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A B S T R A C T   

Motivated to accurately predict the building tilt rate (BTR) in tunnel construction, a new multi-profile multi- 
model ensemble learning approach is proposed in this study by distinguishing between counterintuitive data and 
intuitive data, and handling each type appropriately. The proposed approach consists of three phases, namely the 
definition, identification, and handling of counterintuitive data, which are the major theoretical contributions of 
this study. Firstly, counterintuitive data is defined based on the input–output causal relation of safety-related 
data, introducing a novel concept in this research. Secondly, counterintuitive data is initially identified using 
a multi-profile ensemble learning approach and subsequently validated through multi-model ensemble learning. 
Finally, the identified and confirmed counterintuitive data is handled by assigning reduced weights. To validate 
the practicality of the approach, a case study on predicting the building tilt rate (BTR) in tunnel construction is 
conducted. The results of the case study demonstrate that the proposed multi-profile multi-model approach 
yields more accurate predictions of BTR compared to direct prediction and several other machine learning ap
proaches. Furthermore, the proposed approach aids in identifying counterintuitive data in the testing dataset. 
Additionally, the effectiveness and superiority of the proposed approach are verified by comparing the prediction 
results when traditional abnormal data or random data is identified and treated as counterintuitive data.   

1. Introduction 

This study is motivated by defining, identifying, and handling 
counterintuitive data from intuitive data in safety assessment and 
management in underground tunnel construction (Singh, Das, Singh, & 
Racherla, 2023; Chang, Zhang, & Xu, 2023). The building tilt rate (BTR) 
serves as a crucial safety indicator, reflecting the impact of underground 
tunneling on nearby buildings (Darroch, Beecroft, & Nelson, 2021; Zou, 
Moore, Sanayei, Wang, & Tao, 2021). Parameters influencing the BTR 
include uneven settlements caused by tunnel boring machine (TBM) 
operations, geological conditions such as soil compression modulus, 
tunnel conditions like tunnel cover depth, and building conditions such 
as relative distances from the tunnel (Chang, Zhang, & Xu, 2022; Forsat, 
Taghipoor, & Palassi, 2021; Conforti et al., 2019). Most of this data 
consists of numerical and continuous parameters (Pan & Zhang, 2020), 
e.g., the TBM parameters are directly monitored from the TBM machine, 

while the geological-related parameters are calculated using data from 
the total station machine, etc. The BTR is also a numerical value that is 
calculated using readings of multiple sensors deployed in multiple key 
locations (Zhang, Wu, Ji, & AbouRizk, 2017). 

Multiple sensors have been deployed to gather those data (Chang, 
Song, & Zhang, 2022). With the abundance of collected data, a natural 
approach is to develop a prediction model using machine learning (ML) 
techniques, as adopted in this study. In most cases, the data collected 
from sensors or experts are directly utilized. However, in some instances 
where preprocessing is required, anomaly detection (AD) methods are 
employed to identify and exclude abnormal data, such as high TBM 
torque, breaches of preset boundaries near buildings, or the BTR 
exceeding safety thresholds (Chang, Zhang, & Xu, 2022; Pan & Zhang, 
2023). While AD-based approaches are easy to implement, they have 
two major disadvantages. Firstly, abnormal data doesn’t necessarily 
indicate incorrect data, as it can also reflect actual tunneling activities. 
Secondly, excluding excessive abnormal data may result in an overly 
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“clean” dataset, leading to overfitting and an inability to recognize 
newly collected data. Although AD-based approaches are sufficient as 
practical safety control measures, they do not contribute to the training 
of a more accurate BTR prediction model. 

The more pressing challenge in constructing an accurate BTR pre
diction model is to effectively utilize data with a causal input–output 
relation, i.e., intuitive data. Specifically, A BTR model is only designed 

to produce normal (abnormal) output whenever there is a normal 
(abnormal) input, i.e., recognize intuitive data. For counterintuitive 
data, i.e., data with a normal input but abnormal output or abnormal 
input but normal input, they should be identified and properly handled. 

Therefore, a multi-profile multi-model approach is proposed in this 
study, specifically addressing the (1) definition, (2) identification, and 
(3) handling of counterintuitivity for the safety assessment of tunnel 

Nomenclature 

Acronyms 
BTR building tilt rate 
TBM tunnel boring machine 
AD anomaly detection 
ML machine learning 
I the input 
x1, x2, …, xM the parameters of the input 
M the number of attributes in the input 
y the single output 
rg(x) min lower limit of input safety range 
rg(x) max upper limit of input safety range 
rg(y) min lower limit of output safety range 
rg(y) max upper limit of output safety range 
f the mapping relationship I → y 
Inormal the input with all of the attributes are normal attributes 
Iabnormal the input with a subset of its attributes are abnormal 

attributes 
ynormal normal output 
yabnormal abnormal output 
fcausal the causal relationship of intuition: Inormal → ynormal or 

Iabnormal → yabnormal 

dintuitive intuitive data which satisfied the causal relationship fcausal 

dcounterintuitive counterintuitive data which is with a normal input 
and an abnormal output, i.e., Inormal → yabnormal, or an 
abnormal input and a normal output, i.e., Iabnormal → 
ynormal. 

dabnormal abnormal data whose input I or output y is abnormal 
DT training dataset 
DV testing dataset 
S the number of partial-datasets 
Bs T S partial datasets from the original training dataset 

P the number of training data sets 
es p absolute error of the pth set of data from the sth sub-model 
Ds T S equal partial-datasets from training dataset 
yp the actual output of the pth set of training data 
ys p the output from the sth sub-model of the pth set of training 

data 
MAPE mean absolute percentage error 
ws the weights of S sub-models 
e p average error of the pth set of data 
s* the sub-model that the pth set of data is not used to 

construct 
Ω ordered data list 
Ωintuitive the datasets with intuitive data 
Ωcounterintuitive the datasets with counterintuitive data 
Λ a list of ascending ordered data 
△ep,p + 1 the marginal errors 
fp the frequency of the pth set of data being confirmed as 

counterintuitive data by M machine learning approaches 
wp,0 weight of the pth set of data before identifying the type of 

data 
wp weight of the pth set of data after identifying the type of 

data 
μ the updating weight for different types of data 
MAE mean absolute error 
Q the number of testing data sets 
ya q the actual output of the qth set of testing data 
ye q the predicted output of the qth set of testing data 
BPNN back-propagation neural network 
GPR gradient process regression 
wcounterintuitive the weight of the counterintuitive data 
wintuitive the weight of the intuitive data 
SVM support vector machine 
ANFIS Adaptive-Network-Based Fuzzy Inference System  

Fig. 1. Tunnel construction data with sixteen parameters in four categories as the input and the BTR as the output.  
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construction. The major steps involved are as follows. First, counterin
tuitive data is defined based on the causal logic relation between input 
and output. Next, multi-profile ensemble learning is utilized to initially 
identify counterintuitive data, which is then confirmed by multi-model 
ensemble learning. Finally, counterintuitive data is handled by 
assigning it a reduced weight in the safety assessment model training 
process. To validate the efficiency of this approach, a practical case 
study on BTR prediction in metro tunnel construction in Wuhan City is 
conducted. 

The theoretical contributions of this study are as follows, namely the 
definition, identification, and handling of counterintuitive data. Firstly, 
counterintuitive data is defined as data where the input and output do 
not adhere to a causal relation, distinguishing it from the traditional 
classification of normal/abnormal data, which focuses solely on input or 
output. Secondly, a novel multi-profile multi-model ensemble learning 
approach is employed for the identification of counterintuitive data. 
Multi-profile ensemble learning generates multiple profiles of the orig
inal training data for cross-examine each set, while multi-model 
ensemble learning eliminates interference from inferior machine 
learning approaches. Lastly, counterintuitive data is handled by 
assigning it a smaller weight for constructing a more accurate safety 
assessment model. 

The rest of this paper is organized as follows. A review of the relevant 
literature is provided in Section 2. Then, the counterintuitive data and 
related concepts are defined in Section 3, and the new approach is 
proposed in Section 4. Case study and computational results are pro
vided in Section 5. Section 6 presents further validation of the motive of 
the proposed approach. Lastly, the final section concludes the paper and 
provides some future research directions. 

2. Related works 

2.1. Tunnel construction data for building tilt rate reduction 

Tunneling is one of the main activities in metro construction. 
Ensuring the safety in tunneling is very important, particularly through 
the monitoring of the BTR of nearby buildings within a safety range 
(Patrucco, Pira, Pentimalli, Nebbia, & Sorlini, 2021; Okudan, Budayan, 
& Dikmen, 2021). To predict the BTR, (Feng & Zhang, 2021; Zhang, Wu, 
Ji, & AbouRizk, 2017) identified a total of 16 parameters categorized 
into four groups, as depicted in Fig. 1. These include (i) geological pa
rameters (with three sub-parameters), (ii) tunnel-related parameters 
(with two sub-parameters), (iii) TBM-related parameters (with six sub- 
parameters), and (iv) building-related parameters (with five sub- 
parameters). Consequently, these sixteen parameters from the four 
categories are utilized as input variables, while the BTR serves as the 
output for developing the safety assessment model for tunnel 
construction. 

The following introduces how the parameters are derived as well as 
the types. 

(1) The tunnel-related parameters are calculated using coordinates 
from total station instrument; 

(2) The geological parameters are pre-measured in the lab in the pre- 
geological survey; 

(3) The TBM-related parameters are directly gathered from the TBM; 
(4) For the building-related parameters, the relative horizontal/ 

vertical/longitudinal distance is measured using the total station in
strument, and the building foundation integrity and the building intact 
status are scores produced by the engineers. 

2.2. Traditional anomaly detection in building tilt rate reduction 
prediction 

Anomaly detection (AD) has traditionally been a prevalent approach 
for safety assessment in tunnel construction (Bamaqa, Sedky, Bosa
kowski, Bastaki, & Alshammari, 2022; Liu et al., 2021). This method 

involves close monitoring of safety-related data to promptly identify 
anomalies, such as high torque in the TBM (Rong, Lu, Wang, Wen, & 
Rong, 2019), breach of preset boundaries between the underground 
tunnel site and buildings (Kang, 2019), or exceeding the safety threshold 
of the BTR (Chang, Zhang, Fu, & Chen, 2022; Zhang, Wu, Ji, & 
AbouRizk, 2017). Whenever an anomaly is detected, construction ac
tivities are halted until the risks are eliminated and the data returns to 
normal. The AD-based approach is straightforward to implement, as 
safety thresholds are predefined without ambiguity. Hence, it is effective 
for practical purposes, serving as a means to identify potential risks that 
could lead to construction accidents and require immediate elimination 
through predetermined protocols (Zhang, Wu, Ji, & AbouRizk, 2017). 
However, the AD-based approach cannot function as a preventive 
measure to anticipate and prevent hazards from occurring initially 
(Quatrini, Costantino, Gravio, & Patriarca, 2020; Ruff et al., 2021). 

Recent advancements in machine learning (ML) have introduced a 
new approach to safety assessment in tunnel construction (Bai, Cheng, & 
Li, 2021). The common practice of the ML-based approach involves 
constructing a safety assessment model using archived data and using 
this model to make predictions when new data is collected (Lin, Shen, & 
Zhou, 2021; Jordan & Mitchell, 2015). With an accurate ML-based 
safety assessment model, it becomes possible not only to identify im
mediate dangers in tunnel construction but also to predict hidden risks 
and take preventive measures in advance, thereby avoiding potential 
economic losses and even saving lives (Ye, Jin, & Chen, 2022). More
over, the ML-based safety assessment model can be implemented auto
matically, reducing the resources required compared to traditional 
anomaly detection methods (Bai, Cheng, & Li, 2021). However, a major 
drawback of ML-based approaches is that they require comprehensive 
training to ensure accurate safety assessment (Bejani & Ghatee, 2021), 
as ML is inherently data-driven (Bergen, Johnson, de Hoop, & Beroza, 
2019). Therefore, there is a significant need for accurate data, typically 
obtained through highly reliable sensors. However, the harsh working 
environment in underground tunnel construction, characterized by high 
temperatures and humidity, can lead to accelerated sensor degradation, 
subsequently affecting data accuracy (Zhang, Wu, Ji, & AbouRizk, 
2017). 

To summarize, there are both advantages and disadvantages to the 
traditional AD-based approaches and the ML-based approaches for the 
safety assessment of tunnel construction. Comparatively, the traditional 
AD-based approach is more pragmatic and relatively easy to implement 
(Bamaqa, Sedky, Bosakowski, Bastaki, & Alshammari, 2022; Liu et al., 
2021) whereas the ML-based approach can make predictions beforehand 
to provide beforehand warning (Bai, Cheng, & Li, 2021). Hence, a nat
ural approach is to differentiate abnormal data from normal data using 
anomaly detection to train the ML-based approach and enhance its ac
curacy. However, there is an inconsistency between the AD- and the ML- 
based approaches. Specifically, the AD-based approach by definition 
detects anomalies if any out-of-the-normal range is found in safety- 
related data of tunnel construction, e.g., over speeding of the TBM 
machine (Rong, Lu, Wang, Wen, & Rong, 2019) or a too-high BTR 
(Zhang, Wu, Ji, & AbouRizk, 2017). Comparatively, the ML-based 
approach predicts the BTR as a causal reaction to multiple geological-, 
building-, and TBM-related parameters (Jordan & Mitchell, 2015). In 
one word, the AD-based approach focuses on the normal/abnormal 
condition of data, either the input or the output part, whereas the ML- 
based approach focuses on the input–output causal relation of data. 
Building on this, if the detected abnormal data is excluded from training 
the ML-based safety assessment model, only normal data would be left 
that is all within the safety (normal) range. Then, the trained ML-based 
safety assessment model would no longer be able to recognize any 
abnormal data, i.e., the model has become overfit, because it has never 
“seen” any abnormal data. 

Be reminded that the ML-based safety assessment model produces 
the BTR as the output that is the causal output of multiple geological-, 
building-, and TBM-related parameters as the input. To further explain, 
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when the geological-, building-, and TBM-related parameters are 
abnormal, the model should predict the BTR as abnormal, or when those 
parameters are normal, the BTR should be predicted as normal, which 
are normal data that makes the majority of all data in tunnel construc
tion. These intuitive data exhibit a causal relation between input and 
output. However, there are also counterintuitive data where the pa
rameters are abnormal, but the BTR is normal, or vice versa. The safety 
assessment model is not expected to recognize such counterintuitive 
data. If both intuitive and counterintuitive data are considered by the 
model, a conflict arises in determining the BTR prediction when all 
parameters are normal. This conflict forms the fundamental motive of 
this study. 

2.3. Ensemble learning 

Initially proposed by Leo Breiman in 1996 (Breiman, 1996), 
ensemble learning combines predictions from multiple individual 
models to enhance prediction accuracy. It has been demonstrated to 
possess higher generalization ability, robustness against overfitting, and 
the ability to capture diverse aspects of the data by leveraging multiple 
models (Zhou, 2021). However, ensemble learning also presents certain 
disadvantages. It demands additional computational resources and 
training time due to the need to train multiple models. The interpret
ability of ensemble models may be compromised as they involve 
combining outputs from different models. Ensemble learning is also 

sensitive to noise and outliers in the data, potentially impacting the 
performance of individual models and consequently the ensemble (Kato, 
Mao, Tang, Kawamoto, & Liu, 2020). Bagging and boosting are among 
the most popular variants of ensemble learning. Bagging involves 
training multiple models on different bootstrapped samples of the 
training data and averaging their predictions (Ribeiro & Coelho, 2020). 
Boosting iteratively updates models to produce a final unified model 
(Bentéjac, Csörgő, & Martínez-Muñoz, 2021). Either way, they both 
belong to ensemble learning with the objective of minimizing the error 
of the training dataset and improving the accuracy of the testing dataset 
regardless of the specific baseline model, or employed as bagging or 
boosting. Note that ensemble learning belongs to supervised learning in 
a generic sense (Chiang, Shih, Lin, & Shih, 2014; Arican & Aydin, 2022) 
where the validation metric is to minimize the modeling error, which is 
different from unsupervised learning such as clustering (Borlea, Precup, 
& Borla, 2022) where the metrics include the Davies-Bouldin Index, the 
Silhouette Index, etc. 

However, in ensemble learning, all data is treated equally without 
regard for the input–output relationship. In this study, the objective is to 
accurately predict the BTR in metro tunneling, with a specific focus on 
differentiating counterintuitive data from intuitive data. To achieve this 
objective, a multi-profile multi-model ensemble learning approach is 
proposed, incorporating the following aspects: 

(1) A multi-profile ensemble learning procedure is designed for 
initially identifying counterintuitive data from the complete training 
datasets. Specifically, “multi-profile” is employed by training multiple 
sub-models using multiple sub-datasets which are sampled from the 
original complete datasets. In this sense, (i) each sub-model represents a 
profile and (ii) each one is different from anyone else. By comparing and 
integrating multiple profiles, the counterintuitive data is thus identified. 

(2) A multi-model ensemble learning procedure is designed for 
confirming counterintuitive data. As only one machine learning 
approach is adopted as the baseline approach in multi-profile ensemble 
learning, it could suffer from possible inefficiency of the specific baseline 
approach. Thus, multiple machine learning approaches should be used 
for cross-examining the results. As a result, counterintuitive data is 
confirmed when identified in the multi-model ensemble learning. 

Table 1 summarizes the difference between the intended multi- 
profile multi-model ensemble learning approach and traditional 
ensemble learning approach. 

3. Definition of counterintuitive data in metro tunnel 
construction 

As described in Section 2.1, there are sixteen parameters used as the 
input for predicting the BTR (the output), which is also the data 

Table 1 
Comparison between traditional ensemble learning and multi-profile multi- 
model ensemble learning.  

Type Procedures Main feature and focus 

Traditional 
ensemble 
learning 

Including bagging and 
boosting; 
All sub-models are related. 

Final output is one model; 
Does not focus on data. 

Multi-profile* 
ensemble 
learning 

Mainly rooted from bagging; 
Each profile (each sub- 
model)  
is independent, and all sub- 

models are not related; 
Each profile makes the 
majority of the training 
dataset, yet all profiles are 
not identical. 

Does not produce a final model; 
Primary focus is on data: a set of 
data is counterintuitive data if 
there are relative bigger sub- 
errors from multiple sub- 
models. 

Multi-model 
ensemble 
learning 

To repeat multi-profile 
ensemble learning using 
multiple machine learning 
approaches. 

To rule out the interference of 
an inferior machine learning 
approach. 

*Profile: By randomly selecting a large proportion, e.g., 80%, of data from the 
training dataset, a profile is created that guarantees (1) each profile is a repre
sentee of the original training dataset, and (2) all profiles are not identical. 

Fig. 2. Definition of Intuitive data and counterintuitive data.  
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structure in this study. Nonetheless, the definitions of counterintuitive 
data, intuitive data, and abnormal data are still presented in a generic 
sense. Suppose that a data pair (I, y) in metro tunneling is with two parts, 
namely the input part I = [x1, x2, …, xm, …, xM] with M attributes and 
the output part y, i.e., the BTR. Each attribute xm in the input and the 
output y are with a respective safety range, i.e., xm ∈ [rg(xm) min, rg(xm) 
max] and y ∈ [rg(y) min, rg(y) max]. The following gives Definitions 1–4 
(see Fig. 2). 

Definition 1 Causal relation: it refers to the relation between the 
input and output of data that is consistent with the causal logic. Spe
cifically, the mapping relationship f: I → y is a causal relation, where a 
normal input leads to a normal output or an abnormal input leads to an 
abnormal output, i.e., Inormal → ynormal or Iabnormal → yabnormal where the 
input is normal Inormal if xm ∈ [rg(xm) min, rg(xm) max], m = 1,…,M, and 
it is Iabnormal if otherwise, and the output is normal ynormal if y ∈ [rg(y) 
min, rg(y) max], and it is yabnormal if otherwise. 

Definition 2 Intuitive data (see Fig. 2): Data pair (I, y) is called 
intuitive data and is marked as dintuitive, if it satisfies the causal rela
tionship fcausal: I → y. Note that there is dintuitive: Inormal → ynormal or 
dintuitive: Iabnormal → yabnormal. Data in Conditions 1–2 are recognized as 
intuitive data. The majority of all data is intuitive data, especially data in 
Condition (1). 

Definition 3 Counterintuitive data (see Fig. 2): Data pair (I, y) is 
called counterintuitive data and is marked as dcounterintuitive. Specifically, 
counterintuitive data is with a normal input and an abnormal output, i. 
e., dcounterintuitive: Inormal → yabnormal, or an abnormal input and a normal 
output, i.e., dcounterintuitive: Iabnormal → ynormal. Data in Conditions 3–4 are 
recognized as counterintuitive data. Comparatively, counterintuitive 
data occupies a minority of all data. 

Definition 4 Abnormal data: Data pair (I, y) is called abnormal data 
whose input I or output y is abnormal, i.e., I = [x1, x2, …, xm, …, xM] 
where xm ∕∈ [rg(xm) min, rg(xm) max], m = 1,2,…,M, or y ∕∈ [rg(y) min, 
rg(y) max]. Thus, there is, dabnormal: Iabnormal or dabnormal: yabnormal. 
Abnormal data refers to Conditions 2–4 in Fig. 2. 

According to above Definitions 1–4, the following points can be 
summarized: 

(1) Intuitive data and counterintuitive data are exclusive, i.e., din

tuitive ∩ dcounterintuitive = Ø. 
(2) Abnormal data is irrelevant to intuitive data and counterintuitive 

data as it does not focus or reflect the relation between the input and 
output. Abnormal data only depicts the condition of the input or the 
output of data. Thus, abnormal data could be either intuitive data or 
counterintuitive data (see Conditions 1–4 in Fig. 2, and Definitions 2–4). 

(3) Outlier data in some studies is referred to as data with an out-of- 
the-normal-range input or output (Alghushairy, Alsini, Soule, & Ma, 

2020; Blázquez-García, Conde, Mori, & Lozano, 2021), which would 
make outlier data and abnormal data equivalent concepts according to 
Definition 4. 

4. Approach 

4.1. Framework 

Fig. 3 gives the framework of the proposed multi-profile model- 
model ensemble learning approach where the pseudocodes and pro
gramming codes (in MATLAB) of Steps 2–6 are given in XXXXX. 

Step 1: Parameter settings; 
Set the parameter settings, which encompass determining the size of 

the training dataset and testing dataset. Select multiple machine 
learning approaches with their specific parameter settings. Set the 
marginal error threshold for counterintuitive data identification. 

Step 2: Multi-profile ensemble learning to generate multiple sub- 
errors. 

Create multiple profiles of the original training dataset by (i) sam
pling with replacement to generate multiple sub-datasets, (ii) con
structing multiple sub-models using multiple sub-datasets, and (iii) 
producing multiple sub-errors for the sub-datasets. More details are 
given in Section 4.2. 

Step 3: Multiple sub-errors-based initial counterintuitive data 
identification. 

Identify initial intuitive and counterintuitive data according to the 
marginal error threshold (set in Step 1), the sub-errors (calculated in 
Step 2), and the weights of sub-models (calculated using the sub-errors). 
More details are given in Section 4.3. 

Step 4: Multi-model ensemble learning for further counterintuitive 
data confirmation. 

Confirm intuitive and counterintuitive data by comparing the results 
from multiple machine learning approaches. When multiple machine 
learning approaches identify a dataset as counterintuitive, its status as 
counterintuitive data is further affirmed. Thus, a set of data is intuitive 
data if and only if it is recognized by all machine learning approaches. 
More details are given in Section 4.4. 

Step 5: Data handling by updating weights for counterintuitive data. 
The weights for counterintuitive data should be updated according to 

how many times it has been confirmed by multiple machine learning 
approaches. Specifically, the weight for counterintuitive data should be 
much reduced if it has been confirmed by more machine learning ap
proaches. More details are given in Section 4.5. 

Step 6: Final model construction and validation of the testing 
dataset. 

Fig. 3. The framework of the proposed multi-profile multi-model approach.  
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With the updated weight, the complete training dataset is used to 
construct a final model and conduct validation of both the prediction 
accuracy and data type identification on the testing dataset. More details 
are given in Section 4.6. 

4.2. Multi-profile ensemble learning for multi-sub-error generation 

Step 2: Multi- profile ensemble learning for multi-sub-error 
generation. 

In multi-profile ensemble learning, multiple profiles are created by 
sampling a majority of the original dataset to create multiple sub- 
datasets which are then used to construct multiple sub-models, i.e., 
sampling with replacement. Fig. 4 shows the sub-steps. 

Step 2.1: Sample the original complete training dataset DT into S 
equal partial-datasets Ds T by guaranteeing that any set of data only 
belongs to one and only one partial-dataset. 

Step 2.2: Construct S sub-datasets Bs T by excluding the sth partial- 
dataset from DT, i.e., B1 T={ D1 T, …, Ds T, …, DS T }. 

Step 2.3: Construct S sub-models using S sub-datasets. Select a ma
chine learning approach to construct S sub-models using S-1 sub- 
datasets Bs T. Note that since all of S sub-datasets are not completely 
different, S sub-models are also different. 

Step 2.4: Calculate the respective absolute error from the sth sub- 
model as the sth sub-error. 

The absolute error es p of the pth set of data from the sth sub-model is 
calculated by Eq. (1), 

es
p = |yp − ys

p| (1)  

where yp denotes the actual output of the pth set of data, and ys p denotes 
the output from the sth sub-model of the pth set of data. Note that there 
would be no ys p if the pth set of data is not used in constructing the sth 
sub-model. If so, there is es p = 0. 

Example 1 Suppose that there is an original dataset is with four sets 
of data, namely Data Nos. 1, 2, 3, and 4, i.e., d1, d2, d3, and d4. Next, the 

implementation of Step 2 is given as follows. 
(1) Following Step 2.1, they are naturally divided into four “equal 

partial-datasets” and each is with a set of data. 
(2) Following Step 2.2, four sub-datasets are created, namely B1 T=

{d2, d3, d4}, B2 T={d1, d3, d4}, B3 T={d1, d2, d4}, and B4 T={d1, d2, d3}. 
(3) Following Step 2.3, four sub-models are constructed using 

respective sub-datasets. 
(4) Following Step 2.4, the sub-errors are calculated from sub- 

models, as presented in Table 2. 
By illustrating the implementation details of Step 2, four sub- 

datasets/models have helped create four profiles of the original data
set which are not revealed by the original dataset. For example, it is 
improbable to directly tell any original data may be counterintuitive. 
Yet, the sub-errors in Table 2 implicitly indicate that Data No. 2 may be 
counterintuitive as it can not be recognized by most sub-models. The 
next Step 3 would further explain how counterintuitive data is 
identified. 

4.3. Multi-error-based initial counterintuitive data identification 

Step 3: Multi-errors-based initial counterintuitive data 
identification. 

Step 3.1: Calculate the weights of S sub-models based on the results 
of S sub-models. 

The mean absolute percentage error (MAPE) of the sub-models is 
calculated to denote their ability to recognize the respective sub-training 
dataset by Eq. (2). 

MAPEs =
1
P
∑P

p=1

es
p

yp
(2)  

where there are P sets of data to construct the sth sub-model, and es p is 
calculated by Eq. (1). There is MAPEs ∈ [0, 100 %] with MAPEs = 0 or 
MAPEs = 100 % denoting the highest and lowest modeling ability of the 
sth sub-model. Then, MAPE is used to calculate the weights of sub- 
models. 

ws = 1 − MAPEs (3)  

where there is ws ∈ [0, 1]. For example, ws = 1 denotes that the sth sub- 
model can recognize all training data at 100 % accuracy since MAPEs =

0, and it should be granted with the highest weight, and vice versa. 
Step 3.2: Calculate the weighted average error of data from S sub- 

models. 
Calculated the average error ep of the pth set of data from S-1 sub- 

models (any data is only used to construct S-1 sub-models) by consid
ering the original errors and the weights of the sub-models. 

Fig. 4. Steps of multi-profile ensemble learning.  

Table 2 
Calculation of multiple sub-errors following Step 2.  

Data Nos.* Sub-errors  

Sub-model 1 Sub-model 2 Sub-model 3 Sub-model 4 

1 / 2 1 3 
2 10 / 3 8 
3 1 1 / 1 
4 1 1 1 / 

*There should be more data and sub-models being constructed in practice to 
meet the statistical requirements. 
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ep =
1

S − 1
∑S

s=1,s∕=s*
(wses

p) (4)  

where es p denotes the original error from Eq. (1) of Step 2.4, and ws 
denotes the weight of the sth sub-model from Eq. (3) of Step 3.1, and s* 
denotes the sub-model that the pth set of data is not used to construct. 
Nonetheless, since Step 2.4 has required that es* p = 0 if the pth set of 
data is not used to construct the s* sub-model, Eq. (4) can also be 
transferred into the following Eq. (5). 

ep =
1

S − 1
∑S

s=1
(wses

p) (5) 

Step 3.3: Identify intuitive data and counterintuitive data according 
to a marginal error threshold. 

Rearrange the data according to the weighted errors in ascending 
order to form an ordered list Ω, 

Λ = [d1, d2,⋯, dp′, dp′+1,⋯, dP− 1, dP] (6)  

where there is e1 < e2<…<ep < ep+1<…<eP-1 < eP. 
Calculate the marginal errors by the following Eq. (7), 

Δep,p+1 = ep+1 − ep (7) 

Identify intuitive data and counterintuitive data by comparing the 
marginal errors calculated in Eq. (7) with a preset marginal error 
threshold v, as indicated by the following Eq. (8) 
{

Ωintuitive = [d1, d2,⋯, dp∗]

Ωcounterintuitive = [dp*+1,⋯, dP− 1, dP]
if Δep*,p*+1 > ν (8)  

where Ωintuitive and Ωcounterintuitive denote the datasets with intuitive and 
counterintuitive data, respectively. 

Example 2 Building upon Example 1, still suppose that there is an 
original dataset is with four sets of data, namely Data Nos. 1, 2, 3, and 4, 
i.e., d1, d2, d3, and d4. Next, the implementation of Step 3 is given as 
follows and also in Table 3. (1) Following Step 3.1, the MAPEs and the 
weights are calculated, as presented in Table 3. (2) Following Step 3.2, 
the weighted average errors are calculated. (3) Following Step 3.3, the 
counterintuitive data is identified by setting the marginal error as 0.10. 
According to Table 3, it is clear that the weighted average error of Data 
No. 2 is significantly higher than the marginal error. Thus, Data No. 2 is 
identified as counterintuitive data according to Step 3. 

To further elaborate, traditional approaches treat all data equally 
without distinction, which indirectly “favors” data with a higher error as 
the mean error is normally used as the training objective. Example 2 
(also this study) demonstrates that this should be corrected: some data, 
e.g., Data No. 2, does not need to be favored because it represents a 
counterintuitive input–output relation. This is also the motive and major 
theoretical contribution of this study. 

4.4. Multi-model ensemble learning for further counterintuitive data 
confirmation 

Step 4: Multi-model ensemble learning for further counterintuitive 
data confirmation; 

Step 4.1: Repeat Steps 2 and 3 for M machine learning approaches to 
produce M identification results for counterintuitive data. 

Step 4.2: Confirm counterintuitive data according to M identification 
results from M machine learning approaches by the following Eq. (9). 

thepthsetof datais=
{

dcounterintuitive if it is identifiedbyat leastoneMLapproach
dintuitive if it isNOTidentifiedbyallM approaches

(9)  

where it indicates that the pth set of data is (1) confirmed as counter
intuitive data if it has been identified as counterintuitive data by at least 
one machine learning approach, and it is (2) confirmed as intuitive data 
if and only if it has NOT been identified by all M approaches. 

4.5. Data handling by updating weights for counterintuitive data 

Step 5: Data handling by weight updating for counterintuitive data. 
Step 5.1: Calculate the frequency fp of the pth set of data being 

confirmed as counterintuitive data by M machine learning approaches. 
Step 5.2: Set weight penalty coefficients for counterintuitive data 

according to problem requirements, e.g., μ-1 = 10 fp = [101, 102, 103, …] 
for fp = 1, 2, 3, …. 

Step 5.3: Update the weight for counterintuitive data. 
For the confirmed counterintuitive data, their weights should be 

updated accordingly by Eq. (10), 

wp = μwp,0 (10)  

where wp,0 and wp denote the weight of the pth set of data before and 
after identifying the type of data, respectively. μ denotes the updating 
weight for different types of data. If the intuitive data is also included in 
Eq. (10) for comprehensiveness, Eq. (10) can be translated into the 
following Eq. (11), 
{

wp = wp,0 if the pth set of data is intuitive data
wp = μp,0 if the pth set of counter is intuitive data (11)  

where it indicates that the more often a set of data is confirmed as 
counterintuitive data, the more its weight should be reduced. 

4.6. Final model construction and validation on the testing dataset 

Step 6: Final model construction and validation on the testing 
dataset. 

Step 6.1: Final model construction using the complete training 
dataset. 

Table 3 
Identification of counterintuitive data following Step 3.  

Data Nos.* Original y** Sub-errors Weighted avg. error Data type   

Sub-model 1 Sub-model 2 Sub-model 3 Sub-model 4   

1 20 / 2 1 3  0.09 Intuitive 
2 20 10 / 3 8  0.29 Counterintuitive 
3 20 1 1 / 1  0.04 Intuitive 
4 20 1 1 1 /  0.04 Intuitive 
MAPEs 0.20 0.07 0.08 0.20 The marginal error is set as 0.10. 
Weights 0.80 0.93 0.92 0.80 

*There should be more data and sub-models being constructed in practice to meet the statistical requirements. 
**y is normally different from different data. This is only for the simplicity of demonstration. 
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With the updated weight, the complete training dataset DT with P 
sets of data is used to construct a final model. As multiple machine 
learning approaches are used in the proposed approach, each machine 
learning approach should be tested separately to construct the final 
model. The objective function in modeling training for the final model is 
given in Eq. (13), 

MAEs =
1
P
∑P

p=1
wp|yp − ys

p| (13)  

where ys p denotes the predicted result produced by the sth machine 
learning approach for the pth set of data, yp denotes the actual output of 
the pth set of data, and wp denotes the weight of the pth set of data 
determined by Step 5 in Section 3.5 according to the data type. 

Step 6.2: Validation of the prediction accuracy on the testing 
dataset. 

For the testing dataset DV with Q sets of data, the mean absolute error 
(MAE) is used as the performance indicator and it is calculated by the 
following Eq. (14), 

MAE =
1
Q

∑Q

q=1
|ya

q − ye
q| (14)  

where ya q and ye q denote the actual and predicted output of the qth set 
of testing data. 

Step 6.3: Validation of the data type identification on the testing 
dataset. 

According to the prediction errors by the machine learning ap
proaches with and without the proposed approach (with and without 
identifying varied types of data), the data type of the testing dataset can 
also be identified. 

5. Practical case study 

5.1. Background 

A practical case of Metro Line No. 4 in the city of Wuhan, Hubei, 
China, is studied (Chang, Zhang, & Xu, 2022; Zhang, Wu, Zhu, & 
AbouRizk, 2017a,b). A total of 500 sets of data have been systematically 
collected from three neighboring metro stations (see Fig. 5(a)). All data 
is with sixteen parameters of four categories (see Section 2.1) and a BTR. 
Thus, the sixteen parameters can be used as input to predict the BTR 
(range of BTR is given in Fig. 5(b)). As all data is sequenced according to 
the time they are collected, the first 400 sets of data are used as the 
training dataset while the rest 100 sets of data are used as the testing 
dataset. Fig. 5(c/d) illustrate the ascending order distribution of the BTR 
within the training and testing dataset. The proximity of the BTR dis
tribution between these datasets can be attributed, in part, to the rela
tively uniform geological and urban development conditions across the 
three stations. 

5.2. Identification of counterintuitive data 

Two machine learning approaches are employed: the back- 
propagation neural network (BPNN) (Ding, Wang, Han, & Wei, 2018) 
and the gradient process regression (GPR) (Park et al., 2017). The 
parameter settings are as follows:  

(1) For BPNN, it is implemented using the nntool of Matlab. The 
number of layers is 3, the number of neurons is 4, epochs is 1000, 
the goal is 5E-4, the transfer function is trainlm. 

Fig. 5. Data distribution. (a) BTRs of all data in original order, (b) BTR distribution of all data in varied ranges, (c) training data by BTR in ascending order, and (d) 
testing data by BTR in ascending order. 
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(2) For GPR, it is implemented using the fitrgp function in Matlab. 
The fit method is exact, the predict method is exact, the explicit 
basis is constant.  

(3) BPNN and GPR are first separately used to construct models for 
identifying intuitive and counterintuitive data. Initially, the 
original training dataset is divided into 10 sub-training datasets 
to separately construct sub-models, i.e., each sub-training dataset 
is composed of 400*(9/10) = 360 sets of data. In other words, 
each set of data is selected nine times to participate in con
structing nine sub-models.  

(4) The average errors are calculated based on the modeling accuracy 
of each sub-model, and the marginal error thresholds of 4.0000E- 
04, and 5.0000E-04 are set for BPNN and GPR to identify the 
counterintuitive data, respectively. 

Table 4 and Fig. 6 shows the procedures for identifying and con
firming counterintuitive data according to the proposed approach. 
Specifically for the result, (i) Data Nos. 370, 251, 101, 228, 281, and 2 
are by both BPNN and GPR as counterintuitive data, (ii) Data Nos. 30, 
59, and 25 are only identified by BPNN while Data Nos. 3, 139, 105, 396, 
108, and 332 are only identified by GPR as counterintuitive data, and 
(iii) all the rest 385 sets of data are confirmed as the intuitive data. 

5.3. Prediction results on the testing dataset 

The weights for the intuitive and counterintuitive data are updated 
by the following Eq. (15), 
{

wp = wp,0ifthepthsetofdataisintuitivedata
wp = μwp,0ifthepthsetofdataiscounterintuitivedata (15) 

Table 4 
Procedures of identifying and confirming counterintuitive data.  

Contents Steps Implementation Identified or confirmed counterintuitive 
data* 

Intuitive data Figs 

Initial identification of 
counterintuitive data 

Steps 
2–3 

BPNN initially identifies 9 sets of data as 
counterintuitive data. 

Data Nos. 370, 30, 251, 59, 101, 228, 281, 
25, 2 

All the rest 391 
sets of data 

Fig. 6(b) 

GPR initially identifies 12 sets of data as 
counterintuitive data. 

Data Nos. 3, 370, 139, 251, 105, 101, 228, 
281, 2, 396, 108, 332 

All the rest 388 
sets of data 

Fig. 6(c) 

Further confirmation of 
counterintuitive data 

Step 4 6 sets of data are confirmed by both BPNN 
and GPR as counterintuitive data. 

Data Nos. 370, 251, 101, 228, 281, and 2 All the rest 385 
sets of data 

Fig. 6(b), 6(c), and 
lower part of Fig. 6 
(a) The rest 9 sets of data are confirmed by 

either BPNN or GPR. 
Data Nos. 30, 59, and 25 by BPNN; Data Nos. 
3, 139, 105, 396, 108, and 332 by GPR 

*The data number refers to the number of data in the original data training dataset. 

Fig. 6. Identification and confirmation of counterintuitive data: (a) Absolute errors of training data by BPNN and GPR, (b) Counterintuitive data identified by BPNN, 
and (c) Counterintuitive data identified by GPR. 
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where the coefficient for weight update is set as μ = 0.1, denoting that 
the weight is reduced to the tenth of the original weight if identified by 
either BPNN or GPR and μ = 0.01 if confirmed by both BPNN and GPR. 

The efficiency of the proposed approach is validated using a newly 
collected dataset consisting of 100 sets of data. Comparative results are 
presented in Fig. 7, which includes the original data, the predicted re
sults by BPNN and GPR using the original 400 sets of data directly, and 
the predicted results by BPNN and GPR using the proposed approach. 
The results indicate that the proposed approach leads to enhance pre
diction accuracy when contrasted with the direct utilization of the 
original 400 historic data sets. For BPNN, the prediction results on the 
100 sets of testing data show an improvement of 74.34 %, with a pre
diction result of 1.0452E-03 compared to 4.0727E-03 obtained by 
directly using the training dataset (see Fig. 7(a)). However, for GPR, 
there is no significant improvement observed, as the MAEs for directly 
using the training dataset and the new approach are 3.5624E-03 and 
3.4921E-03, respectively (see Fig. 7(b)). 

According to the results presented in Fig. 7, the following two con
clusions can be drawn: 

(1) BPNN as the baseline model has produced superior results to 
GPR. This can be attributed to BPNN’s ability to effectively handle 
problems in high dimensions, such as the practical case with 16 pa
rameters in the input. 

(2) Consistency and logical results of BPNN vs. GPR: BPNN has 
consistently produced reliable and logical results, whereas GPR has not 

shown significant improvement. Despite varying results achieved by 
diverse machine learning approaches, it is anticipated that the proposed 
approach, which identifies and manages distinct data types, would 
surpass the direct utilization of the entire training dataset without such 
identification and management. Fig. 7 confirms this expectation, as 
BPNN achieved notably superior results using the proposed approach 
compared to the direct use of the complete training dataset (see Fig. 7 
(a)), while GPR’s results were indistinguishable (see Fig. 7(b)). 

The convergence ability of the proposed approach is tested by 
measuring the number of iterations. Specifically, the proposed approach 
with BPNN, i.e., BPNN (new), requires 163 (100 %) rounds of iterations 
compared with 61 (37.42 %) rounds of iterations by directly adopting 
BPNN, i.e., BPNN (direct). This is most owing to the fact that counter
intuitive data has been identified and handled by the proposed 
approach. In other words, the proposed approach has presented a 
“cleaner” data set for BPNN which saves the computational power. In 
other words, BPNN is sensitive to the quality of the dataset. The 
convergence investigation concerning GPR is nonapplicable as it is not 
with the iterative feature. 

5.4. Identify intuitive and counterintuitive data in the testing dataset 

Be reminded that the weight of the identified counterintuitive data is 
much reduced while the weight of the intuitive data remains stable by 
the proposed approach, i.e., wcounterintuitive≪1, wintuitive = 1. Conse
quently, during the pretraining process, the safety assessment model 

Fig. 7. Absolute errors on the testing dataset: (a) BPNN, (b) GPR, and (c) average results.  
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Fig. 8. Identification of counterintuitive data in the testing dataset: (a) results with the threshold = 0, and (b) results with the threshold = − 1 × 10-4.  

Fig. 9. MAEs comparison of four conditions for validation of the motive of the proposed approach.  
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should yield more accurate results for intuitive data compared to 
counterintuitive data. Considering that both intuitive and counterintu
itive data exist in the testing dataset, it is also expected that more ac
curate results will be obtained for intuitive data compared to 
counterintuitive data in the testing phase. Given the superior and 
consistent performance of BPNN over GPR in previous sections, only 
BPNN is utilized in this analysis. Fig. 9 illustrates the comparative re
sults, and a detailed analysis is provided below.  

(1) If the threshold to differentiate intuitive and counterintuitive 
data is set as “0″, as presented in Fig. 8 (a), the proposed approach 
identifies 87 sets of testing data as intuitive and the remaining as 
counterintuitive. However, the presence of counterintuitive data 
in the testing dataset (13 %) is significantly higher than that in 
the training dataset (3.75 %), as discussed in Section 4.2 and 
depicted in Fig. 6.  

(2) Further investigation reveals that out of the 13 counterintuitive 
data sets, 9 exhibit very small differences (in the range of 10^-4 or 
even 10^-5), while the remaining 4 (Data Nos. 17, 24, 33, and 64) 
demonstrate relatively larger differences (see Fig. 8(b)). Consid
ering this, if a threshold of “10^-3″ or 0.001 is used to differentiate 
intuitive and counterintuitive data, the four testing data sets, 
equivalent to 4 % of the total (4/100), would be identified as 
counterintuitive data. This percentage closely aligns with the 
3.75 % of counterintuitive data in the training dataset, indicating 
a similar distribution between the training and testing data. 

5.5. Comparison with other approaches 

BPNN and GPR had been separately used as the machine learning 
approaches in previous sections, and their results are again given in 
Table 5. Furthermore, two other approaches are used for comparison, 
namely the support vector machine (SVM) (Ouchen et al., 2020), which 
yielded an MAE of 1.2254E-02, and the Adaptive-Network-Based Fuzzy 
Inference System (ANFIS) (Karaboga and Kaya, 2019), resulting in an 
MAE of 2.1764E-01, respectively. Table 5 also gives the results and 
corresponding parameter settings. According to Table 5, the approach 
proposed in this study has produced superior results. Comparatively, 
SVM and ANFIS may be suitable for other cases but they are NOT 
selected as the machine learning approaches in this study owing to 
inferior performance in this case study. 

6. Further validation of the motive by comparing with excluding 
abnormal data and randomly excluding data 

Be reminded that the motive of this study is the inadequacy of 
traditional normal/abnormal data classification in supporting safety 
assessment in tunnel construction. In order to overcome this constraint, 
the study formulates, identifies, and manages intuitive and counterin
tuitive data. While the proposed approach has demonstrated more ac
curate predictions of BTRs compared to direct usage of BPNN/GPR, as 
well as SVM and ANFIS in Section 4, it is crucial to validate the 

motivation by testing the following two hypotheses: 
Hypothesis 1 Identify abnormal data and treat them as counterin

tuitive data. Identify abnormal data from the training dataset according 
to the BTR of data, and assign them with weights of w = 0.1 in con
structing the safety assessment model. 

Hypothesis 2 Randomly select data and treat them as counterintui
tive data. Randomly select data from the training dataset, and assign 
them with weights of w = 0.1 in constructing the safety assessment 
model. 

Table 6 summarizes more specifics of direct modeling (only using 
BPNN), the proposed approach, Hypothesis 1, and Hypothesis 2. Note 
that since BPNN has produced superior and consistent results over GPR 
in previous sections, only BPNN is adopted in Hypothesis 1 and Hy
pothesis 2 (Table 7). 

Table 5 and Fig. 8 show the results with varied parameter settings in 
different conditions. 

According to Table 5 and Fig. 8, the following conclusions can be 
drawn. 

(1) The proposed approach (Condition (2) has exhibited superior 
outcomes in comparison to the other three conditions, thereby con
firming the rationale behind the approach to distinctively identify and 
manage counterintuitive data. 

(2) Condition (3), which identifies abnormal data, has produced 
inferior results compared to Condition (2) (identifying counterintuitive 
data) but is similar to Condition (1) (no identification of data type). This 
suggests that identifying abnormal data is ineffective in improving the 
accuracy of the safety assessment model. Even the smallest mean ab
solute error (MAE) in Condition (3), which identifies 5 sets of abnormal 
data, is over three times higher than that of the proposed approach. 

(3) There is a steady but slow increasing trend in the MAEs in Con
dition (3). This is attributed to the overfitting of the safety assessment 
model, as more data with higher BTRs are identified as abnormal and 
assigned a weight of 0.1. Consequently, data with smaller weights are 
undervalued in training the BPNN-based safety assessment model. As 

Table 5 
MAEs comparison using different approaches.  

No. Approaches Parameter settings MAE 

1 BPNN 5 layers, 10 neurons, 1000 epochs, goal is 0, 
trainlm 

4.0727E- 
03 

2 GPR fit method: exact, predict method: exact, explicit 
basis: constant. 

3.5624E- 
03 

3 SVM kernel function: RBF, C = 0.2, σ2 = 10 1.2254E- 
02 

4 ANFIS membership function: gaussmf (training/ 
validation/testing: 300/100/100) 

2.1764E- 
01 

5 This study Detailed procedures are given in Section 3. 1.0452E- 
03  

Table 6 
Four conditions for validation in the numerical case.  

No. Condition Features Specific procedure No. of 
runs* 

Condition  
(1) 

Direct 
modeling 

/ All data is assigned 
with equal weight, i. 
e., w = 1 for all data 

1 

Condition  
(2) 

Proposed 
approach 

Counterintuitive 
data 

15 sets of 
counterintuitive data, 
w = 0.1 for 9 
confirmed by one 
model, and w = 0.01 
for 6 confirmed by 
double models, and 
the rest 385 as 
intuitive data, i.e., w 
= 1. 

1 

Condition  
(3) 

Hypothesis 
1 

Abnormal data 5/10/15/20/50** 
sets of abnormal 
data, w = 0.1, and the 
rest as intuitive data, 
i.e., w = 1. 

1 

Condition  
(4) 

Hypothesis 
2 

Random data 5/10/15/20/50** 
sets of random data, 
w = 0.1, and the rest 
as intuitive data, i.e., 
w = 1. 

30* 

*Since the size of the training dataset is fixed at 400 sets of data, there is no 
randomness in Conditions (1)-(3). Since multiple sets of data are randomly 
selected in Condition (4), the experiment is to be conducted 30 times to test its 
robustness; 
**Since a total of 15 sets of data have been identified as counterintuitive data by 
the proposed approach (Condition (2)), varied sets of data, namely 5, 10, 15, 20, 
and 50, are tested in Conditions (3) and (4). 
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the testing data conforms to the same distribution as the original 
training dataset, encompassing data with both higher and lower BTRs, 
the excessively fitted model encounters challenges when dealing with 
data possessing elevated BTRs. Hence, the prediction errors for BTRs on 
the testing datasets in Condition (3) increase. 

(3) Condition (4), which randomly selects data, yields results similar 
to Condition (1), as expected. There are no discernible trends in the 
MAEs of Condition (4) when 5, 10, 15, 20, or 50 sets of data are 
randomly selected. Randomly selecting data does not significantly affect 
the data distribution. 

Overall, the findings support the efficacy of the proposed approach in 
handling intuitive and counterintuitive data, while highlighting the 
limitations of identifying abnormal data or randomly selecting data for 
constructing a more accurate safety assessment model. 

7. Conclusions and future works 

Motivated to define, identify and handle counterintuitive data, a new 
approach is proposed to construct a more accurate safety assessment in 
metro tunnel construction. The theoretical contributions of this study 
are as follows. (1) Definition of counterintuitive data: Unlike tradi
tional approaches that focus solely on the input or output part of data, 
counterintuitive data is defined as data that deviates from the causal 
relation between input and output. This definition provides a more 
comprehensive understanding of data characteristics. (2) Identification 
of counterintuitive data by multi-profile multi-model ensemble 
learning: The study introduces a new approach for identifying coun
terintuitive data. It utilizes multi-profile ensemble learning to create 
multiple profiles of the original training data, enabling cross- 
examination of each dataset. Furthermore, multi-model ensemble 
learning is employed to mitigate the influence of inferior machine 
learning approaches. (3) Handling of counterintuitive data: To handle 
counterintuitive data, researchers assign it a smaller weight in the 
construction of the safety assessment model. This approach acknowl
edges the distinctive nature of counterintuitive data and contributes to 
the development of a more accurate model. 

The proposed approach is validated through a practical case study 
involving the prediction of BTR in metro tunnel construction in Wuhan 
City. The results of the case study demonstrate the efficacy of the pro
posed approach. (1) Accurate Identification of Counterintuitive Data: 
The proposed approach successfully identifies counterintuitive data, 
showcasing its ability to capture and differentiate data that deviates 
from the expected causal relation. (2) Superior Performance: The pro
posed approach demonstrates better performance compared to the 
method of directly using the complete training dataset without identi
fying counterintuitive data. This highlights the effectiveness of the 
approach in improving prediction accuracy. (3) Suitability of BPNN: The 
study reveals that BPNN is more suitable as the baseline model in 
comparison to GPR, SVM, and ANFIS. This finding emphasizes the 
importance of selecting an appropriate machine learning approach for 

specific problem domains. (4) Validation of Motive: The superior per
formance of the proposed approach, when compared to the results ob
tained when abnormal data and random data are treated as 
counterintuitive data, validates the motivation behind the study. 

For future studies, more investigations into the parameter settings 
should be studied to produce superior performances, including how 
intuitive/counterintuitive data should be divided, and how the param
eters of the machine learning approaches should be determined. More 
practical cases should be tested as well to further validate the efficiency 
of the proposed approach. 
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