
1168 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 3, MAY/JUNE 2024

Scheduling Multi-Server Jobs With Sublinear Regrets
via Online Learning

Hailiang Zhao , Shuiguang Deng , Senior Member, IEEE, Zhengzhe Xiang , Member, IEEE, Xueqiang Yan,
Jianwei Yin, Schahram Dustdar , Fellow, IEEE, and Albert Y. Zomaya , Fellow, IEEE

Abstract—Multi-server jobs that request multiple computing
resources and hold onto them during their execution dominate
modern computing clusters. When allocating the multi-type re-
sources to several co-located multi-server jobs simultaneously in
online settings, it is difficult to make the tradeoff between the par-
allel computation gain and the internal communication overhead,
apart from the resource contention between jobs. To study the
computation-communication tradeoff, we model the computation
gain as the speedup on the job completion time when it is executed in
parallelism on multiple computing instances, and fit it with utilities
of different concavities. Meanwhile, we take the dominant commu-
nication overhead as the penalty to be subtracted. To achieve a
better gain-overhead tradeoff, we formulate an cumulative reward
maximization program and design an online algorithm, named
OGASCHED, to schedule multi-server jobs. OGASCHED allocates the
multi-type resources to each arrived job in the ascending direction
of the reward gradients. It has several parallel sub-procedures to
accelerate its computation, which greatly reduces the complexity.
We proved that it has a sublinear regret with general concave
rewards. We also conduct extensive trace-driven simulations to
validate the performance of OGASCHED. The results demonstrate
that OGASCHED outperforms widely used heuristics by 11.33%,
7.75%, 13.89%, and 13.44%, respectively.

Index Terms—Multi-server job, online gradient ascent, online
scheduling, regret analysis.

I. INTRODUCTION

IN TODAY’S computing clusters, whether in the cloud data
centers or at the network edge, many jobs request multiple re-

sources (CPUs, GPUs, etc.) simultaneously and hold onto them

Manuscript received 4 May 2023; revised 6 July 2023; accepted 4 August
2023. Date of publication 8 August 2023; date of current version 12 June
2024. This work was supported in part by the Key Research Project of Zhe-
jiang Province under Grant 2022C01145 and in part by the National Science
Foundation of China under Grants U20A20173 and 62125206. Recommended
for acceptance by E. Damiani. (Corresponding author: Shuiguang Deng.)

Hailiang Zhao and Shuiguang Deng are with the Hainan Institute of Zhejiang
University, Sanya 572025, China, and also with the College of Computer
Science and Technology, Zhejiang University, Hangzhou 310027, China (e-mail:
hliangzhao@zju.edu.cn; dengsg@zju.edu.cn).

Zhengzhe Xiang is with the School of Computer Science and Technol-
ogy, Hangzhou City University, Hangzhou 310015, China (e-mail: xiangzz@
zucc.edu.cn).

Xueqiang Yan is with Huawei Technologies Company Ltd, Shanghai 201206,
China (e-mail: yanxueqiang1@huawei.com).

Jianwei Yin is with the College of Computer Science and Technology,
Zhejiang University, Hangzhou 310027, China (e-mail: zjuyjw@zju.edu.cn).

Schahram Dustdar is with Distributed Systems Group, Technische Universität
Wien, 1040 Vienna, Austria (e-mail: dustdar@dsg.tuwien.ac.at).

Albert Y. Zomaya is with the School of Computer Science, University of
Sydney, Sydney, NSW 2006, Australia (e-mail: albert.zomaya@sydney.edu.au).

Digital Object Identifier 10.1109/TSC.2023.3303344

during their executions. For example, graph computations [1],
federated learning [2], distributed DNN model trainings [3], etc.
In this paper, we refer to these jobs as multi-server jobs [4],
[5]. Multi-server jobs of diverse resource requirements arrive at
the cluster online, which puts great pressure to current resource
allocation policies to achieve a high computation efficiency.

When allocating the multi-type resources to several co-
located multi-server jobs simultaneously in online settings, it is
difficult to make the tradeoff between the parallel computation
gain and the internal communication overhead, apart from the
resource contention between jobs. Here the parallel computation
gain refers to the speedup on the job completion time when it is
executed in parallelism on multiple computing instances, which
could be modeled with a function of the allocated multi-type re-
sources [6]. Correspondingly, the internal communication over-
head refers to the cost caused by non-computation operations
such as data synchronization, averaging, message passing, etc.,
between the distributed workers. To achieve better computation
efficiency, we need to consider the following key challenges.
� Resource contention with service locality: With service lo-

cality, a multi-server job can only be processed by a subset
of computing instances where the resource requirements,
session affinity [7], and other obligatory constraints are
satisfied. When several multi-server jobs arrive simultane-
ously, how to allocate the limited resources to them without
degenerating the computation efficiency is challenging.

� Unknown arrival patterns of jobs: In real-life scenarios,
the resource allocation should be made online without the
knowledge of future job arrivals. The lack of information
on the problem space could lead to a solution far from the
global optimum.

� The parallel computation gain does not increase in a linear
rate with the quantity of allocated resources: For instance,
in distributed DNN model training or federated learning,
adding workers (that request more resources) does not
improve the training speed linearly [3], [6]. This is because
the overhead of all-reduce operation between workers or
the averaging of local gradients increase with the number
of participated workers, especially when the workers are
distributed in different machines and communicate with
each other through network [8], [9], [10]. Compared with
high-speed intra-node communication channels such as
NVLink, the inter-node bandwidth through NIC is rela-
tively much slower. Another example is graph computa-
tion. Without a well-designed graph partition policy, the

1939-1374 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 24,2024 at 08:26:49 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2850-6815
https://orcid.org/0000-0001-5015-6095
https://orcid.org/0000-0003-1133-5722
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0002-3090-1059
mailto:hliangzhao@zju.edu.cn
mailto:dengsg@zju.edu.cn
mailto:xiangzz@penalty -@M zucc.edu.cn
mailto:xiangzz@penalty -@M zucc.edu.cn
mailto:yanxueqiang1@huawei.com
mailto:zjuyjw@zju.edu.cn
mailto:dustdar@dsg.tuwien.ac.at
mailto:albert.zomaya@sydney.edu.au

ZHAO et al.: SCHEDULING MULTI-SERVER JOBS WITH SUBLINEAR REGRETS VIA ONLINE LEARNING 1169

speedup of message-passing between graph nodes can be
significantly slowed down [1], [11].

� The type of resource which dominates the communica-
tion overhead varies to different job types: For exam-
ple, in graph computation jobs, the dominant communi-
cation overhead lies in the internal input-output data trans-
ferring between the interdependent CPU- and memory-
intensive tasks [12]. However, the dominant overhead of
the distributed training of DNNs lies in the data averaging
and synchronizing between the GPU-intensive workers
through network [13]. This variety greatly complicates the
theoretical analysis for the gain-overhead tradeoff.

Despite the vast literature on the online resource allocation
algorithms [3], [6], [13], [14], [15], [16], [17], [18], their model
formulation and theoretical analysis which places emphasis on
the gain-overhead tradeoff is limited. To fill the theoretical
gap, in this paper, we propose an online scheduling algorithm,
termed as OGASCHED, to learn to allocate multi-type resources
to co-located multi-server jobs online to maximize the over-
all computation efficiency. We try to analyze the tradeoff in
a generic way. The generality is embodied in the following
points. First of all, different from the specific works on deep
learning jobs [3], [6], [13] or query jobs [12], we allow different
types of multi-server jobs to co-locate in the cluster which
consists of heterogeneous computing resources. Different job
types can have different resource requirements while different
computing instances can be equipped with diverse quantities
and types of resources. Second, we adopt general zero-startup
non-decreasing utility functions to model the parallel compu-
tation gain in terms of the job completion time. Compared to
existing literature, we allow the utilities to be diverse in their
level of concavity. Specifically, we provide both analysis and
experiments on linear, polynomial, logarithmic, and reciprocal
utilities. Third, we makes no assumptions on the arrival patterns
of multi-server jobs. OGASCHED requests no knowledge on the
job arrival distributions but tries to learn them to make better
scheduling decisions.

In our model formulation, the computation efficiency is mod-
eled in the way of cumulative reward. Time is slotted, and the
cumulative reward is obtained by summing up the reward in each
time slot, where a single-time reward is a linear aggregation
of each job’s reward. Further, a job’s reward at each time is
designed as the achieved parallel computation gain aggregated
over the allocated resources minus the penalty introduced by the
dominant communication overhead. At each time, OGASCHED

allocates resources to each arrived job in the direction that makes
the gradient of the reward increase. OGASCHED is capable of
handling high dimensional inputs in stochastic scenarios with
unpredictable behaviors. We adopt regret, i.e., the gap on the
cumulative reward between the proposed online algorithm and
the offline optimum achieved by an oracle [19], to analyze
the performance lower bound of OGASCHED. We prove that,
OGASCHED has a State-of-the-Art (SOTA) regret, which is sub-
linear with the time slot length and the number of job types.
This work fulfills one of the key deficiencies of the past works
in the modeling and analysis of the gain-overhead tradeoff for
multi-server jobs. The contributions are summarized as follows.

� We systematically study the resource allocation of co-
located multi-server jobs in terms of the tradeoff between
the parallel computation gains and the internal communi-
cation overheads. Our study is general in scenario settings
and it sufficiently takes the characters of the diminishing
marginal effect of gains into consideration.

� We propose an algorithm, i.e., OGASCHED, to learn to
strike a balanced computation-communication tradeoff.
OGASCHED has no assumptions on the job arrival patterns.
With a nice setup (defined in Section III-A), OGASCHED

achieves a SOTA regret O(HG ·
√
T) for general concave

non-linear rewards, where T is the time slot length, and
HG (formally defined in (52)) is parameter that character-
izes the bipartite graph model. OGASCHED is accelerated
by well-designed parallel sub-procedures. The parallelism
helps yield a complexity of O(log(K)), where K is the
number of resource types.

� We conduct extensive trace-driven simulations to validate
the performance of OGASCHED. The simulation results
show that OGASCHED outperforms widely used heuristics
including DRF [20], FAIRNESS, BINPACKING, and SPREAD-
ING by 11.33%, 7.75%, 13.89%, and 13.44%, respectively.
We also provide large-scale validations.

The rest of this paper is organized as follows. We formulate the
online scheduling problem for multi-server jobs in Section II.
We then present the design details of OGASCHED with regret
analysis and discuss its extensions in Section III. We demonstrate
the experimental results in Section IV, and discuss related works
in Section V. Finally, we conclude this paper in Section VI.

II. BIPARTITE SCHEDULING WITH REGRETS

We consider a cluster of heterogenous computing instances
serving several types of multi-server jobs. Here the comput-
ing instances can be VMs in clouds, or local servers at the
network edge. The computing instances work collaboratively
to provide resources to serve the considered jobs. Different
computing instances are equipped with different types and quan-
tities/specifications of resources, including CPU cores, memory,
bandwidth, GPUs, etc. Jobs of different types can have different
demands on them. Key notations used in this paper are summa-
rized in Table I.

A. Online Bipartite Scheduling

We use a bipartite graph G = (L,R, E) to model the job-
server constraints, as shown in Fig. 1. In graph G, L is the set
of job types and indexed by l while R is the set of computing
instances and indexed by r. The connections between the job
types and the computing instances are recorded in E . Because
of the job-server constraints, type-l job may only be served by
a subset of R. We denote the subset by

Rl = {r ∈ R | (l, r) ∈ E} . (1)

Similarly, we use

Lr = {l ∈ L | (l, r) ∈ E} . (2)

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 24,2024 at 08:26:49 UTC from IEEE Xplore. Restrictions apply.

1170 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 3, MAY/JUNE 2024

TABLE I
SUMMARY OF KEY NOTATIONS

Fig. 1. The bipartite graph model for online job scheduling.

to represent the set of job types that connect to computing
instance r. We designate each job type l ∈ L as port and each
connection (l, r) ∈ E as channel. G is called right d-regular iff
the indegree of each right vertex is d, i.e., ∀r ∈ R, |Lr| = d.

Time is discretized, and at each time t ∈ T � {1, . . ., T},
from each port, at most one job yields. Let us denote by

x(t) = [xl(t)]l∈L ∈ {0, 1}|L| , (3)

the job arrival status at time t. We do not make any assumption on
the job arrival patterns or distributions. The cluster has K types
of resources, and computing instance r has ckr type-k resources,
where k ∈ K � {1, 2, ..,K}. For each type-l job, we denote its
maximum requests on each resource by al = [akl]k∈K ∈ N |K|.
At time t, we use

y(t) =
[
yk(l,r)(t)

]
l∈L,r∈Rl,k∈K

∈ R
∑

l∈L |Rl|×K
≥0 , (4)

to denote the scheduling decision. Here we allow yk(l,r)(t) to
be fractional. Taking GPU as example, Machine-Learning-as-
a-Service (MLaaS) platforms support GPU sharing in a space-
and time-multiplexed manner by intercepting CUDA APIs [21],
[22], [23].

The first constraint is that, through each channel, a job should
not be allocated with resources more than it requires. Formally,
we have

0 ≤ yk(l,r)(t) ≤ akl , ∀l, r, k, t. (5)

The second constraint y(t) should satisfy is that, the resources
allocated out from any computing instance r should not more
than it has ∑

l∈Lr

yk(l,r)(t) ≤ ckr , ∀r, k, t. (6)

We denote by Y � {y ∈ R
∑

l∈L |Rl|×K | (5) and (6) hold} to
represent the solution space from here on.

B. Computation-Communication Tradeoff

The performance metric we use for online bipartite scheduling
is designed as the gain obtained by the parallel computation
through multi-type resources minus the penalty introduced by
the dominant communication overheads. Specifically, we de-
note by ql(x(t),y(t)) the reward of port l at time t, and it is
formulated as

ql(x(t),y(t)) = xl(t)

[∑
k∈K

fk

(∑
r∈Rl

yk(l,r)(t)

)

−max
k∈K

{
βk

∑
r∈Rl

yk(l,r)(t)

}]
. (7)

In this formulation, the first part,
∑

k∈K fk(
∑

r∈Rl
yk(l,r)(t)),

is the parallel computation gain, which is linearly aggregated
over each type of resource, in proportional to each resource’s
weight. Jobs of different types can have different combinations
of weights. fk(·) is the gain achieved by

∑
r∈Rl

yk(l,r)(t) type-k
resources collaboratively, where fk(·) is a zero-startup concave
utility defined in R≥0. Note that

∑
r∈Rl

yk(l,r)(t) is the quota
of the type-k resources allocated to the type-l job at t. As we
have analyzed before, {fk(·)}k∈K are non-decreasing concave
functions because the marginal effect of parallel computation de-
creases successively when increasing participated resources [3],
[24]. We expect {fk(·)}k∈K to be continuously differentiable
because it helps design a policy that yields a nice lower bound
of the reward. The details will be demonstrated in Section III-C.
If {fk(·)}k∈K are not differentiable everywhere, we can apply
subgradient ascent-related techniques in the policy design. The
second part in (7) is maxk∈K{βk

∑
r∈Rl

yk(l,r)(t)}, which re-
flects the dominant weighted communication overheads over
different types of resources. For example, in federated learning
at the edge, the dominant communication overhead lies in the
averaging and synchronizing of data between each edge server
over the network [25]. Another example is graph computation, in
which the job is organized into a direct acyclic graph (DAG), and
the dominant communication overhead falls into the data & mes-
sage passing between CPU- and memory-intensive tasks [12].
{βk}k∈K are the coefficients to balance the gain and the over-
head. W.L.O.G., we set each βk ∈ [0, 1]. Theoretically, the sec-
ond part of (7) is a penalty, the minimization of which guides the

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 24,2024 at 08:26:49 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: SCHEDULING MULTI-SERVER JOBS WITH SUBLINEAR REGRETS VIA ONLINE LEARNING 1171

scheduling decisions to balance the communication overheads
of different device types. Our reward design encourages each
job to be served with the balance between the computation gain
and the communication overhead being achieved.

C. Regret Minimizing

Based on the above, we define the overall reward at time t as
the linear aggregation over each port

q (x(t),y(t)) =
∑
l∈L

ql (x(t),y(t)) . (8)

The cumulative reward of scheduling policy π over the time
horizon T is obtained by summing up the rewards obtained at
each time until T

Qπ
(
{x(t)}T1 , {y(t)}T1

)
=
∑
t∈T

q (x(t),y(t)) , (9)

where the scheduling decisions {y(t)}T1 are made under the
guidance of policy π. In the following, we just use Q and drop
the superscript π for simplification.

We do not make any assumption on the distribution of the job
arrival trajectory {x(t)}T1 . To obtain a non-trivial performance
measure, we cast the multi-server bipartite scheduling problem
into the framework of online learning, which prompts us to
compare the performance of the online policy π with the best
offline stationary policy π∗ [26], [27]. Let us denote by y∗ the
optimal offline stationary resource allocation decision guided by
policy π∗, i.e.,

y∗ = arg sup
y∈Y

Q
(
{x(t)}T1 ,y

)
, (10)

Physically, y∗ is the optimal stationary resource reservation
decisions for each port whatever the actual job arrival status
x(t) is. Formally, we define the regret Rπ

T ({x(t)}T1) for the job
arrival trajectory {x(t)}T1 as

Rπ
T

(
{x(t)}T1

)
� Q

(
{x(t)}T1 ,y∗

)
−Q

(
{x(t)}T1 , {y(t)}T1

)
.

The regret of policy π is further defined as the maximum regret
achieved over every possible job arrival trajectory

Rπ
T � sup

∀{x(t)}T1
Rπ

T

(
{x(t)}T1

)
. (11)

Our goal is to find a policyπ, under which a sequence of bipartite
scheduling decisions {y(t)}T1 is yielded, to minimize Rπ

T .

III. ONLINE GRADIENT ASCENT

To minimize the regretRπ
T , we resort to an online variant of the

gradient-based methods, online gradient ascent (OGA) [28]. A
series of recent works have demonstrated that OGA achieves the
best possible regret for online caching problems in different net-
work settings when the rewards are linear [27], [29], [30], [31].
In this paper, we extend OGA to the online bipartite scheduling
problem for multi-server jobs with non-linear rewards. Before
presenting the design details, we first give some preliminary
definitions and analysis.

A. Preliminaries

Definition 1. NICE SETUP: If all the utilities {fk}k∈K are (i)
linearly separable over computing instances, i.e.,

fk

(∑
r∈Rl

yk(l,r)

)
=
∑
r∈Rl

fk
r

(
yk(l,r)

)
, (12)

and each concave utility fk
r (·) is (ii) continuously differentiable

in R+, and (iii) there exist �k
r > 0 such that

(fk
r)

′(0) ≤ �k
r , ∀r, k, (13)

we say this is a nice setup.
The following proposition demonstrates the property of the

regret minimization problem, which will be used in the design
and analysis of OGASCHED.

Proposition 1. CONVEXITY: (i) The feasible solution space Y
is convex. (ii) With a nice setup, at each time t, the single-slot
reward function q(x(t),y(t)) is a concave function of y(t).

Proof: In the following proof, we just drop (t) from x(t) and
y(t) for simplification. Besides, we only prove the case that G is
right d-regular and d = |L|. The left cases can be easily proved
with the same techniques used in this proof.

We first prove (i). To do this, let us arrange the vector y as

y =

[
y1︸︷︷︸
k=1

; y2︸︷︷︸
k=2

; . . .; yK︸︷︷︸
k=K

]
, (14)

where yk ∈ R(|L|×|R|) is arranged as

yk =

[
yk(1,1); . . .; y

k
(1,|R|)︸ ︷︷ ︸

l=1

; . . .; yk(|L|,1); . . .; y
k
(|L|,|R|)︸ ︷︷ ︸

l=|L|

]
. (15)

With this arrangement, the vector representation of (5) is

0 ≤ y ≤ a, (16)

where a = [a1; . . .;aK], and

ak =

[
ak1 ; . . .; a

k
1︸ ︷︷ ︸

of size |R|

; . . .; ak|L|; . . .; a
k
|L|︸ ︷︷ ︸

of size |R|

]
. (17)

Similarly, we want to construct a matrix B and a vector c
for the vector representation of (6). ∀k ∈ K, we design B′ ∈
R|R|×(|L|×|R|) as

[B′]ij =

{
1 (j − i) | |R|
0 o.w.

(18)

and ck = [ck1 ; . . .; c
k
|R|]. Then, we have

B′yk ≤ ck, ∀k. (19)

We can transform (19) into

B′yk +
∑
k′ 	=k

Oyk′ ≤ ck, ∀k, (20)

where O is a zero matrix. As a result, (6) is equivalent to

By ≤ c, (21)

where c = [c1; . . .; cK] ∈ R(|R|×K), and

B = diag (B′) ∈ R(|R|×K)×(|L|×|R|×K).

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 24,2024 at 08:26:49 UTC from IEEE Xplore. Restrictions apply.

1172 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 3, MAY/JUNE 2024

The above analysis leads to Y = {y | 0 ≤ y ≤ a,By ≤ c}
being a polyhedron, which is well known to be a convex set.

We now prove (ii). Similarly, we try to find the vectorized
representation of q(x,y). To do this, we define the operator
f : R|L|×|R|×K → R|L|×|R|×K as

f =
[
f1; . . .;fK

]
, (22)

where

fk =

[
fk
1 ; . . .; f

k
|R|︸ ︷︷ ︸

make |L| replicas

; . . .; fk
1 ; . . .; f

k
|R|︸ ︷︷ ︸

l=|L|

]
. (23)

Then, the first part of (7) can be transformed into

∑
l∈L

xl

∑
k∈K

fk

(∑
r∈Rl

yk(l,r)

)
=
∑
l∈L

∑
k∈K

∑
r∈Rl

xlf
k
r

(
yk(l,r)

)
= χ · f(y), (24)

where

χ =

⎡
⎢⎣
x1; . . .;x1︸ ︷︷ ︸

l=1,∀r

; . . .;x|L|; . . .;x|L|︸ ︷︷ ︸
l=|L|,∀r︸ ︷︷ ︸

k=1, make K replicas

; . . .;x1; . . .;x|L|︸ ︷︷ ︸
k=K

⎤
⎥⎦ . (25)

For the second part of (7), we have

∑
l∈L

xl max
k∈K

{
βk

∑
r∈Rl

yk(l,r)

}
=
∑
l∈L

xlβk∗
∑
r∈Rl

yk
∗

(l,r), (26)

where

k∗ = argmax
k∈K

{
βk

∑
r∈Rl

yk(l,r)

}
. (27)

Without loss of generality, we assume that k∗ = 1. Then, the
second part can be represented as β · y, where

β =

⎡
⎢⎣
x1β1; . . .;x1β1︸ ︷︷ ︸

l=1,∀r

; . . .;x|L|β1;;x|L|β1︸ ︷︷ ︸
l=|L|,∀r︸ ︷︷ ︸

k∗=1

; 0︸︷︷︸
∀k 	=k∗

⎤
⎥⎦ . (28)

The above analysis leads to

q (x,y) = χ · f(y)− β · y. (29)

With the concavity of fk
r (·), the result (ii) is immediate. �

As a result, the derivative of q(·) at time t is

∂q (x(t),y(t))

∂yk(l,r)(t)
=

{
xl(t)

(
(fk

r)
′
(
yk(l,r)(t)

)
− βk

)
k = k∗

xl(t)(f
k
r)

′(yk(l,r)(t)) o.w.,
(30)

where k∗ is defined in (27)

B. Online Gradient Ascent

In this section, we give the design details of the OGA-based
bipartite scheduling policy.

Definition 2. THE OGA POLICY: For any feasible initial bipar-
tite scheduling decision y(1) ∈ Y , at each time t ∈ T , the OGA

policy gets y(t+ 1) in the direction of ascending the gradient
of q(x(t),y(t))

y(t+ 1) = ΠY (y(t) + ηt∇q (x(t),y(t))) , (31)

where ηt is the step size, and

ΠY(z) = argmin
ŷ∈Y

∥∥ŷ − z
∥∥2
2
, (32)

is the euclidean projection of z onto Y .
To implement the projection (32) with low complexity, we

propose OGASCHED, which is a combination of the OGA policy
and the following fast projection technique. First, we introduce
the Lagrangian of the projection (32) as

L(ŷ,ρ,μ,λ) =
∑
l∈L

∑
r∈Rl

∑
k∈K

(
ŷk(l,r) − zk(l,r)

)2

+
∑
r∈R

∑
k∈K

ρkr

(∑
l∈Lr

ŷk(l,r) − ckr

)
−
∑
l∈L

∑
r∈Rl

∑
k∈K

λk
l,rŷ

k
(l,r)

+
∑
l∈L

∑
r∈Rl

∑
k∈K

μk
l,r

(
ŷk(l,r) − akl

)
, (33)

where ρ is the dual variable for (6), μ is the dual variable for
y(t) ≤ a, and λ is the dual variable for y(t) ≥ 0. Then, we can
write the KKT conditions of the projection as

2(ŷk(l,r) − zk(l,r)) + ρkr − λk
(l,r) + μk

(l,r) = 0 (34)∑
l∈Lr

ŷk(l,r) = ckr & ρkr > 0 (35)

ŷk(l,r) = akl & μk
l,r > 0 (36)

ŷk(l,r) = 0 & λk
l,r > 0, (37)

for every l, r, k.
Our fast projection is implemented for each pair of (r, k) in

parallel. Specifically, for each r ∈ R and each k ∈ K, we divide
the ports l ∈ L into three disjoint sets⎧⎪⎪⎪⎨
⎪⎪⎪⎩
B1
rk =

{
l ∈ Lr | ∀(l, r, k) : ŷk(l,r) = akl

}
B2
rk =

{
l ∈ Lr | ∀(l, r, k) : ŷk(l,r) = 0

}
B3
rk =

{
l ∈ Lr | ∀(l, r, k) : 2

(
ŷk(l,r) − zk(l,r)

)
+ ρkr = 0

}
,

where

ρkr =
2

|B3
rk|

⎛
⎝ ∑

l∈B3
rk

zk(l,r) − ckr +
∑
l∈B1

rk

akl

⎞
⎠, ∀r, k. (38)

The fast projection works by solving the equation system (35)
∼(38) iteratively. Specifically, for each pair of (r, k), we sort
the elements of zk

(:,r) in descending order (step 7), and initialize

B1
rk and B2

rk as ∅ while initializing B3
rk as Lr (step 10 and 12).

Then, we repeat a loop, in which we calculate ρkr with (38),
and update the value of ŷk(l,r) for each port l in B3

rk (step 25).

Since the elements of zk
(:,r) are sorted from largest to smallest,

if some ŷk(l,r) < 0, we can derive that for all the l′ ∈ Srk :=

{l, . . ., |Lr|}, we have ŷk(l′,r) < 0. Thus, the resource allocation

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 24,2024 at 08:26:49 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: SCHEDULING MULTI-SERVER JOBS WITH SUBLINEAR REGRETS VIA ONLINE LEARNING 1173

Algorithm 1: OGASCHED.

for all the ports in Srk is illegal, since ŷk(l,r) ≥ 0 must hold.

As a result, we update the sets B2
rk and B3

rk, and repeat the
calculate loop again (step 29). The calculation loop stops when
there are no illegal resource allocations, i.e., ∀l ∈ Lr, we have
ŷk(l,r) ≥ 0. In other words, Srk = ∅. We call the calculation
loop in step 18∼step 30 the innner loop. The outer loop is the
while loop defined in step 9. To exit the while loop, we need to
guarantee that ŷk(1,r) ≤ ak1 . Otherwise, the resource allocation is
also illegal. Note that here we only need to check for l = 1 since
the elements in zk

(:,r) are sorted.
The number of projections is linearly proportional to the size

of the solution’s dimensions, i.e.,
∑

l∈L |Rl| ×K. Nevertheless,

as we have mentioned, we can do the projections for differ-
ent combinations of r and k in parallel because they are not
interwoven. Thus, the time complexity of the fast projection
is of O(|L| × log(K

∑
l∈L |Rl|)) in each time slot, where the

log(·) operator comes from the sorting operation (step 7). The
multiplier |L| outside log(·) comes from the inner loop (step
19). In our experiments, the repeat loop’s execution count is
significantly less than the number of job types |L|.

C. Regret Analysis

In this section, we discuss the regret of OGASCHED. The main
result is summarized in Theorem 1.

Theorem 1: REGRET UPPER BOUND. With a nice setup, the
regret of OGASCHED is upper bounded by

ROGASCHED
T ≤

√
2T
∑
k∈K

∑
r∈R

ākckr

×
√∑

l∈L

∑
r∈Rl

((β∗)2 +K(�∗
r)

2), (39)

where āk := maxl∈L a
k
l , β∗ := maxk∈K βk, and �∗

r :=
maxk∈K �k

r .
Proof: The result is based on the non-expansiveness property

of euclidean projection and the concavity of {fk
r (·)}r,k. Our

proof has two parts. The first part gives the general form of
the upper bound, which is similar to Theorem 2.13 in [32] and
Theorem 3 in [29]. Meanwhile, the second part gives the specific
upper bounds of involved variables.

At each time t > 1, for the y(t) yielded by OGASCHED, we
have

‖y(t)− y∗‖2 =
∥∥ΠY (y(t− 1) + ηt∇q(t− 1))− y∗∥∥2

(i)

≤ ‖y(t− 1)− y∗‖2 + η2t ‖∇q(t− 1)‖2

+ 2ηt∇q (y(t− 1))T (y(t− 1)− y∗) ,
(40)

where ∇q(y(t− 1)) is a shorthand for ∇q(x(t− 1),y(t− 1)).
(i) is because the non-expansiveness property of the euclidean
projection. By moving ‖y(t− 1)− y∗‖2 to the LHS of (40) and
summing the inequality telescopically over T , we have

T+1∑
t=2

∇q(y(t− 1))T (y∗ − y(t− 1))

(i)

≤ η
∑T

t=1 ‖∇q(y(t))‖2
2

+
‖y(1)− y∗‖2 − ‖y(T)− y∗‖2

2η

(ii)

≤ ηT (max ‖∇q‖)2
2

+
diam(Y)2

2η
. (41)

Inequality (i) is because ∀t ∈ T we set ηt ≡ η. In (ii), we use the
fact that ‖y(T)− y∗‖ ≥ 0. In (40), max ‖∇q‖ is the maximum
euclidean norm of the gradient of q(x(t),y(t)) over every possi-
ble y(t), and diam(Y) is the largest euclidean distance between
any two elements of Y . Because q(·) is a concave function of

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 24,2024 at 08:26:49 UTC from IEEE Xplore. Restrictions apply.

1174 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 3, MAY/JUNE 2024

y(t), we have

ROGASCHED
T = sup

∀{x(t)}T1

T∑
t=1

(q (x(t),y∗)− q (x(t),y(t)))

≤ sup
∀{x(t)}T1

T∑
t=1

∇q (y(t))T (y∗ − y(t)) � (41)

≤ diam(Y)2

2η
+

ηT (max ‖∇q‖)2
2

. (42)

In the following, we give the upper bound of max ‖∇q‖ and
diam(Y), respectively.

1) The upper bound of max ‖∇q‖. With the result of (30), we
have

‖∇q‖2 =
∑
l∈L

∑
r∈Rl

[
xl(t)

2
(
(fk∗

r)′
(
yk

∗

(l,r)(t)
)
− βk∗

)2]

+
∑
l∈L

∑
r∈Rl

∑
k 	=k∗

xl(t)
2(fk

r)
′
(
yk(l,r)(t)

)2

=
∑
l∈L

∑
r∈Rl

xl(t)
2

[∑
k∈K

(
(fk

r)
′
(
yk(l,r)(t)

))2

− 2βk∗(fk∗

r)′
(
yk

∗

(l,r)(t)
)]

+
∑
l∈L

∑
r∈Rl

xl(t)
2β2

k∗ .

(43)

where k∗ is defined in (27). The second part of (43) can be upper
bounded by ∑

l∈L

∑
r∈Rl

xl(t)
2β2

k∗ ≤
∑
l∈L

∑
r∈Rl

(β∗)2, (44)

where β∗ = maxk∈K βk. If G is right d-regular, the bound re-
duces to d|R|(β∗)2. For the first part of (43), we use (fk∗

r)′ to
replace (fk∗

r)′(yk
∗

(l,r)(t)) for simplification. Then we have

∑
l∈L

∑
r∈Rl

xl(t)
2

[∑
k∈K

(
(fk

r)
′)2 − 2βk∗(fk∗

r)′

]

≤
∑
l∈L

∑
r∈Rl

∑
k 	=k∗

(
(fk

r)
′)2

︸ ︷︷ ︸
PART-A

+
∑
l∈L

∑
r∈Rl

(fk∗

r)′
(
(fk∗

r)′ − 2βk∗
)

︸ ︷︷ ︸
PART-B

.

For PART-A we have

PART-A ≤ (K − 1)
∑
l∈L

∑
r∈Rl

(�∗
r)

2, (45)

where �∗
r = maxk∈K �k

r . If G is right d-regular, the bound
reduces to d|R|(K − 1)(varpi∗r)

2. To analyze the upper bound
of PART-B, we need to partition the computing instances into
two disjoint sets

R1 =
{
r ∈ R : �k∗

r ≤ 2βk∗
}

R2 =
{
r ∈ R : �k∗

r > 2βk∗
}
.

For each r ∈ R1, the maximum of (fk∗
r)′((fk∗

r)′ − 2βk∗) is
0 since (fk∗

r)′ ≥ 0 holds. For each r ∈ R2, the maximum is

(�k∗
r)2 − 2βk∗�k∗

r . Thus,

PART-B ≤
∑
l∈L

∑
r∈Rl∩R2

(
(�k∗

r)2 − 2βk∗�k∗

r

)
. (46)

Recall that in (46) Rl is the set of computing instances that
connects to port l. Because βk ∈ [0, 1] holds for each k ∈ K,
∀l ∈ L, r ∈ Rl ∩R2, we have

(�k∗

r)2 − 2βk∗�k∗

r ≤ (�∗
r)

2 − 2βk∗�∗
r ≤ (�∗

r)
2, (47)

Finally, we can get

‖∇q‖2 ≤
∑
l∈L

∑
r∈Rl

(
(β∗)2 +K(�∗

r)
2
)
. (48)

For the upper bound in (48), all the computing instances r ∈ Rl

fall into the set R2.
2) The upper bound of diam(Y). By definition we have

diam(Y) = sup
y,z∈Y

‖y − z‖. (49)

To find the upper bound of ‖y − z‖, we can get

‖y − z‖2 =
∑
l∈L

∑
r∈Rl

∑
k∈K

(
yk(l,r) − zk(l,r)

)2
(i)

≤
∑
l∈L

∑
r∈Rl

∑
k∈K

∣∣yk(l,r) − zk(l,r)
∣∣ · akl

≤
∑
l∈L

∑
r∈Rl

∑
k∈K

akl

(
yk(l,r) + zk(l,r)

)

≤
∑
k∈K

āk
∑
r∈R

(∑
l∈Lr

yk(l,r) +
∑
l∈Lr

zk(l,r)

)

(ii)

≤ 2
∑
k∈K

āk
∑
r∈R

ckr , (50)

where āk = maxl∈L a
k
l . In (50), (i) is because the constraint (5).

In (ii), we use the capacity constraint (6). As a result, we have

diam(Y) ≤
√
2
∑
k∈K

āk
∑
r∈R

ckr . (51)

Combing the result (48) and (51), and set η as diam(Y)

‖∇q‖
√
T

, we

finally get the result.
The theorem shows that the suboptimality gap between

OGASCHED and the offline optimal is of Θ(HG ×
√
T), where

HG :=

√
2
∑
k∈K

∑
r∈R

ākckr ×
√∑

l∈L

∑
r∈Rl

((β∗)2 +K(�∗
r)

2),

(52)

is a factor characterized the scale of the bipartite graph G. In
addition, we can find that the regret grows sublinearly with the
number of job types |L|. To the best of our knowledge, this is
the best regret for the online bipartite scheduling problem with
non-linear rewards. The proof also indicates that, to achieve a
not-too-bad cumulative reward, at each time t, the learning rate

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 24,2024 at 08:26:49 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: SCHEDULING MULTI-SERVER JOBS WITH SUBLINEAR REGRETS VIA ONLINE LEARNING 1175

ηt should be set as

ηt =
diam(Y)

‖∇q(x(t),y(t))‖
√
T
. (53)

D. Extending to Multiple Job Arrivals

OGASCHED can be applied to the scenarios where multiple
jobs are yielded from each port in each time slot. In this case,
the job arrival statusx(t) is re-formulated asx(t) = [xl(t)]l∈L ∈
N |L|, where xl(t) indicates the number of jobs arrive at port
l at time t. Further, the scheduling decisions at time t is re-
formulated as

y(t) =
[
yj,k(l,r)

]
l,j,r,k

∈ R
∑

l∈L Jl×|Rl|×K ,

where Jl is the maximum number of the type-l jobs arrive during
each time slot, i.e., Jl = maxt∈T xl(t). Correspondingly, the
port-l reward is re-formulated as

ql (x(t),y(t)) =

Jl∑
j=1

1{j ≤ xl(t)}

⎡
⎣∑

k∈K
fk

(∑
r∈Rl

yj,k(l,r)(t)

)

−max
k∈K

{
βk

∑
r∈Rl

yj,k(l,r)(t)

}⎤⎦,
where 1{p} is the indicator function: 1{p} is 1 if the predicate p
is true, otherwise 0. The new formulated problem can be solved
by native OGASCHED after transformations.

E. Extending to Gang Scheduling

OGASCHED can be extended to the Gang Scheduling scenar-
ios, where the scheduling decisions for the task instances of a
job follows the ALL-OR-NOTHING property. In other words, only
when all tasks1 of a job are successfully scheduled, the job could
be launched.

In the following, we show briefly how Gang Scheduling can
be modeled. To start with, for each job type l ∈ L, we denote
the corresponding set of task components by Ql and indexed by
q. Correspondingly, the job requests al is redefined as

al =
[
aq,kl

]
l,q,k

∈ R
∑

l∈L |Ql|×K
≥0 .

Similarly, we redefine the scheduling decisions at time t as

y(t) =
[
yq,k(l,r)

]
l,q,r,k

∈ R
∑

l∈L |Ql|×|Rl|×K
≥0 .

As a result, the solution space Y turns to

Y =

⎧⎨
⎩yq,k(l,r) |

∑
q∈Ql

1

{∑
r∈Rl

∑
k∈K

yq,k(l,r) > 0

}
≥ ml(t), ∀l,

0 ≤ yq,k(l,r)(t) ≤ aq,kl , ∀l, r, q, k, t,

1In practice, not all tasks of a job need to be scheduled. In Kubernetes, the
job submitter can specify the minimum number of tasks that must be scheduled
successfully. In the following, we use ml(t) to represent the minimum number
of tasks that should be scheduled at time t of the type-l job.

∑
l∈Lr

∑
q∈Ql

yq,k(l,r)(t) ≤ ckr , ∀r, k, t

⎫⎬
⎭ ,

where in the first inequality, ml(t) is the minimum number of
task components that should be scheduled at time t of type-l job.
The port-l reward at time t is re-formulated as

ql (x(t),y(t)) = xl(t)

⎡
⎣∑

k∈K
fk

⎛
⎝∑

q∈Ql

∑
r∈Rl

yq,k(l,r)(t)

⎞
⎠

−max
k∈K

⎧⎨
⎩βk

∑
q∈Ql

∑
r∈Rl

yq,k(l,r)(t)

⎫⎬
⎭
⎤
⎦.

The new formulated problem is more difficult because Y is
no longer a convex set and ql(x(t),y(t)) is not differentiable
everywhere. Nevertheless, we can still develop a similar online
scheduling algorithm with the subgradient ascent and mirror
ascent related techniques which retains a sublinear regret. The
design detail is omitted due to space limits.

IV. EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments to validate
the performance of OGASCHED. Based on the Alibaba cluster
trace datasets [33], we first examine the theoretically guaran-
teed superiority of OGASCHED against several baselines on the
cumulative and average rewards. Then, we analyze the generality
and robustness of it under different cluster settings. At last, we
validate the efficacy of OGASCHED in large-scale scenarios. The
trace-driven simulation is conducted on a server with 48 Intel
Xeon Silver 4214 CPUs, 256 GB memory, and 2 Tesla P100
GPUs.

Traces: We hybrid the traces from cluster-trace-v2018 and
cluster-trace-gpu-v2020 of the Alibaba Cluster Trace Program.
Specifically, we leverage the specifications of the machines, the
arrival patterns, and the resource requirements of different kinds
of jobs to generate our simulation environment.

Baselines: The following widely used baselines are imple-
mented to make comparisons with OGASCHED.
� DRF [20]. It is adopted by YARN [34] and Mesos [35]. In

our scenario, DRF allocates resources to ports that yield
jobs in the ascending order of their dominant resource
shares. The dominant share sl of port l is calculated as
sl = maxk∈K{akl /

∑
r∈Rl

ckr}.
� FAIRNESS. We implement FAIRNESS in this way: at each

time t, we allocate the type-k resource of each node r to
each port l that yield a job according to the job’s share
akl /
∑

l∈Lr
akl .

� BINPACKING. It is optional in Kubernetes with the name
of MOSTALLOCATED strategy and supported in Volcano
as a configurable plugin [36]. Specifically, it scores the
computing instances based on the utilization of resources,
favoring the ones with higher allocation.

� SPREADING. It is similar to BINPACKING in procedures but
with an opposite favor. The nodes with lower utilizations
of resources have higher scores.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 24,2024 at 08:26:49 UTC from IEEE Xplore. Restrictions apply.

1176 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 3, MAY/JUNE 2024

Fig. 2. Performance verification of OGASCHED. It takes one hour for OGASCHED to finish when T = 8000, β ∈ [0.4, 0.6], and contention level is 11.

TABLE II
DEFAULT PARAMETER SETTINGS

Default Settings: In default settings, our simulation environ-
ment has 128 computing instances, each equipped with 6 types
of resources (CPUs, MEM, GPUs, NPUs, TPUs, and FPGAs),
and 10 job types of different resource requirements. Large-scale
validations will be demonstrated in Section IV-C. The computing
instances and jobs are carefully selected from the trace to reflect
heterogenity. We support 4 types of utilities

fk
r (y) =

⎧⎪⎪⎨
⎪⎪⎩
αy linear
α ln(y + 1) log
α−1 − (y + α)−1 reciprocal
α
√
y + 1− α poly,

(54)

The default settings of main parameters are listed in Table II.
In this table, the initial learning rate and the decay are used to
tune the learning rate at each time t around the value (53). Job
arrival probabilityρ is adopted to adjust the job arrival status with
Bernoulli Distributions. This parameter is applied based on the
actual arrival patterns from the trace to increase stochasticity.
The contention level, located at the last cell of this table, is
designed to tune the level of resource contention. The larger this
value, the more fierce the contention. It is a multiplier to the
resource requirements of jobs. The effect of it will be analyzed
in detail in Section IV-B.

Note that in Section IV-A, the time slot length T is set as
8000. For the left experiments, the time slot length is 2,000,
unless otherwise stated.

A. Performance Verification

In this section, we compare the performance of OGASCHED

with the baselines in terms of the achieved cumulative and
average rewards.

In Fig. 2(a), the y-axis is the average reward unitl time
t, i.e., 1

t

∑t
τ=1 q(x(τ),y(τ)). Compared with the baselines,

OGASCHED has a clear advantage on the performance (with the
increases of 11.33%, 7.75%, 13.89%, and 13.44% compared
with DRF, FARINESS, BINPACKING, and SPREADING, respec-
tively). Besides, it shows that the performance of OGASCHED

tends to increase as the length of the time horizon increases. The
curve of OGASCHED starts steep and later flattens. The reason
is that, as a learning-powered algorithm, OGASCHED learns the
underlying distribution of job arrival patterns and it can make
better decisions by adjusting the step directions. It is interesting
to find that the rewards oscillate at the beginning time slots. One
of the leading factors is that OGASCHED is not boosted with a
well-designed initial solution. In our experiments, a 8000-time
slot training only takes one hour. Thus, not surprisingly, the
rewards achieved in the beginning can be easily surpassed when
the time slot is sufficiently large.

It is not a surprise that FAIRNESS achieves the best among the
baselines. FAIRNESS adopts a proportional allocation strategy
and allocates resources to each non-empty port without bias,
which increases the computation gains adequately. When the
contention is not fierce while the communication overhead
is low, the advantages of FAIRNESS will be more steady. By
contrast, the advantages of BINPACKING and SPREADING are
respectively high resource utilization and job isolation, which
do not contribute to the reward directly.

Fig. 2(b) shows that the cumulative rewards achieved by all
the five algorithms. In the beginning, FAIRNESS and DRF have
the slight edge, benefiting by the propotional allocation idea.
Nevertheless, as the time slot increases, OGASCHED is able to
surpass them without difficulty. Fig. 2(c) demonstrates the ratio
on the achieved average rewards between OGASCHED and the
baselines. Similarly, the ratios oscillate at the beginning. After
that, they increase steeply and later flattens.

The hyper-parameters of OGASCHED, especially the initial
learning rate η0 and the decay, have a remarkable impact on its
performance. From Fig. 4 we can find that, a wrong setting of
these hyper-parameters could lead to a poor performance, even
the decrease of the cumulative reward (which means, the reward
is negative in many time slots). At the last of Section III-C, we
claim that, to achieve an cumulative reward with a lower bound
guarantee, at each time t, the learning rate should be set around
(53). Note that in (53), the learning rate is encouraged to be

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 24,2024 at 08:26:49 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: SCHEDULING MULTI-SERVER JOBS WITH SUBLINEAR REGRETS VIA ONLINE LEARNING 1177

Fig. 3. Scalability verification of OGASCHED under different scales of the bipartite graph and the contention levels.

Fig. 4. The performance of OGASCHED with different hyper-parameters.

larger and larger as time moves, which is counterintuitive and it
goes against the convergence to a local optimum. The curves in
Fig. 4(b) also verify that, setting decay as 0.9999 is better than
1.0001. The best decay in practice does not follow the guidance
of theory because the regret analysis only gives the worst case
guarantee on the cumulative rewards. In our experiments, the
best range for decay is [0.995, 0.9999].

B. Scalability, Generality and Robustness Evaluations

In this section, we evaluate the performance of OGASCHED

under different scales of scenario settings. Fig. 3(a) and (b)
demonstrate the impact of the scale of the bipartite graph G. In
these two figures, the left y-axis is the cumulative reward while
the right y-axis is the ratio ra/rb, where ra is the cumulative re-
ward achieved by OGASCHED, and rb is the baselines’. First, we
observe that, whatever the number of the computing instances is,
OGASCHED takes the leading position. Besides, as |R| increases,
all the algorithms obtain a larger cumulative reward. The result is
evident because a large cluster can provide sufficient resources,
which leads to jobs being fully served. It is also worth noting
that, when |R| increases, the superiority of OGASCHED over the
baselines first increases then decreases. It demonstrates that the
resource contention is fierce when |R| ∈ [128, 256]. In this case,
it is necessary for OGASCHED to be trained with a larger time
slot. Fig. 3(b) shows that the number of job types, i.e., |L|, has a
weaker impact than |R| to the performance of OGASCHED. The
phenomenon verifies the conclusion we have concluded, i.e., the
regret grows linearly with |R|, but it is sublinear with |L|.

Fig. 3(c) shows the impact of contention level. This parameter
works as a multiplier to the resource requirements of jobs. We
can observe that, when moving contention level from 0.1 to

1, all the achieved cumulative rewards increase. This is obvious
because a larger resource requirement leads to a larger computa-
tion gain on the premise of low contention. However, increasing
the multiplier further leads to the downgrade of performances
and the reduction of the superiority of OGASCHED. Even so,
OGASCHED always performs the best. Fig. 6 shows the average
computation gain and communication overhead penalty of each
time slot under different contention levels. We can find that the
penalty increases with the contention level slowly.

Fig. 7 demonstrates the cumulative rewards with different
utilities. Because of the diminishing marginal effect, the rewards
with ploy, log, and reciprocal utilities are significantly less than
the rewards with linear utilities. Nevertheless, the diminishing
marginal effect does not change the superiority of OGASCHED

against the baselines. Even in the all reciprocal utility settings,
for FAIRNESS, OGASCHED has its advantages.

In addition to the above evaluations, we also test the generality
and robustness of OGASCHED under different settings of the
following parameters: the time horizon length T , the job arrival
probability ρ, and the dense of the bipartite graph. The graph
dense is calculated as

∑
r∈R |Lr|/|R|. The results are shown

in Table III. The two largest values in each column of the table
are made bold. Besides, for each parameter and each algorithm,
the setting which leads to the largest reward is marked with
a light-grey background. We summarize the key findings as
follows.
� First, whatever the parameter settings, OGASCHED always

performs the best, and its performance has a positive corre-
lation with the time horizon lengthT . As we have analyzed,
a large time horizon provides more chances for OGASCHED

to learn the underlying distributions, thereby increasing the
reward in the gradient ascent directions.

� Increasing the job arrival probability can lead to a high
resource utilization, thereby increasing the rewards. How-
ever, a large job arrival probability also brings in a fierce
resource contention. A direct consequence of it is that, for
OGASCHED, many elements in the vector y(t) fall into the
interior of Y , rather than the boundaries, thereby leading
to a reward reduction. The phenomenon can be observed
when moving ρ from 0.7 to 0.9.

� Graph dense has a similar effect on the reward to the job
arrival probability. Nevertheless, the reasons behind are
distinct. A larger graph dense increases the opportunities
for a job to be served with a large possible parallelism,

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 24,2024 at 08:26:49 UTC from IEEE Xplore. Restrictions apply.

1178 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 3, MAY/JUNE 2024

Fig. 5. Large-scale validations. It takes 15 hours for OGASCHED to complete when T = 10000, β ∈ [0.01, 0.015], and contention level is 5.

TABLE III
GENERALITY AND ROBUSTNESS VALIDATION UNDER DIFFERENT SCENARIO SETTINGS

Fig. 6. Average computation gain and communication overhead of each time
slot under different contention levels.

Fig. 7. Accumulative rewards with different utilities.

thereby increasing the computation gain. By contrast, the
communication overhead has a slow rate of growth.

C. Large-Scale Validations

To test the efficacy of OGASCHED in large-scale scenarios, we
conduct the following experiments. In these experiments, the
number of the job types is set as 100 while the quantity of the
computing instances is 1,024 in default. The results in Fig. 5

show that the superiority of OGASCHED is preserved even in
large-scale scenarios.

V. RELATED WORKS

The design of online job scheduling algorithms that yield a
nice theoretical bound is always the focus of attention from the
research community. Existing online job scheduling algorithms
can be organized into two categories.

In the first category, the online algorithms are elaborately
designed for specific job types, such as DNN model training [3],
[6], [6], [13], [18], [37], [38], big-data query & analytics [12],
[39], multi-stage workflows [17], [40], [41], [42], etc. A typical
work on DNN model training is [18], where the authors fully
take the layered structure of DNNs into consideration and de-
velop an efficient resource scheduling algorithm based on the
sum-of-ratios multi-type-knapsack decomposition method. The
authors further prove that the proposed algorithm has a SOTA
approximation ratio within a polynomial running time. [13] is
another work that fully explores the Bulk Synchronous Parallel
(BSP) property of the DNN training jobs. The authors develop
an algorithm which is O(ln |M|)-approximate with high proba-
bility, whereM is the set of resources. These works are designed
for specific job types, and they do not provide a general analysis
of the gain-overhead tradeoff for multi-server jobs. This paper
intends to fill the gap.

In the second category, the types of job are not specified,
while the theoretical superiority is highlighted. The algorithms
are designed with different theoretical basis, including online ap-
proximate algorithms [15], [43], [44], Online Convex Optimiza-
tion (OCO) techniques [14], game-theoretical approaches [16],
online learning and DRL-based algorithms [45], [46], etc. In
these works, the performance of the proposed algorithms is

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 24,2024 at 08:26:49 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: SCHEDULING MULTI-SERVER JOBS WITH SUBLINEAR REGRETS VIA ONLINE LEARNING 1179

usually analyzed with approximate ratio, competitive ratio, Price
of Anarchy (PoA), and regret. A typical recent work is [14]. The
authors develop an algorithm whose dynamic regret is upper
bounded by O(OPT1−β), where β ∈ [0, 1). None of the existing
works analyze the gain-overhead tradeoff and provide a regret
of O(

√
|L|T) as this paper demonstrates.

VI. CONCLUSION

In this article, we study the online scheduling of multi-server
jobs in terms of the gain-overhead tradeoff. The problem is
formulated as an cumulative reward maximization program. The
reward of scheduling a job is designed as the difference between
the computation gain and the penalty on the dominant commu-
nication overhead. We propose an algorithm, i.e., OGASCHED, to
learn the best possible scheduling decision in the ascending di-
rection of the reward gradients. OGASCHED is the first algorithm
that has a sublinear regret w.r.t. the number of job types and
time slot length, which is a SOTA result for concave rewards.
OGASCHED is well designed to be parallelized, which makes
large-scale applications possible. The superiority of OGASCHED

is also validated with extensive trace-driven simulations. Future
extensions may include, i.e., more elaborate modeling and anal-
ysis of the intra-node and inter-node communication overheads.

REFERENCES

[1] M. Wu et al., “GraM: Scaling graph computation to the trillions,” in Proc.
6th ACM Symp. Cloud Comput., New York, NY, USA, 2015, pp. 408–421.
[Online]. Available: https://doi.org/10.1145/2806777.2806849

[2] L. Wang, W. Wang, and B. Li, “CMFL: Mitigating communication over-
head for federated learning,” in Proc. IEEE 39th Int. Conf. Distrib. Comput.
Syst., 2019, pp. 954–964.

[3] Y. Peng, Y. Bao, Y. Chen, C. Wu, C. Meng, and W. Lin, “DL2: A deep
learning-driven scheduler for deep learning clusters,” IEEE Trans. Parallel
Distrib. Syst., vol. 32, no. 08, pp. 1947–1960, Aug. 2021.

[4] W. Wang, Q. Xie, and M. Harchol-Balter, “Zero queueing for multi-server
jobs,” in Proc. ACM Meas. Anal. Comput. Syst., vol. 5, no. 1, Feb. 2021,
Art. no. 7.

[5] H. Zhao, S. Deng, F. Chen, J. Yin, S. Dustdar, and A. Y. Zomaya, “Learning
to schedule multi-server jobs with fluctuated processing speeds,” IEEE
Trans. Parallel Distrib. Syst., vol. 34, no. 1, pp. 234–245, Jan. 2023.

[6] Y. Bao, Y. Peng, C. Wu, and Z. Li, “Online job scheduling in distributed
machine learning clusters,” in Proc. IEEE Conf. Comput. Commun., 2018,
pp. 495–503.

[7] C. Carrión, “Kubernetes scheduling: Taxonomy, ongoing issues and chal-
lenges,” ACM Comput. Surv., vol. 55, 2022, Art. no. 138.

[8] Y. Jiang, Y. Zhu, C. Lan, B. Yi, Y. Cui, and C. Guo, “A unified architecture
for accelerating distributed DNN training in heterogeneous GPU/CPU
clusters,” in Proc. 14th USENIX Symp. Operating Syst. Des. Implemen-
tation, USENIX Association, 2020, pp. 463–479. [Online]. Available:
https://www.usenix.org/conference/osdi20/presentation/jiang

[9] L. Zheng et al., “Alpa: Automating inter- and intra-operator parallelism
for distributed deep learning,” in Proc. 16th USENIX Symp. Operating
Syst. Des. Implementation, Carlsbad, CA: USENIX Association, 2022,
pp. 559–578. [Online]. Available: https://www.usenix.org/conference/
osdi22/presentation/zheng-lianmin

[10] X. Jia et al., “Whale: Efficient giant model training over heterogeneous
GPUs,” in Proc. USENIX Annu. Tech. Conf., Carlsbad, CA: USENIX
Association, 2022, pp. 673–688. [Online]. Available: https://www.usenix.
org/conference/atc22/presentation/jia-xianyan

[11] V. Prabhakaran, M. Wu, X. Weng, F. McSherry, L. Zhou, and M.
Haradasan, “Managing large graphs on multi-cores with graph awareness,”
in Proc. USENIX Annu. Tech. Conf., Boston, MA: USENIX Association,
2012, pp. 41–52. [Online]. Available: https://www.usenix.org/conference/
atc12/technical-sessions/presentation/prabhakaran

[12] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and
M. Alizadeh, “Learning scheduling algorithms for data processing
clusters,” in Proc. ACM Special Int. Group Data Commun., 2019,
pp. 270–288.

[13] Z. Han et al., “Scheduling placement-sensitive BSP jobs with inaccurate
execution time estimation,” in Proc. IEEE Conf. Comput. Commun., 2020,
pp. 1053–1062.

[14] Y. Liu, H. Xu, and W. C. Lau, “Online job scheduling with resource packing
on a cluster of heterogeneous servers,” in Proc. IEEE Conf. Comput.
Commun., 2019, pp. 1441–1449.

[15] K. Psychas and J. Ghaderi, “Scheduling jobs with random resource require-
ments in computing clusters,” in Proc. IEEE Conf. Comput. Commun.,
2019, pp. 2269–2277.

[16] R. Burra, C. Singh, and J. Kuri, “Service scheduling for bernoulli re-
quests and quadratic cost,” in Proc. IEEE Conf. Comput. Commun., 2019,
pp. 2584–2592.

[17] B. Tian, C. Tian, H. Dai, and B. Wang, “Scheduling coflows of multi-stage
jobs to minimize the total weighted job completion time,” in Proc. IEEE
Conf. Comput. Commun., 2018, pp. 864–872.

[18] M. Yu, C. Wu, B. Ji, and J. Liu, “A sum-of-ratios multi-dimensional-
knapsack decomposition for DNN resource scheduling,” in Proc. IEEE
Conf. Comput. Commun., 2021, pp. 1–10.

[19] T. Anderson, The Theory and Practice of Online Learning. Athabasca,
Canada: Athabasca University Press, 2008.

[20] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I.
Stoica, “Dominant resource fairness: Fair allocation of multiple resource
types,” in Proc. 8th USENIX Symp. Netw. Syst. Des. Implementation, 2011,
pp. 323–336.

[21] F. Khorasani, H. Asghari Esfeden, A. Farmahini-Farahani, N. Jayasena,
and V. Sarkar, “RegMutex: Inter-warp GPU register time-sharing,” in
Proc. IEEE/ACM 45th Annu. Int. Symp. Comput. Architecture, 2018,
pp. 816–828.

[22] T. N. Le, X. Sun, M. Chowdhury, and Z. Liu, “AlloX: Compute allocation in
hybrid clusters,” in Proc. 15th Eur. Conf. Comput. Syst., 2020, Art. no. 31.

[23] Q. Weng et al., “MLaaS in the wild: Workload analysis and
scheduling in large-scale heterogeneous GPU clusters,” in Proc. 19th
USENIX Symp. Netw. Syst. Des. Implementation, Renton, WA, 2022,
pp. 945–960.

[24] J. F. Kurose and R. Simha, “A microeconomic approach to optimal re-
source allocation in distributed computer systems,” IEEE Trans. Comput.,
vol. 38, no. 5, pp. 705–717, May 1989.

[25] G. Bao and P. Guo, “Federated learning in cloud-edge collaborative archi-
tecture: Key technologies, applications and challenges,” J. Cloud Comput.,
vol. 11, no. 1, 2022, Art. no. 94.

[26] S. Shalev-Shwartz, “Online learning and online convex optimization,”
Found. Trends Mach. Learn., vol. 4, no. 2, pp. 107–194, 2012.

[27] R. Bhattacharjee, S. Banerjee, and A. Sinha, “Fundamental limits on the
regret of online network-caching,” in Proc. ACM Meas. Anal. Comput.
Syst., vol. 4, no. 2, Jun. 2020, Art. no. 25.

[28] Y. Ying and M. Pontil, “Online gradient descent learning algorithms,”
Found. Comput. Math., vol. 8, no. 5, pp. 561–596, 2008.

[29] G. S. Paschos, A. Destounis, L. Vigneri, and G. Iosifidis, “Learning to
cache with no regrets,” in Proc. IEEE Conf. Comput. Commun., 2019,
pp. 235–243.

[30] G. S. Paschos, A. Destounis, and G. Iosifidis, “Online convex optimization
for caching networks,” IEEE/ACM Trans. Netw., vol. 28, no. 2, pp. 625–
638, Apr. 2020.

[31] G. I. Ricardo, A. Tuholukova, G. Neglia, and T. Spyropoulos, “Caching
policies for delay minimization in small cell networks with coordinated
multi-point joint transmissions,” IEEE/ACM Trans. Netw., vol. 29, no. 3,
pp. 1105–1115, Jun. 2021.

[32] F. Orabona, “A modern introduction to online learning,”
2019, arXiv:1912.13213.

[33] Alibaba cluster trace. 2022. [Online]. Available: https://github.com/
alibaba/clusterdata

[34] V. K. Vavilapalli et al., “Apache hadoop YARN: Yet another resource
negotiator,” in Proc. 4th Annu. Symp. Cloud Comput., New York, NY,
USA, 2013, Art. no. 5.

[35] B. Hindman et al., “Mesos: A platform for fine-grained resource sharing
in the data center,” in Proc. 8th USENIX Symp. Netw. Syst. Des. Imple-
mentation, Boston, MA: USENIX Association, 2011, pp. 295–308.

[36] volcano sh, “Volcano,” 2022. [Online]. Available: https://github.com/
volcano-sh/volcano

[37] A. Qiao et al., “Pollux: Co-adaptive cluster scheduling for goodput-
optimized deep learning,” in Proc. 15th USENIX Symp. Operating Syst.
Des. Implementation, 2021, pp. 1–18.

[38] D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phanishayee, and M. Za-
haria, “Heterogeneity-aware cluster scheduling policies for deep learning
workloads,” in Proc. 14th USENIX Symp. Operating Syst. Des. Implemen-
tation, 2020, pp. 481–498.

[39] D. Cheng, X. Zhou, Y. Xu, L. Liu, and C. Jiang, “Deadline-aware MapRe-
duce job scheduling with dynamic resource availability,” IEEE Trans.
Parallel Distrib. Syst., vol. 30, no. 4, pp. 814–826, Apr. 2019.Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 24,2024 at 08:26:49 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1145/2806777.2806849
https://www.usenix.org/conference/osdi20/presentation/jiang
https://www.usenix.org/conference/osdi22/presentation/zheng-lianmin
https://www.usenix.org/conference/osdi22/presentation/zheng-lianmin
https://www.usenix.org/conference/atc22/presentation/jia-xianyan
https://www.usenix.org/conference/atc22/presentation/jia-xianyan
https://www.usenix.org/conference/atc12/technical-sessions/presentation/prabhakaran
https://www.usenix.org/conference/atc12/technical-sessions/presentation/prabhakaran
https://github.com/alibaba/clusterdata
https://github.com/alibaba/clusterdata
https://github.com/volcano-sh/volcano
https://github.com/volcano-sh/volcano

1180 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 3, MAY/JUNE 2024

[40] Z. Hu, B. Li, C. Chen, and X. Ke, “FlowTime: Dynamic scheduling of
deadline-aware workflows and ad-hoc jobs,” in Proc. IEEE 38th Int. Conf.
Distrib. Comput. Syst., 2018, pp. 929–938.

[41] D. Hu and B. Krishnamachari, “Throughput optimized scheduler for
dispersed computing systems,” in Proc. IEEE 7th Int. Conf. Mobile Cloud
Comput. Serv. Eng., 2019, pp. 76–84.

[42] C.-S. Yang, R. Pedarsani, and A. S. Avestimehr, “Communication-aware
scheduling of serial tasks for dispersed computing,” IEEE/ACM Trans.
Netw., vol. 27, no. 4, pp. 1330–1343, Aug. 2019.

[43] J. Meng, H. Tan, X.-Y. Li, Z. Han, and B. Li, “Online deadline-aware
task dispatching and scheduling in edge computing,” IEEE Trans. Parallel
Distrib. Syst., vol. 31, no. 6, pp. 1270–1286, Jun. 2020.

[44] Z. Han et al., “OnDisc: Online latency-sensitive job dispatching and
scheduling in heterogeneous edge-clouds,” IEEE/ACM Trans. Netw.,
vol. 27, no. 6, pp. 2472–2485, Dec. 2019.

[45] S. Liang, Z. Yang, F. Jin, and Y. Chen, “Data centers job scheduling with
deep reinforcement learning,” in Proc. Pacific-Asia Conf. Knowl. Discov.
Data Mining, Springer, 2020, pp. 906–917.

[46] Y. Han, S. Shen, X. Wang, S. Wang, and V. C. Leung, “Tailored learning-
based scheduling for kubernetes-oriented edge-cloud system,” in Proc.
IEEE Conf. Comput. Commun., 2021, pp. 1–10.

Hailiang Zhao received the BS degree from the
School of Computer Science and Technology, Wuhan
University of Technology, Wuhan, China, in 2019.
He is currently working toward the PhD degree with
the College of Computer Science and Technology,
Zhejiang University, Hangzhou, China. His research
interests include cloud & edge computing, distributed
systems and optimization algorithms. He has pub-
lished several papers in flagship conferences and jour-
nals including IEEE ICWS 2019, IEEE Transactions
on Parallel and Distributed Systems, IEEE Transac-

tions on Mobile Computing, etc. He has been a recipient of the Best Student
Paper Award of IEEE ICWS 2019. He is a reviewer for IEEE Transactions on
Services Computing and Internet of Things Journal.

Shuiguang Deng (Senior Member, IEEE) received
the BS and PhD degrees both in computer science
from Zhejiang University, China, in 2002 and 2007,
respectively. He is currently a full professor with
the College of Computer Science and Technology,
Zhejiang University, China. He previously worked
with the Massachusetts Institute of Technology, in
2014 and Stanford University, in 2015 as a visiting
scholar. His research interests include edge comput-
ing, service computing, cloud computing, and busi-
ness process management. He serves for the journal

IEEE Trans. on Services Computing, Knowledge and Information Systems,
Computing, and IET Cyber-Physical Systems: Theory & Applications as an
associate editor. Up to now, he has published more than 100 papers in journals
and refereed conferences. In 2018, he was granted the Rising Star Award by
IEEE TCSVC. He is a fellow of IET.

Zhengzhe Xiang received the BS and PhD degrees
of computer science and technology from Zhejiang
University, Hangzhou, China. He was previously a
visiting student worked with the Karlstad University,
Sweden, in 2018. He is currently a lecturer with
Zhejiang University City College, Hangzhou, China.
His research interests lie in the fields of service com-
puting, cloud computing, and edge computing.

Xueqiang Yan is currently a technology expert with
the Wireless Technology Lab, Huawei Technologies.
He was a member of technical staff with Bell Labs
from 2000 to 2004. From 2004 to 2016, he was the
director of the Strategy Department, Alcatel-Lucent
Shanghai Bell. His current research interests include
wireless networking, the Internet of Things, edge AI,
future mobile network architecture, network conver-
gence, and evolution.

Jianwei Yin received the PhD degree in computer
science from Zhejiang University (ZJU), in 2001. He
was a visiting scholar with the Georgia Institute of
Technology. He is currently a full professor with the
College of Computer Science, ZJU. Up to now, he has
published more than 100 papers in top international
journals and conferences. His current research inter-
ests include service computing and business process
management. He is an associate editor of the IEEE
Transactions on Services Computing.

Schahram Dustdar (Fellow, IEEE) is a full professor
of computer science (informatics) with a focus on In-
ternet Technologies heading the Distributed Systems
Group with the TU Wien. He is founding co-editor-
in-chief of ACM Transactions on Internet of Things
(ACM TIoT) as well as editor-in-chief of Computing
(Springer). He is an associate editor of IEEE Transac-
tions on Services Computing, IEEE Transactions on
Cloud Computing, ACM Computing Surveys, ACM
Transactions on the Web, and ACM Transactions on
Internet Technology, as well as on the editorial board

of IEEE Internet Computing and IEEE Computer. He is recipient of multiple
awards: TCI Distinguished Service Award (2021), IEEE TCSVC Outstanding
Leadership Award (2018), IEEE TCSC Award for Excellence in Scalable Com-
puting (2019), ACM distinguished scientist (2009), ACM distinguished speaker
(2021), IBM Faculty Award (2012). He is an elected member of the Academia
Europaea: The Academy of Europe, where he is chairman of the Informatics
Section, an Asia-Pacific Artificial Intelligence Association (AAIA) president
(2021) and fellow (2021). He is an EAI fellow (2021) and an I2CICC fellow
(2021). He is a member of the 2022 IEEE Computer Society fellow Evaluating
Committee (2022).

Albert Y. Zomaya (Fellow, IEEE) is the Peter Nicol
Russell chair professor of computer science and
director of the Centre for Distributed and High-
Performance Computing with the University of Syd-
ney. To date, he has published more than 600 scien-
tific papers and articles and is (co-)author/editor of
more than 30 books. A sought-after speaker, he has
delivered more than 250 keynote addresses, invited
seminars, and media briefings. His research interests
span several areas in parallel and distributed comput-
ing and complex systems. He is currently the editor

in chief of the ACM Computing Surveys and processed in the past as editor
in chief of the IEEE Transactions on Computers (2010–2014) and the IEEE
Transactions on Sustainable Computing (2016–2020). He is a decorated scholar
with numerous accolades including Fellowship of the IEEE, the American
Association for the Advancement of Science, and the Institution of Engineering
and Technology (U.K.). Also, he is an elected fellow of the Royal Society of
New South Wales and an elected foreign member of Academia Europaea. He
is the recipient of the 1997 Edgeworth David Medal from the Royal Society of
New South Wales for outstanding contributions to Australian Science, the IEEE
Technical Committee on Parallel Processing Outstanding Service Award (2011),
IEEE Technical Committee on Scalable Computing Medal for Excellence in
Scalable Computing (2011), IEEE Computer Society Technical Achievement
Award (2014), ACM MSWIM Reginald A. Fessenden Award (2017), the New
South Wales Premier’s Prize of Excellence in Engineering and Information and
Communications Technology (2019), and the Research Innovation Award, IEEE
Technical Committee on Cloud Computing (2021).

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 24,2024 at 08:26:49 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

