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AbstrAct
Scalable multi-user interactions on diverse 

extended reality (XR) devices are vital for the 
metaverse’s fruition. However, issues like broad 
user access, intensive interaction rendering, and 
limited device resources complicate existing inter-
actions based on client-server and peer-to-peer 
structures. The metaverse’s demands for scal-
able access and detailed scene rendering inten-
sify these problems. In response, we present 
SCAXR, a collaborative architecture enhancing 
multi-user interaction. SCAXR leverages three key 
components: an on-demand rendering module, 
a distributed rendering process, and edge-cloud 
synchronization. This module ensures timely com-
munication between XR devices and edge servers. 
We tested SCAXR’s efficacy with a Unity Render 
Streaming-based XR meeting prototype. Results 
show SCAXR boosts access capacity by 50% over 
traditional methods and enhances complex scene 
interaction performance by up to 7.8 times in ren-
dering frequency.

IntroductIon
Real-time communications and collaborations are 
fundamental for the implementation of multi-user 
extended reality (XR) within the metaverse era, 
allowing XR users to interact and exchange their 
states and operations within a unified virtual 
environment [1], [2]. The metaverse necessitates 
fine-grained and large-scale interaction scene 
rendering computation coupled with intensive 
interaction data communications among users 
(e.g., displacement of coordinates of virtual 
objects, users’ viewport changes, and controller 
clicks). As the user base for metaverse interac-
tions grows, numbers could soar to hundreds 
or even thousands. Yet, current research [3], [4] 
mainly tests with three to five devices. As access 
scales, intricate scenes, and virtual objects mul-
tiply, XR devices with limited resources will face 
tougher rendering tasks like vision segmentation 
and recognition. This presents two primary chal-
lenges: dynamically scaling user access and ensur-
ing intense multi-user rendering across varied XR 
devices with resource constraints.

The multi-user interaction architectures are 
detailed in Fig. 1, encompassing client-server, 
peer-to-peer, and distributed server approaches. 

Within the client-server architecture, servers 
cater to XR device requests by hosting, deliver-
ing, and managing resources. Two interaction 
styles, depicted in Fig. 1a, are client-server-C 
and client-server-L. The former is server-centric 
for synchronization and dense rendering, while 
the latter leans on devices for intensive render-
ing, using servers only for synchronization. Weber 
et al. [3] introduced a modular multi-user XR 
framework adaptable to diverse applications. Yet, 
their testing was limited to three devices and a 
basic AR interaction model. ARENA [4] presents 
an edge architecture for easily creating collabo-
rative XR applications on WebXR browsers. Its 
real-world applications, though, are centered on 
simple VR chats and AR models with only three 
devices. Additionally, ILLIXR [5] pinpoints key fac-
tors influencing XR systems, such as latency, ren-
dering frequency, and resource handling.

In the peer-to-peer architecture, devices direct-
ly exchange and synchronize interactions, such as 
location and dynamic virtual objects [6]. While 
advantageous in confined interaction ranges, as 
shown in Fig. 1b, each of the four devices first 
synchronizes interactions from peers and then 
conducts local rendering. However, this archi-
tecture demands devices with robust comput-
ing and a reliable network to ensure consistent 
inter-device experiences [7]. Any unstable con-
nection or underperforming device can disrupt 
synchronization, jeopardizing interaction consis-
tency. Such disruptions can cause delays, notably 
in video games or intensive AR applications [8]. 
Hence, it’s best suited for a limited user group in a 
localized setting.

The distributed architecture, an evolution of 
the client-server model, uses multiple servers to 
support rendering complex scenes and virtual 
objects for a vast array of devices [9]. A primary 
server directs intensive interaction and rendering 
tasks to secondary servers [10]. While inheriting 
data synchronization from its predecessor, it still 
grapples with network communication latency 
issues [11]. SEAR [12] offers a cache strategy for 
multi-user AR’s computer vision tasks. Yet, this 
architecture doesn’t fully harness resources from 
devices with diverse computational capabilities. 
The model mitigates computational strain by parti-
tioning the interaction computation (i.e., the algo-
rithms and computational methods we employ to 
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process and understand this data. e.g., pose esti-
mation, coordinate transformation) and allocating 
it across servers. However, existing multi-user XR 
interaction architectures still struggle to balance 
rendering loads dynamically between servers and 
resource-limited devices.

In this work, we propose SCAXR, a scal-
able multi-user interaction architecture for 
resource-constrained XR devices. Our approach 
develops an on-demand and distributed rendering 
mechanism to improve the scalability of the exist-
ing cloud-edge-device architecture. Specifically, 
the on-demand rendering module can dynami-
cally distribute intensive rendering tasks to each 
device based on their computing resources and 
server conditions. Subsequently, we propose dis-
tributed rendering and edge-cloud collaboration 
mechanisms to ensure synchronized access and 
data consistency for multiple users. We have 
implemented a prototype of a multi-user XR meet-
ing using the Unity Render Streaming framework1 
and evaluated its performance based on the 
motion-to-picture latency, synchronization latency, 
GPU load, and in-depth analysis with different XR 
devices. Our results demonstrate an improvement 
in scalability when accessing devices of different 
capabilities and expand the maximum access 
capability of interactions on the server. More-
over, SCAXR can support interaction devices with 
different computing capabilities, provide lower 
motion-to-picture latency, and improve the ren-
dering frequency compared to baseline methods.

The paper is structured as follows: 
Section II discusses the motivation and challeng-
es of multi-user XR interaction; Section III intro-
duces the proposed SCAXR framework and its 
components; Section IV presents the prototype 
system and evaluates the performance of SCAXR; 
and Section V concludes the paper and delineates 
future directions.

MotIvAtIon And chAllenges
To support varying user access scales, we use Sele-
nium,2 a tool that autonomously manages user 
interactions, capable of handling dozens of users 
on standard computing devices. Our multi-us-
er interaction application is defined by a shared 
scene (78 MB) and three dynamic objects, each 
around 14 MB. Evaluating scalability (see Fig. 2), 
we adopt typical client-server and peer-to-peer 
architectures on an AliCloud server with a T4 card 
GN6i GPU. Specifically, the client-server architec-
ture has (1) Client-server-C: The server handles 
synchronization and rendering for each device, 
sending rendering results as video streams; (2) 
Client-server-L: The server synchronizes the scene, 
objects, and device states, but each device locally 
renders results. Meanwhile, the peer-to-peer meth-
od first connects devices, then shares the scene 
and objects among them. All synchronization and 
rendering processes are entirely device-centric.

Figure 2a and b illustrate the effects of rising 
numbers of access devices on the edge server’s 
synchronization latency and GPU load, respec-
tively. Synchronization latency here refers to the 
alignment of user operations, states, and rendered 
outcomes, excluding rendering and computation-
al latencies. Using Selenium to simulate multi-us-
er access, a laptop’s capacity to support users is 
finite, maxing out at 20 users in our tests. Results 

highlight an increase in both synchronization 
latency and GPU load proportional to user count. 
Notably, with five access users, client-server-L 
and peer-to-peer architectures nearly deplete all 
GPU resources for local rendering. This suggests 
that the scalability of these methods is restricted 
by the device’s computational prowess. In our 
tests, the laptop could accommodate five simu-
lated access users. Further, while raising the num-
ber of users didn’t markedly raise synchronization 
latency for the client-server-L and peer-to-peer 
methods, it did max out the GPU, leading to an 
average rendering frequency below 1 Hz (as per 
the Unity engine). The rendering frequency refers 
to the number of frames rendered per second 
after the device has obtained synchronized data.

Our study utilized four varied devices: two lap-
tops and two smartphones - HUAWEI Mate30 
(with Mali-G76 GPU) and Mate9 (with Mali-
G71MP8 GPU) - aiming to appraise the interac-
tion performance across varying computational 
abilities. As depicted in Fig. 2c and d, synchro-
nization latency and the average interaction 

FIGURE 1. Scheme of multi-user interaction architectures. a) In the client-
server-C, the server fully handles synchronization and rendering, while in 
the client-server-L, the server is used solely to synchronize operations and 
static scenes and objects. b) This method illustrates each device bearing 
complete responsibility for communication and rendering. c) The primary 
server oversees interactions and delegates rendering tasks to secondary 
servers.

1https://github.com/
Unity-Technologies/
UnityRenderStreaming 
 
2https://www.selenium.dev

Moreover, SCAXR can support interaction devices with different computing capabilities, provide lower 
motion-to-picture latency, and improve the rendering frequency compared to baseline methods
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rendering frequency are illustrated, respectively. 
Interestingly, variations in device computation-
al capacities barely influenced data synchroniza-
tion, such as scenes, objects, and states. These 
aspects are mainly steered by network perfor-
mance. Devices with distinct computational capa-
bilities demonstrated lower rendering frequencies 
under client-server-L and peer-to-peer models. 
This is governed by the rendering capabilities 
of the device and the server. Conversely, the 
client-server-C model exhibited substantially high-
er rendering frequencies as all rendering activi-
ties transpire on the cloud server, outstripping the 
local device’s capabilities. Notably, the peer-to-
peer model achieved the smallest synchronization 
latency, given that most device synchronization is 
contingent upon the WiFi network. Our primary 
pursuit is to bolster rendering efficacy while curb-
ing the impact of a range of devices with diverse 
computational capabilities.

Our preliminary analysis highlights the limita-
tions of the existing client-server and peer-to-peer 
architectures in terms of scalability between het-
erogeneous devices. To actualize optimal interac-
tions, two paramount challenges arise:

(a) Large-Scale XR User Access: Dynamics 
and Scalability. Conventional multi-user interac-
tion frameworks are tailored for smaller, local-
ized interaction domains, consequently limiting 
scalability. Contrastingly, emerging metaverse 
platforms could necessitate expansive XR interac-
tions that traverse varied geographical locations, 
exacerbating interaction latency and intensify-
ing rendering computations among devices. The 
concurrent access by a plethora of users plac-
es significant demands on both networking and 

computational capacities. Key hurdles include 
optimizing cloud resources and mobile energy 
consumption, all while upholding stringent stan-
dards for interaction latency and data fidelity. The 
dynamic engagement of mobile XR users also 
necessitates adept resource distribution and task 
scheduling.

(b) Heterogeneous and Resource-Constrained 
XR Devices: Facing Intensive Rendering and AI 
Computations. XR interaction services heavily 
depend on 3D visual computing and immersive 
rendering computations, posing significant chal-
lenges for both cloud centers and XR devices 
[13]. Achieving a full XR interaction implementa-
tion is arduous due to the massive computational 
requirements either in the cloud or on devices. 
For instance, 3D scene models within the Unity 
rendering engine can demand hundreds of mega-
bytes or even gigabytes. AI computations, such as 
those computer vision tasks based on DNN and 
CNN structures (e.g., object recognition, track-
ing [12] and 3D generation computations [14]), 
require GPU support for real-time inference. The 
extensive computation required by numerous 
users limits the accessibility of XR devices.

scAXr ArchItecture
We introduce the SCAXR architecture and its 
components, illustrated in Fig. 3. Rooted in the 
existing cloud-edge-device framework [2], SCAXR 
offers a scalable solution. The on-demand ren-
dering module in SCAXR ensures efficient com-
putation by dynamically distributing rendering 
tasks between XR devices and the edge server, 
maximizing device computational resources. 
Meanwhile, our distributed rendering mechanism 
caters to a vast number of XR users. Although 
the on-demand rendering offloads tasks from the 
edge server to XR devices to minimize the serv-
er’s computational load, the addition of multiple 
devices necessitates multiple edge servers for syn-
chronized interaction. The cloud center becomes 
pivotal for synchronizing user actions and scene 
states across vast distances and different edge 
servers. During the start, scenes and static objects 
are duplicated over edge servers, removing the 
need for inter-edge result transfers. Consequently, 
edge-cloud synchronization maintains long-dis-
tance interaction data consistency.

On-demand Rendering Module. As illustrated 
in the left of Fig. 3, this module dynamically dele-
gates rendering tasks, considering the computing 
capacity of XR devices and edge servers. The key 
steps involved include state verification and syn-
chronization, scheduling, interaction updates, and 
the transfer of rendering results. Initially, we repre-
sent the rendered scene within a three-dimension-
al vector space, where each object is symbolized 
by a 3D coordinate. Assume that there are N 
devices, represented as C1, C2, …, CN, and M ren-
dering objects within the scene, symbolized as 
O1, O2, …, OM. Each object, Oi, has its position 
represented by the 3D vector (xi, yi, zi). Subse-
quently, the on-demand rendering process unfolds 
as follows:
STEP. 1. State Verification and Synchroniza-

tion. Initially, the edge server E verifies 
the access state of all devices and obtains 
their performance weights, denoted by W 
= {w1, w2, …, wN}. Each wi  indicates the 

FIGURE 2. Interaction using access devices of varying scales and computing 
capabilities. a) synchronization latency across varying scales. b) GPU load in 
correlation to different scales. c) Synchronization latency relative to devices 
with distinct computing capabilities. d) Comparing average rendering 
frequency among devices with differing computing capabilities.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 22,2024 at 08:19:44 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Network • July/August 2024 253

computing capability and network condition 
of a device. Specifically, wi  is determined 
as w B Bi c o= − +( ) /1 δ , where δ  represents 
the GPU usage, and Bc and Bo stand for the 
current and optimal network bandwidths, 
respectively. This formulation can be adjusted 
or substituted with other parameters. Subse-
quently, the edge server broadcasts the scene 
and objects to all devices, achieving primary 
synchronization.

STEP. 2. Rendering Scheduling. The edge server 
E collaboratively determines rendering task 
distribution with devices, considering their 
performance and network conditions. For less 
capable devices, E might handle the render-
ing of complex scene objects, leaving simpler 
ones to the device. In contrast, high-perfor-
mance devices might receive more rendering 
tasks, easing the server’s burden. Task assign-
ments are based on a device’s performance 
weight Wi, expressed as R(E, Ci, Wi). The col-
lection of objects rendered by E for device Ci  
is given by Ri.

STEP. 3. Interaction Updates. XR devices send 
their user interaction states, such as location 
and activity, to the edge server E. In response, 
E revises the scene and objects, and dissemi-
nates the updates to all devices. If device Ci  
has an interaction state Ii , it communicates 
this as U C Ii i( , )  to E. The server then modifies 
the scene object using this data, represented 
as U E I I IN( , { , , , }).1 2 …  Afterward, E broadcasts 
the refreshed scene information to all devices, 
denoted as B E O O OM( , { , , , }).1 2’ ’ ’…

STEP. 4. Transfer and Presentation of Results. 
The edge server transmits the rendering out-
puts, like images and textures, to the device. 
This device then assimilates results with its 
local renderings and showcases them to the 
user.

By repetitively executing the outlined steps, 
adaptive rendering is attained, ensuring seam-
less interaction between the edge server and XR 
devices. This process adapts to ever-changing net-
work conditions and computing capacities.

The scheduling of on-demand rendering in 
STEP. 2 is informed by the present conditions of 
the access device, which include network laten-
cy, computing capabilities (e.g., GPU), and the 
current load, in addition to the complexity of 
the task. Task complexity is determined by fac-
tors such as scene complexity, texture size, and 
lighting calculations. It can also be extended to 
include more characteristics. A dynamic allocation 
method is established with the primary objective 
of reducing total rendering latency while ensuring 
balanced load distribution. The assignment of ren-
dering tasks, including scenes and other objects, 
is denoted as a two-dimensional matrix T[i][j], rep-
resenting the weight of the ith device allocated 
to the jth rendering task. The optimization objec-
tive seeks to minimize the expression ∑ ∗(W i j[ ][ ]  
(network_delay [i] + task_complexity [j])), adher-
ing to constraints that ensure task completion. 
Firstly, each rendering task is assigned exclusive-
ly to a single device or edge server, denoted as 
( ( [ ][ ])∑ =W i j  1, ).∀j  Secondly, the total load per 
device cannot surpass a predetermined threshold: 
( ( [ ][ ]∑ ∗W i j  task_complexity [ ])j <= max _ load ∗ 
available_resources [ ], ).i i∀  This optimization 
model can be resolved using a variety of optimiza-
tion algorithms, such as linear programming.

Moreover, the rendering outputs from both 
the edge server (denoted as Cedge and Dedge for 
the color buffer and depth buffer respectively) 
and the XR device in STEP. 4 (denoted as Clocal 
and Dlocal for the local color buffer and depth buf-
fer respectively) are integrated using depth value 
comparison. A novel color buffer, Cfinal, is intro-
duced to store the resulting merged image. Each 

FIGURE 3. The SCAXR architecture for multi-user XR interaction integrates three primary modules: on-demand rendering, distributed 
rendering, and edge-cloud synchronization, facilitating a robust framework for complex interaction scenarios.
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pixel (i, j) of Cedge and Clocal is then processed as 
follows: (a) Depth values of the edge server and 
local rendering results are obtained: depthedge 
= Dedge[i][j], depthlocal = Dlocal[i][j]. (b) The two 
depth values are compared: if depthedge < depth-
local, then the edge server’s color rendering is uti-
lized: Cfinal[i][j] = Cedge[i][j]. Otherwise, the local 
rendering’s color value is used: Cfinal[i][j] = Clocal[i]
[j]. Upon concluding this pixel-wise operation, Cfi-
nal emerges as the merged rendering buffer. The 
final image render is achieved by presenting Cfinal 
to the user. This depth-dependent image synthesis 
technique effectively merges the edge server and 
local device rendering outputs, furnishing a final 
rendering for the user.

Distributed Rendering Mechanism. The 
distributed rendering framework utilizes a hier-
archical architecture composed of one primary 
server and multiple secondary servers, designed 
to enable real-time synchronization and efficient 
rendering services in high-density device envi-
ronments. In Fig. 3, the primary server has three 
principal functions: (a) collecting status and inter-
action data from all devices; (b) measuring the 
intricacy of the current rendering tasks for XR 
devices and distributing them to secondary serv-
ers based on their capability and workload; (c) 
sustaining updated task assignments via regular 
communication with the secondary servers. On 
the other hand, the responsibilities of the second-
ary servers consist of (i) commencing the exe-
cution of tasks using the on-demand rendering 
method upon receipt of the corresponding assign-
ments from the primary server; (ii) regularly com-
municating with the primary server to convey the 
device connection statuses and receive updates 
on assigned tasks.

We describe in detail how the distributed mech-
anism manages interaction and rendering tasks 
during large-scale usage. The interaction rendering 
pertains to the graphical display or visualization of 
the computed interactions. In the multi-user XR 
interaction context shown in Fig. 3, the primary 
server manages states across devices and assigns 
tasks to secondary servers based on rendering 
needs. The allocation process comprises three 
stages: (a) Primary Server Assignment. For simul-
taneous XR user access, devices are allocated to 
secondary servers via a weighted Round Robin 
load-balancing strategy, factoring in user location, 
device capabilities, and rendering complexity. (b) 
Rendering and Interaction. Devices liaise with 
their assigned secondary servers for task rendering, 
utilizing on-demand techniques to optimize perfor-
mance. (c) Data Synchronization and Updates. 
To maintain consistent rendering, the system syn-
chronizes shared data like scene specifics and user 
operations across secondary servers. This strategy 
optimizes server load, enhances scalability based 
on user numbers and computational demands, and 
ensures efficient, high-quality rendering.

In the dynamic allocation of secondary servers, 
we employ the Weighted Round Robin algorithm. 
Servers are weighted based on their computing 
capabilities and network conditions, with a higher 

weight indicating a better ability to handle more 
requests. We initialize a variable, current_weight, 
to zero and assign initial weights to each server. 
An index variable tracks the chosen server. For 
each access device, the process involves: (a) find-
ing the server with the highest current_weight, (b) 
designating this server for the task, and (c) adjust-
ing its current_weight by subtracting the collective 
initial weights of all servers. Subsequently, each 
server’s current_weight is incremented by its initial 
weight. If all server weights drop below zero, they 
revert to their starting values, restarting the allo-
cation. This ensures optimal server assignment for 
rendering tasks.

In densely populated XR environments, users 
interact in shared virtual spaces via on-demand 
and distributed rendering. When users connect 
to distant edge servers, edge-cloud collaboration 
becomes vital for synchronizing data like location, 
actions, and object states. For example, as depict-
ed in Fig. 3, XR users ue1 and ue2 link to edge1 
and edge2, respectively. The synchronization and 
interaction across these users, bridging vast dis-
tances and different server domains, involves: 
(a) Cloud-mediated data synchronization between 
edge1 and edge2, encompassing scene compo-
nents, objects, textures, etc. (b) Exchange of user 
states—edge1 conveys ue1’s status to the cloud, 
which then syncs it to edge2, and the reverse 
occurs for ue2. Conclusively, edge1 and edge2 ren-
der the respective users’ environments, leveraging 
on-demand techniques based on the synchronized 
user data and scene details.

PrototyPe And evAluAtIon

use cAse And IMPleMentAtIon
Figure 4 depicts the SCAXR-driven multi-user XR 
meeting service, enabling interactions across var-
ious devices. The cloud server coordinates edge 
servers, ensuring consistent scene, object, and 
interaction states. The journey starts with the con-
ference initiator setting up a meeting room on an 
edge server, allowing various XR users to join. The 
setup harnesses an AliCloud server as the cloud 
node, two high-end servers (with NVIDIA 3060 
GPU) as edge servers, and multiple XR devices. 
Unity Render Streaming handles rendering, and 
WebRTC manages XR device connections and 
edge server data synchronization. Cloud server 
synchronization interfaces across different edges 
are crafted via Python Flask. Our platform sup-
ports AR glasses, VR glasses, and smartphones. 
It also integrates real-time holographic volumetric 
video capture [13], [15] to amplify the immer-
sive quality of interactions. Given the range of XR 
devices, the on-demand rendering module at the 
edge servers provides tailored rendering services. 
For instance, while VR and mobile devices get a 
full render of the virtual meeting, AR glasses just 
get the 3D holographic speaker, blending it into 
the actual environment. These merged renderings 
are then distributed to the respective XR devices 
through the Unity Render Streaming framework.

eXPerIMentAl settIngs
In Fig. 4, we delineate the network environment 
specifications of SCAXR. Utilizing China Unicom’s 
5G network at BUPT, we set up two edge servers, 
maintaining a network latency of 5 ms between 

Servers are weighted based on their computing capabilities and network conditions, with a higher 
weight indicating a better ability to handle more requests
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them. All XR devices synchronize with these edge 
servers over a WiFi connection adhering to the 
IEEE 802.11ac standard, capable of reaching data 
rate speeds up to 1.3 Gbps in the 5 GHz frequen-
cy band. Nonetheless, during our tests with multi-
ple devices under diverse conditions, the average 
throughput approximated 430 Mbps. Moreover, 
the mean end-to-end latencies for edge-cloud and 
device-edge interactions stand at 20 ms and 8 ms, 
respectively

evAluAtIon
We benchmark the scalability of SCAXR against 
traditional client-server and peer-to-peer methods, 
evaluating motion-to-picture and synchronization 
latency, and average GPU load. The motion-to-
picture metric quantifies the latency all users 
encounter following an action initiated by any 
user. ‘client-cloud’ and ‘client-edge’ refer to serv-
er deployments at distinct layers. ‘client-cloud/
edge-C’ and ‘client-cloud/edge-L’ indicate where 
rendering computations are carried out, either 
on the server or the accessing devices. For inter-
action scenarios, we employ a scene and objects 
amassing 134 MB in total size. Scene complexi-
ty is gauged by the count of its triangular faces. 
Using Selenium, we emulate varying user access 
scales, with all participants entering the same 
scene from random starting points to observe and 
interact with objects.

Results indicate the following: (1) Fig. 5a illus-
trates motion-to-picture latency, while Fig. 5b 
presents synchronization latency under varied 
user scales on a single edge server. SCAXR nota-
bly surpasses the baseline in motion-to-picture 
latency, showing marked enhancement with 
25 devices. At ten devices, both client-cloud-C 
and cloud-client-L’s motion-to-picture latencies 
exceed 50ms, slightly impacting user experi-
ence. However, SCAXR’s latency remains below 
50  ms even with 15 devices. As depicted in 
Fig. 5b, cloud-edge-L and peer-to-peer exhib-
it lower synchronization latency than SCAXR. 
However, their motion-to-picture latency is at 
least 2.4 times greater than that of SCAXR when 
accessing 15 devices. This highlights SCAXR’s 
efficient on-demand rendering module, balanc-
ing rendering tasks between servers and devices 
for optimal performance. With over 15 devices, 
SCAXR’s latency goes beyond 50 ms, reaching its 
limit at 20, suggesting a single server’s capacity 
to support around 15 devices. SCAXR enhances 
access capacity by at least 50% over client-server 
methods with a latency cap of 50 ms. As inter-
active scene complexity grows, the supported 
device count might decline. Still, SCAXR proves 
its scalability, accommodating more devices 
even with increased intricacy.

(2) Figure 5c and d depict the average GPU 
load on access devices and the edge server, 
respectively. Both peer-to-peer and server-only 
strategies encounter GPU loads exceeding 80% 
with just ten devices due to the entire render-
ing demand of the complete scene and dynam-
ic objects by each device. Contrarily, SCAXR 
dynamically distributes rendering tasks, allowing 
the server to manage intricate scene rendering. 
Consequently, SCAXR’s server GPU load is only 
37%, while client-cloud-C and client-edge-C meth-
ods are near 65%, as shown in Fig. 5d. With 20 

devices, the average GPU load climbs to 85%, 
indicating the peak capacity of current resources. 
In summary, SCAXR consistently surpasses com-
peting methods in motion-to-picture latency and 
GPU load, showcasing superior resource efficien-
cy and scalability.

(3) In Fig. 5e through h, we detail the per-
formance metrics—motion-to-picture, synchro-
nization latency, and average GPU usage—of 
different techniques employing two edge serv-
ers for interaction. The extended client-server 
architectures, denoted as ‘client-edges-C’ and 
‘client-edges-L’, follow SCAXR’s distributed strat-
egy for multi-server interaction. We manipulat-
ed transmission latency between the servers to 
emulate varying distances. Each server was des-
ignated to either three or two of the five access 
devices, all with similar computational capabil-
ities, arranged through Selenium. The interac-
tion scene and settings remained consistent with 
earlier experiments. As the inter-server transmis-
sion latency rises, so do both motion-to-picture 
and synchronization latencies. At a transmission 
latency of 10 ms, SCAXR and client-edges-L reg-
ister a motion-to-picture latency near 20 ms. The 
brevity in SCAXR’s latency arises due to its lim-
ited reliance on server synchronization for inter-
action data. Conversely, client-edges-C mandates 
full interaction synchronization across servers 
prior to rendering, resulting in latencies surpass-
ing 60 ms. The chief source of synchronization 
latency is the interaction data from diverse server 
users. GPU results from Fig. 5g and h highlight 
that SCAXR’s distributed rendering doesn’t intensi-
fy GPU demand on devices or servers. Only inter-
action state data syncs on devices under the same 
server, while static scenes and objects sync via 
the cloud. Remarkably, with two servers, SCAXR 
averages a mere 13% GPU load (at 10 ms trans-
mission latency), a noticeable decrease compared 
to a single server’s load for five devices shown in 
Fig. 5d. Consequently, the data imply that SCAXR 
could effectively harness additional servers to 
accommodate even larger user scales, possibly 
facilitating multi-user interaction spanning hun-
dreds to thousands of participants.

FIGURE 4. Use case and the prototype system of a multi-user XR meeting.
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In Fig. 6, we assess the interaction experience 
using access devices of varied computational 
strengths. The interaction content encompasses 
both the scene and dynamic objects, inclusive 
of holographic content backed by AI computa-
tion. Our experimental setup, depicted in Fig. 4, 
features an AliCloud server and two edge serv-
ers located across dual campuses of BUPT, sep-
arated by 20 km. Each edge server boasts 32 GB 
RAM and an NVIDIA 3060 GPU. A chosen scene 
model, integrating 1.2 million triangles, was uti-
lized. For latency and rendering frequency mea-
surements, we employed a laptop with 16 GB 
RAM and an NVIDIA 2080 GPU. Rendering 
frequency data, sourced from the Unity engine, 
underwent over ten measurement cycles to 
ensure dependable consistency.

The results show that: (1) Fig. 6a and b illus-
trate an evaluation of the rendering frequency 
and the motion-to-picture latency associated 
with interaction devices possessing varying com-
putational capacities. In comparison to the 
client-cloud-L, client-edge-L, and peer-to-peer 
methods, the results in Fig. 6a indicate that 
SCAXR can enhance the rendering frequency of 
the low-performance HUAWEI Mate9 by 22%, 
2.7%, and 52%, respectively. The client-cloud-C 
and client-edge-C methods, in contrast, manifest 
a higher rendering frequency than SCAXR, a fact 
attributable to the complete execution of render-
ing computations within the cloud server. Howev-
er, when the computational performance of the 
device is substantial, as with an interactive device 
utilizing a Desktop PC, the rendering frequencies 
of both client-cloud-L, client-edge-L, and SCAXR 
surpass those of the client-cloud/edge-C meth-
ods. This outcome can be attributed to the con-
siderable computational capacity of the device, 

coupled with the fact that the client-cloud/
edge-C methods necessitated thrice render-
ing of the same content, thereby resulting in a 
diminished rendering frequency. Contrariwise, as 
depicted in Fig. 6b, the motion-to-picture laten-
cies of the client-cloud-C and client-edge-C dis-
played minimal fluctuations, whereas the other 
methods that were reliant on device rendering 
demonstrated performance commensurate with 
the average rendering frequency. Interestingly, 
SCAXR displayed a distinctive ability to dynami-
cally alternate rendering tasks between the server 
and the device. As a result, SCAXR showcased 
exemplary performance even on the less power-
ful HUAWEI Mate9.

(2) Figure 6c and d delve into the impact 
of scene model complexity, using three access 
devices with consistent computational abili-
ties simulated through Selenium. Server-based 
methodologies, specifically client-cloud-C, and 
client-edge-C, are notably more influenced by 
scene intricacy than peer-to-peer, client-cloud-L, 
and client-edge-L techniques. The latter meth-
ods experience a more muted rendering fre-
quency impact. This distinction is due to the 
server-based technique requiring every device 
to independently render both the scene and 
dynamic entities. Notably, in Fig. 6c, SCAXR 
amplifies performance for scenes with intricate 
interactions, boasting a rendering frequency 
enhancement of up to 7.8 times. When scene 
complexity escalates, the server-based strategy 
demands rendering tasks N times more than 
device-exclusive rendering, where N signifies 
the count of interactive devices. Given SCAXR’s 
adeptness in fluidly allocating rendering tasks 
between servers and devices, it consistently out-
performs both approaches.

FIGURE 5. Comparison of SCAXR and baseline architectures. a) Single-server motion-to-picture latency. b) Single-server synchronization 
latency. c) Average GPU load of access devices (one server). d) Average GPU load of server (one server). e) Dual-server motion-
to-picture latency. f) Dual-server synchronization latency. g) Average GPU load of access devices (two servers). h) Average GPU 
load of server (two servers).
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(3) Figure 6e and f detail the computation-
al expenses of rendering holographic content 
in SCAXR using AI methods. As illustrated in 
Fig. 4, real-time holographic video is first cap-
tured at the acquisition server. Here, it under-
goes AI-enhanced fusion before being sent to 
the server for further rendering. In setups such 
as client-cloud-C, client-edge-C, and SCAXR, 
we treat the holographic content as a core part 
of the scene model, meaning the server direct-
ly decodes this dense content. On the other 
hand, for configurations like client-edge-L, cli-
ent-cloud-L, and peer-to-peer, we adopt the 
AI-based holographic video transmission meth-
od from our previous research [13]. This meth-
od transmits the video’s key points and then 
reconstructs it based on these points at the tar-
get devices. Specifically, Fig. 6e illustrates the 
overhead associated with AI-based holographic 
content decoding using a Generative Adversarial 
Network (GAN)-based method [14].

The analysis shows that in the configurations 
of client-cloud-C, client-edge-C, and SCAXR, AI 
inference occurs server-side, resulting in a mod-
est inference cost of around 10 ms. In contrast, 
methods like client-cloud-L, client-edge-L, and peer-
to-peer experience a much higher inference laten-
cy, surpassing 45 ms. While using a compressed 
AI decoding model might reduce this to 15 ms, 
it comes at the expense of decreased accuracy 
in the decoded holographic content. Rendering 
holographic content directly on access devices 
significantly heightens the computational load. 
SCAXR’s on-demand rendering approach enables 
holographic content decoding at the edge server, 
which is then combined with device rendering out-
comes. This highlights SCAXR’s capability in han-
dling complex and compute-intensive 3D content, 
including holography. Figure 6f displays synchro-
nization overhead for holographic content. Nota-
bly, there’s no marked increase in synchronization 
overhead when transmitting key points of holo-
graphic content versus the full point cloud data. 
This suggests that using an AI-driven transmission 
method can significantly reduce data transmission 
volume when dealing with holographic content.

In Fig. 6g and h, we evaluate SCAXR against 
SEAR [12], a caching-based multi-user AR interac-
tion method, assessing average interaction latency 
for AI object detection and scene rendering tasks. 
Experimental conditions and device settings are 
consistent with prior descriptions. For Fig. 6g, we 
tested using five devices on lightweight object 
detection tasks. Each device shares its results with 
others. We examined cache hit ratios of 30%, 
40%, and 50%. SCAXR does not use caching, 
while Cache-SCAXR adopts SEAR’s strategy. The 
metric is the average delay for devices to syn-
chronize results. Figure 6h contrasts SEAR and 
SCAXR on a previously mentioned scene render-
ing task. The findings are: (1) caching enhances 
AI or reusable XR computations. At a 50% cache 
hit ratio, SEAR and Cache-SCAXR improved by 
34.78% and 30.43%, respectively. Caching reduc-
es AI reinferencing overhead but demands result 
synchronization, introducing extra latency with 
server-based methods. (2) SEAR’s performance 
gain is minimal in diverse XR scene rendering. 
Minor device orientation or viewpoint shifts 
necessitate unique rendering, making caching 

effective only in shared or distant view scenarios. 
Hence, SEAR’s cache hit rate is minimal, rivaling 
the Client-Edge-L method in such contexts. In con-
clusion, while caching strategies can enhance the 
system’s performance in specific task scenarios, 

FIGURE 6. In-depth analysis of SCAXR. a) Average rendering frequency using 
access devices with capabilities; b) motion-to-picture using access devices 
with capabilities; c) average rendering frequency with different interaction 
scenes; d) motion-to-picture with different interaction scenes; e) inference 
latency of AI-based holographic computing; f) synchronization latency 
of holographic contents; g) comparing SCAXR with SEAR with on object 
detection; and h) comparison with cache-based SEAR on scene rendering.
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it’s imperative to decouple and intricately design 
the system’s computational tasks and processes to 
achieve tangible benefits.

dIscussIon And conclusIon
This paper presents SCAXR, a scalable multi-user 
XR interaction framework leveraging the synergis-
tic benefits of cloud, edge, and device collabo-
ration. SCAXR offers two pivotal enhancements 
over existing methods. First, it features a low-la-
tency, edge-based rendering structure paired 
with a central cloud hub. This facilitates synchro-
nized interaction data exchange among distant 
edges, thus boosting scalability. Second, SCAXR’s 
dynamic rendering strategy adeptly mitigates 
the resource limitations of XR devices, offering 
tailored content rendering solutions that meet 
the diverse demands of XR users. To validate its 
effectiveness, we implemented a prototype of 
SCAXR and compared it with prevailing inter-
action frameworks. Employing a multi-user XR 
meeting as a representative example, our results 
underscore SCAXR’s promise as a formidable 
framework for advanced multi-user XR interac-
tions in intricate settings. As we gaze ahead, 
our ambition is to refine the user experience in 
SCAXR further. Proposed enhancements encom-
pass adaptive multimodal streaming transfer 
scheduling, efficient large-scale XR model ren-
dering, swift XR streaming transfers, and robust 
synchronization and consistency guarantees for 
distributed rendering.
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SCAXR’s on-demand rendering approach enables holographic content decoding at the edge server, 
which is then combined with device rendering outcomes.
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