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AbstrAct
The emergence of novel mobile ecosystems, 

such as mulsemedia and metaverse, has encour-
aged the evolution of cloudification technolo-
gies to accommodate the increasing demand for 
user services with advanced in-network comput-
ing facilities. In this context, the development of 
privacy-sensitive heterogeneous hypercomputing 
(PSHH), also known as the third generation of 
cloudification, is considered an adequate response 
to current expectations. This article first investigates 
the evolution of mobile cloudification to illustrate 
the necessity and inevitability of the burgeon-
ing PSHH. For further clarification, foundational 
properties and enablers of such computing plat-
forms are thoroughly identified from two major 
perspectives: privacy preservation and computing 
harmonization. A preliminary performance evalua-
tion has been conducted to validate the feasibility 
and advantages of the computing platform. Subse-
quently, open research directions are highlighted 
to realize the maturation of PSHH aligned with the 
development of next-generation mobile networks.

IntroductIon
With the significant success in mobile systems, 
cloudification is widely considered to be a foun-
dational technology to enhance various advanced 
features in sixth generation (6G) networks [1]. 
Current cloudification exploits the computing 
capabilities at multiple networking tiers, spreading 
from user devices to core network components. 
Typically, each tier of the network is represent-
ed by a class of computing platforms, namely, 
cloud, fog, edge, and intrinsic computing, wherein 
the performance and latency metrics are repre-
sented by the Pareto frontier [2]. Although these 
computational layers individually exhibit distinct 
advantages to meet the specific requirements of 
diverse applications, such efforts are insufficient 
to confront the expected emergence of mobile 
ecosystems with hundred-of-terabytes-per-second 
of traffic in upcoming years [3]. In this context, a 
transparent and unified computing platform that 
harmonizes all computational components in the 
entire network is essential.

While the current computing systems provide 
a trade-off among capacity, latency, and connec-
tivity, the key performance indicators (KPIs) for 
computing capability in next-generation networks 

are expected to simultaneously provide enhance-
ments on such performance metrics incorporated 
with privacy preservation. The rationale behind 
these stringent requirements is to be able to fully 
facilitate novel killer applications envisioned in 
fifth-generation (5G) and beyond mobile ecosys-
tems [4]. One prime example is immersive mulse-
media services, which introduce three-dimensional 
(3D) video conferencing based on augmented 
reality communication. In these systems, high 
computing capacity and ultralow latency are vital 
requirements to enable full-motion and high-fideli-
ty 3D projections, as well as real-time interactions 
and control responses. More ambitiously, the 
potential horizon metaverse project, which was 
recently coined by Meta, promises to construct 
an online world incorporating all facilities that are 
needed, wanted, and even imagined by persons 
[5]. Obviously, a high computation capacity, low 
response latency, dense user connectivity, and 
privacy preservation must be accommodated to 
process sensitive personal information in these 
application scenarios.

In this regard, the growth of PSHH has been 
considered a satisfactory response, enabling rel-
evant computing performances as expected. 
The hypercomputing platform accompanies het-
erogeneous computing components at multiple 
networking tiers into a transparent and unified 
infrastructure. In particular, three foundational fea-
tures that characterize the hypercomputing plat-
form include heterogeneous hypercomputing, 
blockchainable privacy preservation, and intelligent 
computing. This article aims to illustrate a prelim-
inary sketch for such hypercomputing platforms 
by individually investigating their aforementioned 
characteristics along with a preliminary perfor-
mance validation and open challenge discussion.

cloudIfIcAtIon EvolutIon towArd HypErcomputIng
In the past decade, we have witnessed the suc-
cess of two generations of cloudification evolu-
tion. The first generation is represented by the 
emergence of cloud computing infrastructure 
in core networks. The central cloud consists of 
software and hardware resources such as serv-
ers, storage, networking, virtualization, operating 
systems, and analytics, to provide on-demand 
computing services for remote user devices. 
It should be noted that the first generation of 
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cloudification accompanied the third and fourth 
generations of mobile networks, where mobile 
broadband features are the center of attention. 
Currently, the second generation of cloudifi-
cation has mostly matured by equipping com-
puting capabilities fully from the core to the 
edges of networks, namely cloud, fog, and edge 
computing tiers [2]. The emergence of these 
diverse computing tiers accommodates the rapid 
explosion of the IoE paradigm. However, these 
efforts are insufficient for upcoming scenarios. 
In particular, this generation of cloudification 
will eventually reach its limits, while user devices 
increasingly require more intelligent and high-
er-traffic in-network computing capabilities.

To address the stringent requirements of pro-
posed 6G killer applications, as discussed previ-
ously, the next generation of cloudification, that 
is, the transparent and unified hypercomputing 
platform, is considered a potential solution. From 
a functional perspective, the hypercomputing 
platform is constructed using three foundational 
layers, as shown in Fig. 1:
• Network function virtualization infrastructure 

(NFVI) that is enhanced from the predecessors 
to provide virtualized computing, networking, 
and storage infrastructure for on-demand com-
puting services deployed in upper layers.

• A blockchainable security and privacy system 
(BSPS) is an additional layer in the hyper-
computing platform to protect user data and 
the computing system itself by exploiting the 
power of blockchain technologies.

• Everything as a Service (XaaS) that is 
enhanced from the predecessors to provide 
on-demand computing services for remote 
access from end users and internal access 
from network functions.

The advent of hypercomputing architecture 
comes from the transparency and unification 
of the above functional layers from every com-
puting node throughout the entire network. To 

this end, the management architecture of hyper-
computing develops three dedicated modules 
to manage three foundational functional layers: 
virtualized infrastructure manager (VIM), security 
and privacy manager (SPM), and XaaS manager 
(XSM). These three management modules are 
subsequently controlled by a central orchestra-
tor which harmonizes all resource capacities in 
the system. Notably, aligned with the recently 
proposed 6G architecture design [6], the hyper-
computing platform offers computing resources 
to other internal network functions and external 
services through the digital twin management 
entity and service exposure functions, respective-
ly. Table 1 briefly summarizes a feature compar-
ison between the hypercomputing platform and 
two predecessors. In particular, on-demand com-
puting capacity allocation and response latency 
satisfaction are provided by the hypercomputing 
platform using a combination of service slicing, 
data granulation, and intelligent knapsack-in-
spired optimization management. Meanwhile, the 
predecessors provide computing services based 
on optimizing resource allocation of physical 
computing instants such as servers and virtual 
machines. From a security perspective, a native 
blockchain system is integrated into a computing 
platform for the first time to introduce security 
protection since the third generation. Further clar-
ification will be individually described per each of 
the following feature discussions.

HEtErogEnEous HypErcomputIng
Unification is one of the pillars used to develop 
hypercomputing. The unification feature com-
bines multiple heterogeneous computing nodes 
regardless of their locations in the cloud, fog, or 
edge, to form a common hypercomputing pool. 
At each computing node, the NFVI components 
abstract all hardware capacities of physical devic-
es involved in the computing node in terms of 
three resource majors: computing, networking, 

Unification is one of the 
pillars used to develop hyper-

computing. The unification 
feature combines multiple 
heterogeneous computing 
nodes regardless of their 

locations in the cloud, fog, 
or edge, to form a common 

hypercomputing pool. 

FIGURE 1. Conceptual architecture of the privacy-sensitive heterogeneous hypercomputing platform.
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and storage. Consequently, three correspond-
ing sets of virtual resource blocks are available 
at each computing node to support upper ser-
vice layers. As resource capacities are effectively 
managed into blocks instead of virtual machine 
instances, resource allocation and efficiency 
are significantly improved in the hypercomput-
ing platform. Figure 2 illustrates these functions 
in hypercomputing reference models. The VIM 
module centrally manages all NFVI components 
at computing nodes in terms of virtual resource 
allocation and scheduling, operational provision-
ing and harmonization, and virtualization mech-
anisms. These features have been standardized 
by the European Telecommunications Standards 
Institute (ETSI) since NFV Release 2 (recently 
Release 4) and the 3rd Generation Partnership 
Project (3GPP) organization since Release 15 
(recently Release 17) to adopt the management 
and orchestration (MANO) architecture in 5G 
networks and beyond [7]. Furthermore, such a 
design well aligns with the potential 6G manage-
ment architecture [6].

From the perspective of beneficiaries, hyper-
computing appears to be a transparent comput-
ing platform that provides the desired computing 
performance. Beneficiaries include system net-
work functions and user devices. In particular, 
network functions and user devices request 
computing services from the orchestration man-
agement and the service exposure function via 
the digital twin management entity, respectively. 
The central orchestrator determines the optimal 
service resource assignments based on obser-
vations of the current system states and service 
requirements. Optimization strategies running 
on the orchestrator are designed and activated 
based on the needs of network operators and/
or service providers. Subsequently, relevant com-
mands, policies, and parameter configurations 
are dispatched from the orchestrator to the XSM, 
SPM, and VIM for collaboration. As all comput-
ing capacities are virtualized into resource blocks 
in a common hypercomputing pool managed 

by the central orchestrator, elastic computing 
services with high performance in multiple met-
rics can be simultaneously satisfied for a massive 
number of users.

To support the aforementioned features, 
conceptual operations of the hypercomputing 
platform are redesigned to flexibly and effi-
ciently utilize heterogeneous resource blocks at 
computing nodes. While the first generation of 
cloudification, that is, the central cloud, operates 
independently to manage and control its own 
resources for specific purposes, the second gener-
ation, that is, multitier cloudification, exploits the 
knapsack-inspired policy to find optimal resource 
schedules at appropriate computing servers and 
virtual machines. The knapsack-inspired policy 
determines < what > user services that should be 
assigned to each computing node (< where >), 
where < which > resources and < how many > of 
them are utilized at a particular time (< when >) 
[2]. Obviously, such a single approach is insuffi-
cient to deal with emerging challenges in novel 
mobile ecosystems and dynamic environments. 
In this context, the hypercomputing platform first 
classifies user data in different classes based on 
unique service requirements in terms of comput-
ing complexity, reliability, security, and latency 
in order to form appropriate computing system 
slices. Then, the user data are further divided into 
segments, which are considered as the input data 
for the knapsack-inspired policy. Here, the data 
segment dimension and user requirements are 
incorporated into the knapsack-inspired policy 
as the driving constraints to determine optimal 
resource block assignment. After successful com-
putations, the outputs of all data segments for 
each service are combined and returned to the 
users under supervision of the digital twin man-
agement entity. Computing service slicing and 
data granulation in the novel approach signifi-
cantly improve resource efficiency and response 
time reduction. Without loss of generality, various 
machine learning models can be utilized to assist 
the assignment decision.

TABLE 1. Three generations of cloudification.

Criteria First generation (Central cloud) Second generation (Multitier 
cloudification) Next generation (Hypercomputing)

Incorporate network 
generation 3G and 4G 4G and 5G 5G and beyond

Deployment location Centralized in the core network Distributed in the core, middle, and 
edge networks Virtualized in the whole network 

Computing capacity High Granular capacity, from low at the 
edge to high at the core Computing capacity on demand 

Response latency High Varied from low at the edge to high 
at the core On-demand 

Management and 
control algorithm Individual optimization Knapsack-inspired optimization Combination of service slicing, data granulation, 

and knapsack-inspired optimization 

Service availability Very high High–very high Ultra high 

Concurrent connectivity Constrained Constrained Dynamic 

Intelligent computing High Low–high Very high 

Security and privacy Optional function of third parties Optional function of third parties Native blockchainable systems 

Killer applications Online services and remote access IoE offloading services and web 
apps Mulsemedia services and metaverse
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blockcHAInAblE prIvAcy prEsErvAtIon
While predecessors have predominantly focused 
on improving computational performance, security 
and privacy features are equipped as optional func-
tions offered by third parties. The hypercomput-
ing platform considers security and privacy to be a 
basic requirement for its architectural design with a 
reasonable cost of additional latency. Consequent-
ly, a native BSPS layer is developed between the 
resource virtualization and service implementation 
layers at computing nodes. Empowered by block-
chain technologies, users have full privacy-pre-
serving privileges to own and manage their data 
individually [8]. In particular, the blockchainable 
hypercomputing platform provides:
• The decentralized identity (i.e., a representa-

tive of self-sovereign identity in blockchain 
systems) for key management.

• Zero-knowledge proof (ZKP) for identity 
anonymization.

• Smart contract for transaction accuracy
• Asymmetric encryption for on-chain data 

protection.
With respect to key management, every user 

can self-generate his/her own decentralized iden-
tity and incorporate other credentials issued by 
various authorities into his/her identity [9]. The 
decentralized identity allows the user to authenti-
cate with particular services at computing nodes 
by exposing the relevant identifiers selectively, 
securely, and independently. The validity of the 
disclosed identifiers is managed by the SPM mod-
ules involving all BSPSs in the hypercomputing 
platform. As only identities are exhibited, the use 
of decentralized identities efficiently prevents the 
vulnerability of information correlations across 
services. For example, a user has registered an 
account in a metaverse provider, and the provid-
er has certified the account using its private key. 
However, the metaverse provider delegates ser-
vice workload computation to hypercomputing 
as a service exposure application. In this context, 
the user and the metaverse application mutually 

authenticate each other by querying the respec-
tive public keys from distributed ledgers stored in 
BSPSs before starting transactions.

As mentioned above, users must expose their 
credentials (e.g., valid accounts) to computing 
services at the XaaS layer using a decentralized 
identity. However, this method is vulnerable to 
information theft, where the credentials can be 
revealed. To anonymize user credentials, ZKP has 
been considered an efficient solution [10]. The 
cryptographic protocol ZKP allows users (provers) 
to mathematically justify the correctness of their 
identifiers to computing services (verifiers) using 
probability and calculation tools without revealing 
the knowledge of the credentials. A ZKP is char-
acterized by three properties: completeness to 
ensure the success of the proof, soundness to pre-
vent a fault positive of an incorrect statement, and 
zero knowledge to protect the secret of knowl-
edge. In the above example, the user can transfer 
the proof, such as a hash value, instead of showing 
the certified account, whereas the computing ser-
vice can match the hash value on the list issued by 
the metaverse provider for authentication.

To manage secure transactions between users 
and computing services, the hypercomputing plat-
form utilizes a smart contract in the blockchain-
able environment [11]. Executable scripts are 
preconfigured in smart contracts to run simulta-
neously and independently on computing nodes 
when predefined conditions are met. Along with 
ZKP, smart contracts facilitate user authorization 
procedures for the use of computing services with 
sustainable advantages, such as accuracy, trans-
parency, speed, and trustworthiness, in a secure 
and private manner. Again considering the above 
example, a successful ZKP-based authentication 
is specified as the condition to activate the scripts 
inside the smart contract to perform computing 
services for the metaverse XaaS application. Once 
transactions between the users and computing 
services are established, user and system data, 
which are stored in either computing nodes or 

FIGURE 2. Hypercomputing reference model abstracting resources of computing nodes to provide network functions and user devices with on-demand 
services.
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and service implementation 
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blockchains, can be protected using asymmetric 
encryption mechanisms based on the decentral-
ized identity.

IntEllIgEnt computIng
The hypercomputing platform considers the intel-
ligent computing feature in the user and control 
domains individually. In particular, it is recom-
mended that the information of system states be 
available among native components, as supported 
by the 3GPP MANO architecture [7] as well as 
the potential 6G management architecture [6]. 
Hence, knowledge sharing is encouraged among 
computing nodes, and between computing nodes 
and the orchestrator, to develop an effi  cient man-
agement model in the control domain. Mean-
while, the optimization of user experiences at the 
interfaces between clients and hypercomputing 
platforms requires an exploitation of sensitive per-
sonal data for an adaptive learning model. There-
fore, privacy preservation in user traffi  c handling 
is essential in the user domain. Because of these 
differences, split-federated (split-fed) [12] and 
transfer-federated (trans-fed) [13] learning archi-
tectures, without loss of generality, have been rec-

ommended for intelligent computing models in 
the user and control domains, respectively. It is 
worth noting that other appropriate distributed 
learning architectures having similar functionalities 
can be exploited in the hypercomputing platform.

Particularly, a deep neural network model is 
split into two parts by a cut layer in the split-fed 
learning-enabled user domain. Typically, a light-
weight part consisting of a small number of neural 
layers runs on user devices to handle local data 
with high privacy protection. Meanwhile, the 
major part constituted by a signifi cant number of 
neural layers is performed on the hypercomputing 
platform owing to its high resource consumption. 
In this model, the outputs of the cut layer at the 
user devices represent the smashed data instead 
of the sensitive original. These data are fed to the 
remaining model at the hypercomputing platform 
to continue the calculation. To mitigate computa-
tional overhead, the smashed data obtained from 
user devices are federated into one representa-
tive before reaching the remaining model at the 
hypercomputing platform to complete the learn-
ing. Cooperatively, differential privacy [14] can 
be exploited to provide data anonymization for 
information leakage prevention.

In the trans-fed learning-enabled control 
domain, multiple deep neural network models are 
trained by multiple sets of computing resource 
blocks dedicated to diff erent optimization utilities 
such as resource efficiency, traffic engineering, 
and operational cost. Each deep neural network 
model adopts a federated learning architecture to 
exploit data locality and accelerate learning con-
vergence through collaborative communication 
among computing services via the orchestrator. In 
this context, the orchestrator participates in all of 
the learning models and builds a common knowl-
edge database for sharing. For instance, because 
the information of system states is required for 
most learning models, learned knowledge derived 
from system states can be transferred from a suc-
cessful learning model to others. Consequently, 
training costs, time, and overhead may be signifi -
cantly reduced even though there are insuffi  cient 
training datasets for the targeted learning model. 
It is worth noting that by incorporating the split-
fed and trans-fed learning architectures, any spe-
cific deep neural network models can be freely 
applied for classifi cation and prediction purposes 
arising from either system or user requirements 
such as performance optimization, intrusion pre-
vention, and service personalization.

pErformAncE EvAluAtIon
To validate the applicability and outperformance 
of the hypercomputing platform in comparison 
with two previous generations, we configured 
representative models of such computing systems 
on the MATLAB environment. Aligned with the 
comparison criteria in Table 1, the user service 
satisfaction ratio has been evaluated as a join met-
ric of {successful task execution AND response 
latency assurance AND service availability}, where 
the response latency includes transmission dura-
tion to the cloud (if needed) and computing time.

Each computing model consists of 5 cloud 
servers and 20 edge servers capacitated with 
(20.0—100.0) and (2.0—10.0) GHz, respectively. 
Edge-cloud bandwidth is a fixed rate of 1 Gb/s 

FIGURE 3. Preliminary simulation configurations and results: a) simulation 
parameter configurations; b) user service satisfaction ratio; c) average 
service response latency.

Parameter Value
Number of cloud servers 5
Number of edge servers 20
Edge-cloud bandwidth 1 Gbps
Computing capacity of cloud servers {20.0, 30.0, 40.0, 50.0, 100.0} GHz
Computer capacity of edge servers {2.0, 3.0, 4.0, 5.0, 10.0} GHz
Digital twin update rate 1 s
Offloading task size 0.1 – 5 MB
Number of offloading tasks 10 – 50 task/s
Response latency threshold {10, 100, 300, 800, 1000} ms
Workload processing complexity {100, 200, 500, 1000, 2000} 
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with an assumption of wireline connection. In 
particular, the first generation computing sys-
tem (Gen 1) involves all 25 servers together at 
the cloud tier. Meanwhile, the second generation 
(Gen 2) is constituted by 5 cloud servers and 20 
edge servers located at the cloud and edge tiers, 
respectively. For the hypercomputing platform 
(Gen 3), computing resources at these servers 
are granulated into virtual 1000-cycle blocks and 
the digital twin management is updated every 1 
s. On the other hand, user services are set with 
the following configurations: offloading task size 
of (0.1–5) MB, 10–50 offloading task/s with work-
load processing complexity of 100–2000 cycles/
bit, and response latency thresholds in between 
10–1000 ms. A table of the simulation param-
eters is described in Fig. 3a. To assist resource 
allocation decisions, we adopted the Multi-Agent 
Deep Deterministic Policy Gradient (MADDPG) 
learning algorithm [15] in all systems.

A comparison of the user service satisfaction 
ratio is illustrated in Fig. 3b. Indeed, Gen 1 intro-
duces the worst ratio owing to the significant 
transmission time consumed to offload user tasks 
to the cloud even though the execution time is 
quick. When the offloading arrival rate continu-
ously increases to reach and then exceeds the 
maximum computing capacity of the platform, 
inelastic task assignment and queuing at cloud 
servers cannot accommodate task execution and 
service availability, resulting in a decrease in the 
user service satisfaction ratio. On the contrary, 
Gens 2 and 3 provide a higher ratio at low offload-
ing arrival rates (50–200 Mb/s) due to resource 
orchestration between the edge and cloud. Given 
the edge-cloud bandwidth, edge computing is 
prioritized to process the offloading tasks. When 
the offloading arrival rate increases, the amount 
of offloading tasks to the cloud increases pro-
portionally in both Gens 2 and 3 systems. In the 
computation-saturated environment (arrival rate 
of 250–500 Mb/s), Gen 3 exposes its outperfor-
mance based on computing resource and data 
granulations for a fine-grained task assignment 
and resource allocation, leading to a higher ser-
vice availability.

Especially, average response latency metric 
is highlighted in Fig. 3c. Obviously, the response 
latency fashion exposes identical characteristics to 
the findings in the above user service satisfaction 
ratio analysis. Because the offloading tasks arrived 
at the computing platforms are continuously exe-
cuted until the systems reach maximum capacity, 
Gen 1 introduces a response latency linearly pro-
portional to the increase in arrival rate. Note that 
any tasks dropped by overload conditions were 
not recorded for latency calculation. In Gens 1 
and 2, offloading tasks are processed at the edge 
with higher priority. Hence, these two systems 
provide low average response latency before the 
computation-saturated point occurs (arrival rate 
of 50–250 Mb/s). After this time, a large amount 
of offloading tasks are increasingly forwarded to 
the cloud to maintain workload balancing inside 
the computing systems. Therefore, the average 
response latency becomes higher. In all cases, 
Gen 3 shows the lowest latency (less than approx-
imately 120 and 50 ms compared to those of 
Gens 1 and 2, respectively), thanks to its efficient 
resource allocation.

rEsEArcH dIrEctIons
The novel hypercomputing platform exhibits 
superior advanced features and performance 
compared with its predecessors. To achieve the 
maturity of hypercomputing, an in-depth under-
standing of the open challenges is required for 
research directions, as discussed below.

First, real-time elastic computing should be 
thoroughly investigated because user service 
requirements may change dynamically owing to 
uncertain service contexts and user behaviors. In 
addition, the system states of the hypercomputing 
platform are frequently updated due to comput-
ing heterogeneity and additional BSPS-layer laten-
cy. Hence, real-time elastic computing resource 
allocation mechanisms are considered a potential 
solution that efficiently optimizes resource utili-
zation by tailoring sufficient computing capacity, 
as desired by users. For example, a user is watch-
ing a live high-resolution video stream on his/her 
smartphone, which currently utilizes high caching 
and decoding capacities in the network. Arbitrari-
ly, the user switches to the messenger application. 
During this time, the video stream obtains lower 
priority and retention rates; hence, low caching 
and decoding capacity configurations should be 
elasticized appropriately and adaptively to obtain 
a low video resolution. Compared with existing 
computing platforms, the real-time elastic comput-
ing characteristic of hypercomputing is expected 
to provide user services with superior adaptability 
to any fluctuations in both time and space.

Next, hypercomputing should be equipped 
with multi-objective computing to satisfy diverse 
user requirements concurrently. For instance, inter-
actions and activities among user avatars in the 
metaverse require private information exchang-
es, precise tactile responses, and high data traffic 
simultaneously to properly reflect real-world soci-
eties and habitats. It is very difficult to satisfy these 
inquiries simultaneously using existing computing 
platforms because they are antipodal metrics in a 
single (even virtualized) computing node — increas-
ing one metric results in a decrease of the other, 
and vice versa. As hypercomputing unifies multiple 
computing tiers into one common platform, flexibly 
optimizing the available resources at multiple tiers is 
expected to efficiently support multi-objective com-
puting services. For the aforementioned example, 
a split-fed learning architecture and blockchainable 
security subsystem can be activated for privacy, 
while edge resources are allocated for ultra-low 
latency responses, and fog resources are dedicated 
to huge data processes. In hypercomputing, the 
adaptive orchestration of antipodal characteristics 
is always challenging but deserves special attention.

Although optimizing the system performance 
is considered one of the most important studies, 
reliability and redundancy should be positioned 
in the focus of research to guarantee services for 
real-time user applications. In addition, it is neces-
sary to exploit the advantages of heterogeneous 
access infrastructure and technologies to assist 
users with reliable multi-access connections for 
hypercomputing. In this scenario, communica-
tion resource allocation and scheduling should be 
jointly considered with multipath configurations 
when optimizing hypercomputing performance. 
However, intrinsic management mechanisms 
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Owing to the unforeseeable 
growth of novel mobile 

ecosystems and their traffic, 
the emergence of next-gen-

eration cloudification is 
inevitable. In this regard, the 
next-generation computing 

platform is expected to 
accommodate user services 

with three major features, 
including security, transpar-

ency, and unification. 

within hypercomputing need to be designed with 
redundancy support to protect user data as well 
as service maintenance, especially in the case 
where user devices (e.g., sensors and detectors) 
continuously offload their data onto the comput-
ing platform without local backup owing to stor-
age limitations and latency mitigation.

As hypercomputing platforms have been pro-
posed to handle the upcoming huge wave of 
mobile traffic in next-generation networks, energy 
consumption is expected to be a major concern. 
Therefore, green computing should be developed 
as a major aspect of hypercomputing platforms. 
Similar to the reliability and redundancy require-
ments, green computing generally results in a 
decrease in system performance. Hence, trade-off 
optimization must be considered to adequate-
ly balance these objectives. For instance, either 
maximizing energy efficiency with stringent con-
sideration of user requirements and system states 
or jointly optimizing system performance and 
weighted energy consumption utility can be con-
sidered potential candidates for hypercomputing 
research studies.

Finally, several typical issues should be resolved 
for hypercomputing maturation, such as comput-
ing performance optimization, response latency 
minimization, massive concurrent connectivity 
support, security and privacy, implementation cost 
reduction, backward compatibility with existing 
hardware and software, peer interoperability with 
other management systems, and the standardiza-
tion of protocols and interfaces adopting interna-
tional specifications (e.g., 3GPP and ETSI).

concludIng rEmArks
Owing to the unforeseeable growth of novel 
mobile ecosystems and their traffic, the emer-
gence of next-generation cloudification is inevita-
ble. In this regard, the next-generation computing 
platform is expected to accommodate user ser-
vices with three major features, including securi-
ty, transparency, and unification. Consequently, 
a common hypercomputing platform has been 
described in alignment with the potential 6G man-
agement architecture to provide heterogeneous 
hypercomputing, blockchainable privacy preser-
vation, and intelligent computing capabilities. Pre-
liminary simulation results demonstrated that the 
new hypercomputing architecture outperforms 
the predecessors in terms of user service satisfac-
tion ratio and average response latency. Although 
enabling technologies are available and contin-
uously upgraded for the computing platform 
development, several open challenges remain to 
promote future research, especially the applicabil-
ity in diverse services and domains.

AcknowlEdgmEnt
This research was supported by the MSIT (Min-
istry of Science and ICT), Korea, under the ITRC 
(Information Technology Research Center) sup-

port program (IITP-2023-RS-2022-00156353) 
supervised by the IITP (Institute for Information 
Communications).

rEfErEncEs 
[1] L. U. Khan et al., “Digital-Twin-Enabled 6G: Vision, Architec-

tural Trends, and Future Directions,” IEEE Commun. Mag., 
vol. 60, no. 1, 2022, pp. 74–80. 

[2] N.-N. Dao, W. Na, and S. Cho, “Mobile Cloudization Story-
telling: Current Issues From an Optimization Perspective,” 
IEEE Internet Computing, vol. 24, no. 1, 2020, pp. 39–47. 

[3] Ericsson, “Mobility Report–Mobile Data Traffic Outlook,” 
Accessed Nov. 20, 2022; available: https://www.ericsson.
com/en/mobilityreport/dataforecasts/mobile-traffic-forecast. 

[4] M. Giordani et al., “Toward 6G Networks: Use Cases and 
Technologies,” IEEE Commun. Mag., vol. 58, no. 3, 2020, 
pp. 55–61. 

[5] F.-Y. Wang et al., “Metasocieties in Metaverse: Metaeconom-
ics and Metamanagement for Metaenterprises and Metaci-
ties,” IEEE Trans. Computational Social Systems, vol. 9, no. 1, 
2022, pp. 2–7. 

[6] X. D. Duan et al., “6G Architecture Design: From Overall, 
Logical and Networking Perspective,” IEEE Commun. Mag., 
vol. 61, no. 7, 2023, pp. 158–64. 

[7] 5G; Management and Orchestration; Architecture Frame-
work, ETSI Std. TS 128 533 V15.5.0, Apr. 2021. 

[8] S. Velliangiri et al., “Blockchain Based Privacy Preserving 
Framework for Emerging 6G Wireless Communications,” 
IEEE Trans. Industrial Informatics, vol. 18, no. 7, 2021, pp. 
4868–74. 

[9] Š. Čučko and M. Turkanović, “Decentralized and Self-Sover-
eign Identity: Systematic Mapping Study,” IEEE Access, vol. 
9, 2021, pp. 139,009–27. 

[10] X. Sun et al., “A Survey on Zero-Knowledge Proof in Block-
chain,” IEEE Network, vol. 35, no. 4, 2021, pp. 198–205. 

[11] A. Vangala et al., “Smart Contract-Based Blockchain-En-
visioned Authentication Scheme for Smart Farming,” IEEE 
Internet of Things J., vol. 8, no. 13, 2021, pp. 10,792–806. 

[12] C. Thapa et al., “Splitfed: When Federated Learning Meets 
Split Learning,” Proc. 36th AAAI Conf. Artificial Intelligence, 
Vancouver, BC, Canada, Feb. 22–Mar. 1, 2022. 

[13] Y. Liu et al., “A Secure Federated Transfer Learning Frame-
work,” IEEE Intelligent Systems, vol. 35, no. 4, 2020, pp. 
70–82. 

[14] M. A. Husnoo et al., “Differential Privacy for IoT-Enabled 
Critical Infrastructure: A Comprehensive Survey,” IEEE 
Access, vol. 9, 2021, pp. 153,276–304. 

[15] D. S. Lakew et al., “Intelligent Offloading and Resource 
Allocation in Heterogeneous Aerial Access IoT Networks,” 
IEEE Internet of Things J., vol. 10, no. 7, 2022, pp. 5704–18.

bIogrApHIEs
Nhu-Ngoc Dao [SM] (nndao@sejong.ac.kr) is an Assistant Pro-
fessor with the Department of Computer Science and Engineer-
ing, Sejong University, Seoul, South Korea. His research interests 
include network softwarization, mobile cloudification, and the 
Internet of Things.

WooNgsoo Na ( wsna@kongju.ac.kr) is currently an Assistant 
Professor with the Division of Computer Science and Engineer-
ing, Kongju National University, Cheonan, South Korea. His 
current research interests include mobile edge computing, flying 
ad hoc networks, wireless mobile networks, and beyond 5G. 

suNgrae cho (srcho@cau.ac.kr) is a Full Professor with the 
School of Software, Chung-Ang University, Seoul, South Korea. 
His research interests include wireless networking, ubiquitous 
computing, and information and communication technology 
convergence. 

schahram DustDar [F] (dustdar@dsg.tuwien.ac.at) is a Full Pro-
fessor of Computer Science (Informatics) with a focus on Inter-
net Technologies heading the Distributed Systems Group, TU 
Wien, Austria.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 24,2024 at 13:07:54 UTC from IEEE Xplore.  Restrictions apply. 


