
IEEE Network • May/June 2024 1370890-8044/23©2023IEEE

AbstrAct
The offloading of rendering to remote serv-

ers in resource-constrained devices is a promising
strategy for developing mobile web-based immer-
sive applications. However, achieving satisfactory
delay experiences in large-scale mobile web-
based immersive applications by solely offloading
rendering to the cloud or edge servers can be
challenging due to congestion in the core net-
work and the lack of concurrent computing
ability. To address these issues, we propose a
distributed and collaborative rendering service
(DCR) framework for mobile web-based immer-
sive applications. The DCR framework constructs
a collaborative rendering service architecture
that includes cloud, edge, and terminal comput-
ing nodes, which can effectively alleviate the
computing and transmission pressure on remote
computing nodes and adapt to various immersive
service environments. To achieve rendering off-
load between computing nodes, DCR proposes
an approach of intermediate structure render-
ing offload based on JavaScript Object Notation
(JSON) data format, which requires fewer com-
puting and network resources. Additionally, the
DCR deploys a new 3D model loading engine
based on rendering intermediate JSON data com-
munication, which provides dynamic, on-demand,
asynchronous, and discrete rendering data ser-
vices to the mobile web browsers.

IntroductIon
The widespread use of lightweight and cross-plat-
form immersive web services, such as web
augmented reality (AR) and virtual reality (VR),
in mobile web-based immersive applications and
metaverse has been documented. To ensure high
fidelity and immersive services with real-time
experience, it is essential to enable low-latency
and low-energy 3D model rendering, as noted
in [1]. To address this need, web rendering
engines, such as Three.js and Babylon.js, have
been developed to provide intensive rendering
and are becoming the dominant approach. How-
ever, given the resource-constrained nature of the
mobile web browser and the inefficient JavaS-
cript computing environment, the challenge lies
in providing a real-time experience with large 3D

models [2]. Despite the promotion by the World
Wide Web Consortium (W3C) standards orga-
nization of the WebGL standard, which enables
3D rendering acceleration using native graphics
cards, it remains insufficient to render large 3D
models and provide real-time interaction.

Table 1 provides an overview of two
approaches that address the challenge of render-
ing intensive 3D content on resource-constrained
mobile web. The first approach is native on-
demand rendering, which employs level of detail
(LOD) and field of view (FoV) techniques to
optimize rendering data and reduce computing
resource and network bandwidth demand [4].
While this approach can provide real-time and
accurate rendering strategies, it requires efficient
cache management and complex viewport predic-
tion, posing challenges for mobile web developers
and users. The second approach is offloading
rendering tasks to the resource-rich cloud center
and providing rendering services in streaming [5].
However, the increasing demand for network and
computing resources due to the high concurrency
of requests and the complex computing require-
ments of rendering services poses significant
challenges. The limited core network bandwidth
hampers the support of computing resources
in the cloud for offloading rendering tasks [6].
Although low-delay edge computing services can
potentially address this issue, personalized par-
ticipation and content production requirements
in immersive applications for the metaverse have
created significant differences among users in
terms of rendering computing content. These dif-
ferences have presented significant challenges for
rendering computing offloading and data deliv-
ery. Consequently, offloading-based rendering is
limited to specific application scenarios, making
it challenging to provide services for ubiquitous
large-scale immersive applications.

With the development of 5G and Beyond 5G
(B5G), mobile edge computing and device-to-
device (D2D) communication have become key
technologies that promise to enable distributed
collaborative rendering of mobile web content.
This article begins by introducing the key char-
acteristics of immersive mobile web 3D services
and subsequently analyzes the critical challenges
involved in achieving real-time, low-energy

Toward Distributed Collaborative Rendering Service for Immersive Mobile Web
Liang Li, Yakun Huang, Xiuquan Qiao, Yifa Meng, Dingguo Yu, Pei Ren, and Schahram Dustdar

OPEN CALL ARTICLE

Liang Li is with the Laboratory of Future Imaging Technology and Application Laboratory of Zhejiang Province, the Key Laboratory of Film
and TV Media Technology of Zhejiang Province, and the School of Media Engineering, Communication University of Zhejiang, Hangzhou,
Zhejiang 310018, China; Yakun Huang and Xiuquan Qiao (corresponding author) are with the State Key Laboratory of Networking and

Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China; Yifa Meng is with the Beijing Key
Laboratory of Big Data in Security & Protection Industry, Beijing 100021, China; Dingguo Yu (corresponding author) is with the Key

Laboratory of Film and TV Media Technology of Zhejiang Province and the School of Media Engineering, Communication University of
Zhejiang, Hangzhou, Zhejiang 310018, China; Pei Ren is with the AI Innovation Center, Midea Group, Beijing 100015, China; Schahram

Dustdar is with the Distributed Systems Group, Technische Universität Wien, 1040 Vienna, Austria.

Digital Object Identifier:
10.1109/MNET.133.2200524

Date of Current Version:
30 May 2024

Date of Publication:
26 June 2023

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 06,2024 at 08:34:46 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 2024138

consumption, and high-fidelity 3D rendering.
The article presents a distributed collaborative
rendering service mechanism (DCR) based on
a Cloud-Edge-devices architecture, which offers
several advantages over existing computing off-
loading approaches. Firstly, DCR requires less
computing resources for rendering, resulting in
a smaller volume of rendered data and reduc-
ing the dependence on network and computing
environments for computing offloading. Secondly,
DCR proposes a novel approach to loading dis-
crete rendered data with low latency, thereby
reducing the dependence on stable network
and computing resources. Finally, DCR integrates
D2D collaborative computing with the cloud-
edge-devices collaborative rendering computing
approach, making it adaptable to various service
environments. To validate the feasibility of DCR,
we have implemented a preliminary prototype
that renders complex 3D model services for the
mobile web, improving efficiency through collab-
orative offloading. We evaluate the performance
of the prototype and discuss future research direc-
tions regarding immersive application rendering
offloading services.

chArActerIstIcs And chAllenges
This section delves into the features of rendering
offloading, which are illustrated in Figure 1. Addi-
tionally, it examines the obstacles encountered by
current methods.

chArActerIstIcs
1. Limited Computing Capability of Mobile

Web Browsers. In order to maintain consistency
of page data, the interpretation threads of JavaS-
cript and the GUI threads in mobile web browsers
are mutually exclusive. In accordance with this
mechanism, any thread tasks with a large pre-se-
quence delay consumption in the queue can result
in delays in computing response of post-sequence
threads, which may even lead to loading blocks.
This issue is particularly problematic for delay-
sensitive and high computing resource-consuming
applications, such as mobile VR/AR, as loading

blocks can severely impair the user’s interactive
experience. To improve the intensive comput-
ing performance, WebAssembly can be used to
quickly load and instantiate precompiled code,
which is much more efficient than JavaScript inter-
pretation computing. However, due to the mobile
browser’s security mechanisms and underlying
architecture, there may be insufficient computing
resources available [8].

2. High Demands for High-Quality Media
Presentation and Interaction. Immersive appli-
cations impose a higher demand for rendering
quality in 3D scenes due to their close interac-
tion and wider visual field [9]. To overcome the
impact of low resolution and fast motion on the
user experience caused by monocular domain
and close-up interaction, ultra-high resolution and
frame rate are required [10]. However, the use of
image data with ultra-high resolution entails more
complex rendering computation and greater
communication bandwidth requirements. Thus,
achieving ultra-low latency and real-time render-
ing is dependent on rich computing and network
resources, and is considered a crucial factor for
rendering offloading in immersive experience
services.

3. Continuous Service Delivery Requires
a Stable Network Environment. It is imper-
ative for mobile web immersive applications to
respond promptly to users’ motion and inter-
action requests with low Motion-to-Photons
Latency (MTP, less than 20ms). With frequent user
interaction, immersive applications that rely on
continuous image rendering have more stringent
requirements for continuous data provision than
traditional applications. This continuous data sup-
ply is highly reliant on stable and uninterrupted
high frame rate data. The advent of 5G network
services provides a chance to better fulfill the
requirements of immersive services in terms of
computing throughput and transmission delay
[11]. However, mobile web browsers face limita-
tions in storing the presented data in local storage
hardware with larger storage capacity due to secu-
rity restrictions and lack of underlying resources.

Methods Characteristics Disadvantages

On-demand rendering

LOD
The pressure of 3D model loading and transmission is relieved by the
gradual optimization of the triangular network structure [3].

Not suitable for the immersive mobile web, which relies on efficient
local cache resource management and under-supported by computing
resources.

FOV
Adopts progressive transmission and on-demand loading based
on the human eye viewport to achieve efficient transmission and
rendering of large scenes. [4].

Due to the necessity of providing a real-time and accurate on-demand
loading strategy based on the dynamic context, rendering techniques
are a source of difficulties and uncertainties for an interactive user
experience.

Rendering offloading

Cloud
The ECs of rich computing resources and scalability provide rendering
services in the form of a stream. [5]

The ability to provide adaptive services for diversified environments
is compromised because core network congestion will affect the
implementation of the offloading of the computing.

Edge
This technique provides reliable rendering offloading services for
resource-constrained high-bandwidth and low-latency mobile
networks through edge cloud computing resources. [6].

It is costly to deploy computing resources under limited scalability
for the high concurrency requirements of mobile web and advanced
GPU computing.

Hybrid

This technique uses cloud-edge collaboration to effectively
supplement the limited and expensive computing resources of the
edge cloud, which significantly improves the concurrency of mobile
user access. [7].

Over-reliance on core computing nodes and networks will cause
service interruption when core computing nodes and organizations
fail.

TABLE 1. Summary of rendering techniques for the mobile web.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 06,2024 at 08:34:46 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 2024 139

Additionally, advance rendering based on server
cache cannot withstand the pressure of massive
data capacity in multi-user scenarios due to differ-
ences in content delivery of multi-user channels.
Therefore, mobile devices require a continuous
and stable network esource that supports low-la-
tency continuous content to ensure uninterrupted
and reliable access to immersive applications.

4. The Dynamics of Services Eager an Intel-
ligent Distributed Resource Orchestration. In
light of their convenience and universality, web
services exhibit a marked degree of randomness
and spatial aggregation, particularly in the context
of mobile AR. This randomness engenders consid-
erable uncertainty with regard to the distribution
of network and computing resources available
to the mobile web [10]. Notably, the rendering
of these services necessitates the use of com-
puting nodes external to the application device,
with data exchanged via a network (e.g., a D2D
communication channel). This process is heavily
reliant on the quality of the external network and
computing environment. Given the inherent vari-
ability of network and computing resources, the
rendering of immersive mobile web services via
computing nodes is inherently complex.

chAllenges
Rendering offloading based on computing nodes
imposes higher requirements on the network
infrastructure and service environments, such as
a flexible rendering node structure, a lightweight
rendering environment, and an efficient multi-
source rendering mechanism.

1. Lack of Sufficient Computing and Network
Resources Support in Complex Environments.

To meet the demands of high-quality media
presentation and multi-user channel interaction,
rendering offloading requires significant com-
puting resources and ample delivery bandwidth.
Utilizing a central server allows for low latency
through the use of advanced frameworks, such
as machine learning and deep neural networks,
which can provide superior performance for a
limited number of users. However, when there
is a high degree of request concurrency among
users, the efficiency of data delivery can be com-
promised. Decentralized rendering based on
peer-to-peer computing nodes, such as mobile

devices, can address this issue by providing ultra-
low latency rendering and computing offloading
capabilities, dependent upon sufficient computing
nodes. Therefore, effectively deploying rendering
computing offload services in unfamiliar service
environments presents an important challenge for
immersive applications.

2. Low Latency, High Quality Interaction
Rendering Delivery. In current approaches to
offloading rendering, computing nodes trans-
mit immersive application renderings as video
streams. Mobile web browsers must either load
these streams asynchronously or store them in
cache for rendering. However, hardware lim-
itations may hinder mobile web browsers from
efficiently indexing and loading multimedia data
that has been remotely delivered and stored in
cache. In high-frequency interaction scenarios,
mobile web browsers struggle to load video
streams with low latency, presenting significant
challenges to the user’s experience. Furthermore,
the convergence of computing and rendering
data from multiple synchronous sources will pose
additional obstacles to the low-latency computing
capabilities of mobile web browsers.

3. Reuse of Continuous Rendered Data From
Multiple Sources. In mobile web-based immersive
applications, high-quality media presentation and
interactions are necessary, making multi-source
rendering the leading solution. Multi-source
offloading rendering services requires the optimi-
zation of data reuse between multiple computing
nodes to improve the utilization of rendered data
and reduce network delivery latency. More-
over, redundancy check mechanisms of multiple
sources can address packet loss and frame skip-
ping caused by network fluctuations. However,
existing remote rendering approaches in continu-
ous video stream structures may create challenges
in multiplexing and aggregating multi-source ren-
dering computations. Firstly, stream-based data
reuse relies on efficient cache computation and
adequate cache resources. Secondly, continuous
content data structures require precise synchro-
nization of the rendered computing data from
multiple sources.

4. Flexible Network and Computing Resource
Structure. The provision of an immersive service
environment is a complex and highly variable

FIGURE 1. Network node-based rendering system.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 06,2024 at 08:34:46 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 2024140

process that results in dynamic changes in the dis-
tribution of network computing nodes and access
to rendered computing data. However, the exist-
ing central computing nodes, consisting of cloud
servers and edge servers, are affected by the
bandwidth of the core network and the resources
of the core computing nodes. The effective trans-
fer of computing tasks from mobile web browsers
to computing nodes is contingent upon the high
performance and reliability of the network and
mobile edge servers. Unfortunately, the current
distribution of computing nodes impedes the
decentralization of rendering, thereby limiting the
effectiveness of existing approaches to offloading
rendering to computing nodes. This constraint
further exacerbates the challenges in achieving
widespread adoption of such approaches for the
changing service environments.

Methods of the dcr frAMework
To meet these challenges, developing a collabo-
rative rendering service framework composed of
multiple computing nodes is wise. We will indicate
how the proposed DCR framework addresses
these challenges.

dIstrIbuted collAborAtIve renderIng solutIon
The DCR framework offers rendering services
for mobile web-based immersive applications by
means of offloading the rendering process. The
proposed solution is distinct from current prac-
tices in several ways. First, we utilize various
computing nodes, including edge servers and
mobile devices, within the network to offload
rendering and provide these services for mobile
web-based immersive applications. To address
the challenge of creating an efficient rendering
environment, we use a lightweight rendering envi-
ronment based on JSON exchange data. Second,
the centralized and decentralized computing
nodes cooperate in providing computing services
based on the offloaded multi-node rendering ser-
vice. This solution can switch the service between
different computing nodes based on the change
in the service environment, providing a flexible
network resource structure. Third, we adopt a
JSON data format that is customized to exchange
rendered data between computing nodes and
application devices. With only minimal computing
resources on the web side, this data format can
reduce the burden of rendering and push images
to the multimedia elements of the web browser.
Finally, in multi-source collaborative rendering,
we utilize a granularity computing task scheduling
and rendered data reused approach to minimize
the redundancy of data and the dependence on
specific computing nodes.

constructIon of collAborAtIve renderIng offloAdIng
The DCR framework is primarily implemented for
the purpose of building distributed computing
nodes. In a distributed rendering architecture,
effective management of computing nodes, task
scheduling, and data exchange are crucial for
addressing the pressure on centralized rendering.
Consequently, this work will elaborate on the off-
loading of distributed rendering.

To begin with, computing nodes are deployed
on the mobile edge server and the mobile devices
surrounding the application device. The DCR

approach establishes a rendering offloading ser-
vice using a Docker container on the mobile edge
server. This rendering offloading service func-
tions as a microservice on the mobile devices.
The main advantage of this approach is that the
mobile browser requires minimal computing,
making it suitable for various application device
hardware scenarios.

Secondly, in order to implement rendering off-
loading services within the D2D communication
on computing nodes around mobile browsers,
a central controller was deployed on the edge
server. To integrate new computing nodes into
the cooperative rendering network, we adopted
a registration mechanism in the central control-
ler, which registered the rendering computing
status of the computing nodes to the DCR.We
introduced a reference approach [12] to achieve
awareness of the multi-user multiple input and
multiple output environment and cooperative
rendering scheduling. Additionally, we borrowed
algorithms from literature [13] and utilized deep
neural networks and resource scheduling meth-
ods to appropriately schedule collaborative
rendering computing services to achieve col-
laborative optimization of latency and energy.
However, the edge-based registration mechanism
requires a central controller to optimize the geo-
graphically distributed computing nodes, and
may not scale well for larger distributed render-
ing computing due to excessive overhead and
delays caused by status reports of the comput-
ing nodes. In such cases, optimal scheduling
results can be achieved through the coordination
of cloud and edge scheduling mechanisms by
relying on sufficient computing resources of the
cloud server. Finally, computing node discovery
and task allocation in the D2D communication
can be realized.

Thirdly, DCR employs a dynamic rendering off-
loading scheduling strategy on the edge server,
which determines the current rendering approach
and strategy. This dynamic scheduling enables
the framework to adapt to diverse network and
application devices’ computing resource environ-
ments by adjusting the rendering and network
connection approaches accordingly. The mobile
edge server is responsible for determining a con-
text-aware rendering offloading strategy and the
appropriate data accessing approach based on
the prevailing context. To execute this policy, the
following steps are taken:
• DCR employs a dynamic deployment strat-

egy for granularity rendering tasks based on
the computing capability of each computing
node. Furthermore, we establish a redun-
dancy reused mechanism for sharing com-
puting resources and rendered data, taking
into account the distribution of computing
nodes with services.

• In cases where the remote server’s comput-
ing resources or network access is obstruct-
ed, DCR utilizes an end-to-end approach to
offload rendering, with data shared within
the D2D communication. Conversely, when
the server’s resources and network access
are available, the edge cloud and mobile
devices collaborate to offload rendering and
share data through both the access network
and D2D communication.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 06,2024 at 08:34:46 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 2024 141

In DCR architecture, computing nodes sit-
uated on edge servers or mobile devices fulfill
distinct roles. When network resources are scarce,
a higher degree of latency may be observed
in DCR computing nodes deployed on mobile
devices. Conversely, when network resources are
abundant but available mobile devices for com-
puting offloading are limited, mobile edge servers
exhibit superior performance. In such cases, it is
advantageous to deploy on mobile devices. To
optimize performance, computing nodes can be
strategically placed on both mobile edge servers
and mobile devices in proximity to the application
device, thereby establishing a redundant mecha-
nism for the computing nodes. This configuration
allows rendering computing offloading scheduling
to swiftly adapt to user distribution in the cur-
rent service environment, ensuring low-latency
rendering computing services. Simultaneously, in
scenarios where network resources are limited
and few mobile devices surround the application
device, the browser-based rendering computing
approach can promptly deliver an immersive
application rendering response. Consequently, by
implementing a dynamic computing offloading
method that encompasses browser-based render-
ing computing techniques, DCR computing nodes
situated on edge servers, and DCR computing
nodes deployed on mobile devices, the initial
rendering computing delay of the DCR can be
rendered less susceptible to network bandwidth
fluctuations.

Finally, the offloading method presented herein
utilizes a JSON-based data format for exchanging
information between the mobile web immersive
application and computing nodes. This approach
differs from traditional model loading techniques
as the computing nodes in DCR directly load the
model file as a model object. Due to its smaller
execution environment and direct loading capa-
bilities, this method is readily deployable within
the microservices of mobile devices. Moreover,
the JSON-based data format offers several advan-
tages, including reduced bandwidth consumption
and increased loading efficiency, in comparison
to the multimedia stream data formats employed
by existing techniques. To facilitate seamless
and uninterrupted data service between the
multi-computing nodes and the application
device, DCR incorporates asynchronous commu-
nication and on-demand loading. Further details
on this approach can be found in Section III-C.

low-MtP loAdIng by Json-bAsed dAtA
By adopting an active and continuous data ser-
vice approach, browsers can efficiently and
reliably access rendered data, facilitating low
latency and low energy consumption in rendering
services. Computing nodes converts JSON data
to string data and sends it back to mobile web-
based immersive applications via access and D2D
communications. The rendered data is parsed
by the mobile web browser and added directly
to the scene, resulting in low latency. In DCR,
interactive JSON data is defined as a class with
a vertex object list element named ‘vertices’ and
a face list element named ‘faces’. The ‘vertices’
and ‘faces’ lists consist of classes that respectively
describe the normal vectors and faces of trian-
gular meshes. Each element of the ‘vertices’ list

contains the x-, y- and z-coordinates of a point or
face’s normal vector. An element of the ‘faces’ list
contains the point index of the triangular mesh, a
collection of the face’s vertices, color description,
and material index. DCR advance renders and
bakes the material data on the mobile edge server
or shares rendered JSON data between comput-
ing nodes to reduce browser computing resource
consumption. On-demand loading optimizes the
textures data of the 3D model as attributes when
the browser loads. When the mobile browser
requests texture data, it sends a request to the
edge server. The edge server responds with device
status data under a registration mechanism, which
enables the DCR to establish communication links
between computing devices. The mobile browser
can then access the cached data stored in the
cache of other computing nodes or the edge
server. The browser performs other rendering
computations, such as lights. The key advantage
of this approach is its minimal computing demand
on the mobile web browser, making it applicable
to various application device hardware scenarios.

The rendering and loading of 3D models in
mobile web-based immersive applications are
affected by the web browser’s indirect computing
resource scheduling and JavaScript interpretation
execution mechanism. Therefore, it is necessary
to adjust the approach to loading the 3D model
to the browser while optimizing the rendering.
To achieve this, we optimize the model data
retrieval process from a simple interface to
enable asynchronous caching and on-demand
loading through the web browser’s multi-thread-
ing and caching. Asynchronous browser threads
and database technology are used to cache
and synchronize the model data on-demand on
the mobile web browser. The use of asynchro-
nous threads enables browsers to open up new
loading threads besides the main thread, allow-
ing JavaScript to run in the background. This
approach ensures the loading thread’s indepen-
dence from other scripts and does not affect the
web’s performance, enabling the quick loading
of required resources and reducing waiting time.
Consequently, multi-threaded parallel loading is
an effective way to solve the problem of excessive
resource consumption and long loading delays.

In addition, the browser database, as a local
database, can be created and used through JavaS-
cript, providing convenient operations such as
finding an interface and establishing an index
suitable for this scenario. The combination of
the browser database and browser cache pro-
vides fast rendering data index and services. With
this approach, users who enter the same page
can directly read the corresponding model data
through the browser database among comput-
ing nodes, avoiding the reliance on the network
to request the corresponding model resources.
This method improves the efficiency of any subse-
quent loading.

collAborAtIve And stAble offloAdIng for
renderIng servIce

To reduce the computing delay caused by repet-
itive tasks, we propose a granularity computing
task scheduling and rendered data redundancy
reused approach. Specifically, we utilize DCR to

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 06,2024 at 08:34:46 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 2024142

preprocess or process the model in real-time on
the central server based on the physical struc-
ture of 3D objects. This allows us to divide the
JD model into several model blocks, which can
be encapsulated along with business-related
information (such as angle and interaction) into
fine-grained rendering task descriptors. By lever-
aging user demand prediction, we can then
map multiple fine-grained rendering sub-tasks
to establish the service logic of mobile web
immersive application. Assuming that the immer-
sive application’s specific service environment
contains n independent 3D scenes denoted by
S S S Sn= … −[, , ,]0 1 1 , we can divide the rendering
of each scene into m fine-grained subtasks rep-
resented by T T T Tf f f

m
f= …
−

[, , ,]0 1 1 . Additionally,
we can combine the model data blocks corre-
sponding to each fine-grained subtask into
[, , ,]M M Mm0 1 1… − . The rendering task for each
scene can be described as T t T Tc c c

n
c

= …
−

[, , ,]0 1 1 ,
where T Ti

c
f i
f= []() and T Tf j

f f
() ∈ with f(i) rep-

resenting the mapping function between the
ith scene and Tf. By utilizing this approach, we
can effectively reduce the computing delay
caused by repetitive tasks and optimize the ren-
dering process of the immersive application.

The rendering tasks’ granularity organization
in the remote cloud server is represented by a
matrix A STi j= [], , where i and j are indices that
range from 0 to n −1 and 0 to m −1, respectively.
The symbol of subtask Tj

f is expressed by STi j, if
T Tj

f
i
c

∈ , otherwise, it is represented as ‘null’.

When the service in the regional network
is triggered by the application device, the fine-
grained computing task and the matrix A are
migrated to the edge cloud for collaborative con-
trol. The edge cloud assigns computing tasks to
the collaborative computing nodes based on the
current scene’s time sequence and logical rela-
tions. Once a rendering subtask is completed
by a computing node in the network, it sends
the rendered data to the application device via
short-range communication links, such as D2D.
Additionally, the computing node requests the
edge cloud to update the computing task state
matrix A, which describes the storage index of
the current subtask rendered data (including
computing node information). During the allo-
cation of subtask Ti

f , the edge cloud traverses
the state of the jth column subtask in matrix A.
If Ti

f has already been completed (i.e., the STi j,
state is the storage index of subtask computing
output data), the edge cloud notifies the appli-
cation device to communicate directly with the
corresponding computing node. To render a 3D
scene, DCR divides the large JD file into model
file blocks and renders them on multiple comput-
ing nodes. This enables multiple mobile devices
to collaborate on rendering a large JD model file
simultaneously, resulting in faster rendering of
the complete model. The server can merge mul-
tiple fragments of a 3D model into a complete
model and return it to the browser. Alternatively,
the browser can initiate multiple requests to push
the model fragments individually to the scene,
and the server can request other model fragments
in parallel to avoid the idle state of the mobile
browser while waiting for network IO. Finally, the

server executes the rendering process using an
approach based on docker or microservice.

PerforMAnce evAluAtIon
This section outlines our experimental method-
ology that serves three distinct purposes. Firstly,
we aim to evaluate the efficacy of the offloaded
service environment that was constructed using
the DCR to illustrate its advantages. Secondly,
we aim to verify the latency and quality of the
interaction in the rendering when the environ-
ment undergoes changes. Lastly, we seek to verify
the benefits of the rendering reuse approach
employed in the DCR.

effectIveness of the collAborAtIve renderIng offloAdIng
We aim to assess the effectiveness of different
approaches, including Browser (rendering in the
browser), DCR-Edge (employing DCR that com-
puting nodes deployed on the edge server), and
DCR-Devices (employing DCR that computing
nodes deployed on mobile devices), by measuring
the response delays under different 3D model file
sizes. To achieve this, we utilized ten dockers on
mobile devices with a 1.6 GHz and 4 GB RAM
single-core processor and a mobile edge server
with six dockers as computing nodes. This setup
was chosen because mobile devices often serve
multiple purposes, including acting as comput-
ing nodes, and therefore have limited computing
resources. By utilizing low computing resources,
user participation can be enhanced without
negatively affecting other services, especially in
environments where resources are limited. The
browser rendering was performed using Chrome
simulation with an 8-core CPU and 8GB RAM,
and the bandwidth of the D2D channel was
set to 300 Mbps. The response delays for each
approach are presented in Table 2.

Here, τtran, τload, and τcom denote the trans-
mission delay, browser loading and rendering
delay, and rendering computing offloading delay,
respectively. The total delay, denoted by τsum, is
described as τsum = τload + τtran or τsum = τload +
τtran + τcom.

The results in Table 2 indicate that DCR is
generally more efficient in achieving an initial
response than other approaches. However, the
optimization efficiency of DCR on the mobile
edge server is not significant with the increase in
the model file capacity. The advance rendering
of the DCR framework results in a 4x capacity
increase compared to the original 3D model,
which may cause substantial delays when trans-
mitted between computing nodes. To overcome
this limitation, DCR can deploy computing nodes
around the application device to avoid access
network blocking, as shown in the DCR-Devices
section of Table 2.

Next, we verify the effectiveness of the DCR
architecture in immersive services under a 3D
model volume of 10.698 MB with different appli-
cation device computing capabilities. We use
the Chrome tool to simulate application devices
with different computing abilities. The delays with
different browser computing capability for each
approach are presented in Table 3. As a result,
DCR has lower requirements for browser com-
puting capability than existing methods, making
it more suitable for pervasive application devices.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 06,2024 at 08:34:46 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 2024 143

Consequently, an efficient and low-latency ren-
dering environment can be easily constructed
through the collaborative rendering offloading
service of edge servers and mobile devices.

lAtency And InterActIon QuAlIty In dIfferent servIces
This subsection also employs the Chrome tool to
simulate various connection bandwidths in order
to examine the effectiveness of DCR in different
network environments. Figure 2a illustrates that
DCR deployed on edge server computing nodes
yields a worse rendering delay than browser-based
rendering when the bandwidth is low, i.e., less
than 20 Mbps. This outcome can be attributed
to the advance rendering process that generates
greater data volume, as discussed previously. To
address this issue, we conducted experiments
with different numbers of mobile devices as
computing nodes to evaluate the initialization
response delay. Figure 2a shows that deployment
on mobile devices results in lower latency than
both browser-based rendering and computing
nodes deployed on mobile edge servers. DCR
sends the rendered data to the application device
through the D2D channel instead of the access
network, thus minimizing the impact of network
bandwidth. Furthermore, as more computing
nodes are deployed, the optimization of the DCR
in initialization response delay becomes more
pronounced.

The MTP is a crucial index for assessing the
quality of user experience. In this study, we uti-
lized the stats.js tool (from https://github.com/
mrdoob/stats.js) to measure the MTP, which is
typically expressed by the interactive frame rate,
of two different approaches: the DCR framework
deployed on edge and traditional browser-based
approaches. The results of our experiments are
shown in Table 4, where fmin represents the
minimum interactive frame rate, fmax represents
the interactive maximum frame rate, and fsta
represents the stable interactive frame rate. It
indicates that DCR-Edge and browser rendering
approach achieve similar MTP scores. This out-
come can be attributed to the fact that when users
request interactive content, the animation data
is rendered directly in the mobile device cache
through WebGL. In contrast, third-party servers
(such as server-based rendering approaches) pro-
vide the data service. The advance rendered data
is directly inserted into the current scene using
the ‘add’ approach, thereby avoiding the extra
delay that is caused by the data stream index and
cache. Overall, these findings demonstrate that
DCR provides similar interactive frame rates to
browser-based rendering approaches, as a result
of its ability to directly render data in the mobile
device cache, which bypasses the need for a
third-party server’s data service.

effectIveness of the reuse froM MultIPle sources
This subsection examines the efficacy of rendered
data reused within the DCR framework. Specifi-
cally, the model processing module partitions the
original model using a granularity segmentation
approach. This approach involves the reuse of
repetitive model segmentation units within a given
scene, which are then superimposed based on
semantic information. To evaluate the effective-
ness of this approach, we varied the proportion

of reusable scenes within the overall scene (i.e.,
model file ratio) and measured the initial render-
ing delay, as illustrated in Figure 2b and Figure 2c.
Figure 2b is the performance of DCR’s edge with
different data reuse, and Figure 2c is the perfor-
mance of DCR’s mobile devices with different
data reuse. The results indicate that the efficiency
of DCR optimization increases as the reuse ratio
increases. In real service environments, as the
increase in user scale, there is greater potential
for reusing rendered data across different mobile
browsers. Therefore, DCR can offer a superior
user experience for mobile network immersive
applications compared to existing methods when
involving dense users. These findings highlight the
suitability of DCR for showcasing large-scale and
complex service environments.

dIscussIon
Our approach raises several issues that we need
to consider in order to better understand the
contribution of this paper. Firstly, our experiment
did not consider the server-based rendering com-
puting offloading method. This is because in an
actual service environment, the rendering com-
puting offloading service is typically deployed on
a remote cloud server with abundant computing
resources, and may even require a specialized
software and hardware environment for rendering
computing services. However, this would require
service providers or operators to spend additional
capital and energy costs to support rendering
computing offloading, which is currently not

Model volume (MB) 1.505 4.511 10.698 22.227 32.623 53.416

Browser

τtran 80 137 447 685 903 1322

τload 430 1068 1701 2168 2892 4182

τsum 510 1205 2148 2853 3795 5504

DCR-Edg

τcom 3 4 7 8 10 13

τtran 61 188 404 930 1320 2290

τload 21 45 95 190 252 467

τsum 85 237 506 1128 1582 2770

DCR-Devices

τcom 4 4 7 12 20 35

τtran 17 54 126 266 378 656

τload 21 45 95 190 252 467

τsum 42 103 228 468 650 1158

TABLE 2. The effectiveness in initial response delay (ms).

Browser computing Original 1
4 Original 1

6 Original

Browser
τload 1701 6216 9180

τsum 1886 6401 9365

DCR-Edge
τload 95 390 612

τsum 506 801 1023

DCR-Devices
τload 95 390 612

τsum 306 601 823

TABLE 3. The delays with different browser
computing (ms).

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 06,2024 at 08:34:46 UTC from IEEE Xplore. Restrictions apply.

https://github.com/mrdoob/stats.js
https://github.com/mrdoob/stats.js

IEEE Network • May/June 2024144

cost-effective. Additionally, while the server-based
rendering computing method offers the advan-
tage of low computing offloading delay for the

remote server and low loading delay for the appli-
cation device, the rendered multimedia data from
the server-based rendering computing is much
larger than that of the original 3D model and DCR
framework method. When network resources are
limited, this can cause unacceptable delays. Fur-
thermore, the efficiency of interactive response is
also a major factor that we did not consider when
examining the server-based rendering computing
offloading method. Thus, considering both service
cost and user experience, DCR method is a prac-
tical approach to rendering computing offloading
services.

Secondly, it is beneficial to integrate it with
existing studies and technologies to enhance the
performance of DCR. Although these technologies
are not novel, it is essential to discuss their integra-
tion to bolster the credibility of DCR. Optimization
technologies in web browsers, such as browser
database cache and asynchronous thread commu-
nication, can significantly improve the latency of
DCR, which is discussed in Section III-C. Moreover,
DCR’s discrete data loading approach can profi-
ciently organize cached data to provide users with
seamless and high-quality interactive experiences.
Browser-based asynchronous communication
and on-demand loading can reduce the amount
of data rendered and loaded by the browser, fur-
ther contributing to smoother user experiences.
When combined with DCR’s continuous data ser-
vice mechanism and discrete loading method, this
approach can produce a more polished interac-
tion experience, surpassing what existing rendering
computing offloading methods can achieve. How-
ever, these techniques are not reflected, so it is
challenging to evaluate their impact accurately in
comparison to other optimization methods.

Thirdly, we would like to clarify that although
some works are highly relevant to this paper,
they may be relatively complex. However, vari-
ous scholars have already conducted extensive
research on these works, resulting in significant
findings. For instance, Li et al. [14] have proposed
a hybrid model of non-orthogonal multiple access
(NOMA) and frequency division multiple access
to facilitate multi-user dual computation offload-
ing, which provides a comprehensive reference
model for real-time scheduling of distributed col-
laborative rendering. Additionally, optimizing time
delay and collaborative energy offload computing
is one of the primary research areas in comput-
ing offload optimization. Literature such as (e.g.,
[15]) has proposed more advanced mathemat-
ical models that establish a balance between
delay and energy between the device and multi-
access computing node. Moreover, while we have
adopted a relatively simple and rough method,
i.e., segmentation based on physical structure in
the reuse of rendered data, more advanced and
novel research methods exist in relevant studies,
such as fine-grained segmentation methods for
3D models and business demand prediction. In
particular, the feature extraction method using the
depth neural network for fine-grained segmen-
tation is more scientific and effective, which can
better ensure the smoothness of the 3D model.
These works are highly significant to the DCR
framework, yet they are not our innovations, and
we have not introduced or verified them in detail
in this work.

Model volume (MB) 4.511 10.698 22.227 32.623 53.416

Browser

fmin 28 15 10 20 19

fmax 60 60 45 37 35

fsta 60 60 43 33 31

DCR-Edge

fmin 27 21 10 20 19

fmax 60 60 45 37 35

fsta 60 60 42 33 31

TABLE 4. The interactive frame rate (FPS).

FIGURE 2. In-depth analysis of DCR in different environments. a) DCR’s delay
in various network bandwidth. b) DCR-Edge with reused. c) DCR-Devices
with reused.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 06,2024 at 08:34:46 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 2024 145

conclusIons And future work
In this work, we propose the DCR, which pro-
vides a rendering service for large-scale mobile
web-based immersive applications. We have made
several key findings. Firstly, we have demonstrated
that increasing the number of mobile devices
deployed as DCR computing nodes can enhance
the efficiency of optimizing the response delay.
However, we must acknowledge the issue of user
privacy protection and security that arises when
offloading computing tasks between untrusted
mobile devices. To address this concern, we pro-
pose researching solutions such as blockchain
technology or offloading between personal mobile
devices in future work. Secondly, we have found
that DCR computing nodes deployed on edge serv-
ers or mobile devices play different roles. When the
network resources are insufficient, mobile devices
with DCR computing nodes will provide a shorter
delay. Conversely, when the network resources are
sufficient, and the mobile devices available for off-
loading computing are limited, mobile edge servers
will perform better. We recommend deploying
computing nodes on both mobile edge servers and
mobile devices around the application device and
establishing a redundancy mechanism for the com-
puting nodes. This way, the offloaded rendering
can be scheduled quickly according to the user dis-
tribution in the current service scenario to provide
low latency. In scenarios where network resources
are insufficient and few mobile devices are avail-
able, the browser-based rendering approach can
provide a quick rendering response. To make
DCR less affected by the properties of the service
environment, we propose a dynamic computing
offloading approach in future work. This approach
will include browser-based rendering, DCR edge-
based rendering, and DCR mobile devices-based
rendering. By incorporating these rendering meth-
ods, DCR can provide a more flexible and efficient
rendering service for large-scale mobile web-based
immersive applications.

AcknowledgMent
This work is supported in part by the National
Natural Science Foundation of China under
Grant 62202065, in part by the Zhejiang Pro-
vincial Natural Science Foundation under Grant
LTGG23F020001, in part by the Key Laboratory
of Film and TV Media Technology of Zhejiang
Province under Grant 2020E10015, in part by
the Project funded by China Postdoctoral Science
Foundation under Grant 2022TQ0047 and Grant
2022M710465.

RefeRences
[1] C. Liu et al., “Cloud Baking: Collaborative scene illumination

for dynamic Web3D scenes,” ACM Trans. Multimedia Com-
put., Commun., Appl. (TOMM), vol. 14, no. 3s, pp. 1–20,
2018.

[2] X. Qiao et al., “Web AR: A promising future for mobile aug-
mented reality—State of the art, challenges, and insights,”
Proc. IEEE, vol. 107, no. 4, pp. 651–666, Apr. 2019.

[3] Z. Lv et al., “BIM big data storage in WebVRGIS,” IEEE Trans.
Ind. Informat., vol. 16, no. 4, pp. 2566–2573, Apr. 2020.

[4] Y. Yang et al., “Energy- and quality-aware task offloading for
WebVR service in terminal-aided mobile edge network,”
IEEE Trans. Veh. Technol., vol. 71, no. 8, pp. 8825–8838,
Aug. 2022.

[5] T. Kämäräinen et al., “CloudVR: Cloud accelerated inter-
active mobile virtual reality,” in Proc. 26th ACM Int. Conf.
Multimedia, 2018, pp. 1181–1189.

[6] L. Lin et al., “Computation offloading toward edge com-
puting,” Proc. IEEE, vol. 107, no. 8, pp. 1584–1607,
Aug. 2019.

[7] Y. Huang et al., “Toward decentralized and collaborative
deep learning inference for intelligent IoT devices,” IEEE
Netw., vol. 36, no. 1, pp. 59–68, Jan./Feb. 2022.

[8] D. Lehmann, J. Kinder, and M. Pradel, “Everything old
is new again: Binary security of WebAssembly,” in Proc.
29th USENIX Secur. Symp. (USENIX Security), 2020,
pp. 217–234.

[9] X. Hou, Y. Lu, and S. Dey, “Wireless VR/AR with edge/cloud
computing,” in Proc. 26th Int. Conf. Comput. Commun.
Netw. (ICCCN), Jul./Aug. 2017, pp. 1–8.

[10] Y. Siriwardhana et al., “A survey on mobile augmented
reality with 5G mobile edge computing: Architectures, appli-
cations, and technical aspects,” IEEE Commun. Surveys Tuts.,
vol. 23, no. 2, pp. 1160–1192, 2nd Quart., 2021.

[11] J. Du et al., “MEC-assisted immersive VR video streaming
over terahertz wireless networks: A deep reinforcement
learning approach,” IEEE Internet Things J., vol. 7, no. 10,
pp. 9517–9529, Oct. 2020.

[12] C. Ding et al., “Joint MU-MIMO precoding and resource
allocation for mobile-edge computing,” IEEE Trans. Wireless
Commun., vol. 20, no. 3, pp. 1639–1654, Mar. 2021.

[13] F. Jiang et al., “Deep-learning-based joint resource sched-
uling algorithms for hybrid MEC networks,” IEEE Internet
Things J., vol. 7, no. 7, pp. 6252–6265, Jul. 2020.

[14] Y. Li et al., “Hybrid NOMA-FDMA assisted dual compu-
tation offloading: A latency minimization approach,” IEEE
Trans. Netw. Sci. Eng., vol. 9, no. 5, pp. 3345–3360, Sep./
Oct. 2022

[15] D. Song et al., “Universal cross-domain 3D model retrieval,”
IEEE Trans. Multimedia, vol. 23, pp. 2721–2731, 2021.

BiogRaphies
Liang Li (liliang@cuz.edu.cn) is currently a Senior Experimen-
talist with the School of Media Engineering, Communication
University of Zhejiang, Laboratory of Future Imaging Technology
and Application Laboratory of Zhejiang Province, and Key Lab-
oratory of Film and TV Media Technology of Zhejiang Province,
Hangzhou, China. He has authored or co-authored over ten
technical papers in international journals and at conferences. His
research interests lie in augmented reality, virtual reality, services
computing, computer vision, and 5G networks.

Yakun Huang (ykhuang@bupt.edu.cn) is currently a Post-Doc-
toral Researcher with the State Key Laboratory of Networking
and Switching Technology, Beijing University of Posts and Tele-
communications, Beijing, China. His current research interests
include video streaming, mobile computing, and augmented
reality.

Xiuquan qiao (qiaoxq@bupt.edu.cn) is currently a Full Professor
with the State Key Laboratory of Networking and Switching
Technology, Beijing University of Posts and Telecommunications,
Beijing, China. His current research interests include the future
Internet, services computing, computer vision, distributed deep
learning, augmented reality, virtual reality, and 5G networks.

Yifa Meng (mengyifa@126.com) is currently a Senior Engineer
with the Beijing Key Laboratory of Big Data in Security & Pro-
tection Industry, Beijing, China. His current research interests
include system architecture design and artificial intelligence.

Dingguo Yu (yudingguo@cuz.edu.cn) was born in 1976. He
received the M.S. and Ph.D. degrees in computer application
technology from Tongji University, China, in 2005 and 2011,
respectively. He is the Director of the Key Laboratory of Film
and TV Media Technology of Zhejiang Province, China. His
research focuses on media fusion technology, big data and artifi-
cial intelligence for media, and so on.

Pei Ren (renpei@midea.com) received the Ph.D. degree in com-
puter science from the State Key Laboratory of Networking and
Switching Technology, Beijing University of Posts and Telecom-
munications, China. He is currently working with the Midea
Group. Between 2019 and 2021, he was a Visiting Scholar with
the School of Computer Science, Georgia Institute of Technol-
ogy, GA, USA, funded by the China Scholarship Council. His
current research interests include machine learning, augmented
reality, edge computing, and 5G networks.

ScHaHRaM DuStDaR (Fellow, IEEE) (dustdar@dsg.tuwien.ac.at)
is a Full Professor of computer science and is heading the Dis-
tributed Systems Research Division at the TU Wien. He is an
ACM Distinguished Scientist, ACM Distinguished Speaker, and
Member of Academia Europaea.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 06,2024 at 08:34:46 UTC from IEEE Xplore. Restrictions apply.

mailto:E-mail:liliang@cuz.edu.cn
mailto:E-mail:mengyifa@126.com
mailto:Email:yudingguo@cuz.edu.cn
mailto:renpei@midea.com
mailto:E-mail:dustdar@dsg.tuwien.ac.at

