
1

Tree-ORAP: A Tree-based Oblivious
Random-Access Protocol for Privacy-Protected

Blockchain
Youshui Lu†, Member, IEEE, Bowei Cai†, Xiaojun Tang*, Member, IEEE, Lei Liu, Member, IEEE, Jun Du, Senior
Member, IEEE, Shui Yu, Fellow, IEEE, Mohammed Atiquzzaman, and Schahram Dustdar, Fellow, IEEE,

Abstract—Since the introduction of Bitcoin in 2008, blockchain
technology has found widespread applications across various
domains. While blockchain offers convenience and immense
research value, it also raises privacy and security concerns
among users and society at large. Notably, numerous studies
have demonstrated the vulnerability of blockchain anonymity.
Existing solutions based on bloom filters and SGX(Software
Guard Extensions) may safeguard users’ access patterns but
remain susceptible to novel attacks, including protocol-level and
side-channel attacks. To address these issues, we propose a Tree-
based Oblivious Random Access Protocol (Tree-ORAP) that not
only provides access pattern protection in privacy-preserving
blockchain systems but also preserves the original blockchain
performance. Furthermore, we design a Tree-ORAP State Ver-
sion Controller to manage state synchronization across nodes in
a multi-client blockchain network. We also analyze the system’s
security and implement a Tree-ORAP prototype, conducting a
series of experiments to demonstrate its efficiency and technical
feasibility. In summary, our protocol offers enhanced protection
for blockchain systems against a wider range of attacks compared
to previous methods, all while maintaining superior security
performance and equal or better efficiency.

Index Terms—blockchain, privacy-preserving, ORAM, access
pattern protection

I. INTRODUCTION

Blockchain technology has experienced a significant surge
in adoption across various industries since the publication of
the Bitcoin paper by Satoshi Nakamoto in 2008 [1]. Unlike
traditional centralized systems, blockchains are decentralized,
transparent, and immutable, which means that the information
stored on a blockchain is publicly accessible and verifiable.
However, the public nature of blockchains can compromise
the anonymity of participants, as research [2], [3] has shown

†: Equal contribution.
*: Corresponding author.
Y. Lu and X. Tang is with the School of Electrical Engineering, Xi’an Jiao-

tong University, Xi’an 710049, China. E-mail: yolu6176@uni.sydney.edu.au,
xiaojun tang@xjtu.edu.cn

B. Cai is with the School of Computer Science and Engineering, University
of Minnesota, Twin City, MN 55455, USA. E-mail: cai00254@umn.edu

L. Liu is with is with Xidian Guangzhou Institute of Technology,
Guangzhou 510555, China. E-mail: tianjiaoliulei@163.com

Jun Du is with the Department of Electronic Engineering, Tsinghua
University, Beijing, 100084, China. E-mail:jundu@tsinghua.edu.cn

Shui Yu is with the School of Software, University of Technology Sydney,
Sydney, NSW 2007, Australia. E-mail: shui.yu@uts.edu.au

Mohammed Atiquzzaman is with the School of Computer Science, Univer-
sity of Oklahoma, Norman, OK 73019 USA. E-mail: atiq@ou.edu

Schahram Dustdar is with the Distributed Systems Group, TU Wien, 1040
Vienna, Austria. E-mail: dustdar@dsg.tuwien.ac.at

that the information on public blockchains such as Bitcoin
can be de-anonymized by establishing associations among
transactions and addresses. Moreover, in line with the General
Data Protection Regulation (GDPR) [6], many blockchain-
enabled systems in various fields such as finance, industry
[7], and healthcare [8] require sensitive information to be kept
anonymous and confidential on the blockchain. In the IoT
domain, which has widely implemented blockchain systems,
the confidentiality and security of product data, client data,
and administrator data are paramount. Any data breaches can
lead to significant damage for companies. For instance, in the
Internet of Vehicles, as described in Lu et al. [9], attackers
can steal gas emission data, causing significant financial losses
for automobile manufacturers. Therefore, there is a growing
interest from both academia and industry in building reliable
privacy-protected blockchain systems to address these chal-
lenges.

In the past decade, various privacy-protected blockchains
have been launched, such as Zerocash [12] and Monero
[13]. However, as research has progressed, these privacy-
protected blockchains still face new and sophisticated methods
of privacy analysis, such as protocol-level attacks [14]–[16]
and side-channel attacks [17].

To address the security of privacy-protected blockchain
models, Gervais et al. [18] proposed a bloom-filter based
method to provide privacy-preserving query services. While
this method can prevent address leakage with high probability,
it fails to protect access patterns. Data holders (full nodes) can
still deduce clients’ addresses by monitoring transactions and
access patterns. Matitic et al. [19] and Niu et al. [20] have
leveraged SGX to hide access patterns from full nodes. How-
ever, their approaches have two fundamental issues. Firstly,
it is not realistic to have every node equipped with SGX.
Secondly, using SGX only targets the linkage between IP
addresses and query tokens, but not the connection between
transactions and user addresses. Therefore, we propose achiev-
ing unlinkability between user information while hiding access
patterns in the context of privacy-protected blockchains.

Our proposed model aims to prevent malicious full nodes
from learning the links between published/queried information
and actual user identities. To achieve this goal, we draw
inspiration from the Path-ORAM model [21] and propose a
high-level idea to design an oblivious random access protocol
between the client machine (querier) and the server (full node
where encrypted data is stored).

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3347589

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 11,2024 at 11:53:10 UTC from IEEE Xplore. Restrictions apply.

2

The ORAM model has found extensive implementation
in cloud-based storage systems. In contrast to blockchain
systems, it lacks a fundamental real-time responsiveness re-
quirement and is typically regarded as a single-client service,
both of which present considerable challenges for its integra-
tion into blockchain platforms. Consequently, we can affirm
that incorporating Path-ORAM into existing privacy-protected
blockchain systems is confronted by four fundamental chal-
lenges:

• 1) The high complexity of the algorithm required for
access pattern protection can significantly impact system
performance, even leading to a slow system.

• 2) Most existing blockchain systems use their own data
structures, such as the state tree in the Ethereum-based
ecosystem and Unspent Transaction Output (UTXO) in
bitcoin-based and some consortium blockchains [22].
These structures are designed specifically for predefined
functions such as search or validation, making it difficult
to implement other structures.

• 3) ORAM-based methods are typically designed for a
fixed memory size, whereas the number of blocks in
traditional blockchain settings increases with the amount
of data generated.

• 4) ORAM is a single-client based protocol, while
blockchain networks are composed of multiple-client
nodes and servers, making it challenging to implement
ORAM’s rationale in a multi-client blockchain network.

To address these challenges, we propose a tree-based obliv-
ious random-access protocol (Tree-ORAP) specifically de-
signed for privacy-protected blockchain systems. Tree-ORAP
introduces a novel blockchain data structure (ORAP-Tree)
that enables the reorganization of physical addresses without
sacrificing the intrinsic property of the Merkle tree. Moreover,
we optimize and reduce the computation overhead to an
acceptable range to guarantee the blockchain’s performance.

Furthermore, ORAP-Tree is compatible with ever-growing
data blocks due to its novel tree structure, which synchronizes
newly generated child nodes within the blockchain network.
We also present a position map version controller to synchro-
nize the version of the position map of each machine in the
network.

Finally, we implemented a prototype of the Tree-ORAP
blockchain system and evaluated its performance through a
series of experiments. Our results show that Tree-ORAP meets
the performance requirements of existing blockchain systems,
despite the relatively long time required for these systems to
generate new blocks. For instance, Ethereum takes 180 sec-
onds to generate one block, while Zerocash takes 75 seconds,
and the time delay for transaction communication can reach up
to 240 milliseconds. By comparison, Tree-ORAP only incurs a
maximum communication delay of 200 milliseconds. In terms
of memory usage, Tree-ORAP is well-matched to the storage
capacity of full-node machines and does not sacrifice machine
performance. When the number of blocks reaches 13,804,589,
which is the exact block number of Ethereum before December
15th, 2021, the storage usage of Tree-ORAP is only 30 GB.
In contrast, the total storage usage of Ethereum on a full

node machine is at least 2 terabytes, and it can reach up
to 20 terabytes under the archive model. In summary, our
results demonstrate that the time cost and memory usage of
Tree-ORAP are affordable even for large data sizes, and the
system’s performance is technically feasible.

To address privacy concerns in blockchain systems, we
propose a tree-based oblivious random access protocol, Tree-
ORAP, specifically designed to preserve user access patterns
and protect user privacy from various attacks. Our contribu-
tions in this paper are summarized as follows:

• We introduce Tree-ORAP, which can protect access
pattern leakage, mitigate external attacks, and prevent
graph analysis in privacy-protected blockchain settings,
while other methods are only feasible to certain types of
exploitation.

• We design a novel data structure named ORAP-Tree,
which achieves secure access pattern protection without
sacrificing the intrinsic properties of the Merkle tree.
This integration of ORAM features into the blockchain
data structure leads to a better security performance
framework. This should be the first oblivious access
protocol applied to privacy-protected blockchain from our
knowledge.

• We construct a position map version controller to ef-
ficiently synchronize the position map with each node
machine in a multi-client blockchain setting, ensuring
seamless communication and coordination.

• We implement a prototype of Tree-ORAP and conduct
a series of experiments to evaluate its performance. Our
results demonstrate that Tree-ORAP’s memory usage and
time cost are technically feasible for deployment in a real
production environment.

In summary, our proposed Tree-ORAP protocol and ORAP-
Tree data structure make significant contributions to the pri-
vacy protection of blockchain systems and provide a practical
solution for ensuring secure and private transactions.

The rest of this article is organized as follows. In Section
II, we provide an overview of related work. In Section III, we
introduce the necessary theoretical background of blockchain
and the preliminary concepts relevant to our work. In Section
IV, we define the problem and outline the design goals of our
model. In Section V, we present the system architecture, data
structure, and protocol details. Specifically, we introduce the
novel data structure ORAP-Tree and the position map version
controller, which are critical components of the proposed
Tree-ORAP protocol. In Section VI, we analyze the security
performance of Tree-ORAP in detail, with a focus on how
it protects against various attacks. In Section VII, we present
the results of our experiments and evaluate the performance of
Tree-ORAP. Finally, in Section VIII, we conclude the article
and discuss the implications of our work for the future of
blockchain technology and privacy protection.

II. RELATED WORK

As blockchain vulnerabilities continue to increase, privacy
concerns have become a pressing issue for both industry and
academia [18], [27]–[29]. Research in this field can be broadly

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3347589

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 11,2024 at 11:53:10 UTC from IEEE Xplore. Restrictions apply.

3

TABLE I
COMPARISON OF RELATIVE WORKS

Relative Works Methods Type Goals Limitations
Gervais et al. [18], Osuntokun
et al. [23]

Bloom-filter-based Probabilistic request User behavior sensitive

Rahman et al. [24], Matetic et
al. [19], [20]

SGX-based Hard-ware protection Side-channel/protocol-level
attacks exploitable

Niu et al. [20], Liang et al. [25] Multi-party computation Secret sharing technique Computationally expensive
Kokoris et al. [26] Homomorphic encryption Encrypted request Computationally expensive

classified into two categories. The first category focuses on
designing new protocols to address the privacy issues of
current blockchain systems. This includes protocols that are
direct extensions of the Bitcoin network [30], as well as
those that use cryptographic primitives such as ring signa-
tures for Monero [13] and zero-knowledge proofs for Zcash
[31]. Researches like Bulletproofs [32] reduce transaction size
and improve privacy in Bitcoin, and MimbleWimble [33], a
privacy-oriented blockchain with a focus on scalability and
privacy. Other examples are like Fabric-privatechain [34] and
Quorum [35]. The second category involves examining new
attack methods or privacy and security vulnerabilities in cur-
rent blockchain systems [27], [36], [37]. For instance, Tramer
et al. [17] proposed a timing side-channel and traffic analysis
attack on light nodes in Zcash and Monero. Other types of
side-channel attacks on blockchain inclues power consumption
analysis [38]. Biryukov et al. [15] analyzed privacy issues
for Zcash and proposed an active attack to reproduce users’
transactions. Other researches have focused on improving
privacy in dApps, such as privacy-preserving smart contracts
[34] and privacy-enhanced decentralized exchanges (DEX)
[39].

Several previous works have also aimed to protect light
client privacy. Gervais et al. [18] employed Bloom filters [40]
to enable clients to mask target addresses with probabilistic
requests for the total transaction subset. Osuntokun et al. [23]
proposed modifications that move the bloom-filter applica-
tion from full nodes to clients to improve the false positive
rate. Rahman et al. [24] proposed a privacy-preserving light
client architecture, where the client only requests information
for relevant transactions, rather than downloading the entire
blockchain, also used Bloom filter. Matetic et al. proposed
employing SGX [19], [20] on full nodes to serve privacy-
preserving requests from light clients, and Niu et al. [20]
extended this research on the efficiency of this framework.
Moreover, Liang et al. [25] proposed a homomorphic en-
cryption method to enable light clients to perform searches
on the blockchain without revealing their search queries. The
proposed system protects the privacy of user queries while
allowing the client to retrieve relevant information from the
blockchain. Kokoris et al. [26] proposed a novel method
to protect the privacy of light clients by using a secure
computation framework. The proposed method uses a secret
sharing technique to prevent information leakage and enables
clients to verify transactions without downloading the entire
blockchain.

The previous works mentioned above have made signifi-
cant contributions to protecting the privacy of light clients
in blockchain systems. However, these methods still suffer
from several weaknesses. For bloom-filter-based methods, user
behavior significantly affects privacy. If a user does not request
filter headers from distinct full nodes, the target address can
be easily deduced. For SGX-based methods, they protect
access patterns, but they are susceptible to side-channel attacks
and protocol-level attacks. The multi-party computation and
homomorphic encryption-based methods are computationally
expensive and may require significant resources to implement,
which may limit their practicality. In contrast, Our proposed
protocol addresses these vulnerabilities by providing privacy
protection, particularly in preventing access pattern leakage,
and defending against novel attacks such as side-channel at-
tacks, graph analysis, and protocol-level attacks. Furthermore,
our experimental results indicate that the overhead of the
system meets the technical requirements of the blockchain
system, making our proposed protocol feasible and practical.

III. BACKGROUND AND PRELIMINARIES

In this section, we will first discuss the current status of
blockchain technology applications in the IoT domain. We will
then introduce several important concepts related to our work,
including privacy-protected blockchain and Oblivious RAM
(ORAM).

A. Background of IoT Blockchain

The integration of blockchain technology into the IoT
domain has enabled the development of new features and
solutions for various scenarios. For instance, Kang et al.
[41] and Javaid et al. [42] propose IoT data management
systems based on blockchain to authenticate user identity and
improve security performance. In the domain of Internet of
Vehicles, blockchain has been applied to enable secure data
sharing. For example, Shi et al. [43] and Chen et al. [44]
propose blockchain frameworks for effective sharing of vehicle
data and introduce negotiation mechanisms for data sourcing.
Additionally, blockchain has also shown great potential in
motivating the development of security, decentralized solu-
tions, and peer-to-peer structures in other IoT domains, such
as industrial IoT networks [7] and medical IoT [8].

However, few works have addressed the privacy require-
ments within IoT blockchain networks. To ensure that clients’
personal information is properly guarded in production en-
vironments, a naive blockchain system is not enough. Our

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3347589

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 11,2024 at 11:53:10 UTC from IEEE Xplore. Restrictions apply.

4

protocol is based on a privacy-preserving blockchain network
that provides a more confidential communication solution,
thereby efficiently improving the security of IoT blockchain
networks.

B. Privacy-Protected Blockchain

Privacy-protected blockchains, such as anonymous digital
currencies and privacy confidential consortium blockchains,
employ techniques such as zero-knowledge proofs and parallel
hidden ledgers to conceal transactions and user addresses from
the public. Zerocash and Monero are typical examples of
privacy-protected blockchains, but due to their feasibility and
popularity, we will only focus on Zerocash in this section.

Zerocash was first proposed by Miers et al. [31] and is an
extension of Bitcoin that provides strong anonymity to users.
Ben-Sasson et al. [12] proposed improvements to Zerocash
from a decentralization perspective. Zerocash does not use
digital signatures to validate coins, nor does it require a central
party to prevent double-spending. Instead, it employs zero-
knowledge proofs to verify whether coins belong to a public
list of valid coins, effectively hiding public information such
as identities and transaction details on the list. In this way,
zero-knowledge proofs enable anonymity, and we will provide
some details on the technique and its anonymity achievements
in the following sections.

1) Zero-knowledge Proof: : Zero-knowledge proof is the
underlying technology of Zerocash, providing users with
strong anonymity. To better understand its functioning, we
provide a simple example in this section. An individual, Alice,
can participate in the Zerocash system in two ways - minting
and redeeming coins. To mint a coin, Alice generates a serial
number S and commits to it with a secure digital commitment
scheme. She then encapsulates it into the coin C, which can
only be opened with a random number r known only to her.
She publishes the coin to the network, along with $1 physical
currency, which all users accept only if it is consistent with the
sum of currency. To redeem the coin C, Alice pulls the set of
valid commitments (C1, . . . , CN) from the network, published
by other users. She provides a non-interactive zero-knowledge
proof π, which states: (1) she knows C ∈ (C1, . . . , CN), and
(2) she knows the random value r to open C. Alice then
publishes a ”spend” transaction with (S, π) for other users to
examine the proof π and check for double spending through
S. If all conditions are satisfied, the transaction is validated,
otherwise, it is rejected.

2) Anonymity Achievement: : The protocol described above
achieves several important goals. First, Alice does not need to
expose the source of her assets or her address. This is because
the blockchain can easily prevent double spending with the
use of zero-knowledge proofs without tracking the transaction
source. In order to track her transaction, other users would
need to know either r or which C Alice provided proof for, but
neither of these are revealed by the proof. As a result, Zerocash
provides an anonymous system with encrypted transactions
and addresses based on Bitcoin.

C. ORAM Model

The Oblivious RAM (ORAM) model, initially proposed
by Goldreich and Ostrovsky [45], is designed to safeguard
information from adversaries who can observe the memory
access pattern. With the development of cloud storage and
computation, recent research has focused on making ORAM
schemes more practical and reliable. Two notable schemes are
Path-ORAM [21] and PRO-ORAM [46].

Path-ORAM is an efficient ORAM protocol that protects the
access pattern of clients from external servers. It consumes less
bandwidth and has low latency compared to other methods.
The scheme is easy to understand: the server organizes the
data as a tree with N buckets, where each bucket can contain
Z blocks. The client maintains a position map, which maps
the block identifier to a node in the server’s tree. It also defines
a variable path, which represents the path from a single leaf
node to the root. When the client retrieves data, it queries all
the nodes on the path where the data is stored. If there is new
data to be added, the client re-encrypts and reorganizes all
the data along the path and writes it back to the server. The
position map is updated during this process, and the server
waits for the next query or write.

Path-ORAM is highly practical and has a small client
storage requirement. For blocks of size B = Ω(log2 N) bits,
its bandwidth overhead is O(logN), and it consumes only
O(logN)w(1) of client-side storage. Here, w(1) denotes a
constant value for any function h(n). For such sizes, Path-
ORAM performs better than other schemes in terms of asymp-
totic complexity. Additionally, it has excellent security and is
proven to fail with mostly negligible probability.

IV. PROBLEM DEFINITION

In this section, we present the threat model, security defi-
nitions and the design goals of the proposed protocol.

A. Threat Model

In this section, we define the threat model for the typical
communication process between client nodes and full nodes
in a blockchain network. The communication process involves
two types of parties: the client node, also known as the light
node, which has limited storage such as personal computers
or mobile phones, and the full node, which is the server that
stores the entire data of the blockchain network.

In this model, we consider two types of nodes:
1) Honest-but-curious full node: The full nodes can ob-

serve all the queries and transactions that are encrypted.
The full nodes can provide the zero-knowledge proof for
transactions but cannot decrypt them. However, the server can
analyze clients’ access pattern and storage content to examine
the linkage between the transactions and the addresses.

2) Independent client node: Client nodes are independent
and anonymous to other nodes in the blockchain network.
They share their account information only when they publish
transactions and send them to the full node. Clients want to
protect their privacy and avoid leaking any private information
to the full node.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3347589

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 11,2024 at 11:53:10 UTC from IEEE Xplore. Restrictions apply.

5

To provide a more formal expression of the threat model,
we can define the following entities and their relationships:

Let N be the set of all nodes in the blockchain network,
and let Nl ⊆ N be the set of all light nodes, also known as
client nodes. Let Nf ⊆ N be the set of all full nodes, also
known as server nodes.

For any client node nl ∈ Nl, there exists a corresponding
account Al that is associated with nl. The account Al has a
public key PKl and a private key SKl, which are used to sign
transactions and provide authentication.

For any full node nf ∈ Nf , there exists a corresponding
database DBf that stores the entire blockchain data. The
database DBf can observe all the queries and transactions
that are encrypted. The database can provide zero-knowledge
proofs for transactions but cannot decrypt them.

In this model, we assume that the full nodes are honest-
but-curious, meaning they will not tamper with the data but
may attempt to gain additional information about the clients
by analyzing their access patterns and storage content.The
concrete model for basic access pattern inference can be
described as follows:

Definition 1 (Access Pattern Inference):
The request sequence, denoted as y⃗, is initiated by nl. The

responsive storage address for input y⃗ is denoted as O(y⃗),
situated in DBf . The objective of the attacker is to ascertain
a specific responsive address:

o′ = O(y⃗′)

This allows attacker nf to deduce that the private data o′ is
associated with input y⃗′.

Subsequently, we elaborate on this definition to provide the
security framework outlined in IV-B. Our goal is to design
a communication protocol that protects the privacy of the
client nodes and their transactions while preventing the full
nodes from learning any additional information beyond what
is necessary to verify the integrity of the transactions. This
requires a robust defense against access security, external
security, and unlinkability attacks, as well as ensuring the
confidentiality and authenticity of the data being transmitted
between the nodes.

B. Access Pattern Security
We use the definition of access pattern security from Ste-

fanov et al. [47] to evaluate the security of the access protocol.
Definition 2 (Request sequence definition):
Let

y⃗ := ((opM , xM , dataM), . . . , (op1, x1, data1))

denote a sequence of data request with length M , where opi
denotes READ from location xi or WRITE datai to xi, and
datai denotes the data to be written.

Definition 3 (Secure access definition):
Let variable A(y⃗) denote the request sequence generated

by protocol to the server given the sequence of data y⃗. The
construction is secure if it meets tow property:

1) for any two data request sequences y⃗1, y⃗2 of the same
length, their access A(y⃗1), A(y⃗2) are computationally
indistinguishable by anyone but the client,

2) the output of construction is consistent with input y⃗ with
probability ≥ 1− negl(|y⃗|).

In simpler terms, a secure access construction ensures that
the server does not know: (1) which data is being accessed; (2)
whether the same data is being accessed; (3) whether the data
is being read or written; (4) the access pattern (e.g., sequential,
random); and (5) the time of the last access.

C. Design Requirements

The objective of this paper is to propose a protocol that
comprehensively protects the privacy of blockchain users.
Specifically, our model should satisfy the following require-
ments:

• Access security: The server providing the full node ser-
vice cannot analyze the access pattern to establish a link-
age between transactions and addresses corresponding to
definition 3. This means that data access patterns from
two sequences of query or publish operations cannot be
distinguished.

• External security: We consider an attacker who can pas-
sively monitor the traffic between the victim and server
or participate in the P2P network. We require that the
attacker cannot infer the linkage between any transactions
and addresses of users using external attack methods such
as side-channel attacks.

• Unlinkability: The attacker cannot infer users’ private
information by analyzing on-chain information using
methods such as graph analysis or other protocol-level
attacks.

Our protocol should satisfy these requirements to ensure
that users’ private information remains secure while using the
blockchain network.

V. SYSTEM DESIGN

In this section, we introduce the routing to outline the main
part of our article, namely the framework of the Tree-ORAP.
The primary objective of the Tree-ORAP is to safeguard
the access pattern within the blockchain network, effectively
preventing any unauthorized surveillance by full nodes on the
memory addresses accessed by clients.

A. Overview

As mentioned earlier, multiple accesses from a single client
can provide the full node with necessary information to
associate each client with memory addresses, which could
lead to severe privacy breaches. Our system can be run on
a privacy-protected blockchain network such as Zcash or
Monero, which implement zero-knowledge proof schemes to
encrypt transaction amount and addresses on the blockchain.
In other situations, an encrypted consortium blockchain can
provide a relatively safe transaction environment, making it
compatible with the goals we have proposed in Section IV.

The general architecture of our system is inspired by
oblivious RAM, which preserves the original input and output
of an algorithm but makes it independent of the distribution
of memory access patterns. We have developed the oblivious

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3347589

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 11,2024 at 11:53:10 UTC from IEEE Xplore. Restrictions apply.

6

Fig. 1. Framework of Tree-ORAP.

random access protocol and related data structure to adapt
to the blockchain network environment, referring to general
ORAM algorithms and PathORAM trees. All the information
on the chain is reorganized into the form of a tree, which aligns
with the original state of the Merkle tree on the chain. When
the full nodes receive requests from clients, they return the full
path where the required data is located on the tree. Clients can
then send new transactions to the full node, and update their
position map and stash stored locally to synchronize with the
full node. The full nodes verify the newly received transactions
with zero-knowledge proofs and package them into the next
block. The newly published transactions will be reorganized
into the ORAP-Tree we mentioned above to be ready for the
next request.

B. Architecture

The architecture of Tree-ORAP is depicted in Figure 1. The
system comprises two main entities: the client light node and
the full node.

• Full Node: Each full node periodically synchronizes the
entire blockchain data with the network, and it is re-
sponsible for generating transactions, publishing blocks,
and responding to requests. Unlike ordinary full nodes,
the full node in our proposed system maintains a novel
tree data structure called ORAP-Tree, which is used to
reorganize the original blockchain data. We will discuss
ORAP-Tree in detail in Section V-D.

• Light Node (Client): The client node only stores the
block header. Although it cannot publish blocks on its
own, it can validate transactions, query the blockchain,
and send transactions to the full node. Additionally,
the light node in our proposed system has an extra
functionality, which is to maintain an ORAP-Index that
indexes the block identifiers to the addresses of branch on
the tree, providing the access pattern protection property.
We will discuss the algorithm in Section V-D.

TABLE II
NOTATIONS

Symbol Definition

N Total number of data blocks stored on chain

L Height of binary tree

B Block size(in bits)

S Client’s local stash

index Index of blocks to the memory address on full node

P Branch of ORAP-Tree, from root to leaf node

p := P(x) Branch from leaf node to the root of tree where
the node x is located

x := index[a] Block a is associated with leaf node x in tree,
i.e., block a resides somewhere along branch[x]

p := branch[a] Branch from leaf node to the root of tree where
the block a is located, here is the mapping from node
to path distinguishing from P(·)

• Blockchain Network: The blockchain network is a peer-
to-peer network that uses standard protocols to commu-
nicate. The full node plays the primary role in receiving
and distributing information.

C. Events and Workflow

The Tree-ORAP protocol serves as a communication pro-
tocol between client nodes and full nodes. Both client nodes
and full nodes need to maintain compatible data structures,
namely ORAP-Tree and ORAP-Index. The general workflow
of the protocol can be summarized as follows:

• Initialization: The client nodes and full nodes initialize
their data structures, including ORAP-Tree and ORAP-
Index, before the protocol can be used.

• Query: The client node requests transactions from the
full node by specifying a set of addresses (i.e., the branch
of the node in the tree that we will discuss in detail in
Section V). The full node returns all data on the satisfied
addresses.

• Publish Transactions: When a client node publishes
new transactions, it submits the new transactions with
the entire branch to the full node. Upon validation, the
transaction is packaged into the next block and published.

• Validation & Update: The full node updates ORAP-
Tree, synchronizes the changes of the ORAP-Index with
the client node, and waits for the next request.

D. Tree-ORAP Protocol

In this section, we provide a formal introduction to our
proposed protocol. In the blockchain network, the light node
stores only a small amount of data in the local stash, while the
full node stores the entire blockchain data. The data structure
used in our protocol is similar to the ordinary Merkle tree,
but it possesses the capability to exchange the position of its
nodes, enabling the protocol to conceal the access pattern from
the full node.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3347589

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 11,2024 at 11:53:10 UTC from IEEE Xplore. Restrictions apply.

7

1) Full Node Data Storage: The data on the full node is
stored as a tree structure called ORAP-Tree. While it doesn’t
necessarily have to be a binary tree, we chose to use a binary
tree in our protocol for the sake of simplicity.

ORAP-Tree. The full node uses a binary tree data structure,
called ORAP-Tree, to store all the data on the blockchain. The
height of the tree is denoted by L, and the number of leaves
is 2L. The relationship between the height and the number
of nodes is given by L = ⌈log2(N)⌉, where N is the total
number of data blocks in the blockchain. The levels of the tree
are labeled from 0 to L, with level 0 representing the root and
level L representing the leaves. The binary tree can be easily
represented as an array stored on a disk. To each data block,
we add an address pointer that corresponds to the sequence of
the array, based on the original data. As the blockchain data
grows, the ORAP-Tree can be extended by simply adding new
child nodes to the array.

Branch of the Tree. A branch in the ORAP-Tree refers
to a path from the root to a leaf node in the binary tree data
structure. Each leaf node in the tree is assigned a unique index
x ∈ {0, 1, . . . , 2L − 1}, where L is the height of the tree. We
denote the branch corresponding to node x as P(x). Since
each leaf node corresponds to a block on the blockchain, the
branches in the ORAP-Tree provide a mapping between block
identifiers and their corresponding locations in the tree.

2) Clients’ Local Storage: For the client node, we have
developed the ORAP-Index, which serves as an index for the
ORAP-Tree on the full node and allows the client to locate
block addresses.

ORAP-Index. The ORAP-Index maps each block identifier
to a corresponding leaf node in the ORAP-Tree, denoted as
x := index[a]. This mapping enables the client to identify the
path in the tree where the block is located. The ORAP-Index
is stored locally by the client and is updated whenever the
blocks are rearranged on the full node.

Stash. Additionally, the client node maintains a local stash,
denoted as S, which stores a small number of blocks that have
been recently accessed. When the client accesses data, it first
searches the stash before accessing the full node.

Algorithm 1 Client Initialization
Input: N , L, blockId
Output: index, branch

Initialization:
1: NodeIds = {0 . . . 2L − 1}, fullNodeIds = ∅

LOOP Process 1:
2: for i = 0 to N do
3: tmp← UniformRandom({0 . . . 2L − 1} − fullNodeIds)
4: index[i]← tmp
5: fullNodeIds← fullNodeIds ∪ tmp
6: end for

LOOP Process 2:
7: for i = 0 to N do
8: branch[i]← P(index[i])
9: end for

3) Storage Initialization: Algorithm 1 shows the initializa-
tion process for the client node. The inputs include the number

Algorithm 2 Server Initialization
Input: N , index, Blocks

LOOP Process:
1: for i = 0 to N do
2: Address[index[i]]← Blocks[i]
3: end for

of blocks, the depth of the tree, and all block identifiers. Using
uniform random distribution, the location of each block is
allocated, which generates the index and the mapping from
block identifiers to branches in ORAP-Tree. It’s important to
note the difference between branch and index variables. index
maps a block identifier to a single node’s location in ORAP-
Tree, while branch maps a block identifier to a series of nodes
that form a single branch in ORAP-Tree. Initially, the client
node does not store any block data, only the ORAP-Index that
includes index and branch.

Algorithm 2 demonstrates the initialization process for the
full node. The inputs include the number of blocks, the
block index, and the blocks that are already stored on the
full node. The initialization process is straightforward. The
block contents are allocated to the addresses on the full
node’s disk, according to the index sent by the client node.
During the initialization phase, the full node reorganizes all
the block contents. This operation only occurs once in the
node’s lifetime.

Algorithm 3 ORAP Access
Input: L, index, branch, block id, block new
Output: index, branch

Initialization:
1: positions = branch[block id], block content = [],

randomId = UniformRandom{0 . . . 2L − 1}
QUERY Process:

2: block content← READ(positions)
WRITE Process:

3: for i = 0 to L do
4: if block content[i] == None or i == randomId then
5: block content[i]← block new
6: positions[i]← block new.id
7: index[block new.id]← positions[i]
8: branch[block new.id]← positions
9: end if

10: WRITE(block content, positions)
11: end for

4) Query and Publish: Querying and publishing transac-
tions are two essential operations in a blockchain system.
In our proposed system, we introduce the Access proto-
col to implement these operations. Specifically, to query a
block, a client can call the Access((block id,None)) func-
tion, while to publish a new block, the client can call the
Access(block id, block new) function. The detailed Access
protocol is presented in Algorithm 3, which can be summa-
rized as follows:

• Query Process (lines 1-2): The client first reads the path
positions of the block block id from the ORAP-Index.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3347589

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 11,2024 at 11:53:10 UTC from IEEE Xplore. Restrictions apply.

8

• Update ORAP-Index (lines 4-8): Before writing the new
block data to the server, the client updates its ORAP-
Index with the address of the new block.

• Write Process (line 9): After sending the requested data
back to the client, the full node server updates the content
of ORAP-Tree by writing the new block on the address
specified by the client.

By using the Access protocol, our system can securely query
and publish blocks while preserving the access pattern privacy
of clients.

E. Position Map Version Controller

As previously mentioned, our proposed protocol is based on
the classical ORAM algorithm to provide privacy-preserving
access to the honest-but-curious data repository. However,
traditional ORAM is only compatible with a single user, so a
novel data structure is required for a multi-client blockchain
system. In our construction, we use the ORAP-Index, in-
cluding branch and index, to correspond the block and the
real location or branch on the server. These structures are
stored at the client-side to reduce communication overheads.
However, in a multi-client setting, the server must ensure the
consistency of its data state across all clients to prevent users
from accessing incorrect data with an outdated ORAP-Index.

To address this issue, we introduce the Position Map Version
Controller to implement the following modifications:

• The server processes the initialization of ORAP-Index
(index and branch).

• Before executing ORAP-Access, the client node pulls the
latest version of ORAP-Index.

• After executing ORAP-Access, the client node pushes the
latest ORAP-Index version to the server. The server only
validates the update if the modifications of the index are
consistent with the memory address.

The synchronization process works as a version controller,
and communication only occurs when there is an update of
content. Therefore, the communication overhead is relatively
small, and the size of the ORAP-Index is also very small.
Lastly, the procedure of the Tree-ORAP can be summarized
as follows:

• Initialization of the server and the client: The data struc-
ture of the Tree-ORAP is built based on the original
data stored on the server, and the ORAP-Index will
synchronize with the client nodes.

• Before the client sends the access request to the server, it
pulls the latest ORAP-Index and finds the node location
of the requested block.

• Formal access: The client sends the formal access request
to the server, querying the nodes, writing back the new
block, and updating the local ORAP-Index.

• After the access process, the server validates the transac-
tions and updates the ORAP-Index.

VI. SECURITY ANALYSIS

In this section, we perform a comprehensive security analy-
sis of the Tree-ORAP, based on the three design requirements
outlined in Section IV.

Fig. 2. Communication Process of Tree-ORAP Protocol.

A. Access Secure

For the internal security, or the access pattern security,
whenever the client queries from or writes data on the server,
the data is encrypted, which means the server can not decrypt
without the private keys. At the same time, the protocol
obscures the address of the target data, and mixes the address
of the new data into a certain branch. Therefore, it is difficult
for an adversary to infer the access pattern of the querying
clients.

To prove this, let y⃗ and A(y⃗) denote the request sequence
and generated sequence of size M , respectively. As mentioned
in Definition 2 and 3, by definition of Tree-ORAP, the gener-
ated request sequence A(y⃗) is:

p⃗ = (branch[aM], . . . , branch[a1]) (1)

where branchi[ai](1 ≤ i ≤ M) is the i-th request generated
by branch:

branch[ai] = (x0, . . . , xk, . . . , xL) (2)

where L is the depth of the tree, xk is the data in the tree
associated with ai, and xL equals to index[ai].

Each block identifier is mapped to a branch on the tree. The
branches are encrypted with randomized encryption and it is
computationally indistinguishable from randomized bit strings.

According to Algorithm 3, we know that once branch[ai] is
exposed to the server, the block is remapped to another random
node, therefore, branch[ai] is independent from branch[aj]
when j ≤ i and aj = ai. In addition, when j ≤ i and aj ̸= ai,
since the mapping of different block identifier is not linked
to the other’s in our model, branch[ai] and branch[aj] are in-
dependent from each other. We have demonstrated branch[ai]
and branch[aj] are independent from each other for j ≤ i,
then we could apply Bayes rule:

P(p⃗) =
M∏
j=1

P(branch[ai]) = (
1

2L
)M (3)

It proves that A(y⃗) is computationally indistinguishable from
a random sequence of bit strings.

B. External Secure

The Tree-ORAP provides defense against external eaves-
dropping and inference attacks. However, attackers can exploit
timing side-channels or leaked communication patterns or

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3347589

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 11,2024 at 11:53:10 UTC from IEEE Xplore. Restrictions apply.

9

content to try and identify the P2P node used by the secret
payee of transactions, potentially linking the user’s account
to its identity. In this conservative scenario, the attacker can
capture the entire data package during each communication
cycle. Although the attacker cannot derive the correct query
sequence, they can still acquire all the transmitted data, which
can be represented as a set S:

S = {{x0, . . . , xLM
} ∪ · · · ∪ {x0, . . . , xL1

}} (4)

For simplicity, we denote the set of blocks x as:

s(ai) := {x0, . . . , xLi
} (5)

However, to establish the linkage between transaction and
the monitored user, the attacker must identify the exact data
required by the user for each query. The probability of
successfully identifying xi (the information required by the
client) given a set of blocks s(ai) is denoted as P(xi | s(ai)),
and can be calculated as follows:

P(S) =
M∏
j=1

P(xi | s(ai)) = (
1

L
)M (6)

This means that the probability of identifying the informa-
tion required by the client is extremely low.

To prevent timing side-channel and inference attacks, the
time cost for responding to queries or transactions is kept
stable, and the generation process of zero-knowledge proofs
is guarded by the oblivious access algorithm. Therefore, it
is impossible for adversaries to exploit timing side-channels,
communication patterns, or proof generation. In summary, our
proposed model is inherently robust against the aforemen-
tioned attacks.

C. Unlinkability
We can define unlinkability using the symbols from the

threat model as follows:
Let N be the set of all nodes in the blockchain network,

and let Nl ⊆ N be the set of all client nodes. Let A be the
set of all user account information, including their public keys
and transaction history.

The goal of unlinkability is to ensure that for any two
nodes n1, n2 ∈ Nl and any transaction set T1 ⊆ T and
T2 ⊆ T belonging to n1 and n2, respectively, it is difficult
or impossible to link T1 and T2 to the same user account in
A.

Formally, we can define unlinkability as follows:
Definition 4 (Unlinkability): Let f : Nl → A be a function

that maps each client node to a corresponding user account
in A. Unlinkability holds if and only if:∀n1, n2 ∈ Nl and
∀T1 ⊆ T ,∀T2 ⊆ T belonging to n1 and n2, respectively, it is
computationally difficult to find a function

g : T1 ∪ T2 → A (7)

that maps each transaction in T1 ∪T2 to a corresponding user
account in A such that

g(T1) = f(n1) ∧ g(T2) = f(n2) (8)

.

TABLE III
SECURITY PROPERTY COMPARISON BETWEEN OUR MODEL AND EXISTING

MODELS

Models Access secure External secure Unlinkability

Empirical analysis protection [14]–[16] × ✓ ×
BITE [19], SGX method [20] ✓ × ×
Bloom-filter [18], [48] × ✓ ✓

Tree-ORAP ✓ ✓ ✓

Fig. 3. Memory usage of once query and transaction publishing.

To ensure unlinkability, it is important that adversaries
are unable to link transactions to the information on-chain.
Attack methods that break unlinkability include transaction
graph analysis and protocol-level attacks. In privacy-protected
blockchain settings, the transaction content is only available
to the participants of the transaction. With Tree-ORAP, trans-
actions are encrypted, allowing users to hide their real identity
using anonymous IP and dummy addresses. As adversaries are
unable to forge cryptographic primitives, it is difficult for them
to learn the encrypted information and link transactions to real
identities.

In comparison to other models, Table III shows that Tree-
ORAP possesses all security properties. Empirical analysis
methods only focus on specific types of privacy-protected
blockchains and do not address access pattern inference or
graph analysis attacks. SGX-based models, such as those
proposed by Matetic et al. [19] and Niu et al. [20], aim
to protect privacy during communication but do not address
external attacks [17] or transaction sourcing, which are vi-
tal vulnerabilities. Bloom-filter-based methods, such as those
proposed by Kanemura et al. [48] and Gervais et al. [18],
are relatively practical, but still lack protection against access
pattern attacks.

VII. PERFORMANCE EVALUATION

In this section, we present a series of experiments to
evaluate the performance of the Tree-ORAP prototype in a
blockchain network.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3347589

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 11,2024 at 11:53:10 UTC from IEEE Xplore. Restrictions apply.

10

Our construction comprises two major parties: the client
node group and the full node group. The full node server is
set up with an Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz
and 16 GB RAM, and we use Infura and levelDB for the
production network simulation. The client machine is equipped
with an Intel(R) Core(TM) i7-4770HQ CPU @ 2.20GHz and
16 GB RAM.

To evaluate the performance of the prototype system, we
implement a simplified version of Tree-ORAP in a private
Ethereum network. We have established our blockchain sys-
tem’s deployment using the Zebra codebase and APIs as the
foundation. Building upon this foundation, we have metic-
ulously re-engineered the Path-ORAM Protocol originally
designed in ObliVM, tailoring it to seamlessly integrate with
blockchain settlements. To achieve this, we leveraged the
power of the libbitcoin library, enabling smooth interaction
with essential blockchain data structures.

Since the system integrates the Tree-ORAP protocol into
the blockchain system, the performance of Tree-ORAP can
represent the overall performance by adding the appropriate
scalars. For example, to evaluate memory consumption, we
test the memory used by Tree-ORAP and then add the general
memory consumption of a specific full node process to obtain
the overall performance result. In the experiment, we focus
on the performance of the protocol part rather than the
blockchain network, as the performance metrics for the latter
can be obtained from official documents or the blockchain
community.

Furthermore, the rationale behind selecting memory con-
sumption and time delay as primary metrics lies in their direct
impact on the perceived performance by both end users and
developers. End users on client nodes are primarily concerned
with the duration required to retrieve essential data from the
server or a full node. From the perspective of full nodes or
servers, the key inquiry pertains to whether their computing
resources can accommodate the necessary computations. This
consideration hinges solely on CPU capacity and memory
utilization, with CPU capacity being reflected in time delay.
Consequently, we conducted a comprehensive assessment of
memory utilization. The omission of bandwidth overhead
testing stems from the fact that all experiments were conducted
within typical wide area network (WAN) configurations. Con-
sequently, we posit that the time delay metric suffices to
elucidate the genuine daily usage scenario.

A. Memory Usage
Here we present the results of our experiments on the

memory usage of the Tree-ORAP prototype in a private
Infura Ethereum network. Since memory usage is a significant
performance indicator for any system, we use the ratio of the
number of blocks to the number of tree nodes as a measure
of the memory overhead.

We begin by comparing the memory consumption over
time with fixed numbers of blocks and nodes, respectively.
Figure 3(a) shows that the memory usage reaches a peak of
approximately 10GB as the access operations progress, after
which it decreases to different levels depending on the block-
to-node ratio. When the number of nodes is fixed, a lower

Fig. 4. Time consumption of once query and transaction publishing.

block-to-node ratio results in lower memory usage, as seen
in the decreasing trend in Figure 3(a). Conversely, when the
number of blocks is fixed, a lower block-to-node ratio leads to
higher memory usage due to the need for more dummy nodes
to maintain the required security, as shown in Figure 3(b).

It is important to find a balance between memory overhead
and security performance. Our experiments show that the
memory overhead of Tree-ORAP is practical and can be im-
plemented in the general configuration of a full node machine.
However, as the security performance improves, the memory
usage also increases. Therefore, the trade-off between these
two factors should be carefully considered when deploying
the system.

B. Time Cost

Then we focus on the time cost analysis. As shown in Figure
4, the time cost increases with the number of blocks. Figure
4(a) shows the initial stage after the blockchain network is
deployed, where the number of blocks starts from 1024. The
time cost grows exponentially over the exponential axis at this
stage but remains under 200ms until 216. However, to prevent
the time delay from growing without limit, we fix the depth of
the ORAP-Tree L to 17 when the number of blocks exceeds
216, and distribute the blocks into different trees. Certainly,
despite the ongoing increase in block numbers, the ORAP-
Tree consistently maintains a depth of 17. Our modification
entails assigning an index exclusively to the roots of the trees.
This strategic decision reflects a balance between fortifying
security and optimizing efficiency within the context of our
experiment. This rationale explains the notable inflection point
observed at 216 nodes.

In the second stage, shown in Figure 4(b), the growth of
time cost decelerates. Until 221, which is close to the actual
quantity of blocks on Zcash or Monero networks, the time cost
reaches its maximum at about 240ms. Additionally, it indicates
that the lower proportion of blocks in the tree, the higher the
time cost required. This is because a lower proportion requires
more nodes to maintain.

Compared to the time cost of block confirmation on
Ethereum (about 180s), Zcash (75s), and Monero (120s), and
the node latency of Ethereum (between 1-300ms), the time
cost of Tree-ORAP to collect transactions into blocks is at

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3347589

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 11,2024 at 11:53:10 UTC from IEEE Xplore. Restrictions apply.

11

the same order of magnitude. Therefore, it can be considered
practical in real-life settings.

VIII. CONCLUSION

Recent research has highlighted the significant threat to
blockchain privacy. Existing privacy-preserving systems lack
safe communication protocols capable of defending against
various types of attacks. To address this issue, we propose
Tree-ORAP, a pluggable communication protocol for privacy-
protected blockchains. By leveraging tree structures and obliv-
ious access patterns, our protocol provides robust defense
against access security, external security, and unlinkability
attacks.

The framework of Tree-ORAP is described, along with the
interaction between clients and full nodes. Our protocol has
undergone a detailed security performance analysis, which
demonstrates its ability to defend against eavesdropping and
access pattern inference attacks. Additionally, it is internally
robust to transaction source analysis.

Although there is room for improvement in areas such as
memory usage of data structures and efficiency in reorganizing
data, Tree-ORAP has the potential to significantly contribute
to users’ anonymity and blockchain’s credit. Our experimental
results indicate that the overhead of the system meets the
technical requirements of the blockchain system, making our
proposed protocol both feasible and practical.

In summary, the proposed Tree-ORAP protocol offers a
promising solution to the blockchain privacy problem. By pro-
viding a secure communication protocol that protects against
various attacks, it will contribute to enhancing the anonymity
of users and improving the overall security of blockchain
systems. With further refinement, Tree-ORAP has the po-
tential to become a critical component in privacy-preserving
blockchains.

ACKNOWLEDGEMENTS

This work is supported by the National Key R&D Program
of China No.2022YFF0903402, China Postdoctoral Science
Foundation No.2022M712535 and Natural Science Foundation
Research Program of Shaanxi Province No. 2023-JC-QN-
0749.

REFERENCES

[1] “Bitcoin: A peer-to-peer electronic cash system.” [Online]. Available:
https://bitcoin.org/en/bitcoin-paper

[2] T. Sander and A. Ta-Shma, “Auditable, anonymous electronic cash,”
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 1666,
pp. 555–572, 1999.

[3] J. Camenisch, S. Hohenberger, and A. Lysyanskaya, “Compact e-cash,”
Lecture Notes in Computer Science, vol. 3494, pp. 302–321, 2005.

[4] Y. Lu, Y. Qi, S. Qi, Y. Li, H. Song, and Y. Liu, “Say no to price dis-
crimination: decentralized and automated incentives for price auditing in
ride-hailing services,” IEEE transactions on Mobile computing, vol. 21,
no. 2, pp. 663–680, 2020.

[5] Y. Lu, J. Zhang, Y. Qi, S. Qi, Y. Zheng, Y. Liu, H. Song, and W. Wei,
“Accelerating at the edge: A storage-elastic blockchain for latency-
sensitive vehicular edge computing,” IEEE transactions on intelligent
transportation systems, vol. 23, no. 8, pp. 11 862–11 876, 2021.

[6] G. D. P. Regulation, “General data protection regulation (gdpr),” Intersoft
Consulting, Accessed in October, vol. 24, no. 1, 2018.

[7] K. Gai, Y. Wu, L. Zhu, M. Qiu, and M. Shen, “Privacy-preserving energy
trading using consortium blockchain in smart grid,” IEEE Transactions
on Industrial Informatics, vol. 15, no. 6, pp. 3548–3558, 2019.

[8] M. Du, Q. Chen, J. Chen, and X. Ma, “An optimized consortium
blockchain for medical information sharing,” IEEE Transactions on
Engineering Management, vol. 68, no. 6, pp. 1677–1689, 2021.

[9] Y. Lu, Y. Li, X. Tang, B. Cai, H. Wang, L. Liu, S. Wan, and
K. Yu, “Stricts: A blockchain-enabled smart emission cap restrictive
and carbon permit trading system,” Applied Energy, vol. 313,
p. 118787, 2022. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0306261922002355

[10] Y. Lu, J. Zhang, Y. Qi, S. Qi, Y. Li, H. Song, and Y. Liu, “Safety
warning! decentralised and automated incentives for disqualified drivers
auditing in ride-hailing services,” IEEE Transactions on Mobile Com-
puting, 2021.

[11] Y. Lu, Y. Qi, S. Qi, F. Zhang, W. Wei, X. Yang, J. Zhang, and X. Dong,
“Secure deduplication-based storage systems with resistance to side-
channel attacks via fog computing,” IEEE Sensors Journal, vol. 22,
no. 18, pp. 17 529–17 541, 2021.

[12] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, “Zerocash: Decentralized anonymous payments from
bitcoin,” Proceedings - IEEE Symposium on Security and Privacy, pp.
459–474, 2014.

[13] S. Noether, A. Mackenzie, and T. M. Research Lab, “Ring Confidential
Transactions,” Ledger, vol. 1, pp. 1–18, 2016.

[14] M. Möser, K. Soska, E. Heilman, K. Lee, H. Heffan, S. Srivastava,
K. Hogan, J. Hennessey, A. Miller, A. Narayanan, and N. Christin,
“An Empirical Analysis of Traceability in the Monero Blockchain,”
Proceedings on Privacy Enhancing Technologies, vol. 2018, no. 3, pp.
143–163, 2018.

[15] A. Biryukov, D. Feher, and G. Vitto, “Privacy aspects and subliminal
channels in ZCaSH,” Proceedings of the ACM Conference on Computer
and Communications Security, pp. 1813–1829, 2019.

[16] G. Kappos, H. Yousaf, M. Maller, and S. Meiklejohn, “An empirical
analysis of anonymity in Zcash,” Proceedings of the 27th USENIX
Security Symposium, pp. 463–477, 2018.

[17] F. Tramèr, D. Boneh, and K. G. Paterson, “Remote side-channel attacks
on anonymous transactions,” Proceedings of the 29th USENIX Security
Symposium, pp. 2739–2756, 2020.

[18] A. Gervais, G. O. Karame, D. Gruber, and S. Capkun, “On the privacy
provisions of bloom filters in lightweight bitcoin clients,” ACM Interna-
tional Conference Proceeding Series, vol. 2014-Decem, no. December,
pp. 326–335, 2014.

[19] S. Matetic, K. Wüst, M. Schneider, K. Kostiainen, G. Karame, and
S. Capkun, “{BITE}: Bitcoin lightweight client privacy using trusted
execution,” in 28th USENIX Security Symposium (USENIX Security 19),
2019, pp. 783–800.

[20] Y. Niu, C. Zhang, L. Wei, Y. Xie, X. Zhang, and Y. Fang, “An efficient
query scheme for privacy-preserving lightweight bitcoin client with intel
SGX,” 2019 IEEE Global Communications Conference, GLOBECOM
2019 - Proceedings, pp. 6–11, 2019.

[21] E. Stefanov, M. V. Dijk, S. H. Elaine, T. H. Chan, C. Fletcher, L. Ren,
X. Yu, and S. Devadas, “Path ORAM: An extremely simple oblivious
RAM protocol,” Journal of the ACM, vol. 65, no. 4, pp. 1–25, 2018.

[22] R. Konrad and S. Pinto, “Bitcoin utxo lifespan prediction,” CS229.
stanford. edu, 2015.

[23] “bips/bip-0157.mediawiki at master · bitcoin/bips.” [Online]. Available:
https://github.com/bitcoin/bips/blob/master/bip-0157.mediawiki

[24] M. A. Rahman, M. S. Hossain, G. Loukas, E. Hassanain, S. S. Rahman,
M. F. Alhamid, and M. Guizani, “Blockchain-Based Mobile Edge
Computing Framework for Secure Therapy Applications,” IEEE Access,
vol. 6, pp. 72 469–72 478, 2018, conference Name: IEEE Access.

[25] W. Liang, D. Zhang, X. Lei, M. Tang, K.-C. Li, and A. Y. Zomaya, “Cir-
cuit Copyright Blockchain: Blockchain-Based Homomorphic Encryption
for IP Circuit Protection,” IEEE Transactions on Emerging Topics in
Computing, vol. 9, no. 3, pp. 1410–1420, Jul. 2021, conference Name:
IEEE Transactions on Emerging Topics in Computing.

[26] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “OmniLedger: A Secure, Scale-Out, Decentralized Ledger
via Sharding.” [Online]. Available: https://eprint.iacr.org/undefined/
undefined

[27] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M.
Voelker, and S. Savage, “A fistful of bitcoins: characterizing payments
among men with no names,” in Proceedings of the 2013 conference on
Internet measurement conference, 2013, pp. 127–140.

[28] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The Blockchain Model of Cryptography and Privacy-Preserving Smart

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3347589

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 11,2024 at 11:53:10 UTC from IEEE Xplore. Restrictions apply.

12

Contracts,” Proceedings - 2016 IEEE Symposium on Security and
Privacy, SP 2016, pp. 839–858, 2016.

[29] S. Meiklejohn and R. Mercer, “Möbius: Trustless tumbling for trans-
action privacy,” Proceedings on Privacy Enhancing Technologies, vol.
2018, 04 2018.

[30] T. Ruffing, P. Moreno-Sanchez, and A. Kate, “CoinShuffle: Practical
decentralized coin mixing for bitcoin,” Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 8713 LNCS, no. PART 2, pp.
345–364, 2014.

[31] I. Miers, C. Garman, M. Green, and A. D. Rubin, “Zerocoin: Anonymous
distributed e-cash from bitcoin,” Proceedings - IEEE Symposium on
Security and Privacy, pp. 397–411, 2013.

[32] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
“Bulletproofs: Short proofs for confidential transactions and more,” in
2018 IEEE symposium on security and privacy (SP). IEEE, 2018, pp.
315–334.

[33] G. Yu, “Mimblewimble Non-Interactive Transaction Scheme.” [Online].
Available: https://eprint.iacr.org/undefined/undefined

[34] M. Brandenburger, C. Cachin, R. Kapitza, and A. Sorniotti,
“Blockchain and Trusted Computing: Problems, Pitfalls, and a Solution
for Hyperledger Fabric,” May 2018, arXiv:1805.08541 [cs]. [Online].
Available: http://arxiv.org/abs/1805.08541

[35] A. Baliga, I. Subhod, P. Kamat, and S. Chatterjee, “Performance Evalu-
ation of the Quorum Blockchain Platform,” Jul. 2018, arXiv:1809.03421
[cs]. [Online]. Available: http://arxiv.org/abs/1809.03421

[36] D. Ron and A. Shamir, “Quantitative analysis of the full Bitcoin
transaction graph,” Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 7859 LNCS, pp. 6–24, 2013.

[37] G. Bissias, A. P. Ozisik, B. N. Levine, and M. Liberatore, “Sybil-
resistant mixing for Bitcoin,” Proceedings of the ACM Conference on
Computer and Communications Security, pp. 149–158, 2014.

[38] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A Secure Sharding Protocol For Open Blockchains,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security. Vienna Austria: ACM, Oct. 2016, pp. 17–30. [Online].
Available: https://dl.acm.org/doi/10.1145/2976749.2978389

[39] J. Xu, K. Paruch, S. Cousaert, and Y. Feng, “SoK: Decentralized
Exchanges (DEX) with Automated Market Maker (AMM) Protocols,”
ACM Comput. Surv., vol. 55, no. 11, pp. 238:1–238:50, Feb. 2023.
[Online]. Available: https://doi.org/10.1145/3570639

[40] J. K. Mullin, “A second look at bloom filters,” Communications of the
ACM, vol. 26, no. 8, pp. 570–571, 1983.

[41] J. Kang, R. Yu, X. Huang, M. Wu, S. Maharjan, S. Xie, and Y. Zhang,
“Blockchain for secure and efficient data sharing in vehicular edge
computing and networks,” IEEE Internet of Things Journal, vol. 6, pp.
4660–4670, 6 2019.

[42] U. Javaid, M. N. Aman, and B. Sikdar, “Drivman: Driving trust manage-
ment and data sharing in vanets with blockchain and smart contracts,”
IEEE Vehicular Technology Conference, vol. 2019-April, 4 2019.

[43] K. Shi, L. Zhu, C. Zhang, L. Xu, and F. Gao, “Blockchain-
based multimedia sharing in vehicular social networks with privacy
protection,” Multimedia Tools and Applications, vol. 79, pp. 8085–8105,
3 2020. [Online]. Available: https://link.springer.com/article/10.1007/
s11042-019-08284-8

[44] Y. Chen, X. Hao, W. Ren, and Y. Ren, “Traceable and authenticated
key negotiations via blockchain for vehicular communications,” Mobile
Information Systems, vol. 2019, 2019.

[45] O. Goldreich and R. Ostrovsky, “Software protection and simulation on
oblivious RAMs,” Journal of the ACM, vol. 43, no. 3, pp. 431–473,
1996.

[46] S. Tople, Y. Jia, and P. Saxena, “PRO-ORAM: Practical read-only obliv-
ious RAM,” RAID 2019 Proceedings - 22nd International Symposium
on Research in Attacks, Intrusions and Defenses, pp. 197–211, 2019.

[47] E. Stefanov, E. Shi, and D. X. Song, “Towards practical oblivious
RAM,” in 19th Annual Network and Distributed System Security
Symposium, NDSS 2012, San Diego, California, USA, February
5-8, 2012. The Internet Society, 2012. [Online]. Available: https:
//www.ndss-symposium.org/ndss2012/towards-practical-oblivious-ram

[48] K. Kanemura, K. Toyoda, and T. Ohtsuki, “Design of privacy-preserving
mobile bitcoin client based on γ-deniability enabled bloom filter,”
IEEE International Symposium on Personal, Indoor and Mobile Radio
Communications, PIMRC, vol. 2017-October, pp. 1–6, 2018.

Youshui Lu (Member, IEEE) received the B.S.
degree from The Australian National University,
Australia, in 2013, the M.S. degree from The Uni-
versity of Sydney, Australia, in 2015, and the Ph.D.
degree from the School of Computer Science and
Technology, Xi’an Jiaotong University, China, in
2021. He is currently an Assistant Professor with
the School of Electrical Engineering, Xi’an Jiaotong
University. His research interests include blockchain
technology, distributed systems, internet of things,
data security and smart grid.

Bowen Cai received the B.S. degree and the M.S
degree from The Xi’an Jiaotong University, China,
in 2020 and in 2023, respectively. He is currently
pursuing a phd degree in the School of Computer
Science and Engineering at University of Minnesota,
Twin City, MN 55455, USA. His research interests
include blockchain technology, machine learning,
code analysis and system security.

Xiaojun Tang (Member, IEEE) was born in Jiangxi
province, China in 1973. He received the B.S. and
M.S. degrees in control theory and control engineer-
ing from the Xi’an University of Technology, Xi’an,
in 1998 and 2001 respectively. And He received
the Ph.D. in instrument science & technology from
Xi’an Jiaotong University, Xi’an, in 2004. From
2007 to 2008, he was a postdoctoral fellow at
university of New Orleans. Since 2014, he has been
professor with the Department of Measurement &
Control, School of Electrical Engineering, Xi’an

Jiaotong University. His research interests include smart sensor and instru-
mentation, condition monitoring technology for power equipment and smart
control.

Lei Liu (Member, IEEE) received the B.Eng. de-
gree in communication engineering from Zhengzhou
University, Zhengzhou, China, in 2010, and the
M.Sc. and Ph.D. degrees in communication engi-
neering from Xidian University, Xi’an, China, in
2013 and 2019, respectively. From 2013 to 2015,
he worked with Technology Company. From 2018
to 2019, he was supported by China Scholarship
Council to be a Visiting Ph.D. Student with the
University of Oslo, Oslo, Norway. He is currently a
Lecturer with the Department of Electrical Engineer-

ing and Computer Science, Xidian University. His research interests include
vehicular ad hoc networks, intelligent transportation, mobile-edge computing,
and Internet of Things.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3347589

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 11,2024 at 11:53:10 UTC from IEEE Xplore. Restrictions apply.

13

Jun Du (Senior Member, IEEE) received the
B.Eng. and Ph.D. degrees from the Department
of Electronic Engineering and Information Science,
University of Science and Technology of China
(USTC), Hefei, China, in 2004 and 2009, respec-
tively. From 2009 to 2010, he was with iFlytek
Research as a Team Leader, working on speech
recognition. From 2010 to 2013, he joined Microsoft
Research Asia as an Associate Researcher, working
on handwriting recognition, and OCR. Since 2013,
he has been with the National Engineering Lab-

oratory for Speech and Language Information Processing, USTC. He has
authored or coauthored more than 150 papers. His main research interests
include speech signal processing and pattern recognition applications. He
is an Associate Editor for the IEEE/ACM Transactions on Audio, Speech
and Language Processing and a Member of the IEEE Speech and Language
Processing Technical Committee. He was the recipient of the 2018 IEEE
Signal Processing Society Best Paper Award. His team was the recipient of
several champions of the CHiME-4/CHiME-5/CHiME-6 Challenge, SELD
Task of 2020 DCASE Challenge, and DIHARD-III Challenge.

Shui Yu (Fellow, IEEE) received the Ph.D. degree
from Deakin University, Australia, in 2004. He is
currently a Professor with the School of Computer
Science, University of Technology Sydney, Aus-
tralia. His current H-index is 67. He has published
five monographs, edited two books, and more than
500 technical papers at different venues, such as
the IEEE Transactions on Dependable and Secure
Computing, the IEEE Transactions on Parallel and
Distributed Systems, the IEEE Transactions on Com-
puters, the IEEE Transactions on Information Foren-

sics and Security, the IEEE Transactions on Mobile Computing, the IEEE
Transactions on Knowledge and Data Engineering, the IEEE Transactions on
Emerging Topics in Computing, the IEEE/ACM Transactions on Networking,
and INFOCOM. He has been promoting the research field of networking
for big data since 2013, and his research outputs have been widely adopted
by industrial systems, such as Amazon cloud security. His research interests
include cybersecurity, network science, big data, and mathematical modeling.
He is an Elected Member of Board of Governors of the IEEE VTS and
ComSoc. He is a member of ACM and AAAS. He is also serving the editorial
boards for the IEEE Communications Surveys and Tutorials (Area Editor) and
the IEEE Internet of Things Journal (Editor). He is also a Distinguished Visitor
of the IEEE Computer Society. He served as a Distinguished Lecturer for the
IEEE Communications Society from 2018 to 2021.

Mohammed Atiquzzaman received the M.S. and
Ph.D. degrees in electrical engineering and electron-
ics from the University of Manchester, Manchester,
U.K., in 1984 and 1987, respectively.,He currently
holds the Edith Kinney Gaylord Presidential Pro-
fessorship with the School of Computer Science,
The University of Oklahoma, Norman, OK, USA.
He has over 450 refereed technical publications. Dr.
Atiquzzaman received the NASA Group Achieve-
ment Award, the IEEE Satellite and Space Commu-
nications Technical Recognition Award, the IEEE

Distinguished Technical Achievement Award, and the IEEE Distinguished
Service Award. He is the Editor-in-Chief of the Journal of Networks and
Computer Applications, the Founding Editor-in-Chief of Vehicular Communi-
cations, and the former Co-Editor-in-Chief of Computer Communication, and
has served/serving on the editorial boards of many highly ranked journals,
such as IEEE Transactions on Mobile Computing and IEEE Journal on
Selected Areas in Communications.

Schahram Dustdar (Fellow, IEEE) received the
Ph.D. degree in business informatics from the Uni-
versity of Linz, Linz, Austria, in 1992. He is cur-
rently a Full Professor of computer science (in-
formatics) with a focus on internet technologies
heading the Distributed Systems Group, TU Wien,
Wein, Austria. He has been the Chairman of the
Informatics Section of the Academia Europaea, since
December 2016. Prof. Dustdar has been a member of
the IEEE Conference Activities Committee (CAC),
since 2016, the Section Committee of Informatics

of the Academia Europaea, since 2015, and the Academia Europaea: The
Academy of Europe, Informatics Section, since 2013. He was a recipient
of the ACM Distinguished Scientist Award in 2009 and the IBM Faculty
Award in 2012. He is an Associate Editor for the IEEE Transactions on
Services Computing, ACM Transactions on the Web, and ACM Transactions
on Internet Technology. He is on the Editorial Board of IEEE.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3347589

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 11,2024 at 11:53:10 UTC from IEEE Xplore. Restrictions apply.

