Theme Article: Special Section on Security and Privacy-Aware Emerging Computing

Securing Clustered Edge Intelligence With Blockchain

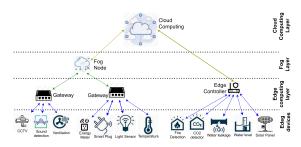
Chinmaya Kumar Dehury University of Tartu

Satish Narayana Srirama* University of Hyderabad **Praveen Kumar Donta and Schahram Dustdar** TU Wien

Abstract—The devices at the edge of a network are not only responsible for sensing the surrounding environment but are also made intelligent enough to learn and react to the environment. Clustered Edge Intelligence (CEI) emphasizes intelligence-centric clustering instead of device-centric clustering. It allows the devices to share their knowledge and events with other devices and the remote fog or cloud servers. However, recent advancements facilitate the traceability of the events' history by analyzing edge devices' event logs, which are compute intensive and easy to alter. This article focuses on a blockchain-based solution for CEI that makes the edge devices' events history immutable and easily traceable. This article further explains how the edge devices' activities and the environmental data can be secured from the source device to the cloud servers. Such a secured CEI mechanism can be applied in establishing a transparent and efficient smart city, supply chain, logistics, and transportation systems.

INTERNET OF THINGS (IoT) has made it possible to further improve the quality and comfort of human being. This leverages the capability of surrounding tangible and intangible physical entities that can be controlled and managed remotely.

*Corresponding author, email: satish.srirama@uohyd.ac.in Digital Object Identifier 10.1109/MCE.2022.3164529 Date of publication 4 April 2022; date of current version 13 October 2023. According to an estimation published by Techradar,^a it is expected that over 125 billion physical objects will be connected to the Internet, thanks to IoT. With such a massive number of connected devices, the global IoT market is expected to reach a value of USD 1386.06 billion by 2026 from USD 761.4 billion in 2020 at a compound annual growth rate of 10.53%, during the forecast period


 $^{\rm a}[{\rm Online}].$ Available: https://www.techradar.com/news/rise-of-the-internet-of-things-iot

2162-2248 © 2022 IFFF

22

Published by the IEEE Consumer Technology Society

IEEE Consumer Electronics Magazine

FIGURE 1. Hierarchical representation of edge, fog, and cloud-computing environments.

(2021–2026).^b The devices at the edge of the network, also referred to as edge devices, are not only collecting data or sensing the surrounding environment, but also preprocessing the data and learning the basic meaning of those data. This is done by implementing an essential intelligence atop the limited computing resources available with the edge devices, also known as edge intelligence.¹ In such a scenario, the edge devices are primarily managed by the central control center that usually resides in a cloud-computing environment and works in a master-worker approach. Furthermore, to improve the quality of service (QoS) through several supplements, such as lesser latency and response time, fog computing environment is introduced between cloud and edge computing layers, 2 as shown in Figure 1.

However, in the case of clustered edge intelligence (CEI), the main focus is on creating context-based intelligence clusters. In doing so, the primary focus has now shifted from clustering of devices to clustering of intelligence of several edge devices, irrespective of their location and other characteristics. Such an approach may help reduce the system complexity.³ While doing so, it is highly essential to consider the attributes of underlined edge devices, such as mobility nature, the type and purpose of the devices, what kind of data the device generates, and so on.

One of the research challenges in CEI is the ability to track the chain of tampered-proof historical events, such as failure of actions/devices and performance degradation.⁴ One of the conventional ways to track a past event is to analyze large size system logs collected from all the devices.^{4,5} The possibility of tampering the system logs is a matter of concern in such an approach.⁴

In this article, we revisited the research challenge as mentioned previously. We proposed a blockchain-based security mechanism that would enable the administrators/users to track the chain of immutable events to analyze and investigate the reason for any anomaly event. Blockchain is one of the most suitable candidate technology for the implementation of several distributed systems.^{3,6} This would secure the details of the device's actions/events and establish the chain among them within the clusters. Due to its promising features, such as distributed, traceability of shared information, transparency, immutability, and reduced costs, the application of blockchain technology is diverse, ranging from edge intelligence⁷ to vehicular network⁸ to different areas of smart city.9 There are several works that used blockchain for edge computing and they are summarized using Table 1. Majority of these approaches do not follow cluster or distributed approach, and they are also expensive in terms of complexity and resource requirements.

BACKGROUND

This section gives a brief overview of CEI and how it differs from generic edge intelligence. Upon realizing the cloud-computing capabilities in traditional methods, most intelligence is imposed on cloud servers following a centralized system. However, to mitigate the limitation of cloud computing itself, research has started to bring the intelligence to the proximity of devices at the edge of the network, referring to as edge intelligence.¹ In some cases, edge intelligence is also referred to as deploying a minimal version of artificial intelligence (AI) on resource constraint edge devices.

To further minimize the network burden on the energy constraint edge device and reduce the system complexity, the edge devices are clustered based on their type, location, or specific feature. Hence, the driving factor to cluster the edge devices is to manage the devices and utilize the limited resources in an effective manner. For this, most of the research works focused primarily on the device-level management rather than the intelligence intended to be implemented in devices. The device-centric clustering mechanism introduces

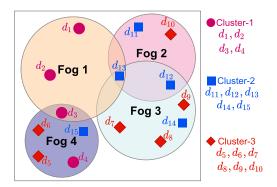
23

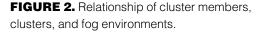
^b[Online]. Available: https://www.mordorintelligence.com/industry-reports/ internet-of-things-moving-towards-a-smarter-tomorrow-market-industry

TABLE 1. Summary or	literature study.
---------------------	-------------------

Reference	Method	Advantages	Limitations
Rausch and Dustdar ¹	Studied the scope of AI in edge computing	Scalable provisioning and monitoring, explainability, privacy and trust	Blockchain technology is not adapted for edge
Xie <i>et al.</i> ⁴	Online anomaly detection using deep learning	Data integrity and automatic anomaly detection	Require more resources
Qie <i>et al.</i> ⁷	Learning performed at edge and distributed the knowledge using the blockchain	Ability to handle resource heterogeneity and trust worthiness	The accuracy of the learning protocols is not verified.
Treiblmaier <i>et al.</i> 9	Studied advantage of blockchain for smart cities	Discuss the benefits of the blockchain	List the challenges of incorporating blockchain for smart cities
Dustdar <i>et al</i> . ¹⁰	Elastic smart contracts between multiple blockchains	Energy efficient task offloading, joint resource allocation, service migration framework, trust- aware data trading marketplace	High cost of transactions
Zhang et al. ¹¹	Distributed heterogeneous edge resource scheduling	Efficient resource handling, flexible and secure edge service management, and cost minimization	Secure interoperable transactions are not possible
Song et al. ¹²	Uses genetic algorithm along with the quantum particle swarm optimization	Minimize energy consumption, and QoS provisioning	Require more computational resources and time
Bartoletti <i>et al.</i> ¹³	Location-based people and network-centric data analysis	Secure sharing and localization services	Blockchain technology is not adapted for edge devices

some bottleneck in an effective implementation of edge intelligence.


However, the CEI shifts the focus from the device to the intelligence itself. The primary goal of CEI is to allow the edge devices with similar and dependent intelligence to share their knowledge among peers and work in a collective manner toward a common objective. One such CEI example can be the energy usage analytics in a smart city scenario. Within this, multiple clusters can be formed: Analyzing the green energy production by small solar panels deployed on city transportation (including buses and the bus stops), or the solar panels installed atop smart buildings, cold water usage analysis by the citizen, or in the public buildings. A cluster with an objective to analyze the green energy production by city transportation system involves both static solar panels installed atop bus stops having fixed location and mobile solar panels installed atop city buses.


These edge devices are known as the cluster members (CMs). Figure 2 briefly presents the relationship or organization of CMs, clusters, and the fog environments. In CEI, the members of a

24

specific cluster may reside in different locations and may be connected to multiple fog environments. For instance the members of *Cluster-1*, i.e., edge devices d_1 , d_2 , and d_3 are located in the communication range of *Fog 1* and devices d_3 and d_4 are located in the communication range of *Fog 4*. So the device d_3 is in the communication range of both *Fog 1* and *Fog 4*. Similarly, *Fog 1*, *Fog 2*, and *Fog 3* are the nearby fog nodes to device d_{13} , which is a member of *Cluster-2*.

The other aspect of CEI is the decision-making system, which takes place mostly on the edge

devices rather than in the control center. Each device is equipped with a basic intelligence on when to take an action and how to share the action. Some devices are responsible for collecting the data, known as collectors and some other devices are responsible for reacting to the environment, known as reactors based on the data from the collectors. For instance, in a CEI cluster with the objective to manage the energy consumption in smart building, a smart bulb may depend on the environmental data collected by the proximity sensors, light sensors, and potentially on the temperature sensors. Hence, instead of relying entirely on a centrally located control center, the smart bulb should depend on the knowledge of proximity, light, and temperature sensors. In this example, the intelligence of these four sensors may form a CEI.

Based on the responsibilities, the CMs can be classified into two categories: *collectors* and *reactors*. Collectors are mainly responsible for collecting the surrounding data or knowledge. Examples of collectors may include temperature sensor, light sensor, solar panel, proximity and motion sensor, and CO_2 sensor. The job of the reactors is to react to the surrounding environment based on the shared knowledge by the collectors. Examples of reactor may include smart bulb, ventilation system, and room heating system. It is assumed that the CMs have the knowledge about other members in the same clusters and the nearby fog nodes.

One of the primary research issues in CEI is the security and traceability of the event/data generated by diverse edge devices. Edge devices share their knowledge on surrounding environment among other CMs. As the edge devices are getting intelligent enough to act on their own, it is highly essential to securely gather the chain of events from all the devices for future analysis and validation purposes. For this, one of the most suitable technology that can be integrated to the current edge computing infrastructure is blockchain, an emerging distributed ledger technology, as discussed in next section.

Short Background on Blockchain

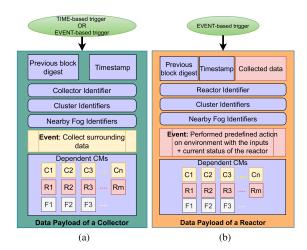
As the name suggests, blockchain refers to a sequential chain of blocks or records that is nearly unalterable and transparent. Each block consists of three basic elements: 1) the data payload, 2) a nonce, and 3) hash of the previous block. Some of the primary research questions when the blockchain is integrated with CEI are as follows.

- Who, how, when, and where to construct the blocks or the records?
- How to secure the generated data payloads from the edge of the network?
- How to maintain the blockchain?

BLOCKCHAIN-ENABLED CEI

This section details the integration of blockchain with the edge computing infrastructure that enables secure CEI. The objective here is to securely gather the chain of events from all the CMs for the analysis and validation purposes. As discussed in the "Background" section, clusters are formed based on the intelligence capabilities of the edge devices, regardless of their location, type, and purpose. As shown in Figure 2, it is possible for a single CM to be a member of multiple clusters.

Construction of Data Payload by CMs at the Edge


The CMs are responsible for collecting the surrounding data/knowledge and sharing this event among other CMs in the same cluster and in the nearby fog nodes. For example, edge device d_3 would share its surrounding knowledge with all the CMs of *Cluster-1* and all the edge devices in the communication range of *Fog 1* and *Fog 4*.

For each event, the corresponding CM constructs a data payload with a set of additional information/artifacts. The data payload is then used to construct a block by the fog node. The content of a data payload depends upon the type of the CM, i.e., collector or reactor. Figure 3(a) and (b) shows the set of data fields (described in the following) in the data payload constructed by collectors and reactors, respectively.

• *Previous block digest:* It is similar to the hash value of the previous block in the blockchain. This value is always obtained from the nearby fog node, which is responsible for constructing and maintaining the blockchain. However, at time t = 0, this value is set to be empty.

January/February 2024

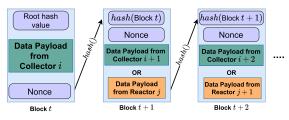

Special Section on Security and Privacy-Aware Emerging Computing

FIGURE 3. Data payload created by the (a) *collector* and (b) *reactor.*

- *Timestamp:* It is the time, at which the event is generated by the collector or the reactor.
- *Member identifier:* The public key of each member is considered as the member identifier.
- *Cluster identifiers:* This is the list of the unique identifiers of each cluster that the CM belongs to. In general, the cloud controller is responsible for assigning unique identifier to each cluster. For each CM, the cluster identifiers are set to be static unless there is manual updation.
- Nearby fog identifiers: Similar to above, this is a list of identifiers of nearby fog nodes. It is assumed that this field can not be empty, indicating that each edge device must be connected to at least one fog node.
- *Event: In case of a collector*, this data field contains the collected surrounding data. Using this value the current state of the environment can also be monitored, as shown in Figure 3(a). However, in case of a *reactor*, this data field mainly contains the performed action and the current status of the reactor, as shown in Figure 3(b).
- *Dependent CMs:* This is a set of other CMs including both collectors and reactors in the same cluster and the nearby fog nodes. All the generated events will be further shared among this set of edge devices and fog nodes.
- Collected data: This data field is very specific to the data payload generated by the reactor. Collected data is the surrounding environmental data shared by other CMs and this data

26

FIGURE 4. Construction of sequential chain of block by fog.

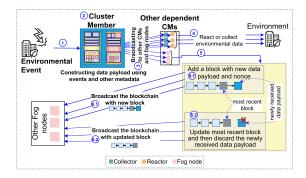
acts as the input to the reactor. Based on these data, a reactor reacts to the environment.

Constructing and Updating the Blockchain

As discussed previously, upon each event triggered either based on the time or by the event from another CM, a data payload is constructed by the CM. The CM broadcasts the newly constructed data payload to other dependent CMs and the nearby fog nodes. A data payload is then used with the hash of the previous block in the blockchain and the nonce by the fog node to construct a block. Figure 4 shows a template of blockchain created by the fog environment. The first block, *Block t* in Figure 4, constructed using the data payload from collector *i*, contains a root hash value, which is an empty value and nonce. Based on the proposed framework, a reactor is always triggered by an event from other collectors or reactors, as shown in Figure 3(b), and hence, the first block always uses the data payload from a collector.

The nonce, also referred to as proof of work (PoW), is a random special number that is used to resolve the conflicts that may arise when multiple fog nodes receive the same block from a CM. The nonce must meet the predefined cryptographic block hash value format and is calculated as the hash of the other two components: 1) received data payload of the collector or reactor, and 2) the hash of the previous block in the blockchain, as shown in Figure 4. Similarly, the second block (i.e., Block t+1) is constructed using 1) the value of received data payload either from a collector or from a reactor, 2) hash value of the previous block (i.e., Block *t*), and 3) nonce. The criteria to create a new block depend on the data payload value, which is discussed in a further section.

It can be observed from Figure 2 that *Fog 1*, *Fog 2*, and *Fog 3* always receive the data payload


constructed by CM d_{13} . In this case, a conflict will arise between *Fog 1*, *Fog 2*, and *Fog 3* to update the blockchain. To handle such a conflict, the fog node that calculates the nonce before any other fog node would first broadcast the block to others and would be considered as the final version of the block. The hash or the digest of the previous block is mainly used to establish the connection among the sequence of the blocks/events.

The fog node does not just directly add the newly received block to the existing chain, rather it processes and analyzes the block beforehand. The fog node first verifies if the block is from an authorized CM. For this, fog node checks the cluster identifiers, collector/reactor identifier, and previous block's digest. The other condition that needs to be verified is that if the data payload is from a reactor, the collected data in the received data payload should match the value of *Event* field of previous block, if the previous block is from a collector.

It is possible for any fog node to receive multiple consecutive data payloads from the same CM. In other words, the collector/reactor identifier of newly received data payload is same as that in the most recent block in the blockchain. If the CM is a collector, the fog node simply extracts the value of event data field from the newly received data payload and append that value to the event data field of the most recent block in the blockchain. However, if the CM is a reactor, the values of the collected data and event data field of the new data payload are extracted and appended to the respective data fields of most recent block in the blockchain. Following the append operation, the nonce would be recalculated by the same fog node. Once this process is done, the newly received data payload is simply discarded and the updated blockchain is broadcast to the other fog nodes in the network.

Operation Flow

This section presents the detailed end-to-end flow, as shown in Figure 5, including the generation of data payload at the edge, forming the blockchain at fog, all network operations, and communications among all the entities. In the previous sections, the construction mechanism of data payload and blockchain by CM and fog are illustrated, respectively.

FIGURE 5. Journey of a data payload, blocks, and blockchain.

The entire process, as in Figure 5, starts when there is an event in the environment or a change in the state of the environment. The event can be based on the time. Such an event triggers the collectors that continuously monitor the state of the environment (Step 1). Based on the event the corresponding collectors collect the environmental data and constructs the data payload with a set of other metadata, as discussed in the "Construction of Data Payload by CMs at the Edge" section (Step 2). For instance, if the outside luminosity level changes, the corresponding collector would be a light detector. If a person crosses a certain area, the motion detector would be triggered. The constructed data payload will then be broadcast to the other CMs and the nearby fog nodes (Step 3). After receiving a new data payload from other CMs, a collector or reactor would extract the data payload's event data and accordingly either react to the environment or further collect the environmental data based on the predefined task.

On the other hand, upon receiving the same data payload, the nearby fog nodes either update the most recent block present in existing blockchain (Step 5.1, if the newly received data payload is from the same CM) or add a new block to the existing blockchain (Step 5.2, if the newly received data payload is from a different CM), depending on the source of the data payload. At this stage, all the fog nodes that receive the data payload will compete for finding the required nonce. Once this process is done, the updated blockchain will be further broadcasted to other fog nodes in the network (Steps 6.1 and 6.2). This way, all the fog nodes will have a list of updated blockchains.

27

January/February 2024

CHALLENGES AND FUTURE DIRECTIONS

The existing research on securing the CEI with blockchain faces numerous challenges due to the diverse characteristics of all the involved entities. In addition to network overhead, scalability, interoperability, and technical validation based on real implementations, some of the other challenges that are also considered as future works are briefly discussed in the following.

- Dynamic environment: As discussed previously, some edge devices are mobile in nature, which indicates that the nearby fog nodes of such devices will change over time. This introduces another level of complexity from constructing the data payload to updating the blockchain with the new fog nodes' ID. Furthermore, the fog nodes need to process the data payloads of edge devices with high mobility.
- Validation rate: Some edge devices may send the data payload faster than the rate at which the fog nodes would be able to update the blockchain. In other words, the fog nodes need to execute Steps 5 and 6, as shown in Figure 5, at a very high speed taking minimal time to process the data payload. To mitigate such an issue, the research must focus on designing a lightweight consensus algorithm and block validation mechanism for the fog nodes.
- *Computation overhead:* The nearby fog nodes are now responsible for both carrying out complex edge analytics and maintaining the blockchain for all the edge devices in their communication range. This introduces a computation overhead on the fog nodes demanding higher computation resources and an efficient lightweight consensus algorithm and block validation mechanism.
- *Communication overhead:* The edge devices need to constantly share the surrounding data and their knowledge with peers, attracting communication overhead on the network. This also impacts the power-constraint edge device as such edge devices need to transmit additional data with peers and fog nodes. To handle such power-constraint edge devices, it is necessary to strategically construct and broadcast the data payload based on the power available with the device.

28

Scalability: One of the most challenging jobs is ensuring that the proposed CEI supports an ever-increasing number of edge devices. Scaling up the CEI infrastructure will significantly impact the communication overhead and the computation overhead to the fog nodes. With the constant addition of a large number of edge devices, the newly constructed data payloads and blockchain need to be validated and updated at a higher rate. One possible solution would be to design a lightweight consensus algorithm and block validation mechanism for the fog nodes.

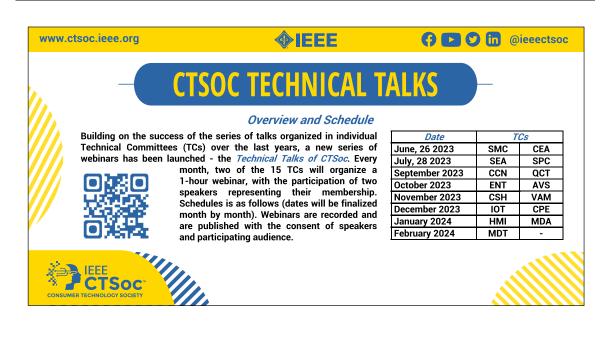
CONCLUSIONS AND FUTURE WORKS

This article addresses the security aspect of CEI, where the primary goal is to keep the events history intact and traceable. Events history analysis is required when it comes to find the cause of unexpected failure in edge intelligence or the reason behind the events. Blockchain technology can address this issue, by enabling the event to be immutable. As discussed, the edge devices are primarily responsible for building the data payload, which is the basic blockchain unit. Nearby fog nodes are mainly responsible for constructing and updating the blockchain. Once the blockchain is updated, it is hard for any system or intruder to modify the events chain, as the nonce/PoW is laborious to recalculate.

This article also summarizes some of the significant challenges, which are also part of the future works. We envision integrating advanced blockchain-based technology with the edge infrastructure will result in a more efficient and transparent secured CEI.

ACKNOWLEDGMENTS

The authors would like to thank financial support to the UoH-IoE by MHRD, India (F11/9/ 2019-U3(A)).


REFERENCES

 T. Rausch and S. Dustdar, "Edge intelligence: The convergence of humans, things, and AI," in *Proc. IEEE Int. Conf. Cloud Eng.*, 2019, pp. 86–96, doi: 10.1109/ IC2E.2019.00022.

- Y. Du, Z. Wang, and V. C. M. Leung, "Blockchainenabled edge intelligence for IoT: Background, emerging trends and open issues," *Future Internet*, vol. 13, no. 2, Feb. 2021, Art. no. 48, doi: 10.3390/ fi13020048.
- X. Shao, C. Yang, D. Chen, N. Zhao, and F. R. Yu, "Dynamic IoT device clustering and energy management with hybrid NOMA systems," *IEEE Trans Industr Inform.*, vol. 14, no. 10, pp. 4622–4630, Oct. 2018, doi: 10.1109/TII.2018.2856776.
- X. Xie, Y. Fang, Z. Jian, Y. Lu, T. Li, and G. Wang, "Blockchain-driven anomaly detection framework on edge intelligence," *CCF Trans. Netw.*, vol. 3, no. 3, pp. 171–192, Dec. 2020, doi: 10.1007/s42045-020-00044-9.
- S. Xu, Y. Qian, and R. Q. Hu, "Data-driven network intelligence for anomaly detection," *IEEE Netw.*, vol. 33, no. 3, pp. 88–95, May/Jun. 2019, doi: 10.1109/ MNET.2019.1800358.
- D. Puthal, N. Malik, S. P. Mohanty, E. Kougianos, and G. Das, "Everything you wanted to know about the blockchain: Its promise, components, processes, and problems," *IEEE Consum. Electron. Mag.*, vol. 7, no. 4, pp. 6–14, Jul. 2018, doi: 10.1109/MCE.2018.2816299.
- C. Qiu, X. Wang, H. Yao, Z. Xiong, F. R. Yu, and V. C. M. Leung, "Bring intelligence among edges: A blockchain-assisted edge intelligence approach," in *Proc. GLOBECOM IEEE Glob. Commun. Conf.*, 2020, pp. 1–6, doi: 10.1109/GLOBECOM42002.2020.9348271.

- N. Malik, P. Nanda, A. Arora, X. He, and D. Puthal, "Blockchain based secured identity authentication and expeditious revocation framework for vehicular networks," in *Proc. 17th IEEE Int. Conf. Trust, Secur. Privacy Comput. Commun./12th IEEE Int. Conf. Big Data Sci. Eng.*, 2018, pp. 674–679, doi: 10.1109/ TrustCom/BigDataSE.2018.00099.
- 9. H. Treiblmaier, A. Rejeb, and A. Strebinger,
 "Blockchain as a driver for smart city development: Application fields and a comprehensive research agenda," *Smart Cities*, vol. 3, no. 3, pp. 853–872, Sep. 2020, doi: 10.3390/smartcities3030044.
- S. Dustdar, P. Fernandez, J. María García, and A. Ruiz-Cortés, "Elastic smart contracts in blockchains," *IEEE/CAA J. Automatica Sinica*, vol. 8, no. 12, pp. 1901–1912, Dec. 2021, doi: 10.1109/ JAS.2021.1004222.
- K. Zhang, Y. Zhu, S. Maharjan, and Y. Zhang, "Edge intelligence and blockchain empowered 5G beyond for the industrial Internet of Things," *IEEE Netw.*, vol. 33, no. 5, pp. 12–19, Sep./Oct. 2019, doi: 10.1109/ MNET.001.1800526.
- L. Song, K. K. Chai, Y. Chen, J. Schormans, J. Loo, and A. Vinel, "QoS-Aware energy-efficient cooperative scheme for cluster-based IoT systems," *IEEE Syst. J.*, vol. 11, no. 3, pp. 1447–1455, Sep. 2017, doi: 10.1109/ JSYST.2015.2465292.
- S. Bartoletti *et al.*, "Location-based analytics in 5G and beyond," *IEEE Commun. Mag.*, vol. 59, no. 7, pp. 38–43, Jul. 2021, doi: 10.1109/MCOM.001.2001096.

29

January/February 2024