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Abstract—Multi-server jobs that request multiple computing
resources and hold onto them during their execution dominate
modern computing clusters. When allocating the multi-type re-
sources to several co-located multi-server jobs simultaneously in
online settings, it is difficult to make the tradeoff between the par-
allel computation gain and the internal communication overhead,
apart from the resource contention between jobs. To study the
computation-communication tradeoff, we model the computation
gain as the speedup on the job completion time when it is executed in
parallelism on multiple computing instances, and fit it with utilities
of different concavities. Meanwhile, we take the dominant commu-
nication overhead as the penalty to be subtracted. To achieve a
better gain-overhead tradeoff, we formulate an cumulative reward
maximization program and design an online algorithm, named
OGASCHED, to schedule multi-server jobs. OGASCHED allocates the
multi-type resources to each arrived job in the ascending direction
of the reward gradients. It has several parallel sub-procedures to
accelerate its computation, which greatly reduces the complexity.
We proved that it has a sublinear regret with general concave
rewards. We also conduct extensive trace-driven simulations to
validate the performance of OGASCHED. The results demonstrate
that OGASCHED outperforms widely used heuristics by 11.33%,
7.75%, 13.89%, and 13.44%, respectively.

Index Terms—Multi-server job, online gradient ascent, online
scheduling, regret analysis.

I. INTRODUCTION

IN TODAY’S computing clusters, whether in the cloud data
centers or at the network edge, many jobs request multiple re-

sources (CPUs, GPUs, etc.) simultaneously and hold onto them
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during their executions. For example, graph computations [1],
federated learning [2], distributed DNN model trainings [3], etc.
In this paper, we refer to these jobs as multi-server jobs [4],
[5]. Multi-server jobs of diverse resource requirements arrive at
the cluster online, which puts great pressure to current resource
allocation policies to achieve a high computation efficiency.

When allocating the multi-type resources to several co-
located multi-server jobs simultaneously in online settings, it is
difficult to make the tradeoff between the parallel computation
gain and the internal communication overhead, apart from the
resource contention between jobs. Here the parallel computation
gain refers to the speedup on the job completion time when it is
executed in parallelism on multiple computing instances, which
could be modeled with a function of the allocated multi-type re-
sources [6]. Correspondingly, the internal communication over-
head refers to the cost caused by non-computation operations
such as data synchronization, averaging, message passing, etc.,
between the distributed workers. To achieve better computation
efficiency, we need to consider the following key challenges.
� Resource contention with service locality: With service lo-

cality, a multi-server job can only be processed by a subset
of computing instances where the resource requirements,
session affinity [7], and other obligatory constraints are
satisfied. When several multi-server jobs arrive simultane-
ously, how to allocate the limited resources to them without
degenerating the computation efficiency is challenging.

� Unknown arrival patterns of jobs: In real-life scenarios,
the resource allocation should be made online without the
knowledge of future job arrivals. The lack of information
on the problem space could lead to a solution far from the
global optimum.

� The parallel computation gain does not increase in a linear
rate with the quantity of allocated resources: For instance,
in distributed DNN model training or federated learning,
adding workers (that request more resources) does not
improve the training speed linearly [3], [6]. This is because
the overhead of all-reduce operation between workers or
the averaging of local gradients increase with the number
of participated workers, especially when the workers are
distributed in different machines and communicate with
each other through network [8], [9], [10]. Compared with
high-speed intra-node communication channels such as
NVLink, the inter-node bandwidth through NIC is rela-
tively much slower. Another example is graph computa-
tion. Without a well-designed graph partition policy, the

1939-1374 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 24,2024 at 08:26:49 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-2850-6815
https://orcid.org/0000-0001-5015-6095
https://orcid.org/0000-0003-1133-5722
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0002-3090-1059
mailto:hliangzhao@zju.edu.cn
mailto:dengsg@zju.edu.cn
mailto:xiangzz@penalty -@M zucc.edu.cn
mailto:xiangzz@penalty -@M zucc.edu.cn
mailto:yanxueqiang1@huawei.com
mailto:zjuyjw@zju.edu.cn
mailto:dustdar@dsg.tuwien.ac.at
mailto:albert.zomaya@sydney.edu.au


ZHAO et al.: SCHEDULING MULTI-SERVER JOBS WITH SUBLINEAR REGRETS VIA ONLINE LEARNING 1169

speedup of message-passing between graph nodes can be
significantly slowed down [1], [11].

� The type of resource which dominates the communica-
tion overhead varies to different job types: For exam-
ple, in graph computation jobs, the dominant communi-
cation overhead lies in the internal input-output data trans-
ferring between the interdependent CPU- and memory-
intensive tasks [12]. However, the dominant overhead of
the distributed training of DNNs lies in the data averaging
and synchronizing between the GPU-intensive workers
through network [13]. This variety greatly complicates the
theoretical analysis for the gain-overhead tradeoff.

Despite the vast literature on the online resource allocation
algorithms [3], [6], [13], [14], [15], [16], [17], [18], their model
formulation and theoretical analysis which places emphasis on
the gain-overhead tradeoff is limited. To fill the theoretical
gap, in this paper, we propose an online scheduling algorithm,
termed as OGASCHED, to learn to allocate multi-type resources
to co-located multi-server jobs online to maximize the over-
all computation efficiency. We try to analyze the tradeoff in
a generic way. The generality is embodied in the following
points. First of all, different from the specific works on deep
learning jobs [3], [6], [13] or query jobs [12], we allow different
types of multi-server jobs to co-locate in the cluster which
consists of heterogeneous computing resources. Different job
types can have different resource requirements while different
computing instances can be equipped with diverse quantities
and types of resources. Second, we adopt general zero-startup
non-decreasing utility functions to model the parallel compu-
tation gain in terms of the job completion time. Compared to
existing literature, we allow the utilities to be diverse in their
level of concavity. Specifically, we provide both analysis and
experiments on linear, polynomial, logarithmic, and reciprocal
utilities. Third, we makes no assumptions on the arrival patterns
of multi-server jobs. OGASCHED requests no knowledge on the
job arrival distributions but tries to learn them to make better
scheduling decisions.

In our model formulation, the computation efficiency is mod-
eled in the way of cumulative reward. Time is slotted, and the
cumulative reward is obtained by summing up the reward in each
time slot, where a single-time reward is a linear aggregation
of each job’s reward. Further, a job’s reward at each time is
designed as the achieved parallel computation gain aggregated
over the allocated resources minus the penalty introduced by the
dominant communication overhead. At each time, OGASCHED

allocates resources to each arrived job in the direction that makes
the gradient of the reward increase. OGASCHED is capable of
handling high dimensional inputs in stochastic scenarios with
unpredictable behaviors. We adopt regret, i.e., the gap on the
cumulative reward between the proposed online algorithm and
the offline optimum achieved by an oracle [19], to analyze
the performance lower bound of OGASCHED. We prove that,
OGASCHED has a State-of-the-Art (SOTA) regret, which is sub-
linear with the time slot length and the number of job types.
This work fulfills one of the key deficiencies of the past works
in the modeling and analysis of the gain-overhead tradeoff for
multi-server jobs. The contributions are summarized as follows.

� We systematically study the resource allocation of co-
located multi-server jobs in terms of the tradeoff between
the parallel computation gains and the internal communi-
cation overheads. Our study is general in scenario settings
and it sufficiently takes the characters of the diminishing
marginal effect of gains into consideration.

� We propose an algorithm, i.e., OGASCHED, to learn to
strike a balanced computation-communication tradeoff.
OGASCHED has no assumptions on the job arrival patterns.
With a nice setup (defined in Section III-A), OGASCHED

achieves a SOTA regret O(HG ·
√
T ) for general concave

non-linear rewards, where T is the time slot length, and
HG (formally defined in (52)) is parameter that character-
izes the bipartite graph model. OGASCHED is accelerated
by well-designed parallel sub-procedures. The parallelism
helps yield a complexity of O(log(K)), where K is the
number of resource types.

� We conduct extensive trace-driven simulations to validate
the performance of OGASCHED. The simulation results
show that OGASCHED outperforms widely used heuristics
including DRF [20], FAIRNESS, BINPACKING, and SPREAD-
ING by 11.33%, 7.75%, 13.89%, and 13.44%, respectively.
We also provide large-scale validations.

The rest of this paper is organized as follows. We formulate the
online scheduling problem for multi-server jobs in Section II.
We then present the design details of OGASCHED with regret
analysis and discuss its extensions in Section III. We demonstrate
the experimental results in Section IV, and discuss related works
in Section V. Finally, we conclude this paper in Section VI.

II. BIPARTITE SCHEDULING WITH REGRETS

We consider a cluster of heterogenous computing instances
serving several types of multi-server jobs. Here the comput-
ing instances can be VMs in clouds, or local servers at the
network edge. The computing instances work collaboratively
to provide resources to serve the considered jobs. Different
computing instances are equipped with different types and quan-
tities/specifications of resources, including CPU cores, memory,
bandwidth, GPUs, etc. Jobs of different types can have different
demands on them. Key notations used in this paper are summa-
rized in Table I.

A. Online Bipartite Scheduling

We use a bipartite graph G = (L,R, E) to model the job-
server constraints, as shown in Fig. 1. In graph G, L is the set
of job types and indexed by l while R is the set of computing
instances and indexed by r. The connections between the job
types and the computing instances are recorded in E . Because
of the job-server constraints, type-l job may only be served by
a subset of R. We denote the subset by

Rl = {r ∈ R | (l, r) ∈ E} . (1)

Similarly, we use

Lr = {l ∈ L | (l, r) ∈ E} . (2)
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TABLE I
SUMMARY OF KEY NOTATIONS

Fig. 1. The bipartite graph model for online job scheduling.

to represent the set of job types that connect to computing
instance r. We designate each job type l ∈ L as port and each
connection (l, r) ∈ E as channel. G is called right d-regular iff
the indegree of each right vertex is d, i.e., ∀r ∈ R, |Lr| = d.

Time is discretized, and at each time t ∈ T � {1, . . ., T},
from each port, at most one job yields. Let us denote by

x(t) = [xl(t)]l∈L ∈ {0, 1}|L| , (3)

the job arrival status at time t. We do not make any assumption on
the job arrival patterns or distributions. The cluster has K types
of resources, and computing instance r has ckr type-k resources,
where k ∈ K � {1, 2, ..,K}. For each type-l job, we denote its
maximum requests on each resource by al = [akl ]k∈K ∈ N |K|.
At time t, we use

y(t) =
[
yk(l,r)(t)

]
l∈L,r∈Rl,k∈K

∈ R
∑

l∈L |Rl|×K
≥0 , (4)

to denote the scheduling decision. Here we allow yk(l,r)(t) to
be fractional. Taking GPU as example, Machine-Learning-as-
a-Service (MLaaS) platforms support GPU sharing in a space-
and time-multiplexed manner by intercepting CUDA APIs [21],
[22], [23].

The first constraint is that, through each channel, a job should
not be allocated with resources more than it requires. Formally,
we have

0 ≤ yk(l,r)(t) ≤ akl , ∀l, r, k, t. (5)

The second constraint y(t) should satisfy is that, the resources
allocated out from any computing instance r should not more
than it has ∑

l∈Lr

yk(l,r)(t) ≤ ckr , ∀r, k, t. (6)

We denote by Y � {y ∈ R
∑

l∈L |Rl|×K | (5) and (6) hold} to
represent the solution space from here on.

B. Computation-Communication Tradeoff

The performance metric we use for online bipartite scheduling
is designed as the gain obtained by the parallel computation
through multi-type resources minus the penalty introduced by
the dominant communication overheads. Specifically, we de-
note by ql(x(t),y(t)) the reward of port l at time t, and it is
formulated as

ql(x(t),y(t)) = xl(t)

[∑
k∈K

fk

(∑
r∈Rl

yk(l,r)(t)

)

−max
k∈K

{
βk

∑
r∈Rl

yk(l,r)(t)

}]
. (7)

In this formulation, the first part,
∑

k∈K fk(
∑

r∈Rl
yk(l,r)(t)),

is the parallel computation gain, which is linearly aggregated
over each type of resource, in proportional to each resource’s
weight. Jobs of different types can have different combinations
of weights. fk(·) is the gain achieved by

∑
r∈Rl

yk(l,r)(t) type-k
resources collaboratively, where fk(·) is a zero-startup concave
utility defined in R≥0. Note that

∑
r∈Rl

yk(l,r)(t) is the quota
of the type-k resources allocated to the type-l job at t. As we
have analyzed before, {fk(·)}k∈K are non-decreasing concave
functions because the marginal effect of parallel computation de-
creases successively when increasing participated resources [3],
[24]. We expect {fk(·)}k∈K to be continuously differentiable
because it helps design a policy that yields a nice lower bound
of the reward. The details will be demonstrated in Section III-C.
If {fk(·)}k∈K are not differentiable everywhere, we can apply
subgradient ascent-related techniques in the policy design. The
second part in (7) is maxk∈K{βk

∑
r∈Rl

yk(l,r)(t)}, which re-
flects the dominant weighted communication overheads over
different types of resources. For example, in federated learning
at the edge, the dominant communication overhead lies in the
averaging and synchronizing of data between each edge server
over the network [25]. Another example is graph computation, in
which the job is organized into a direct acyclic graph (DAG), and
the dominant communication overhead falls into the data & mes-
sage passing between CPU- and memory-intensive tasks [12].
{βk}k∈K are the coefficients to balance the gain and the over-
head. W.L.O.G., we set each βk ∈ [0, 1]. Theoretically, the sec-
ond part of (7) is a penalty, the minimization of which guides the
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scheduling decisions to balance the communication overheads
of different device types. Our reward design encourages each
job to be served with the balance between the computation gain
and the communication overhead being achieved.

C. Regret Minimizing

Based on the above, we define the overall reward at time t as
the linear aggregation over each port

q (x(t),y(t)) =
∑
l∈L

ql (x(t),y(t)) . (8)

The cumulative reward of scheduling policy π over the time
horizon T is obtained by summing up the rewards obtained at
each time until T

Qπ
(
{x(t)}T1 , {y(t)}T1

)
=
∑
t∈T

q (x(t),y(t)) , (9)

where the scheduling decisions {y(t)}T1 are made under the
guidance of policy π. In the following, we just use Q and drop
the superscript π for simplification.

We do not make any assumption on the distribution of the job
arrival trajectory {x(t)}T1 . To obtain a non-trivial performance
measure, we cast the multi-server bipartite scheduling problem
into the framework of online learning, which prompts us to
compare the performance of the online policy π with the best
offline stationary policy π∗ [26], [27]. Let us denote by y∗ the
optimal offline stationary resource allocation decision guided by
policy π∗, i.e.,

y∗ = arg sup
y∈Y

Q
(
{x(t)}T1 ,y

)
, (10)

Physically, y∗ is the optimal stationary resource reservation
decisions for each port whatever the actual job arrival status
x(t) is. Formally, we define the regret Rπ

T ({x(t)}T1 ) for the job
arrival trajectory {x(t)}T1 as

Rπ
T

(
{x(t)}T1

)
� Q

(
{x(t)}T1 ,y∗

)
−Q

(
{x(t)}T1 , {y(t)}T1

)
.

The regret of policy π is further defined as the maximum regret
achieved over every possible job arrival trajectory

Rπ
T � sup

∀{x(t)}T1
Rπ

T

(
{x(t)}T1

)
. (11)

Our goal is to find a policyπ, under which a sequence of bipartite
scheduling decisions {y(t)}T1 is yielded, to minimize Rπ

T .

III. ONLINE GRADIENT ASCENT

To minimize the regretRπ
T , we resort to an online variant of the

gradient-based methods, online gradient ascent (OGA) [28]. A
series of recent works have demonstrated that OGA achieves the
best possible regret for online caching problems in different net-
work settings when the rewards are linear [27], [29], [30], [31].
In this paper, we extend OGA to the online bipartite scheduling
problem for multi-server jobs with non-linear rewards. Before
presenting the design details, we first give some preliminary
definitions and analysis.

A. Preliminaries

Definition 1. NICE SETUP: If all the utilities {fk}k∈K are (i)
linearly separable over computing instances, i.e.,

fk

(∑
r∈Rl

yk(l,r)

)
=
∑
r∈Rl

fk
r

(
yk(l,r)

)
, (12)

and each concave utility fk
r (·) is (ii) continuously differentiable

in R+, and (iii) there exist �k
r > 0 such that

(fk
r )

′(0) ≤ �k
r , ∀r, k, (13)

we say this is a nice setup.
The following proposition demonstrates the property of the

regret minimization problem, which will be used in the design
and analysis of OGASCHED.

Proposition 1. CONVEXITY: (i) The feasible solution space Y
is convex. (ii) With a nice setup, at each time t, the single-slot
reward function q(x(t),y(t)) is a concave function of y(t).

Proof: In the following proof, we just drop (t) from x(t) and
y(t) for simplification. Besides, we only prove the case that G is
right d-regular and d = |L|. The left cases can be easily proved
with the same techniques used in this proof.

We first prove (i). To do this, let us arrange the vector y as

y =

[
y1︸︷︷︸
k=1

; y2︸︷︷︸
k=2

; . . .; yK︸︷︷︸
k=K

]
, (14)

where yk ∈ R(|L|×|R|) is arranged as

yk =

[
yk(1,1); . . .; y

k
(1,|R|)︸ ︷︷ ︸

l=1

; . . .; yk(|L|,1); . . .; y
k
(|L|,|R|)︸ ︷︷ ︸

l=|L|

]
. (15)

With this arrangement, the vector representation of (5) is

0 ≤ y ≤ a, (16)

where a = [a1; . . .;aK ], and

ak =

[
ak1 ; . . .; a

k
1︸ ︷︷ ︸

of size |R|

; . . .; ak|L|; . . .; a
k
|L|︸ ︷︷ ︸

of size |R|

]
. (17)

Similarly, we want to construct a matrix B and a vector c
for the vector representation of (6). ∀k ∈ K, we design B′ ∈
R|R|×(|L|×|R|) as

[B′]ij =

{
1 (j − i) | |R|
0 o.w.

(18)

and ck = [ck1 ; . . .; c
k
|R|]. Then, we have

B′yk ≤ ck, ∀k. (19)

We can transform (19) into

B′yk +
∑
k′ 	=k

Oyk′ ≤ ck, ∀k, (20)

where O is a zero matrix. As a result, (6) is equivalent to

By ≤ c, (21)

where c = [c1; . . .; cK ] ∈ R(|R|×K), and

B = diag (B′) ∈ R(|R|×K)×(|L|×|R|×K).
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The above analysis leads to Y = {y | 0 ≤ y ≤ a,By ≤ c}
being a polyhedron, which is well known to be a convex set.

We now prove (ii). Similarly, we try to find the vectorized
representation of q(x,y). To do this, we define the operator
f : R|L|×|R|×K → R|L|×|R|×K as

f =
[
f1; . . .;fK

]
, (22)

where

fk =

[
fk
1 ; . . .; f

k
|R|︸ ︷︷ ︸

make |L| replicas

; . . .; fk
1 ; . . .; f

k
|R|︸ ︷︷ ︸

l=|L|

]
. (23)

Then, the first part of (7) can be transformed into

∑
l∈L

xl

∑
k∈K

fk

(∑
r∈Rl

yk(l,r)

)
=
∑
l∈L

∑
k∈K

∑
r∈Rl

xlf
k
r

(
yk(l,r)

)
= χ · f(y), (24)

where

χ =

⎡
⎢⎣
x1; . . .;x1︸ ︷︷ ︸

l=1,∀r

; . . .;x|L|; . . .;x|L|︸ ︷︷ ︸
l=|L|,∀r︸ ︷︷ ︸

k=1, make K replicas

; . . .;x1; . . .;x|L|︸ ︷︷ ︸
k=K

⎤
⎥⎦ . (25)

For the second part of (7), we have

∑
l∈L

xl max
k∈K

{
βk

∑
r∈Rl

yk(l,r)

}
=
∑
l∈L

xlβk∗
∑
r∈Rl

yk
∗

(l,r), (26)

where

k∗ = argmax
k∈K

{
βk

∑
r∈Rl

yk(l,r)

}
. (27)

Without loss of generality, we assume that k∗ = 1. Then, the
second part can be represented as β · y, where

β =

⎡
⎢⎣
x1β1; . . .;x1β1︸ ︷︷ ︸

l=1,∀r

; . . .;x|L|β1; . . ..;x|L|β1︸ ︷︷ ︸
l=|L|,∀r︸ ︷︷ ︸

k∗=1

; 0︸︷︷︸
∀k 	=k∗

⎤
⎥⎦ . (28)

The above analysis leads to

q (x,y) = χ · f(y)− β · y. (29)

With the concavity of fk
r (·), the result (ii) is immediate. �

As a result, the derivative of q(·) at time t is

∂q (x(t),y(t))

∂yk(l,r)(t)
=

{
xl(t)

(
(fk

r )
′
(
yk(l,r)(t)

)
− βk

)
k = k∗

xl(t)(f
k
r )

′(yk(l,r)(t)) o.w.,
(30)

where k∗ is defined in (27)

B. Online Gradient Ascent

In this section, we give the design details of the OGA-based
bipartite scheduling policy.

Definition 2. THE OGA POLICY: For any feasible initial bipar-
tite scheduling decision y(1) ∈ Y , at each time t ∈ T , the OGA

policy gets y(t+ 1) in the direction of ascending the gradient
of q(x(t),y(t))

y(t+ 1) = ΠY (y(t) + ηt∇q (x(t),y(t))) , (31)

where ηt is the step size, and

ΠY(z) = argmin
ŷ∈Y

∥∥ŷ − z
∥∥2
2
, (32)

is the euclidean projection of z onto Y .
To implement the projection (32) with low complexity, we

propose OGASCHED, which is a combination of the OGA policy
and the following fast projection technique. First, we introduce
the Lagrangian of the projection (32) as

L(ŷ,ρ,μ,λ) =
∑
l∈L

∑
r∈Rl

∑
k∈K

(
ŷk(l,r) − zk(l,r)

)2

+
∑
r∈R

∑
k∈K

ρkr

(∑
l∈Lr

ŷk(l,r) − ckr

)
−
∑
l∈L

∑
r∈Rl

∑
k∈K

λk
l,rŷ

k
(l,r)

+
∑
l∈L

∑
r∈Rl

∑
k∈K

μk
l,r

(
ŷk(l,r) − akl

)
, (33)

where ρ is the dual variable for (6), μ is the dual variable for
y(t) ≤ a, and λ is the dual variable for y(t) ≥ 0. Then, we can
write the KKT conditions of the projection as

2(ŷk(l,r) − zk(l,r)) + ρkr − λk
(l,r) + μk

(l,r) = 0 (34)∑
l∈Lr

ŷk(l,r) = ckr & ρkr > 0 (35)

ŷk(l,r) = akl & μk
l,r > 0 (36)

ŷk(l,r) = 0 & λk
l,r > 0, (37)

for every l, r, k.
Our fast projection is implemented for each pair of (r, k) in

parallel. Specifically, for each r ∈ R and each k ∈ K, we divide
the ports l ∈ L into three disjoint sets⎧⎪⎪⎪⎨
⎪⎪⎪⎩
B1
rk =

{
l ∈ Lr | ∀(l, r, k) : ŷk(l,r) = akl

}
B2
rk =

{
l ∈ Lr | ∀(l, r, k) : ŷk(l,r) = 0

}
B3
rk =

{
l ∈ Lr | ∀(l, r, k) : 2

(
ŷk(l,r) − zk(l,r)

)
+ ρkr = 0

}
,

where

ρkr =
2

|B3
rk|

⎛
⎝ ∑

l∈B3
rk

zk(l,r) − ckr +
∑
l∈B1

rk

akl

⎞
⎠, ∀r, k. (38)

The fast projection works by solving the equation system (35)
∼(38) iteratively. Specifically, for each pair of (r, k), we sort
the elements of zk

(:,r) in descending order (step 7), and initialize

B1
rk and B2

rk as ∅ while initializing B3
rk as Lr (step 10 and 12).

Then, we repeat a loop, in which we calculate ρkr with (38),
and update the value of ŷk(l,r) for each port l in B3

rk (step 25).

Since the elements of zk
(:,r) are sorted from largest to smallest,

if some ŷk(l,r) < 0, we can derive that for all the l′ ∈ Srk :=

{l, . . ., |Lr|}, we have ŷk(l′,r) < 0. Thus, the resource allocation
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Algorithm 1: OGASCHED.

for all the ports in Srk is illegal, since ŷk(l,r) ≥ 0 must hold.

As a result, we update the sets B2
rk and B3

rk, and repeat the
calculate loop again (step 29). The calculation loop stops when
there are no illegal resource allocations, i.e., ∀l ∈ Lr, we have
ŷk(l,r) ≥ 0. In other words, Srk = ∅. We call the calculation
loop in step 18∼step 30 the innner loop. The outer loop is the
while loop defined in step 9. To exit the while loop, we need to
guarantee that ŷk(1,r) ≤ ak1 . Otherwise, the resource allocation is
also illegal. Note that here we only need to check for l = 1 since
the elements in zk

(:,r) are sorted.
The number of projections is linearly proportional to the size

of the solution’s dimensions, i.e.,
∑

l∈L |Rl| ×K. Nevertheless,

as we have mentioned, we can do the projections for differ-
ent combinations of r and k in parallel because they are not
interwoven. Thus, the time complexity of the fast projection
is of O(|L| × log(K

∑
l∈L |Rl|)) in each time slot, where the

log(·) operator comes from the sorting operation (step 7). The
multiplier |L| outside log(·) comes from the inner loop (step
19). In our experiments, the repeat loop’s execution count is
significantly less than the number of job types |L|.

C. Regret Analysis

In this section, we discuss the regret of OGASCHED. The main
result is summarized in Theorem 1.

Theorem 1: REGRET UPPER BOUND. With a nice setup, the
regret of OGASCHED is upper bounded by

ROGASCHED
T ≤

√
2T
∑
k∈K

∑
r∈R

ākckr

×
√∑

l∈L

∑
r∈Rl

((β∗)2 +K(�∗
r)

2), (39)

where āk := maxl∈L a
k
l , β∗ := maxk∈K βk, and �∗

r :=
maxk∈K �k

r .
Proof: The result is based on the non-expansiveness property

of euclidean projection and the concavity of {fk
r (·)}r,k. Our

proof has two parts. The first part gives the general form of
the upper bound, which is similar to Theorem 2.13 in [32] and
Theorem 3 in [29]. Meanwhile, the second part gives the specific
upper bounds of involved variables.

At each time t > 1, for the y(t) yielded by OGASCHED, we
have

‖y(t)− y∗‖2 =
∥∥ΠY (y(t− 1) + ηt∇q(t− 1))− y∗∥∥2

(i)

≤ ‖y(t− 1)− y∗‖2 + η2t ‖∇q(t− 1)‖2

+ 2ηt∇q (y(t− 1))T (y(t− 1)− y∗) ,
(40)

where ∇q(y(t− 1)) is a shorthand for ∇q(x(t− 1),y(t− 1)).
(i) is because the non-expansiveness property of the euclidean
projection. By moving ‖y(t− 1)− y∗‖2 to the LHS of (40) and
summing the inequality telescopically over T , we have

T+1∑
t=2

∇q(y(t− 1))T (y∗ − y(t− 1))

(i)

≤ η
∑T

t=1 ‖∇q(y(t))‖2
2

+
‖y(1)− y∗‖2 − ‖y(T )− y∗‖2

2η

(ii)

≤ ηT (max ‖∇q‖)2
2

+
diam(Y)2

2η
. (41)

Inequality (i) is because ∀t ∈ T we set ηt ≡ η. In (ii), we use the
fact that ‖y(T )− y∗‖ ≥ 0. In (40), max ‖∇q‖ is the maximum
euclidean norm of the gradient of q(x(t),y(t)) over every possi-
ble y(t), and diam(Y) is the largest euclidean distance between
any two elements of Y . Because q(·) is a concave function of
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y(t), we have

ROGASCHED
T = sup

∀{x(t)}T1

T∑
t=1

(q (x(t),y∗)− q (x(t),y(t)))

≤ sup
∀{x(t)}T1

T∑
t=1

∇q (y(t))T (y∗ − y(t)) � (41)

≤ diam(Y)2

2η
+

ηT (max ‖∇q‖)2
2

. (42)

In the following, we give the upper bound of max ‖∇q‖ and
diam(Y), respectively.

1) The upper bound of max ‖∇q‖. With the result of (30), we
have

‖∇q‖2 =
∑
l∈L

∑
r∈Rl

[
xl(t)

2
(
(fk∗

r )′
(
yk

∗

(l,r)(t)
)
− βk∗

)2 ]

+
∑
l∈L

∑
r∈Rl

∑
k 	=k∗

xl(t)
2(fk

r )
′
(
yk(l,r)(t)

)2

=
∑
l∈L

∑
r∈Rl

xl(t)
2

[∑
k∈K

(
(fk

r )
′
(
yk(l,r)(t)

))2

− 2βk∗(fk∗

r )′
(
yk

∗

(l,r)(t)
)]

+
∑
l∈L

∑
r∈Rl

xl(t)
2β2

k∗ .

(43)

where k∗ is defined in (27). The second part of (43) can be upper
bounded by ∑

l∈L

∑
r∈Rl

xl(t)
2β2

k∗ ≤
∑
l∈L

∑
r∈Rl

(β∗)2, (44)

where β∗ = maxk∈K βk. If G is right d-regular, the bound re-
duces to d|R|(β∗)2. For the first part of (43), we use (fk∗

r )′ to
replace (fk∗

r )′(yk
∗

(l,r)(t)) for simplification. Then we have

∑
l∈L

∑
r∈Rl

xl(t)
2

[∑
k∈K

(
(fk

r )
′)2 − 2βk∗(fk∗

r )′

]

≤
∑
l∈L

∑
r∈Rl

∑
k 	=k∗

(
(fk

r )
′)2

︸ ︷︷ ︸
PART-A

+
∑
l∈L

∑
r∈Rl

(fk∗

r )′
(
(fk∗

r )′ − 2βk∗
)

︸ ︷︷ ︸
PART-B

.

For PART-A we have

PART-A ≤ (K − 1)
∑
l∈L

∑
r∈Rl

(�∗
r)

2, (45)

where �∗
r = maxk∈K �k

r . If G is right d-regular, the bound
reduces to d|R|(K − 1)( varpi∗r)

2. To analyze the upper bound
of PART-B, we need to partition the computing instances into
two disjoint sets

R1 =
{
r ∈ R : �k∗

r ≤ 2βk∗
}

R2 =
{
r ∈ R : �k∗

r > 2βk∗
}
.

For each r ∈ R1, the maximum of (fk∗
r )′((fk∗

r )′ − 2βk∗) is
0 since (fk∗

r )′ ≥ 0 holds. For each r ∈ R2, the maximum is

(�k∗
r )2 − 2βk∗�k∗

r . Thus,

PART-B ≤
∑
l∈L

∑
r∈Rl∩R2

(
(�k∗

r )2 − 2βk∗�k∗

r

)
. (46)

Recall that in (46) Rl is the set of computing instances that
connects to port l. Because βk ∈ [0, 1] holds for each k ∈ K,
∀l ∈ L, r ∈ Rl ∩R2, we have

(�k∗

r )2 − 2βk∗�k∗

r ≤ (�∗
r)

2 − 2βk∗�∗
r ≤ (�∗

r)
2, (47)

Finally, we can get

‖∇q‖2 ≤
∑
l∈L

∑
r∈Rl

(
(β∗)2 +K(�∗

r)
2
)
. (48)

For the upper bound in (48), all the computing instances r ∈ Rl

fall into the set R2.
2) The upper bound of diam(Y). By definition we have

diam(Y) = sup
y,z∈Y

‖y − z‖. (49)

To find the upper bound of ‖y − z‖, we can get

‖y − z‖2 =
∑
l∈L

∑
r∈Rl

∑
k∈K

(
yk(l,r) − zk(l,r)

)2
(i)

≤
∑
l∈L

∑
r∈Rl

∑
k∈K

∣∣yk(l,r) − zk(l,r)
∣∣ · akl

≤
∑
l∈L

∑
r∈Rl

∑
k∈K

akl

(
yk(l,r) + zk(l,r)

)

≤
∑
k∈K

āk
∑
r∈R

(∑
l∈Lr

yk(l,r) +
∑
l∈Lr

zk(l,r)

)

(ii)

≤ 2
∑
k∈K

āk
∑
r∈R

ckr , (50)

where āk = maxl∈L a
k
l . In (50), (i) is because the constraint (5).

In (ii), we use the capacity constraint (6). As a result, we have

diam(Y) ≤
√
2
∑
k∈K

āk
∑
r∈R

ckr . (51)

Combing the result (48) and (51), and set η as diam(Y)

‖∇q‖
√
T

, we

finally get the result.
The theorem shows that the suboptimality gap between

OGASCHED and the offline optimal is of Θ(HG ×
√
T ), where

HG :=

√
2
∑
k∈K

∑
r∈R

ākckr ×
√∑

l∈L

∑
r∈Rl

((β∗)2 +K(�∗
r)

2),

(52)

is a factor characterized the scale of the bipartite graph G. In
addition, we can find that the regret grows sublinearly with the
number of job types |L|. To the best of our knowledge, this is
the best regret for the online bipartite scheduling problem with
non-linear rewards. The proof also indicates that, to achieve a
not-too-bad cumulative reward, at each time t, the learning rate
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ηt should be set as

ηt =
diam(Y)

‖∇q(x(t),y(t))‖
√
T
. (53)

D. Extending to Multiple Job Arrivals

OGASCHED can be applied to the scenarios where multiple
jobs are yielded from each port in each time slot. In this case,
the job arrival statusx(t) is re-formulated asx(t) = [xl(t)]l∈L ∈
N |L|, where xl(t) indicates the number of jobs arrive at port
l at time t. Further, the scheduling decisions at time t is re-
formulated as

y(t) =
[
yj,k(l,r)

]
l,j,r,k

∈ R
∑

l∈L Jl×|Rl|×K ,

where Jl is the maximum number of the type-l jobs arrive during
each time slot, i.e., Jl = maxt∈T xl(t). Correspondingly, the
port-l reward is re-formulated as

ql (x(t),y(t)) =

Jl∑
j=1

1{j ≤ xl(t)}

⎡
⎣∑

k∈K
fk

(∑
r∈Rl

yj,k(l,r)(t)

)

−max
k∈K

{
βk

∑
r∈Rl

yj,k(l,r)(t)

}⎤⎦,
where 1{p} is the indicator function: 1{p} is 1 if the predicate p
is true, otherwise 0. The new formulated problem can be solved
by native OGASCHED after transformations.

E. Extending to Gang Scheduling

OGASCHED can be extended to the Gang Scheduling scenar-
ios, where the scheduling decisions for the task instances of a
job follows the ALL-OR-NOTHING property. In other words, only
when all tasks1 of a job are successfully scheduled, the job could
be launched.

In the following, we show briefly how Gang Scheduling can
be modeled. To start with, for each job type l ∈ L, we denote
the corresponding set of task components by Ql and indexed by
q. Correspondingly, the job requests al is redefined as

al =
[
aq,kl

]
l,q,k

∈ R
∑

l∈L |Ql|×K
≥0 .

Similarly, we redefine the scheduling decisions at time t as

y(t) =
[
yq,k(l,r)

]
l,q,r,k

∈ R
∑

l∈L |Ql|×|Rl|×K
≥0 .

As a result, the solution space Y turns to

Y =

⎧⎨
⎩yq,k(l,r) |

∑
q∈Ql

1

{∑
r∈Rl

∑
k∈K

yq,k(l,r) > 0

}
≥ ml(t), ∀l,

0 ≤ yq,k(l,r)(t) ≤ aq,kl , ∀l, r, q, k, t,

1In practice, not all tasks of a job need to be scheduled. In Kubernetes, the
job submitter can specify the minimum number of tasks that must be scheduled
successfully. In the following, we use ml(t) to represent the minimum number
of tasks that should be scheduled at time t of the type-l job.

∑
l∈Lr

∑
q∈Ql

yq,k(l,r)(t) ≤ ckr , ∀r, k, t

⎫⎬
⎭ ,

where in the first inequality, ml(t) is the minimum number of
task components that should be scheduled at time t of type-l job.
The port-l reward at time t is re-formulated as

ql (x(t),y(t)) = xl(t)

⎡
⎣∑

k∈K
fk

⎛
⎝∑

q∈Ql

∑
r∈Rl

yq,k(l,r)(t)

⎞
⎠

−max
k∈K

⎧⎨
⎩βk

∑
q∈Ql

∑
r∈Rl

yq,k(l,r)(t)

⎫⎬
⎭
⎤
⎦.

The new formulated problem is more difficult because Y is
no longer a convex set and ql(x(t),y(t)) is not differentiable
everywhere. Nevertheless, we can still develop a similar online
scheduling algorithm with the subgradient ascent and mirror
ascent related techniques which retains a sublinear regret. The
design detail is omitted due to space limits.

IV. EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments to validate
the performance of OGASCHED. Based on the Alibaba cluster
trace datasets [33], we first examine the theoretically guaran-
teed superiority of OGASCHED against several baselines on the
cumulative and average rewards. Then, we analyze the generality
and robustness of it under different cluster settings. At last, we
validate the efficacy of OGASCHED in large-scale scenarios. The
trace-driven simulation is conducted on a server with 48 Intel
Xeon Silver 4214 CPUs, 256 GB memory, and 2 Tesla P100
GPUs.

Traces: We hybrid the traces from cluster-trace-v2018 and
cluster-trace-gpu-v2020 of the Alibaba Cluster Trace Program.
Specifically, we leverage the specifications of the machines, the
arrival patterns, and the resource requirements of different kinds
of jobs to generate our simulation environment.

Baselines: The following widely used baselines are imple-
mented to make comparisons with OGASCHED.
� DRF [20]. It is adopted by YARN [34] and Mesos [35]. In

our scenario, DRF allocates resources to ports that yield
jobs in the ascending order of their dominant resource
shares. The dominant share sl of port l is calculated as
sl = maxk∈K{akl /

∑
r∈Rl

ckr}.
� FAIRNESS. We implement FAIRNESS in this way: at each

time t, we allocate the type-k resource of each node r to
each port l that yield a job according to the job’s share
akl /
∑

l∈Lr
akl .

� BINPACKING. It is optional in Kubernetes with the name
of MOSTALLOCATED strategy and supported in Volcano
as a configurable plugin [36]. Specifically, it scores the
computing instances based on the utilization of resources,
favoring the ones with higher allocation.

� SPREADING. It is similar to BINPACKING in procedures but
with an opposite favor. The nodes with lower utilizations
of resources have higher scores.
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Fig. 2. Performance verification of OGASCHED. It takes one hour for OGASCHED to finish when T = 8000, β ∈ [0.4, 0.6], and contention level is 11.

TABLE II
DEFAULT PARAMETER SETTINGS

Default Settings: In default settings, our simulation environ-
ment has 128 computing instances, each equipped with 6 types
of resources (CPUs, MEM, GPUs, NPUs, TPUs, and FPGAs),
and 10 job types of different resource requirements. Large-scale
validations will be demonstrated in Section IV-C. The computing
instances and jobs are carefully selected from the trace to reflect
heterogenity. We support 4 types of utilities

fk
r (y) =

⎧⎪⎪⎨
⎪⎪⎩
αy linear
α ln(y + 1) log
α−1 − (y + α)−1 reciprocal
α
√
y + 1− α poly,

(54)

The default settings of main parameters are listed in Table II.
In this table, the initial learning rate and the decay are used to
tune the learning rate at each time t around the value (53). Job
arrival probabilityρ is adopted to adjust the job arrival status with
Bernoulli Distributions. This parameter is applied based on the
actual arrival patterns from the trace to increase stochasticity.
The contention level, located at the last cell of this table, is
designed to tune the level of resource contention. The larger this
value, the more fierce the contention. It is a multiplier to the
resource requirements of jobs. The effect of it will be analyzed
in detail in Section IV-B.

Note that in Section IV-A, the time slot length T is set as
8000. For the left experiments, the time slot length is 2,000,
unless otherwise stated.

A. Performance Verification

In this section, we compare the performance of OGASCHED

with the baselines in terms of the achieved cumulative and
average rewards.

In Fig. 2(a), the y-axis is the average reward unitl time
t, i.e., 1

t

∑t
τ=1 q(x(τ),y(τ)). Compared with the baselines,

OGASCHED has a clear advantage on the performance (with the
increases of 11.33%, 7.75%, 13.89%, and 13.44% compared
with DRF, FARINESS, BINPACKING, and SPREADING, respec-
tively). Besides, it shows that the performance of OGASCHED

tends to increase as the length of the time horizon increases. The
curve of OGASCHED starts steep and later flattens. The reason
is that, as a learning-powered algorithm, OGASCHED learns the
underlying distribution of job arrival patterns and it can make
better decisions by adjusting the step directions. It is interesting
to find that the rewards oscillate at the beginning time slots. One
of the leading factors is that OGASCHED is not boosted with a
well-designed initial solution. In our experiments, a 8000-time
slot training only takes one hour. Thus, not surprisingly, the
rewards achieved in the beginning can be easily surpassed when
the time slot is sufficiently large.

It is not a surprise that FAIRNESS achieves the best among the
baselines. FAIRNESS adopts a proportional allocation strategy
and allocates resources to each non-empty port without bias,
which increases the computation gains adequately. When the
contention is not fierce while the communication overhead
is low, the advantages of FAIRNESS will be more steady. By
contrast, the advantages of BINPACKING and SPREADING are
respectively high resource utilization and job isolation, which
do not contribute to the reward directly.

Fig. 2(b) shows that the cumulative rewards achieved by all
the five algorithms. In the beginning, FAIRNESS and DRF have
the slight edge, benefiting by the propotional allocation idea.
Nevertheless, as the time slot increases, OGASCHED is able to
surpass them without difficulty. Fig. 2(c) demonstrates the ratio
on the achieved average rewards between OGASCHED and the
baselines. Similarly, the ratios oscillate at the beginning. After
that, they increase steeply and later flattens.

The hyper-parameters of OGASCHED, especially the initial
learning rate η0 and the decay, have a remarkable impact on its
performance. From Fig. 4 we can find that, a wrong setting of
these hyper-parameters could lead to a poor performance, even
the decrease of the cumulative reward (which means, the reward
is negative in many time slots). At the last of Section III-C, we
claim that, to achieve an cumulative reward with a lower bound
guarantee, at each time t, the learning rate should be set around
(53). Note that in (53), the learning rate is encouraged to be
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Fig. 3. Scalability verification of OGASCHED under different scales of the bipartite graph and the contention levels.

Fig. 4. The performance of OGASCHED with different hyper-parameters.

larger and larger as time moves, which is counterintuitive and it
goes against the convergence to a local optimum. The curves in
Fig. 4(b) also verify that, setting decay as 0.9999 is better than
1.0001. The best decay in practice does not follow the guidance
of theory because the regret analysis only gives the worst case
guarantee on the cumulative rewards. In our experiments, the
best range for decay is [0.995, 0.9999].

B. Scalability, Generality and Robustness Evaluations

In this section, we evaluate the performance of OGASCHED

under different scales of scenario settings. Fig. 3(a) and (b)
demonstrate the impact of the scale of the bipartite graph G. In
these two figures, the left y-axis is the cumulative reward while
the right y-axis is the ratio ra/rb, where ra is the cumulative re-
ward achieved by OGASCHED, and rb is the baselines’. First, we
observe that, whatever the number of the computing instances is,
OGASCHED takes the leading position. Besides, as |R| increases,
all the algorithms obtain a larger cumulative reward. The result is
evident because a large cluster can provide sufficient resources,
which leads to jobs being fully served. It is also worth noting
that, when |R| increases, the superiority of OGASCHED over the
baselines first increases then decreases. It demonstrates that the
resource contention is fierce when |R| ∈ [128, 256]. In this case,
it is necessary for OGASCHED to be trained with a larger time
slot. Fig. 3(b) shows that the number of job types, i.e., |L|, has a
weaker impact than |R| to the performance of OGASCHED. The
phenomenon verifies the conclusion we have concluded, i.e., the
regret grows linearly with |R|, but it is sublinear with |L|.

Fig. 3(c) shows the impact of contention level. This parameter
works as a multiplier to the resource requirements of jobs. We
can observe that, when moving contention level from 0.1 to

1, all the achieved cumulative rewards increase. This is obvious
because a larger resource requirement leads to a larger computa-
tion gain on the premise of low contention. However, increasing
the multiplier further leads to the downgrade of performances
and the reduction of the superiority of OGASCHED. Even so,
OGASCHED always performs the best. Fig. 6 shows the average
computation gain and communication overhead penalty of each
time slot under different contention levels. We can find that the
penalty increases with the contention level slowly.

Fig. 7 demonstrates the cumulative rewards with different
utilities. Because of the diminishing marginal effect, the rewards
with ploy, log, and reciprocal utilities are significantly less than
the rewards with linear utilities. Nevertheless, the diminishing
marginal effect does not change the superiority of OGASCHED

against the baselines. Even in the all reciprocal utility settings,
for FAIRNESS, OGASCHED has its advantages.

In addition to the above evaluations, we also test the generality
and robustness of OGASCHED under different settings of the
following parameters: the time horizon length T , the job arrival
probability ρ, and the dense of the bipartite graph. The graph
dense is calculated as

∑
r∈R |Lr|/|R|. The results are shown

in Table III. The two largest values in each column of the table
are made bold. Besides, for each parameter and each algorithm,
the setting which leads to the largest reward is marked with
a light-grey background. We summarize the key findings as
follows.
� First, whatever the parameter settings, OGASCHED always

performs the best, and its performance has a positive corre-
lation with the time horizon lengthT . As we have analyzed,
a large time horizon provides more chances for OGASCHED

to learn the underlying distributions, thereby increasing the
reward in the gradient ascent directions.

� Increasing the job arrival probability can lead to a high
resource utilization, thereby increasing the rewards. How-
ever, a large job arrival probability also brings in a fierce
resource contention. A direct consequence of it is that, for
OGASCHED, many elements in the vector y(t) fall into the
interior of Y , rather than the boundaries, thereby leading
to a reward reduction. The phenomenon can be observed
when moving ρ from 0.7 to 0.9.

� Graph dense has a similar effect on the reward to the job
arrival probability. Nevertheless, the reasons behind are
distinct. A larger graph dense increases the opportunities
for a job to be served with a large possible parallelism,
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Fig. 5. Large-scale validations. It takes 15 hours for OGASCHED to complete when T = 10000, β ∈ [0.01, 0.015], and contention level is 5.

TABLE III
GENERALITY AND ROBUSTNESS VALIDATION UNDER DIFFERENT SCENARIO SETTINGS

Fig. 6. Average computation gain and communication overhead of each time
slot under different contention levels.

Fig. 7. Accumulative rewards with different utilities.

thereby increasing the computation gain. By contrast, the
communication overhead has a slow rate of growth.

C. Large-Scale Validations

To test the efficacy of OGASCHED in large-scale scenarios, we
conduct the following experiments. In these experiments, the
number of the job types is set as 100 while the quantity of the
computing instances is 1,024 in default. The results in Fig. 5

show that the superiority of OGASCHED is preserved even in
large-scale scenarios.

V. RELATED WORKS

The design of online job scheduling algorithms that yield a
nice theoretical bound is always the focus of attention from the
research community. Existing online job scheduling algorithms
can be organized into two categories.

In the first category, the online algorithms are elaborately
designed for specific job types, such as DNN model training [3],
[6], [6], [13], [18], [37], [38], big-data query & analytics [12],
[39], multi-stage workflows [17], [40], [41], [42], etc. A typical
work on DNN model training is [18], where the authors fully
take the layered structure of DNNs into consideration and de-
velop an efficient resource scheduling algorithm based on the
sum-of-ratios multi-type-knapsack decomposition method. The
authors further prove that the proposed algorithm has a SOTA
approximation ratio within a polynomial running time. [13] is
another work that fully explores the Bulk Synchronous Parallel
(BSP) property of the DNN training jobs. The authors develop
an algorithm which is O(ln |M|)-approximate with high proba-
bility, whereM is the set of resources. These works are designed
for specific job types, and they do not provide a general analysis
of the gain-overhead tradeoff for multi-server jobs. This paper
intends to fill the gap.

In the second category, the types of job are not specified,
while the theoretical superiority is highlighted. The algorithms
are designed with different theoretical basis, including online ap-
proximate algorithms [15], [43], [44], Online Convex Optimiza-
tion (OCO) techniques [14], game-theoretical approaches [16],
online learning and DRL-based algorithms [45], [46], etc. In
these works, the performance of the proposed algorithms is
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usually analyzed with approximate ratio, competitive ratio, Price
of Anarchy (PoA), and regret. A typical recent work is [14]. The
authors develop an algorithm whose dynamic regret is upper
bounded by O(OPT1−β), where β ∈ [0, 1). None of the existing
works analyze the gain-overhead tradeoff and provide a regret
of O(

√
|L|T ) as this paper demonstrates.

VI. CONCLUSION

In this article, we study the online scheduling of multi-server
jobs in terms of the gain-overhead tradeoff. The problem is
formulated as an cumulative reward maximization program. The
reward of scheduling a job is designed as the difference between
the computation gain and the penalty on the dominant commu-
nication overhead. We propose an algorithm, i.e., OGASCHED, to
learn the best possible scheduling decision in the ascending di-
rection of the reward gradients. OGASCHED is the first algorithm
that has a sublinear regret w.r.t. the number of job types and
time slot length, which is a SOTA result for concave rewards.
OGASCHED is well designed to be parallelized, which makes
large-scale applications possible. The superiority of OGASCHED

is also validated with extensive trace-driven simulations. Future
extensions may include, i.e., more elaborate modeling and anal-
ysis of the intra-node and inter-node communication overheads.
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