response and using high-quality data transmissions,

respectively. These two protocols support several data formats

that are larger. CoAP is better in terms of latency than HTTP

and AMQP. But CoAP cause a high congestion rate that

sometimes improves retransmissions count for a lost packet.

This re-transmitted packets cause higher latency. DDS results

in low latency because it does not use message brokers like

MQTT. Because of its tiny headers, MQTT results in low

latency in comparison with HTTP, CoAP, and AMQP.

B. Scalability

As the computing continuum grows, more devices are

participating in computations. It is one of the most critical

metrics because of the complications caused by factors such as

connectivity, authorization or certification, or handling timely

updates from software firms. So, it is necessary for any data

protocols to support scalability, so that newly added devices

are adaptable and easily communicated. From the literature,

HTTP and CoAP are scalable depending on the application,

network constraints, and specific use cases. In contrast, these

two protocols are not scalable for large systems like computing

continuum or large numbers of edge devices. MQTT and

AMQP are scalable because newly added devices need to

register their participation as publishers or subscribers. DDS

protocols are more flexible and scalable because the devices

can join or quit anytime in the network, making it very easy

and adoptable for newly added devices.

C. Security

Data protocols are designed to exchange data between two

devices, so it is necessary to protect data before it is delivered

to the destination. Although each protocol in the literature

provides different levels of security, HTTP is not a secure

protocol. There is a high chance of denial of service attacks

on the HTTP protocol. So, the HTTP protocol has been

enhanced with security, namely HTTPS. HTTPS and CoAP

can provide security through Transport Layer Security (TLS)

to provide secure data exchange between devices. MQTT uses

authentication and authorization mechanisms to deliver data

securely, but this does not meet security standards. AMQP

provides security through authentication and authorization

using the Simple Authentication and Security Layer (SASL)

and supports TLS for secure data exchanges. DDS supports

security through access control, authentication, integrity, and

encryption mechanisms.

D. Complexity

Complexity, in this context, refers to implementing and

managing data protocols efficiently and effectively to manage

data exchanges, memory, and computations. HTTP is a tra-

ditional and standard protocol that simplifies the deployment
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TABLE I: Summary on Challenges associated with Existing Data Protocols

Protocol High Latency Scalability Security High Complexity Interoperability Reliability
HTTP � � � � � �
CoAP � � � � � �

MQTT � � � � � �
AMQP � � � � � �

DDS � � � � � �

and management of applications. But, this protocol increases

complexity and security issues in large-scale systems. The

complexity of CoAP is similar to HTTP. Although MQTT

is efficient for the Edge, it increases complexity when dealing

with complex data formats. AMQP is one of the more complex

protocols due to multiple features such as multiple queues,

dynamic routing, interoperability, and security. But, these fea-

tures make this protocol extremely relevant for many industrial

applications. Similarly, the DDS protocol is also embedded

with several features that are difficult to maintain and complex.

Furthermore, these features make the DDS protocol more

adoptable for many applications. Still, several advancements

are needed in these protocols to make them more adaptable

and intelligent.

E. Interoperability

It is the ability of two or more heterogeneous devices to

work together and achieve a common goal. In the computing

continuum, several heterogeneous devices are participating

and exchanging their data. Achieving interoperability among

these devices and coordinating efficiently and timely is neces-

sary. HTTP supports different data formats and interoperable

through specifying multiple Content-Type in the headers.

But, CoAP protocols need a data format or CoAP request

to be understandable by the server or receiver. So, it does

not facilitate interoperability. MQTT does not support inter-

operability by default, but uses different message queues such

as Apache ActiveMQ, or some set of configuration setups it

can be supported. These changes in the protocols may affect

the actual protocol performance. AMQP supports a high level

of interoperability. DDS is the first protocol designed with

interoperability features, and it is highly interoperable and

suitable for edge devices.

F. Reliability

The reliability of a data protocol is a crucial metric for

assessing its QoS. It ensures that the message is delivered

accurately and on time. Data protocols are designed to en-

sure reliable message exchanges because they also play an

important role in decision-making. HTTP and CoAP follow a

request-response communication pattern, meaning each mes-

sage is acknowledged and retransmitted in failure scenarios.

So, they are highly reliable. The MQTT protocol is unreliable

due to the possibility of a single point of failure at the message

broker or because there is no retransmission policy if the

message expires or is lost. Publishers and senders do not

know whether their messages reach subscribers. As AMQP

also uses a message broker, there is a chance of a single point

of failure. However, it maintains multiple queues, so the loss

is low compared to MQTT because failure in one queue does

not cause failure in another. DDS achieves high QoS and is

highly reliable [34]. DDS does not use message brokers, so

there is no chance for a single point of failure.

IV. INTELLIGENCE FOR DATA PROTOCOLS

This section discusses intelligence in data protocols and its

implications for possible solutions. In this section, we explain

how existing data protocols can be advanced through learning

and enhanced in a way that enables intelligent decision-

making. This further addresses several challenges such as

congestion, message filtering, message expiry issues, resource

control and dynamic prioritization. Next, we discuss various

implications associated with incorporating intelligence into

data protocols. Further, we discuss several ways to simplify

learning algorithms with respect to constrained devices and

protocols. Finally, we summarize all the discussion about the

challenges.

A. Intelligence in Data Protocols

According to Friston et al. [35], ”intelligence is the ability to

generate evidence for their own experience”. In data protocols,

intelligence indicates the ability to generate efficient and

dynamic decisions (in message queues, clients or servers),

through past experiences or data patterns. There are several

ways to embed intelligence in data protocols depending on

their rules and structures. For example,

• CoAP protocol congestion control is one of the ma-

jor challenges, and several mathematical or probabilistic

models are used to control it. Adding intelligence in this

module helps to identify congestion before it happens

(Prediction), so that possible data failures or delays can be

avoided. For instance, generating a dynamic RTO helps to

identify the appropriate data delivery time for each data

packet, so that data packets do not overlap and interrupt

other packets or channels. In this way, congestion is

completely mitigated.

• Protocols like MQTT and AMQP use a central message

broker to exchange data between clients. And, a message

broker is responsible for multiple operations including

store and forward, prioritization, and QoS. The message

broker is developing an intelligent mechanism that can

determine the importance or sensitivity of data, and then

determine its priority according to that. This method can

be used to analyze message patterns through structure or

representation learning strategies. But, it is also necessary

to keep privacy and security in mind. It is also challenging
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to assign a dynamic priority to each data packet. However,

we can consider the history of data or business of the

channel or receiver device, and a dynamic message expiry

is generated for each data packet. This way, intelligence

is beneficial to achieve high-level of intelligence in data

protocols. When developing dynamic message expiry, it

is necessary to treat low constrained devices like Edge.

A low message timer expiry increases the packet loss

rate and a high message expiry may cause overflow or

congestion situations at the message broker.

• Currently, multiple computing devices connect through

multiple applications, and edge devices play computing

roles for multiple applications. So, it is necessary to

assign priorities to messages based on how important

they are. Since both MQTT and AMQP support message

priority (AMQP priority ranges from 0-9, and MQTT

priority from the perspective of QoS is 0-3) through their

message headers. Adding intelligence to these protocols

helps them become smart and reliable. However, it is a

highly challenging decision, but it can help improve the

performance of the Edge devices.

• DDS-like protocols replace message brokers with mes-

sage filtering strategies. However, these strategies are

unintelligent. Added intelligence to message filtering

through natural language processing (NLP), AI/ML, or

deep learning will significantly improve these protocols.

For example,

– NLP techniques such as word2vec [36] can identify

the underlying topic or themes in messages, which

can be useful for topic modeling.

– NLP further extracts keywords from messages,

which create topics dynamically. Similarly, due to the

accuracy of AI/ML or deep learning in classification,

dynamic message filtering can be performed based

on the categories identified in messages.

– AI/ML or deep learning techniques help identify

anomalous messages in DDS.

– From the literature, Mustaque et al. [32] used causal-

ity to filter messages and achieved increased effi-

ciency and availability.

There are several other strategies that will greatly help to

achieve high-level intelligence in DDS protocol, includ-

ing Markov blankets, free energy principle, structure or

representation learning algorithms.

B. Implications of intelligent data protocols

Most data protocols designed for the edge and IoT are tiny

in size, use minimal resources, and limited in configuration

settings. For example, MQTT is very restricted in message

formats, priority ranges (for example QoS0-QoS3) and sizes.

So, it is necessary to use lightweight learning strategies, or

learning models that learn through limited data. As a result,

these protocols are also limited in memory and other resources.

DDS and AMQP protocols’ complexity is high due to several

features, and it is necessary to trade off complexity before

adding intelligence. For example, when AI/ML algorithms

generate more topics during message filtering in DDS, it is

very challenging for the subscribers to find the appropriate

subscribers for the messages, and increases latency. Maintain-

ing topic queues in AMQP is also challenging. To make this

protocol more efficient and smart, efficient learning algorithms

are very significant. Since these two protocols are resource-

intensive, and AI/ML is resource-intensive, it does not become

overloaded on existing models. CoAP’s major challenge is

congestion, according to Donta et al.’s DRL [17] and Demir et
al.’s ML model [22] tries to add intelligence to it. But adding

intelligence to the system will require higher resources or limit

the number of devices at the edge. Since CoAP uses previous

information such as RTT and RTO, keeping all information in

memory for training models is an additional burden. So, effi-

cient buffer management, lightweight ML approaches, AI/ML

which produces efficient learning models through tiny data

are appropriate for CoAP protocol, to make it intelligent and

efficient.

C. Ways to simplify learning complexity

Most AI/ML algorithms are highly computational, and re-

quire huge computational resources to produce an efficient and

accurate learning model. Despite this, data protocols work on

constrained devices, such as the IoT or the Edge. It is difficult

to keep large amounts of data to train learning models because

of limited storage space. So, it is necessary to choose AI/ML

algorithms for data protocols carefully. Such chosen algo-

rithms must be able to generate accurate and efficient learning

models using limited data and low computational resources.

The following techniques are useful to solve computational

challenges for data protocols when adding intelligence to data

protocols.

1) AutoML: Automated machine learning (AutoML) is

becoming more popular because of its advantages in data

analytics. It simplifies the ML model building process through

automatic feature selection, hyperparameter tuning, and model

selection [37]. However, it is not popular for small datasets,

but it is still capable of producing accurate and efficient models

[38]. So, there is a high chance of enabling intelligence in data

protocols through AutoML techniques.

Most scenarios or applications, it is difficult to predict or

identify the best learning model to fit or resolve the problem, in

such cases AutoML is one possible solution. Depending on the

availability of data or computational resources, it can choose

the most appropriate algorithm/s to learn the models. AutoML

is more efficient at classifying supervised or unsupervised

data, which is further applied in DDS for message filtering.

Extending this towards multi-label classification (MLC) [39]

enables more intelligence concerning topic filtering in the

DDS, further improves reliable message delivery. Similarly,

MLC can also be applied to AMQP to push published mes-

sages to appropriate topic queues dynamically. AutoML can

also be applied to identify common patterns that can be used to

route messages. Using these predictions, DDS or AMQP can

support more resources to mitigate message drops or achieve

high reliability on these routes. AutoML can help MQTT
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or AMQP identify message priorities according to message

context or subscribers’ behaviours.

2) Representation learning: It extracts meaningful infor-

mation, latent features or underlying exploratory factors from

the input datasets. Representation learning (ReL) further ex-

tracts internal structures or patterns from the data. There are

several ReL algorithms in the literature with their benefits and

drawbacks, or low to high computations [40]. The advantages

of ReL algorithms are prominent for data protocols for edge

to make them intelligent. It is also embedded in autoML, so

that model selection or learning happens automatically. The

possible challenges to be addressed through ReL are discussed

subsequently.

MQTT brokers can consider ReL to learn a model from

historical message expiry data, and extract patterns and rela-

tionships between various features such as message content,

topic, and subscriber behavior, and analyze this information

to predict when a message is likely to expire. Deciding or

predicting a dynamic message expiry for published messages

further helps to optimize message delivery and prevent un-

necessary message loss. Representation learning algorithm is

useful in CoAP protocols to identify the right time to transmit

a packet. This is so that it is delivered in a reliable manner

and does not cause congestion. This is possible through the

analysis of the structure of the network, and message data.

The ReL is also useful in DDS protocol to predict the route

and enable needed resources for the data while the data is

being delivered. By analyzing the history of data transmissions

between publishers and subscribers, DDS can identify the busy

routes in the network.

3) Complexity Minimization: There are several ways to

minimize the complexity of learning algorithms and we listed

some of them as follows.

• Dimensionality reduction and coarse-gaining are helpful

in simplifying the datasets for further analysis. The

dimension reduction is used to reduce the number of

variables, whereas coarse-gaining simplifies the complex

data to simple representations.

• Move from big data to smart data: Big data refers to

highly complex and large unvalidated data, and consists

of both structured and unstructured data that requires

high-level processing units to run [41]. Smart data refers

to data with meaningful information, validated, and well-

defined, allowing information to be processed more ef-

ficiently. Smart data can be run on constrained devices

with high accuracy and efficiency.

• Disentangled: refers to the process of separating different

factors or components of a complex system, such as

separating variables or features in a data set. These

disentangled representations are simple to analyze and

further improve model interpretability.

D. Summary

Overall, this paper uses intelligence not only to make

protocols dynamic and smart, but also to mitigate several chal-

lenges. In the Table II following subsections, we summarize

TABLE II: Summary of possible challenges able to address

through learning in different data protocols

Protocol HTTP CoAP MQTT AMQP DDS
Congestion Control � � � � �
Message Filtering � � � � �
Message Expiry � � � � �

Prioritization � � � � �
Control on Resources � � � � �

possible challenges able to address through learning while

making the protocols intelligent.

1) Congestion control: In CoAP, congestion control is

one of the primary challenges. It can be overcome through

efficient RTO computations. It is promising to use ML or ReL

algorithms since they can analyze the history and patterns of

data packets to determine the most appropriate time to send

them to the server or receiver. This allows them to achieve

higher reliability. Embedding intelligence into CoAP will also

help to predict the situation before it occurs, so that QoS can

be increased.

2) Message filtering: Message or domain filtering is an-

other challenge that is addressed through AI/ML and easily

embedded to DDS or AMQP protocols. AMQP uses multiple

message queues, and dynamic message filtering which helps to

increase message queue utilization. Domain filtering in DDS

performs an efficient delivery to appropriate subscribers and

increases reliability. ML and ReL have the potential to make

these protocols more intelligent, because of their ability to

classify and identify patterns quickly and easily in their data

sets.

3) Message expiry: As these protocols are designed for

devices with limited buffer capacity, message expiration plays

a crucial role in MQTT and AMQP’s message queues. A

minimal message expiration will cause additional unnecessary

message drops, which further affects the delay caused by a

retransmission. In case of a long message expiry, the messages

remain alone in the message queue, thereby contributing to

congestion and data overflow. It is therefore necessary to trade

off message expiration. It is more reasonable if it can be

dynamically generated based on message size and available

resources. By analyzing historical data loss or timely delivery

of messages, and their routes, AI/ML can generate dynamic

message expiration dates.

4) Prioritization: MQTT and AMQP messages have a

prioritization algorithm embedded in their headers, and they

include message priority. MQTT supports three priorities, and

AMQP supports 0-9, and is added once a message is created.

It is recommended to decide the priority of each message by

the message broker. This is to increase the reliability of the

delegate based on the condition of the subscriber or channel

through its history data analysis. Dynamic prioritization must

improve the reliability of the protocols.

5) Control on resources: AI/ML algorithms predict busy

routing paths, so it is easy to control or make them available

on that path to avoid problems. This further improves protocol

availability and reliability. As CoAP and HTTP require strict
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connection establishment before communication, they reserve

the necessary resources before communicating. Similarly, pro-

tocols like MQTT, AMQP, and DDS enable dynamic routing

with increased resource availability because of predicting

routing information through history data analysis.

V. CONCLUSION

Data protocols are the key elements to move data from one

device to another device for computation or storage (temporary

or permanent storage). However, traditional protocols are a

static set of rules, while recent advances enforce dynamic

functionalities in these protocols, due to advancements in

connected computing devices, and the scale of applications. In

this context, this paper examines how existing protocols can

be extended to enforce intelligence and mitigate challenges.

Initially, we present popular data protocols for the edge and

computing continuum, and study their benefits and limitations.

We discuss various challenges associated with these protocols

when extended further with additional features. As a result, we

explore a number of research questions, including the need for

intelligence for data protocols, the challenges associated with

embedding intelligence into existing protocols, and possible

ways to simplify their complexity. We summarize the findings

in the paper while considering the most appropriate challenges

to make the protocols intelligent.
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