
IEEE Network • July/August 2024250 0890-8044/23©2023IEEE

AbstrAct
Scalable multi-user interactions on diverse

extended reality (XR) devices are vital for the
metaverse’s fruition. However, issues like broad
user access, intensive interaction rendering, and
limited device resources complicate existing inter-
actions based on client-server and peer-to-peer
structures. The metaverse’s demands for scal-
able access and detailed scene rendering inten-
sify these problems. In response, we present
SCAXR, a collaborative architecture enhancing
multi-user interaction. SCAXR leverages three key
components: an on-demand rendering module,
a distributed rendering process, and edge-cloud
synchronization. This module ensures timely com-
munication between XR devices and edge servers.
We tested SCAXR’s efficacy with a Unity Render
Streaming-based XR meeting prototype. Results
show SCAXR boosts access capacity by 50% over
traditional methods and enhances complex scene
interaction performance by up to 7.8 times in ren-
dering frequency.

IntroductIon
Real-time communications and collaborations are
fundamental for the implementation of multi-user
extended reality (XR) within the metaverse era,
allowing XR users to interact and exchange their
states and operations within a unified virtual
environment [1], [2]. The metaverse necessitates
fine-grained and large-scale interaction scene
rendering computation coupled with intensive
interaction data communications among users
(e.g., displacement of coordinates of virtual
objects, users’ viewport changes, and controller
clicks). As the user base for metaverse interac-
tions grows, numbers could soar to hundreds
or even thousands. Yet, current research [3], [4]
mainly tests with three to five devices. As access
scales, intricate scenes, and virtual objects mul-
tiply, XR devices with limited resources will face
tougher rendering tasks like vision segmentation
and recognition. This presents two primary chal-
lenges: dynamically scaling user access and ensur-
ing intense multi-user rendering across varied XR
devices with resource constraints.

The multi-user interaction architectures are
detailed in Fig. 1, encompassing client-server,
peer-to-peer, and distributed server approaches.

Within the client-server architecture, servers
cater to XR device requests by hosting, deliver-
ing, and managing resources. Two interaction
styles, depicted in Fig. 1a, are client-server-C
and client-server-L. The former is server-centric
for synchronization and dense rendering, while
the latter leans on devices for intensive render-
ing, using servers only for synchronization. Weber
et al. [3] introduced a modular multi-user XR
framework adaptable to diverse applications. Yet,
their testing was limited to three devices and a
basic AR interaction model. ARENA [4] presents
an edge architecture for easily creating collabo-
rative XR applications on WebXR browsers. Its
real-world applications, though, are centered on
simple VR chats and AR models with only three
devices. Additionally, ILLIXR [5] pinpoints key fac-
tors influencing XR systems, such as latency, ren-
dering frequency, and resource handling.

In the peer-to-peer architecture, devices direct-
ly exchange and synchronize interactions, such as
location and dynamic virtual objects [6]. While
advantageous in confined interaction ranges, as
shown in Fig. 1b, each of the four devices first
synchronizes interactions from peers and then
conducts local rendering. However, this archi-
tecture demands devices with robust comput-
ing and a reliable network to ensure consistent
inter-device experiences [7]. Any unstable con-
nection or underperforming device can disrupt
synchronization, jeopardizing interaction consis-
tency. Such disruptions can cause delays, notably
in video games or intensive AR applications [8].
Hence, it’s best suited for a limited user group in a
localized setting.

The distributed architecture, an evolution of
the client-server model, uses multiple servers to
support rendering complex scenes and virtual
objects for a vast array of devices [9]. A primary
server directs intensive interaction and rendering
tasks to secondary servers [10]. While inheriting
data synchronization from its predecessor, it still
grapples with network communication latency
issues [11]. SEAR [12] offers a cache strategy for
multi-user AR’s computer vision tasks. Yet, this
architecture doesn’t fully harness resources from
devices with diverse computational capabilities.
The model mitigates computational strain by parti-
tioning the interaction computation (i.e., the algo-
rithms and computational methods we employ to

SCAXR: Empowering Scalable Multi-User Interaction for Heterogeneous XR Devices
Yakun Huang, Haowen Wang, Xiuquan Qiao, Xiang Su, Yang Li, Schahram Dustdar, and Ping Zhang

OPEN CALL ARTICLE

Yakun Huang, Haowen Wang, Xiuquan Qiao (corresponding author), and Ping Zhang are with the State Key Laboratory of Networking
and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China; Xiang Su is with the Department
of Computer Science, Norwegian University of Science and Technology, 2815 Gjøvik, Norway; Yang Li is with the Department of Service

Research, China Mobile Communications Research Institute Bejing, Bejing 100053, China; Schahram Dustdar is with the Distributed
Systems Group, Technische Universität Wien, 1040 Vienna, Austria.

Digital Object Identifier:
10.1109/MNET.2023.3320440
Date of Current Version:
15 July 2024
Date of Publication:
3 October 2023

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 22,2024 at 08:19:44 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • July/August 2024 251

process and understand this data. e.g., pose esti-
mation, coordinate transformation) and allocating
it across servers. However, existing multi-user XR
interaction architectures still struggle to balance
rendering loads dynamically between servers and
resource-limited devices.

In this work, we propose SCAXR, a scal-
able multi-user interaction architecture for
resource-constrained XR devices. Our approach
develops an on-demand and distributed rendering
mechanism to improve the scalability of the exist-
ing cloud-edge-device architecture. Specifically,
the on-demand rendering module can dynami-
cally distribute intensive rendering tasks to each
device based on their computing resources and
server conditions. Subsequently, we propose dis-
tributed rendering and edge-cloud collaboration
mechanisms to ensure synchronized access and
data consistency for multiple users. We have
implemented a prototype of a multi-user XR meet-
ing using the Unity Render Streaming framework1
and evaluated its performance based on the
motion-to-picture latency, synchronization latency,
GPU load, and in-depth analysis with different XR
devices. Our results demonstrate an improvement
in scalability when accessing devices of different
capabilities and expand the maximum access
capability of interactions on the server. More-
over, SCAXR can support interaction devices with
different computing capabilities, provide lower
motion-to-picture latency, and improve the ren-
dering frequency compared to baseline methods.

The paper is structured as follows:
Section II discusses the motivation and challeng-
es of multi-user XR interaction; Section III intro-
duces the proposed SCAXR framework and its
components; Section IV presents the prototype
system and evaluates the performance of SCAXR;
and Section V concludes the paper and delineates
future directions.

MotIvAtIon And chAllenges
To support varying user access scales, we use Sele-
nium,2 a tool that autonomously manages user
interactions, capable of handling dozens of users
on standard computing devices. Our multi-us-
er interaction application is defined by a shared
scene (78 MB) and three dynamic objects, each
around 14 MB. Evaluating scalability (see Fig. 2),
we adopt typical client-server and peer-to-peer
architectures on an AliCloud server with a T4 card
GN6i GPU. Specifically, the client-server architec-
ture has (1) Client-server-C: The server handles
synchronization and rendering for each device,
sending rendering results as video streams; (2)
Client-server-L: The server synchronizes the scene,
objects, and device states, but each device locally
renders results. Meanwhile, the peer-to-peer meth-
od first connects devices, then shares the scene
and objects among them. All synchronization and
rendering processes are entirely device-centric.

Figure 2a and b illustrate the effects of rising
numbers of access devices on the edge server’s
synchronization latency and GPU load, respec-
tively. Synchronization latency here refers to the
alignment of user operations, states, and rendered
outcomes, excluding rendering and computation-
al latencies. Using Selenium to simulate multi-us-
er access, a laptop’s capacity to support users is
finite, maxing out at 20 users in our tests. Results

highlight an increase in both synchronization
latency and GPU load proportional to user count.
Notably, with five access users, client-server-L
and peer-to-peer architectures nearly deplete all
GPU resources for local rendering. This suggests
that the scalability of these methods is restricted
by the device’s computational prowess. In our
tests, the laptop could accommodate five simu-
lated access users. Further, while raising the num-
ber of users didn’t markedly raise synchronization
latency for the client-server-L and peer-to-peer
methods, it did max out the GPU, leading to an
average rendering frequency below 1 Hz (as per
the Unity engine). The rendering frequency refers
to the number of frames rendered per second
after the device has obtained synchronized data.

Our study utilized four varied devices: two lap-
tops and two smartphones - HUAWEI Mate30
(with Mali-G76 GPU) and Mate9 (with Mali-
G71MP8 GPU) - aiming to appraise the interac-
tion performance across varying computational
abilities. As depicted in Fig. 2c and d, synchro-
nization latency and the average interaction

FIGURE 1. Scheme of multi-user interaction architectures. a) In the client-
server-C, the server fully handles synchronization and rendering, while in
the client-server-L, the server is used solely to synchronize operations and
static scenes and objects. b) This method illustrates each device bearing
complete responsibility for communication and rendering. c) The primary
server oversees interactions and delegates rendering tasks to secondary
servers.

1https://github.com/
Unity-Technologies/
UnityRenderStreaming

2https://www.selenium.dev

Moreover, SCAXR can support interaction devices with different computing capabilities, provide lower
motion-to-picture latency, and improve the rendering frequency compared to baseline methods

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 22,2024 at 08:19:44 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • July/August 2024252

rendering frequency are illustrated, respectively.
Interestingly, variations in device computation-
al capacities barely influenced data synchroniza-
tion, such as scenes, objects, and states. These
aspects are mainly steered by network perfor-
mance. Devices with distinct computational capa-
bilities demonstrated lower rendering frequencies
under client-server-L and peer-to-peer models.
This is governed by the rendering capabilities
of the device and the server. Conversely, the
client-server-C model exhibited substantially high-
er rendering frequencies as all rendering activi-
ties transpire on the cloud server, outstripping the
local device’s capabilities. Notably, the peer-to-
peer model achieved the smallest synchronization
latency, given that most device synchronization is
contingent upon the WiFi network. Our primary
pursuit is to bolster rendering efficacy while curb-
ing the impact of a range of devices with diverse
computational capabilities.

Our preliminary analysis highlights the limita-
tions of the existing client-server and peer-to-peer
architectures in terms of scalability between het-
erogeneous devices. To actualize optimal interac-
tions, two paramount challenges arise:

(a) Large-Scale XR User Access: Dynamics
and Scalability. Conventional multi-user interac-
tion frameworks are tailored for smaller, local-
ized interaction domains, consequently limiting
scalability. Contrastingly, emerging metaverse
platforms could necessitate expansive XR interac-
tions that traverse varied geographical locations,
exacerbating interaction latency and intensify-
ing rendering computations among devices. The
concurrent access by a plethora of users plac-
es significant demands on both networking and

computational capacities. Key hurdles include
optimizing cloud resources and mobile energy
consumption, all while upholding stringent stan-
dards for interaction latency and data fidelity. The
dynamic engagement of mobile XR users also
necessitates adept resource distribution and task
scheduling.

(b) Heterogeneous and Resource-Constrained
XR Devices: Facing Intensive Rendering and AI
Computations. XR interaction services heavily
depend on 3D visual computing and immersive
rendering computations, posing significant chal-
lenges for both cloud centers and XR devices
[13]. Achieving a full XR interaction implementa-
tion is arduous due to the massive computational
requirements either in the cloud or on devices.
For instance, 3D scene models within the Unity
rendering engine can demand hundreds of mega-
bytes or even gigabytes. AI computations, such as
those computer vision tasks based on DNN and
CNN structures (e.g., object recognition, track-
ing [12] and 3D generation computations [14]),
require GPU support for real-time inference. The
extensive computation required by numerous
users limits the accessibility of XR devices.

scAXr ArchItecture
We introduce the SCAXR architecture and its
components, illustrated in Fig. 3. Rooted in the
existing cloud-edge-device framework [2], SCAXR
offers a scalable solution. The on-demand ren-
dering module in SCAXR ensures efficient com-
putation by dynamically distributing rendering
tasks between XR devices and the edge server,
maximizing device computational resources.
Meanwhile, our distributed rendering mechanism
caters to a vast number of XR users. Although
the on-demand rendering offloads tasks from the
edge server to XR devices to minimize the serv-
er’s computational load, the addition of multiple
devices necessitates multiple edge servers for syn-
chronized interaction. The cloud center becomes
pivotal for synchronizing user actions and scene
states across vast distances and different edge
servers. During the start, scenes and static objects
are duplicated over edge servers, removing the
need for inter-edge result transfers. Consequently,
edge-cloud synchronization maintains long-dis-
tance interaction data consistency.

On-demand Rendering Module. As illustrated
in the left of Fig. 3, this module dynamically dele-
gates rendering tasks, considering the computing
capacity of XR devices and edge servers. The key
steps involved include state verification and syn-
chronization, scheduling, interaction updates, and
the transfer of rendering results. Initially, we repre-
sent the rendered scene within a three-dimension-
al vector space, where each object is symbolized
by a 3D coordinate. Assume that there are N
devices, represented as C1, C2, …, CN, and M ren-
dering objects within the scene, symbolized as
O1, O2, …, OM. Each object, Oi, has its position
represented by the 3D vector (xi, yi, zi). Subse-
quently, the on-demand rendering process unfolds
as follows:
STEP. 1. State Verification and Synchroniza-

tion. Initially, the edge server E verifies
the access state of all devices and obtains
their performance weights, denoted by W
= {w1, w2, …, wN}. Each wi indicates the

FIGURE 2. Interaction using access devices of varying scales and computing
capabilities. a) synchronization latency across varying scales. b) GPU load in
correlation to different scales. c) Synchronization latency relative to devices
with distinct computing capabilities. d) Comparing average rendering
frequency among devices with differing computing capabilities.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 22,2024 at 08:19:44 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • July/August 2024 253

computing capability and network condition
of a device. Specifically, wi is determined
as w B Bi c o= − +() /1 δ , where δ represents
the GPU usage, and Bc and Bo stand for the
current and optimal network bandwidths,
respectively. This formulation can be adjusted
or substituted with other parameters. Subse-
quently, the edge server broadcasts the scene
and objects to all devices, achieving primary
synchronization.

STEP. 2. Rendering Scheduling. The edge server
E collaboratively determines rendering task
distribution with devices, considering their
performance and network conditions. For less
capable devices, E might handle the render-
ing of complex scene objects, leaving simpler
ones to the device. In contrast, high-perfor-
mance devices might receive more rendering
tasks, easing the server’s burden. Task assign-
ments are based on a device’s performance
weight Wi, expressed as R(E, Ci, Wi). The col-
lection of objects rendered by E for device Ci
is given by Ri.

STEP. 3. Interaction Updates. XR devices send
their user interaction states, such as location
and activity, to the edge server E. In response,
E revises the scene and objects, and dissemi-
nates the updates to all devices. If device Ci
has an interaction state Ii , it communicates
this as U C Ii i(,) to E. The server then modifies
the scene object using this data, represented
as U E I I IN(, { , , , }).1 2 … Afterward, E broadcasts
the refreshed scene information to all devices,
denoted as B E O O OM(, { , , , }).1 2’ ’ ’…

STEP. 4. Transfer and Presentation of Results.
The edge server transmits the rendering out-
puts, like images and textures, to the device.
This device then assimilates results with its
local renderings and showcases them to the
user.

By repetitively executing the outlined steps,
adaptive rendering is attained, ensuring seam-
less interaction between the edge server and XR
devices. This process adapts to ever-changing net-
work conditions and computing capacities.

The scheduling of on-demand rendering in
STEP. 2 is informed by the present conditions of
the access device, which include network laten-
cy, computing capabilities (e.g., GPU), and the
current load, in addition to the complexity of
the task. Task complexity is determined by fac-
tors such as scene complexity, texture size, and
lighting calculations. It can also be extended to
include more characteristics. A dynamic allocation
method is established with the primary objective
of reducing total rendering latency while ensuring
balanced load distribution. The assignment of ren-
dering tasks, including scenes and other objects,
is denoted as a two-dimensional matrix T[i][j], rep-
resenting the weight of the ith device allocated
to the jth rendering task. The optimization objec-
tive seeks to minimize the expression ∑ ∗(W i j[][]
(network_delay [i] + task_complexity [j])), adher-
ing to constraints that ensure task completion.
Firstly, each rendering task is assigned exclusive-
ly to a single device or edge server, denoted as
(([][])∑ =W i j 1,).∀j Secondly, the total load per
device cannot surpass a predetermined threshold:
(([][]∑ ∗W i j task_complexity [])j <= max _ load ∗
available_resources [],).i i∀ This optimization
model can be resolved using a variety of optimiza-
tion algorithms, such as linear programming.

Moreover, the rendering outputs from both
the edge server (denoted as Cedge and Dedge for
the color buffer and depth buffer respectively)
and the XR device in STEP. 4 (denoted as Clocal
and Dlocal for the local color buffer and depth buf-
fer respectively) are integrated using depth value
comparison. A novel color buffer, Cfinal, is intro-
duced to store the resulting merged image. Each

FIGURE 3. The SCAXR architecture for multi-user XR interaction integrates three primary modules: on-demand rendering, distributed
rendering, and edge-cloud synchronization, facilitating a robust framework for complex interaction scenarios.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 22,2024 at 08:19:44 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • July/August 2024254

pixel (i, j) of Cedge and Clocal is then processed as
follows: (a) Depth values of the edge server and
local rendering results are obtained: depthedge
= Dedge[i][j], depthlocal = Dlocal[i][j]. (b) The two
depth values are compared: if depthedge < depth-
local, then the edge server’s color rendering is uti-
lized: Cfinal[i][j] = Cedge[i][j]. Otherwise, the local
rendering’s color value is used: Cfinal[i][j] = Clocal[i]
[j]. Upon concluding this pixel-wise operation, Cfi-
nal emerges as the merged rendering buffer. The
final image render is achieved by presenting Cfinal
to the user. This depth-dependent image synthesis
technique effectively merges the edge server and
local device rendering outputs, furnishing a final
rendering for the user.

Distributed Rendering Mechanism. The
distributed rendering framework utilizes a hier-
archical architecture composed of one primary
server and multiple secondary servers, designed
to enable real-time synchronization and efficient
rendering services in high-density device envi-
ronments. In Fig. 3, the primary server has three
principal functions: (a) collecting status and inter-
action data from all devices; (b) measuring the
intricacy of the current rendering tasks for XR
devices and distributing them to secondary serv-
ers based on their capability and workload; (c)
sustaining updated task assignments via regular
communication with the secondary servers. On
the other hand, the responsibilities of the second-
ary servers consist of (i) commencing the exe-
cution of tasks using the on-demand rendering
method upon receipt of the corresponding assign-
ments from the primary server; (ii) regularly com-
municating with the primary server to convey the
device connection statuses and receive updates
on assigned tasks.

We describe in detail how the distributed mech-
anism manages interaction and rendering tasks
during large-scale usage. The interaction rendering
pertains to the graphical display or visualization of
the computed interactions. In the multi-user XR
interaction context shown in Fig. 3, the primary
server manages states across devices and assigns
tasks to secondary servers based on rendering
needs. The allocation process comprises three
stages: (a) Primary Server Assignment. For simul-
taneous XR user access, devices are allocated to
secondary servers via a weighted Round Robin
load-balancing strategy, factoring in user location,
device capabilities, and rendering complexity. (b)
Rendering and Interaction. Devices liaise with
their assigned secondary servers for task rendering,
utilizing on-demand techniques to optimize perfor-
mance. (c) Data Synchronization and Updates.
To maintain consistent rendering, the system syn-
chronizes shared data like scene specifics and user
operations across secondary servers. This strategy
optimizes server load, enhances scalability based
on user numbers and computational demands, and
ensures efficient, high-quality rendering.

In the dynamic allocation of secondary servers,
we employ the Weighted Round Robin algorithm.
Servers are weighted based on their computing
capabilities and network conditions, with a higher

weight indicating a better ability to handle more
requests. We initialize a variable, current_weight,
to zero and assign initial weights to each server.
An index variable tracks the chosen server. For
each access device, the process involves: (a) find-
ing the server with the highest current_weight, (b)
designating this server for the task, and (c) adjust-
ing its current_weight by subtracting the collective
initial weights of all servers. Subsequently, each
server’s current_weight is incremented by its initial
weight. If all server weights drop below zero, they
revert to their starting values, restarting the allo-
cation. This ensures optimal server assignment for
rendering tasks.

In densely populated XR environments, users
interact in shared virtual spaces via on-demand
and distributed rendering. When users connect
to distant edge servers, edge-cloud collaboration
becomes vital for synchronizing data like location,
actions, and object states. For example, as depict-
ed in Fig. 3, XR users ue1 and ue2 link to edge1
and edge2, respectively. The synchronization and
interaction across these users, bridging vast dis-
tances and different server domains, involves:
(a) Cloud-mediated data synchronization between
edge1 and edge2, encompassing scene compo-
nents, objects, textures, etc. (b) Exchange of user
states—edge1 conveys ue1’s status to the cloud,
which then syncs it to edge2, and the reverse
occurs for ue2. Conclusively, edge1 and edge2 ren-
der the respective users’ environments, leveraging
on-demand techniques based on the synchronized
user data and scene details.

PrototyPe And evAluAtIon

use cAse And IMPleMentAtIon
Figure 4 depicts the SCAXR-driven multi-user XR
meeting service, enabling interactions across var-
ious devices. The cloud server coordinates edge
servers, ensuring consistent scene, object, and
interaction states. The journey starts with the con-
ference initiator setting up a meeting room on an
edge server, allowing various XR users to join. The
setup harnesses an AliCloud server as the cloud
node, two high-end servers (with NVIDIA 3060
GPU) as edge servers, and multiple XR devices.
Unity Render Streaming handles rendering, and
WebRTC manages XR device connections and
edge server data synchronization. Cloud server
synchronization interfaces across different edges
are crafted via Python Flask. Our platform sup-
ports AR glasses, VR glasses, and smartphones.
It also integrates real-time holographic volumetric
video capture [13], [15] to amplify the immer-
sive quality of interactions. Given the range of XR
devices, the on-demand rendering module at the
edge servers provides tailored rendering services.
For instance, while VR and mobile devices get a
full render of the virtual meeting, AR glasses just
get the 3D holographic speaker, blending it into
the actual environment. These merged renderings
are then distributed to the respective XR devices
through the Unity Render Streaming framework.

eXPerIMentAl settIngs
In Fig. 4, we delineate the network environment
specifications of SCAXR. Utilizing China Unicom’s
5G network at BUPT, we set up two edge servers,
maintaining a network latency of 5 ms between

Servers are weighted based on their computing capabilities and network conditions, with a higher
weight indicating a better ability to handle more requests

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 22,2024 at 08:19:44 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • July/August 2024 255

them. All XR devices synchronize with these edge
servers over a WiFi connection adhering to the
IEEE 802.11ac standard, capable of reaching data
rate speeds up to 1.3 Gbps in the 5 GHz frequen-
cy band. Nonetheless, during our tests with multi-
ple devices under diverse conditions, the average
throughput approximated 430 Mbps. Moreover,
the mean end-to-end latencies for edge-cloud and
device-edge interactions stand at 20 ms and 8 ms,
respectively

evAluAtIon
We benchmark the scalability of SCAXR against
traditional client-server and peer-to-peer methods,
evaluating motion-to-picture and synchronization
latency, and average GPU load. The motion-to-
picture metric quantifies the latency all users
encounter following an action initiated by any
user. ‘client-cloud’ and ‘client-edge’ refer to serv-
er deployments at distinct layers. ‘client-cloud/
edge-C’ and ‘client-cloud/edge-L’ indicate where
rendering computations are carried out, either
on the server or the accessing devices. For inter-
action scenarios, we employ a scene and objects
amassing 134 MB in total size. Scene complexi-
ty is gauged by the count of its triangular faces.
Using Selenium, we emulate varying user access
scales, with all participants entering the same
scene from random starting points to observe and
interact with objects.

Results indicate the following: (1) Fig. 5a illus-
trates motion-to-picture latency, while Fig. 5b
presents synchronization latency under varied
user scales on a single edge server. SCAXR nota-
bly surpasses the baseline in motion-to-picture
latency, showing marked enhancement with
25 devices. At ten devices, both client-cloud-C
and cloud-client-L’s motion-to-picture latencies
exceed 50ms, slightly impacting user experi-
ence. However, SCAXR’s latency remains below
50 ms even with 15 devices. As depicted in
Fig. 5b, cloud-edge-L and peer-to-peer exhib-
it lower synchronization latency than SCAXR.
However, their motion-to-picture latency is at
least 2.4 times greater than that of SCAXR when
accessing 15 devices. This highlights SCAXR’s
efficient on-demand rendering module, balanc-
ing rendering tasks between servers and devices
for optimal performance. With over 15 devices,
SCAXR’s latency goes beyond 50 ms, reaching its
limit at 20, suggesting a single server’s capacity
to support around 15 devices. SCAXR enhances
access capacity by at least 50% over client-server
methods with a latency cap of 50 ms. As inter-
active scene complexity grows, the supported
device count might decline. Still, SCAXR proves
its scalability, accommodating more devices
even with increased intricacy.

(2) Figure 5c and d depict the average GPU
load on access devices and the edge server,
respectively. Both peer-to-peer and server-only
strategies encounter GPU loads exceeding 80%
with just ten devices due to the entire render-
ing demand of the complete scene and dynam-
ic objects by each device. Contrarily, SCAXR
dynamically distributes rendering tasks, allowing
the server to manage intricate scene rendering.
Consequently, SCAXR’s server GPU load is only
37%, while client-cloud-C and client-edge-C meth-
ods are near 65%, as shown in Fig. 5d. With 20

devices, the average GPU load climbs to 85%,
indicating the peak capacity of current resources.
In summary, SCAXR consistently surpasses com-
peting methods in motion-to-picture latency and
GPU load, showcasing superior resource efficien-
cy and scalability.

(3) In Fig. 5e through h, we detail the per-
formance metrics—motion-to-picture, synchro-
nization latency, and average GPU usage—of
different techniques employing two edge serv-
ers for interaction. The extended client-server
architectures, denoted as ‘client-edges-C’ and
‘client-edges-L’, follow SCAXR’s distributed strat-
egy for multi-server interaction. We manipulat-
ed transmission latency between the servers to
emulate varying distances. Each server was des-
ignated to either three or two of the five access
devices, all with similar computational capabil-
ities, arranged through Selenium. The interac-
tion scene and settings remained consistent with
earlier experiments. As the inter-server transmis-
sion latency rises, so do both motion-to-picture
and synchronization latencies. At a transmission
latency of 10 ms, SCAXR and client-edges-L reg-
ister a motion-to-picture latency near 20 ms. The
brevity in SCAXR’s latency arises due to its lim-
ited reliance on server synchronization for inter-
action data. Conversely, client-edges-C mandates
full interaction synchronization across servers
prior to rendering, resulting in latencies surpass-
ing 60 ms. The chief source of synchronization
latency is the interaction data from diverse server
users. GPU results from Fig. 5g and h highlight
that SCAXR’s distributed rendering doesn’t intensi-
fy GPU demand on devices or servers. Only inter-
action state data syncs on devices under the same
server, while static scenes and objects sync via
the cloud. Remarkably, with two servers, SCAXR
averages a mere 13% GPU load (at 10 ms trans-
mission latency), a noticeable decrease compared
to a single server’s load for five devices shown in
Fig. 5d. Consequently, the data imply that SCAXR
could effectively harness additional servers to
accommodate even larger user scales, possibly
facilitating multi-user interaction spanning hun-
dreds to thousands of participants.

FIGURE 4. Use case and the prototype system of a multi-user XR meeting.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 22,2024 at 08:19:44 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • July/August 2024256

In Fig. 6, we assess the interaction experience
using access devices of varied computational
strengths. The interaction content encompasses
both the scene and dynamic objects, inclusive
of holographic content backed by AI computa-
tion. Our experimental setup, depicted in Fig. 4,
features an AliCloud server and two edge serv-
ers located across dual campuses of BUPT, sep-
arated by 20 km. Each edge server boasts 32 GB
RAM and an NVIDIA 3060 GPU. A chosen scene
model, integrating 1.2 million triangles, was uti-
lized. For latency and rendering frequency mea-
surements, we employed a laptop with 16 GB
RAM and an NVIDIA 2080 GPU. Rendering
frequency data, sourced from the Unity engine,
underwent over ten measurement cycles to
ensure dependable consistency.

The results show that: (1) Fig. 6a and b illus-
trate an evaluation of the rendering frequency
and the motion-to-picture latency associated
with interaction devices possessing varying com-
putational capacities. In comparison to the
client-cloud-L, client-edge-L, and peer-to-peer
methods, the results in Fig. 6a indicate that
SCAXR can enhance the rendering frequency of
the low-performance HUAWEI Mate9 by 22%,
2.7%, and 52%, respectively. The client-cloud-C
and client-edge-C methods, in contrast, manifest
a higher rendering frequency than SCAXR, a fact
attributable to the complete execution of render-
ing computations within the cloud server. Howev-
er, when the computational performance of the
device is substantial, as with an interactive device
utilizing a Desktop PC, the rendering frequencies
of both client-cloud-L, client-edge-L, and SCAXR
surpass those of the client-cloud/edge-C meth-
ods. This outcome can be attributed to the con-
siderable computational capacity of the device,

coupled with the fact that the client-cloud/
edge-C methods necessitated thrice render-
ing of the same content, thereby resulting in a
diminished rendering frequency. Contrariwise, as
depicted in Fig. 6b, the motion-to-picture laten-
cies of the client-cloud-C and client-edge-C dis-
played minimal fluctuations, whereas the other
methods that were reliant on device rendering
demonstrated performance commensurate with
the average rendering frequency. Interestingly,
SCAXR displayed a distinctive ability to dynami-
cally alternate rendering tasks between the server
and the device. As a result, SCAXR showcased
exemplary performance even on the less power-
ful HUAWEI Mate9.

(2) Figure 6c and d delve into the impact
of scene model complexity, using three access
devices with consistent computational abili-
ties simulated through Selenium. Server-based
methodologies, specifically client-cloud-C, and
client-edge-C, are notably more influenced by
scene intricacy than peer-to-peer, client-cloud-L,
and client-edge-L techniques. The latter meth-
ods experience a more muted rendering fre-
quency impact. This distinction is due to the
server-based technique requiring every device
to independently render both the scene and
dynamic entities. Notably, in Fig. 6c, SCAXR
amplifies performance for scenes with intricate
interactions, boasting a rendering frequency
enhancement of up to 7.8 times. When scene
complexity escalates, the server-based strategy
demands rendering tasks N times more than
device-exclusive rendering, where N signifies
the count of interactive devices. Given SCAXR’s
adeptness in fluidly allocating rendering tasks
between servers and devices, it consistently out-
performs both approaches.

FIGURE 5. Comparison of SCAXR and baseline architectures. a) Single-server motion-to-picture latency. b) Single-server synchronization
latency. c) Average GPU load of access devices (one server). d) Average GPU load of server (one server). e) Dual-server motion-
to-picture latency. f) Dual-server synchronization latency. g) Average GPU load of access devices (two servers). h) Average GPU
load of server (two servers).

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 22,2024 at 08:19:44 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • July/August 2024 257

(3) Figure 6e and f detail the computation-
al expenses of rendering holographic content
in SCAXR using AI methods. As illustrated in
Fig. 4, real-time holographic video is first cap-
tured at the acquisition server. Here, it under-
goes AI-enhanced fusion before being sent to
the server for further rendering. In setups such
as client-cloud-C, client-edge-C, and SCAXR,
we treat the holographic content as a core part
of the scene model, meaning the server direct-
ly decodes this dense content. On the other
hand, for configurations like client-edge-L, cli-
ent-cloud-L, and peer-to-peer, we adopt the
AI-based holographic video transmission meth-
od from our previous research [13]. This meth-
od transmits the video’s key points and then
reconstructs it based on these points at the tar-
get devices. Specifically, Fig. 6e illustrates the
overhead associated with AI-based holographic
content decoding using a Generative Adversarial
Network (GAN)-based method [14].

The analysis shows that in the configurations
of client-cloud-C, client-edge-C, and SCAXR, AI
inference occurs server-side, resulting in a mod-
est inference cost of around 10 ms. In contrast,
methods like client-cloud-L, client-edge-L, and peer-
to-peer experience a much higher inference laten-
cy, surpassing 45 ms. While using a compressed
AI decoding model might reduce this to 15 ms,
it comes at the expense of decreased accuracy
in the decoded holographic content. Rendering
holographic content directly on access devices
significantly heightens the computational load.
SCAXR’s on-demand rendering approach enables
holographic content decoding at the edge server,
which is then combined with device rendering out-
comes. This highlights SCAXR’s capability in han-
dling complex and compute-intensive 3D content,
including holography. Figure 6f displays synchro-
nization overhead for holographic content. Nota-
bly, there’s no marked increase in synchronization
overhead when transmitting key points of holo-
graphic content versus the full point cloud data.
This suggests that using an AI-driven transmission
method can significantly reduce data transmission
volume when dealing with holographic content.

In Fig. 6g and h, we evaluate SCAXR against
SEAR [12], a caching-based multi-user AR interac-
tion method, assessing average interaction latency
for AI object detection and scene rendering tasks.
Experimental conditions and device settings are
consistent with prior descriptions. For Fig. 6g, we
tested using five devices on lightweight object
detection tasks. Each device shares its results with
others. We examined cache hit ratios of 30%,
40%, and 50%. SCAXR does not use caching,
while Cache-SCAXR adopts SEAR’s strategy. The
metric is the average delay for devices to syn-
chronize results. Figure 6h contrasts SEAR and
SCAXR on a previously mentioned scene render-
ing task. The findings are: (1) caching enhances
AI or reusable XR computations. At a 50% cache
hit ratio, SEAR and Cache-SCAXR improved by
34.78% and 30.43%, respectively. Caching reduc-
es AI reinferencing overhead but demands result
synchronization, introducing extra latency with
server-based methods. (2) SEAR’s performance
gain is minimal in diverse XR scene rendering.
Minor device orientation or viewpoint shifts
necessitate unique rendering, making caching

effective only in shared or distant view scenarios.
Hence, SEAR’s cache hit rate is minimal, rivaling
the Client-Edge-L method in such contexts. In con-
clusion, while caching strategies can enhance the
system’s performance in specific task scenarios,

FIGURE 6. In-depth analysis of SCAXR. a) Average rendering frequency using
access devices with capabilities; b) motion-to-picture using access devices
with capabilities; c) average rendering frequency with different interaction
scenes; d) motion-to-picture with different interaction scenes; e) inference
latency of AI-based holographic computing; f) synchronization latency
of holographic contents; g) comparing SCAXR with SEAR with on object
detection; and h) comparison with cache-based SEAR on scene rendering.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 22,2024 at 08:19:44 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • July/August 2024258

it’s imperative to decouple and intricately design
the system’s computational tasks and processes to
achieve tangible benefits.

dIscussIon And conclusIon
This paper presents SCAXR, a scalable multi-user
XR interaction framework leveraging the synergis-
tic benefits of cloud, edge, and device collabo-
ration. SCAXR offers two pivotal enhancements
over existing methods. First, it features a low-la-
tency, edge-based rendering structure paired
with a central cloud hub. This facilitates synchro-
nized interaction data exchange among distant
edges, thus boosting scalability. Second, SCAXR’s
dynamic rendering strategy adeptly mitigates
the resource limitations of XR devices, offering
tailored content rendering solutions that meet
the diverse demands of XR users. To validate its
effectiveness, we implemented a prototype of
SCAXR and compared it with prevailing inter-
action frameworks. Employing a multi-user XR
meeting as a representative example, our results
underscore SCAXR’s promise as a formidable
framework for advanced multi-user XR interac-
tions in intricate settings. As we gaze ahead,
our ambition is to refine the user experience in
SCAXR further. Proposed enhancements encom-
pass adaptive multimodal streaming transfer
scheduling, efficient large-scale XR model ren-
dering, swift XR streaming transfers, and robust
synchronization and consistency guarantees for
distributed rendering.

AcknowledgMent
This work was supported in part by the Nation-
al Key Research and Development Program of
China under Grant 2022YFF0904304, in part
by the National Natural Science Foundation of
China under Grant 62202065, and in part by the
Project funded by China Postdoctoral Science
Foundation under Grant 2022TQ0047 and Grant
2022M710465.

RefeRences
[1] F. Tang et al., “The roadmap of communication and net-

working in 6G for the Metaverse,” IEEE Wireless Com-
mun., vol. 30, no. 4, pp. 72–81, Aug. 2023, doi: 10.1109/
MWC.019.2100721.

[2] B. Han et al., “CoMIC: A collaborative mobile immersive
computing infrastructure for conducting multi-user XR
research,” IEEE Netw., early access, Sep. 26, 2022, doi:
10.1109/MNET.126.2200385.

[3] S. Weber et al., “Frameworks enabling ubiquitous mixed
reality applications across dynamically adaptable device
configurations,” Frontiers Virtual Reality, vol. 3, Apr. 2022,
Art. no. 765959.

[4] N. Pereira et al., “ARENA: The augmented reality edge net-
working architecture,” in Proc. IEEE Int. Symp. Mixed Aug-
mented Reality (ISMAR), Oct. 2021, pp. 479–488.

[5] M. Huzaifa et al., “Exploring extended reality with ILLIXR:
A new playground for architecture research,” 2020,
arXiv:2004.04643.

[6] N. Suslov, “LiveSoding.space: Towards P2P collaborative live
programming environment for WebXR,” in Proc. 4th Int.
Conf. Live Coding, 2019, pp. 1–6.

[7] H. A. Engelbrecht and J. S. Gilmore, “Pithos: Distributed
storage for massive multi-user virtual environments,” ACM
Trans. Multimedia Comput., Commun., Appl., vol. 13, no. 3,
pp. 1–33, 2017.

[8] P. Ren et al., “Edge AR X5: An edge-assisted multi-user col-
laborative framework for mobile Web augmented reality in
5G and beyond,” IEEE Trans. Cloud Comput., vol. 10, no. 4,
pp. 2521–2537, Oct./Dec. 2022.

[9] Y. Okuya et al., “Distributed architecture for remote collab-
orative modification of parametric CAD data,” in Proc. IEEE
4th VR Int. Workshop Collaborative Virtual Environ. (3DCVE),
Mar. 2018, pp. 1–4.

[10] J. Donkervliet, J. Cuijpers, and A. Iosup, “Dyconits: Scaling
minecraftlike services through dynamically managed incon-
sistency,” in Proc. IEEE 41st Int. Conf. Distrib. Comput. Syst.
(ICDCS), Jul. 2021, pp. 126–137.

[11] S. Shen et al., “Area of simulation: Mechanism and architec-
ture for multi-avatar virtual environments,” ACM Trans. Mul-
timedia Comput., Commun., Appl., vol. 12, no. 1, pp. 1–24,
2015.

[12] W. Zhang, B. Han, and P. Hui, “SEAR: Scaling experiences
in multi-user augmented reality,” IEEE Trans. Vis. Comput.
Graphics, vol. 28, no. 5, pp. 1982–1992, May 2022.

[13] Y. Huang et al., “Toward holographic video communica-
tions: A promising AI-driven solution,” IEEE Commun. Mag.,
vol. 60, no. 11, pp. 82–88, Nov. 2022.

[14] Y. Huang et al., “AITransfer: Progressive AI-powered trans-
mission for real-time point cloud video streaming,” in Proc.
29th ACM Int. Conf. Multimedia, 2021, pp. 3989–3997.

[15] Y. Zhu et al., “A semantic-aware transmission with adaptive
control scheme for volumetric video service,” IEEE Trans.
Multimedia, early access, Oct. 28, 2022, doi: 10.1109/
TMM.2022.3217928.

BiogRaphies
Yakun Huang (ykhuang@bupt.edu.cn) is currently a Post-Doc-
toral Researcher with the State Key Laboratory of Networking
and Switching Technology, Beijing University of Posts and Tele-
communications, Beijing, China. His current research interests
include volumetric video streaming, mobile computing, and
augmented reality.

Haowen wang (hw.wang@bupt.edu.cn) is currently pursuing
the Ph.D. degree with the State Key Laboratory of Networking
and Switching Technology, Beijing University of Posts and Tele-
communications, Beijing, China. His current research interests
include 3D object detection and deep learning.

Xiuquan qiao (qiaoxq@bupt.edu.cn) is currently a Full Profes-
sor with the State Key Laboratory of Networking and Switching
Technology, Beijing University of Posts and Telecommunica-
tions, Beijing, China. His current research interests include the
future Internet, services computing, computer vision, distrib-
uted deep learning, augmented reality, virtual reality, and 5G
networks.

Xiang Su (Member, IEEE) (xiang.su@ntnu.no) is currently an
Associate Professor with the Department of Computer Science,
Norwegian University of Science and Technology, Norway, and
the University of Oulu, Finland. He has extensive expertise in
the Internet of Things, edge computing, mobile augmented
reality, knowledge representations, and context modeling and
reasoning.

Yang Li (liyangyw@chinamobie.com) is a Project Manager of
the Department of Service Research, China Mobile Communi-
cations Research Institute. His current research interests include
5G, augmented reality, and video streaming.

ScHaHram DuStDar (Fellow, IEEE) (dustdar@dsg.tuwien.ac.at) is
a Full Professor of computer science and is heading the Distrib-
uted Systems Research Division at the TU Wien. He is an ACM
Distinguished Scientist, an ACM Distinguished Speaker, an IEEE
Fellow, and a Member of Academia Europaea.

Ping ZHang (Fellow, IEEE) (pzhang@bupt.edu.cn) is currently
a Full Professor and the Director of the State Key Laboratory
of Networking and Switching Technology, Beijing University of
Posts and Telecommunications, Beijing, China. He is an Aca-
demician with the Chinese Academy of Engineering (CAE). He
is also a member of the IMT-2020 (5G) Experts Panel and the
Experts Panel for China’s 6G development.

SCAXR’s on-demand rendering approach enables holographic content decoding at the edge server,
which is then combined with device rendering outcomes.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 22,2024 at 08:19:44 UTC from IEEE Xplore. Restrictions apply.

mailto:xiang.su@ntnu.no
mailto:liyangyw@chinamobie.com
mailto:dustdar@dsg.tuwien.ac.at

