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Abstract—Spatial Crowdsourcing (SC) has been an indispens-
able Location-based Service where the SC server assigns tasks to
workers based on the locations of task requesters and workers,
raising strong privacy concerns. Limited by the computational and
time complexity, existing works prefer differential privacy-based
methods to protect location privacy. However, most differential
privacy-based works ignore the road network, perturbing loca-
tions on two-dimensional plane, resulting in more failures in tasks
and moreover extensive privacy disclosure in practice. This paper
aims to implement a multi-task assignment with both high utility
and efficiency while protecting the location privacy of both task
requesters and workers on road networks. Specifically, we design
a Road Network-aware Exponential Mechanism and propose an
Obfuscated Locations Selection algorithm to guarantee location
privacy of all participants and extensive privacy. Then, we propose
region distance. Based on this, we further formulate multi-task
assignment as a Binary Linear Programming problem and a utility-
aware optimization problem. We solve the first problem to obtain
optimal efficiency and then propose a utility-aware optimization
algorithm for the second problem to improve the utility. Our exper-
iments demonstrate sufficient and stable privacy guarantee and the
well-performance on both utility and efficiency of our framework.

Index Terms—Location privacy, multi-task assignment, road
network, spatial crowdsourcing.
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1. INTRODUCTION

ITH the development of mobile devices and GPS po-
W sitioning, Spatial Crowdsourcing (SC) [1], [2], [3], [4],
(51, (61, [71, [81, [91, [10], [111, [12], [13], [14], [15], [16] has
become an indispensable Location-based Service in people’s
lives, such as ride-hailing services (e.g., Uber, Didi), food de-
livery (e.g., Grubhub, Meituan) [17], [18]. In the SC system,
multiple tasks containing locations are sent to the SC server
by task requesters. Then, based on workers’ locations, the SC
server assigns these tasks to multiple suitable workers and these
assigned workers need to complete corresponding tasks on time.

However, the information exchange in SC can lead to the
leakage of participants’ (including task requesters and workers)
location information [12], [13], [14], [15], [16], which poses
severe threats to their privacy and security. Specifically, 1) The
SC server may leak participants’ exact locations to advertisers
or vicious companies. 2) Malicious workers may acquire tasks’
exact locations even though without being assigned, which
threatens the location privacy of task requesters.

The existing works concerning location privacy protection
in SC can be primarily classified into differential privacy-
based frameworks [1], [2], [12], [13], [14], [15], [17] and
cryptography-based frameworks [3], [19], [20], [21], [22]. Lim-
ited by the computational and time complexity in multi-task
assignment, these existing works prefer the differential privacy-
based algorithms to those based on cryptography. However, most
of the differential privacy-based works [1], [2], [12], [13], [14],
[15], [17] perturb locations based on the Euclidean distances
on the two-dimensional plane rather than the distances on road
networks, and thus the behavior of perturbing data results in more
failures of tasks and extensive privacy disclosure (e.g., person-
ality traits far beyond location privacy) [23]. Several differential
privacy-based works [1], [17], considering the distances on road
networks, ignored the location privacy of task requesters, and
moreover cannot guarantee the location privacy of workers in
worker-dense areas and the data utility in the remote areas as
the perturbed locations are significantly far from the exacted
ones in the remote suburb.

To address these problems above, we design a differential
privacy-based framework that perturbs locations based on the
distances on road networks, protecting both the location pri-
vacy of task requesters and workers. Moreover, it preserves
the behavior of perturbing locations and thereby the extensive
privacy. Our main idea is that the locations of task requesters and
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workers are perturbed locally, and on the basis of the perturbed
locations, the SC server obtains a well-performed multi-task
assignment on both efficiency (i.e., average travel distance) and
utility (i.e., assignment success rate). Though the basic idea
sounds straightforward, we are facing the following challenges.

1) It is nontrivial to design a differential privacy-based mech-
anism for location privacy of both task requesters and work-
ers on road networks, since the topology of road networks is
irregular rather than a continuous two-dimensional plane. To
this end, we propose a location obfuscation scheme on road
networks. It first samples the road network into discrete loca-
tions. Then, based on that, it specially defines e-RN-differential
privacy. After that, it utilizes a Road Network-aware Exponential
Mechanism (RNEM), we proposed, to perturb real locations
of task requesters and workers on road networks, which is
theoretically proved to be subordinate to e-differential privacy.
Furthermore, perturbed locations of task requesters and workers
are well restricted to road networks by our mechanism, based
on which their behaviors of perturbing data are also preserved
from disclosure.

2) It is hard to implement the multi-task assignment on
perturbed locations of both task requesters and workers, as
there are significant errors between distances among perturbed
locations and distances among real locations for tasks requesters
and workers. For that, we propose the region distance based
on Bayesian inference to replace the distance among perturbed
locations. Furthermore, we formulate the multi-task assignment
on region distances as a Binary Linear Programming (0-1 LP)
problem, based on which we can obtain the assignment with the
minimal average travel distance (ATD).

3) It is complicated to implement a multi-task assignment
with both high utility and efficiency, since minimal ATD does
not promise high assignment success rate (ASR). Therefore,
we attempt to exchange workers’ tasks to improve ASR. Yet,
task exchange will break out the assignment for the minimal
ATD, where there will be a increase in ATD. For that, we
first set an upper threshold 7" for the increase rate 7 of ATD
compared to minimal ATD, and then formulate a task exchange
problem to increase ASR while keeping the increase of ATD
within 7”. To solve this problem, we propose the ASR-aware
Optimization algorithm to improve assignment success rate,
where the increase rate of ATD n < n7.

In addition, we conduct extensive experiments on the real
taxi dataset from the Roma [24] and set several representative
frameworks [17], [18], [25] as baselines to investigate the lo-
cation privacy, efficiency and utility of multi-task assignment,
compared with our framework. The experimental results indicate
that our framework can provide sufficient and stable location
privacy protection for both task requesters and workers on road
networks, whether downtown or in a remote suburb. Compared
to the state-of-the-art, our framework performs much better on
average travel distance, where ATD < 1.0km downtown and
ATD < 3.75km in aremote suburb. Furthermore, our framework
achieves both high efficiency and utility in multi-task assign-
ment. Specifically, in extreme cases, our framework can increase
the ASR (i.e., utility) by 17.2% while keeping the ATD (i.e.,
efficiency) growth less than 5%.
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The rest of this article is organized as follows. We demon-
strate the related work in Section II. Then, we introduce preli-
minaries in Section III and raise the problem statement of our
framework in Section IV. An overview of our framework is
demonstrated in Section V and then, we present details of
privacy protection in our framework in Section VI and multi-task
assignment on obfuscated locations in Section VII. Thereafter,
we evaluate the performance of our framework in Section VIII.
Finally, we draw the conclusion in Section IX.

II. RELATED WORK

In this section, we briefly review the related work.

A. Cryptography-Based Frameworks

To protect location privacy in SC, several methods based
on cryptography have been developed to encrypt location in-
formation while implementing multi-task assignment. Shu et
al. [22] proposed a non-interactive privacy-preserving task
recommendation framework (PPTR), where the locations of
both task requesters and workers were encrypted to protect their
location privacy, and multiple task requesters would be matched
with multiple workers. In 2019, Yuan et al. [21] proposed
an efficient task assignment algorithm (PriRadar), aiming at
improving the assigned time by instantly assigning tasks to
nearby workers while protecting the data of tasks and workers.
Based on encrypted locations, iTAM [3], proposed by Zhao et al.
focused on minimizing travel distance of workers. Li et al. [19]
designed a grid-based privacy-preserving framework for online
SC (GPSC) to obtain a trade-off between efficiency and security
considering the preferences of task requesters. According to
investigated interests of workers, Song et al. [20] proposed a
privacy-preserving task matching framework (PPTM) to achieve
efficient task matching, meanwhile, protect the privacy of loca-
tions and interests of task requesters and workers.

These cryptography-based works achieve reliable location
privacy protection by encrypting the locations of task requesters
and workers. However, constrained by the computational and
communication complexity, cryptography-based frameworks
are difficult to be implemented in practice. Therefore, differ-
ential privacy-based frameworks are more preferred in Spatial
Crowdsourcing.

B. Differential Privacy-Based Frameworks

In SC, locations of task requesters and workers are involved
in multi-task assignment, in which location privacy of task
requesters and workers may be disclosed to adversaries. Based
on differential privacy and geocasting, To et al. [26] assumed a
trusted Cell Service Provider (CSP) to provide location privacy
for workers, which is the first work focused on location privacy
issues in SC. After that, to improve the overhead of the assign-
ment, Toetal. [2] improved the framework [26] by factoring the
geocast system overhead. Nevertheless, the trusted third parties
were not practical. For that, Wang et al. [12], [18] focused
on protecting workers’ location privacy without involving any
trusted third parties while achieving the optimal task assignment
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Fig. 1. A part of road networks abstracted from real city traffic map.

with minimal travel distance. Unfortunately, the location privacy
of task requesters has not been protected in [2], [12], [18], [26].
Wei et al. [15] proposed a differential privacy-based location
protection framework (DPLP), aiming to achieve the trade-off
between utility and system overhead while protecting the loca-
tion privacy of both task requesters and workers. Tao et al. [13]
designed a novel privacy mechanism based on Hierarchically
Well-Separated Trees to minimize the total distance for the SC
system. However, all these works above perturbed locations
on the two-dimensional plane and ignored the road network,
which might lead to the disclosure of the behavior of perturbing
locations. Furthermore, due to ignoring the road network, there
would be more workers unable to complete tasks because detour
results in more failures tasks. Qiuetal. [1], [17] considered road
networks and designed a differential privacy-based framework
to protect workers’ location privacy. But it was a pity that they
ignored the location privacy of task requesters, and moreover
could not guarantee the data utility in remote areas.

To tackle these problems above, our framework takes into ac-
count the road networks and designs a differential privacy-based
mechanism to protect the location privacy of both task requesters
and workers, while achieving a high assignment success rate and
a low average travel distance. Moreover, with perturbed loca-
tions constrained to the road network, participants’ behaviors of
perturbing locations are completely preserved from disclosure.

III. PRELIMINARIES

In this section, we first demonstrate the road network model
adopted in our privacy-preserving framework. Then, we intro-
duce the de facto standard e-differential privacy. Finally, several
metrics represent the location privacy, the efficiency and the
utility of multi-task assignment.

A. Road Network Model

With reference to the related work [6], [27], we use directed
weighted graph to process the information of the road network.
As shown in Fig. 1, we extract the city’s road networks structure
from the real city traffic map, which consists of critical locations
and roads. We represent the road networks by directed weighted
graph G = (V, &), where locations and roads are represented by
the set of vertices )V and the set of edges &, respectively. Each
edge and vertex are presented by e; ; € £ and v; € V respec-
tively, where v; denotes the vertex numbered ¢ and e; ; denotes
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the edge connected by v; and v;. For example, in Fig. 1, V =
{’Ul7 V2, ...y ’012} and £ = {612, €1,3,€21,- -+ 612’9}, which be
worth noting that e 2 and ez ; are considered as different edges
in directed weighted graph. We assume that both task requesters
and workers are located in the road networks G, where [} and [
denote the task requester and the worker’s locations respectively.

It is hard to abstract road networks as a directed weighted
graph from the real city traffic map. Thanks to OpenStreetMap'
and igraph,” we overcome this complicated problem and easily
build the road network model for our framework.

B. e-Differential Privacy

e-differential privacy [28], [29], as we know, has been a de
facto standard privacy-preserving conception in recent years,
which can provide a provable privacy guarantee. Specifically,
if a mechanism satisfies e-differential privacy, with two inputs
of adjacent datasets, the outputs can not be distinguished by an
adversary with side information.

Definition 1 (e-Differential Privacy): Given two adjacent
datasets D, D" and € > 0, a privacy mechanism K satisfies
e-differential privacy iff for different records z and z’:

PriK(zeD)=y] _ .
PR eD) =y =YW M

where K (z € D) and K (2’ € D') differ in an individual record
of inputs, e is the privacy budget, the smaller ¢, the higher privacy.

C. Performance Metrics

In SC, the obfuscated locations of task requesters and workers
guarantee location privacy. However, it causes the dilemma
that noisy locations do harmful to multi-task assignment. With
this, we need to consider two aspects of our work, location
privacy (i.e., Expected Estimation Error (E3) [25], [30], [31])
and multi-task assignment, which is evaluated with two metrics,
the efficiency (i.e., Average Travel Distance (ATD) [2], [18])
and the utility (i.e., Assignment Success Rate (ASR) [2], [18]).

1) Location Privacy: The standard metric to measure loca-
tion privacy is Expected Estimation Error, which represents the
distance between the real location and the location inferred by
adversaries. More specifically, we assume that adversaries have
the side information about an obfuscated location [,,, and the side
information can be expressed by a prior probability distribution
on possible locations WP. Pr(w; ) is the probability assign to the
possible location w; € WP. Pr(l,|w;) is the probability that the
reported location [, is converted from w;. Based on Bayesian
inference [25], [28], [32], the posterior probability model of the
victim’s real location can be calculated as follows:

Pr(l,|w;)Pr(w;)
2w, ewr Pr(lo|w;)Pr(w;)

Then, based on the posterior probability model, the adversary
strives to estimate the real location with the largest posterior

Pr(w;|l,) = ,w; €WPL 0 (2)

1.https://www.openstreetmap.org/
2.https://igraph.org/
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probability W, = arg maxy,ew Pr(w;|l,). Expected Esti-
mation Error is defined as follows:

Definition 2 (Expected Estimation Error (E3)): We define the
Expected Estimation Error as the distance between w4, and
the real location [, on road networks.

E3 = d(wmar7 lr)a (3)

where d(-) denotes the Euclidean distance between two loca-
tions, and the higher degree of E3 achieved, the higher location
privacy guaranteed.

2) Efficiency of Multi-Task Assignment: In Spatial Crowd-
sourcing, Average Travel Distance (ATD) is a common metric
used to measure the efficiency of task assignment [2], [18]).
A worker’s travel distance represents the distance between the
assigned worker’s true location and the task requester’s true
location, while the average travel distance is defined as follows:

Definition 3 (Average Travel Distance (ATD)): Assume there
are IV tasks in an assignment, ATD is the average value of
multiple travel distances.

N
_ 1 t qw
ATD = N ;_1 d-(I;, 1), “4)

where d,.(1¢,1”) denotes the shortest distance between task re-
quester’s location [} and worker’s location [%. The lower degree
of ATD denotes better efficiency of multi-task assignment.

3) Utility of Multi-Task Assignment: In the multi-task as-
signment, workers who fail in their tasks also need to be cared
about. In more details, assume there are five tasks with several
travel distances 3.1 km, 2.4 km, 1.3 km, 8.2 km, 0.8 km, where
ATD = 3.16km. d,, = 8.2km means that the assigned worker is
far away from the task requester and could not complete the task
on time. Hence, we introduce Assignment Success Rate (ASR)
to represent the utility of multi-task assignment. We define a
success assignment as d,.(I¢,1%) < d¥, where d¥ denotes the
threshold of workers’” acceptable distance.

Definition 4 (Assignment Success Rate (ASR)): ASR indi-
cates the percentage of success assignments in all assignments:

The number of success assignments

A _=
SR The total number of assignments

&)

where we always want to obtain ASR as high as possible, while
keeping the increase of ATD tolerable.

IV. PROBLEM STATEMENT

In this section, we first describe the attack model. Then, we
present the goal of our framework.

A. Attack Model

In Spatial Crowdsourcing, we consider locations of both task
requesters and workers as private information, which needs to be
protected. The potential privacy disclosure is composed of two
kinds of entities, Semi-honest SC server and Curious-but-honest
workers.

Semi-honest SC Server: As the existing works [11], [14], [33],
[34], we consider the SC server is semi-honest. That is, the SC
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server will strictly execute its functions, i.e., honestly transmit-
ting information and implementing multi-task assignment. But
it may attempt to disclose task requesters and workers’ location
privacy. More specifically, the SC server can access the location
information of all participants throughout the entire Spatial
Crowdsourcing and may leak their locations to advertisers or
even evil companies, who may abuse the location information
of task requesters and workers. That seriously threatens task
requesters and workers’ location privacy.

Curious-but-honest Workers: As the existing works [14], [15],
we consider workers in SC are curious-but-honest. Locations
of tasks may be disclosed to the adversary by some specific
workers. If a mass of workers has access to the exact locations
of tasks, the location privacy of task requesters will be seriously
threatened.

B. Goals of Our Framework

Goals of our framework consists of Privacy Goal and Goal
of Multi-task assignment on Obfuscated Locations:

Privacy Goal: There are three privacy goals of our framework.
The first privacy goal is that the simi-honest server cannot
determine the real location of each participant. In particular,
each location of participant will be perturbed locally before sent
to the server, preventing the server from the real location. The
second privacy goal is that anyone of the workers is not allowed
to access the exact location of a task requester until one of them
is assigned, where we consider the assigned worker is trusted.
In order to preserve the behavior of perturbing locations, we
give the third privacy goal that no one can identify whether a
participant’s location is a perturbed location.

Goal of Multi-task Assignment on Obfuscated Locations: Ob-
fuscated locations result in many difficulties in multi-task assign-
ment. Our goal is to implement a multi-task assignment with
both high utility and efficiency. That is a high ASR and a low
ATD.

V. OVERVIEW OF OUR FRAMEWORK

As shown in Fig. 2, our framework is composed of Location
Obfuscation on Road Networks and Multi-task Assignment on
Obfuscated Locations.

Location Obfuscation on Road Networks: In order to achieve
the privacy goal (introduced in Section IV-B), we first need
to sample the road network to generate the set ¥V of possible
obfuscated locations. Thereby, we propose the Obfuscated Lo-
cations Selection Algorithm 1 to generate YV on participants’
devices utilizing their real locations (cf. Section VI-B). Then,
we adopt W as the basis of our privacy-preserving mechanism
and design the Road Network-aware Exponential Mechanism
(RNEM) to locally perturb locations of task requesters and
workers, satisfying e-differential privacy (cf. Section VI-A).

Multi-task Assignment on Obfuscated Locations: There are
significant errors on distances among obfuscated locations,
making it hard to obtain a well-performed multi-task assign-
ment on the SC server. For that, in Section VII-A, we design
region distances to replace these distances among obfuscated
locations and propose a protocol to calculate region distances
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Fig. 2. Overview of RoPriv.

utilizing workers’ real locations without disclosing their lo-
cation privacy. Then, to obtain high utility and efficiency, we
decompose Multi-task Assignment on Obfuscated Locations
into two relevant problems, Multi-task Assignment on Region
Distances (P1) in Section VII-B and Utility-aware Optimization
(P2) in Section VII-C. Firstly, to solve P1, we formulate it
into a Binary Linear Programming (0-1 LP) problem based on
region distances and adopt the Hungarian algorithm to obtain
the assignment with minimum ATD. Since improving ASR may
increase ATD, we formulate this problem to maximize ASR
subject to the increase threshold n” of ATD. To solve P2, we
propose the ASR-aware Optimization Algorithm 3 to exchange
tasks between failed workers and successful assigned workers to
improve ASR while keeping the increase rate 7 of ATD within
the threshold n".

VI. LOCATION OBFUSCATION ON ROAD NETWORKS

To protect location privacy on road networks in SC, we
need to consider two issues. First, the irregular topology of
road networks makes it difficult to design a privacy-preserving
mechanism satisfying e-differential privacy on road networks.
Second, this mechanism needs to guarantee the location privacy
of both task requesters and workers. Motivated by several related
works [25], [35], [36], we employ exponential mechanism and
replace the road network with discrete locations to solve the first
issue in Section VI-A. Then, in Section VI-B, we propose the
Obfuscated Locations Selection Algorithm 1 to select discrete
locations locally based on participants’ locations without con-
sidering any external parameter, which solves the second issue.

A. Road Network-Aware Exponential Mechanism

With a set WV of discrete locations abstracted from the road
network, we consider W as the set of possible obfuscated loca-
tions of task requesters and workers. Then, we give the definition
of differential privacy on road networks concisely.

Definition 5 (e-RN-differential privacy): A mechanism K
satisfies e-RN-differential privacy iff for all I, I/ :

Pr[K(l,) =1,) < exp(ed,(l;,1,)/Ad,)Pr[K () =1,], (6)

wherel, € W, d,.(-) represent the shortest distance between two
locations [, I, and Ad,. denotes the sensitivity of d,.(-), defined
as Maky, (dy (I, w;)), w; € W.

Corollary 1: If a mechanism K satisfies e-RN-differential
privacy, K must also satisfy e-differential privacy [29].

Proof 1: Assume a mechanism K satisfying e-RN-
differential privacy (cf. Eq (6)). We know that Ad, >
d,(-), which contribute to ed,.(l,,l,)/Ad, <1. Then,
exp(ed, (1., 1)/ Ad,) < exp(e) is proved. After that, the mech-
anism K satisfies as follows:

Pr[K(l,) =1,] < exp(e)Pr[K(I}) = 1,]. (7)

Therefore, the mechanism K satisfies e-differential privacy.
With the set of discrete possible obfuscated locations W, it is
straightforward to utilize exponential mechanism [37], [38] to
perturb task requesters and workers’ real locations. Considering
the distance between locations on road networks, we design the
Road Network-aware Exponential Mechanism as follows.
Definition 6 (Road Network-aware Exponential Mechanism
(RNEM)): For an input location [, and output location [,, € W,
the exponential mechanism K randomly selects [, as follows:

_ exp(ed, (I, 1) /2Ad,)
21, cew exp(edr (Lo, 1y;) /2Ad,)

where d, (I, /) denotes the shortest distance between [, and ,,
on road networks .

Corollary 2: RNEM satisfies e-RN-differential privacy and
e-differential privacy.

Proof 2: With the real location [,, and the obfuscated location
I, as inputs, we can obtain two probabilities Pr[K(l;) = 1,]
and Pr[K (l},) = [,] on a output location [, respectively. Let’s
divide Pr[K (1,) = l,| by Pr[K(l,) = 1,]:

Pr(K(Iy) = 1] ®)

dr (L, ly) dr(ly,ly 1)

PriK(l,)=1,] eXp(€72Ad,‘ ) 2oty oW eXP(E SAd, )
1) — - / I

PrE(:) =l exp (eidé(kéff’)) 21, ew OXP (ELSAT%”))

Part A

Part B
The part A can be calculated as follows:

dr(ly, ly) — dr (U, 1)
2Ad, '

Part A = exp (e
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Algorithm 1: Obfuscated Locations Selection (OLS).

Algorithm 2: Initial of OLS.

Input : G=(V,&),v eV, diemp, Vo, W

1 if v not in Vg and diermp < d7 then
Add v into V, ;
V,, = adjacent(G, v) ;
Remove vertices in V,, from V,, ;
diaqt = dtemp mod ¢ ;
for v; in V,, do
Nv,;,v = (dr(vivv) - dtail) / 5;
fork =1to N,, , do
Select I}, based on Eq. (11) ;
if d,(v,1) + diemp < d then
‘ Add [f into W ;
end
end
OLS(g/ Vi, dtemp + dT (’UZ‘, U)/ Va/ W) ;
15 end
16 end

© @ N SN Ul e W N

P <
@ N A o

=
™

By the triangular inequality, d, ({5, l,) — d, (I}, 1) < d, (I, 1)
Then, we obtain

Part A < exp (ed,(I,;,1})/2Ad,) .

Then, we assume Part B < exp(ed,-(1;,1.)/2Ad,).

Z ex edr(l;mlyn?)
1, sew €XP 2Ad,

dr(lmyly.'i)
Zzy,ieweXp (5 2Ad,

dr (U1,
exp (67’ ;K’df"))

> d,.uw,zg,)) < D e

l, W €Xp (5 3Ad, ly €W

< exp(ed, (I, 1)) /2Ad,),

dr(la:a l’t/,l)
<62Adr ) ©)

If Eq. (9) is true, we can confirm our assumption of Part B.
Hereby, we deduce the Left of (9) as follows:

Left= > exp(e(dy(l],1y:) — dp(l,1,))/2Ad,).  (10)
lyyi,EW

Left

By the triangular inequality, d,(I%,l,;) — d, (I3, 1) <

dy(lz,1y,:), the Eq. (10) is deduced as follows:

Left < Y exp(edy(la, ly.i)/2Ad,).
Ly, s €W

Therefore, our assumption of Part B is confirmed and we multi-
ple Part A and Part B to obtain the inequation as follows:

dT(lI)l;p) dr(lw7l;)
. < TN w/ ) ZTAEY )
Part A - Part B < exp (6 9Ad, ) exp (6 9Ad, ,

Pr[K (1) = 1) < exp (edy (I, 1) /Ady) PrIK (L) = 1.

Therefore, RNEM satisfies e-RN-differential privacy. Further-
more, RNEM satisfies e-differential privacy due to Corollary 1.

Input: G = (V,&),1. €V
Output W
1 Initialize diemp, Va, W =0, 0, 0;
2 OLS(g7 lr’ dtean, Va’ W)’
3 Return WV,

B. Generating VW for RNEM

In related works [1], [17], [35], there are two methods to
generate the set YV of possible obfuscated locations. The first
method [35] simply employs vertices of road networks nearby
the real locations to represent VV. However, vertices may be
reused, which will cause extensive privacy disclosure [23] (i.e.,
the behavior of perturbing locations). The second method [1],
[17] employs locations uploaded by a certain range of workers
to represent V. Based on this method, the effect of location
privacy protection is heavily affected by the density of workers.
Furthermore, this method cannot be applied to the location
privacy protection of task requesters.

For that, to generate possible obfuscated locations WV, Ob-
fuscated Locations Selection algorithm, we proposed, equably
selects discrete locations based on participants’ locations and
their other settings (i.e., the maximum distance threshold d] (m),
the sample interval 6 = d7 /10 (m)), as shown in Algorithm 1.

Initial of OLS: Before performing OLS, some variables need
to be predefined. As shown in Algorithm 2, we first initialize the
variable dyemp and two lists Vg, where dyemy is used to record
the current distance between real location [, and the current
vertex, V, is used to store the vertices in the road network model
G visited by Algorithm 1. Thereafter, we execute Algorithm 1
with the input composed of G, [, diemp, Vo, and W. [, denotes
the real location, which has been embedded in G as a vertex.

Algorithm 1 is a recursive algorithm. In line 1, the algorithm
determines whether the current vertex v has been visited and
whether dy.,, exceeds the distance threshold d7. If v has not
been visited and dy¢,p, < dJ, the algorithm continues to execute
lines 2-16. Then, the algorithm records the current vertex as a
visited vertex by adding this vertex v into V,. Based on the
current vertex v and the road network G, the algorithm obtains
adjacent vertices v; € V,, in line 3 and removes the visited
vertices from V), in line 4. In addition, the algorithm obtains
diqi1 by taking the remainder of dicy,, divided by ¢ in line 5,
where d,;; is used to keep the distance between the first selected
location on the current edge and the previous location equal to
6. Thereafter, the algorithm is ready to select locations in this
recursion. Based on the adjacent vertex v;, the algorithm tries to
extract locations on the edge of v and v; in lines 7-13. Firstly,
the algorithm obtains the number N,, ,, of locations by dividing
thisedge as Ny, ,, = (d,(v;, v) — dyqar) / 9. Then, there are N, ,,
locations on this edge generated as follows:

a = (diair +k x dy) / dr(vi,v),
T = Ty, — Ty) + Ty,

Yk = a(yvi - yv) + Yo, (11)
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where = and y denote the latitude and longitude, k €
{1,..., Ny, »}. After that, in line 10, the algorithm needs to
detect if these locations are out of the distance threshold d. If
not, the algorithm adds locations into W as possible obfuscated
locations. Finally, the algorithm updates the current distance
dtemp BY diemp + dy (v, v) and reset the current vertex by v,
and then performs recursion with the latest input. The algorithm
will perform recursion until all suitable locations are selected,
which compose the set VV of possible obfuscated locations.

The time complexity of OLS: We assume that each recursion
has N adjacent vertices on average and the depth of OLS is
M. In OLS, the time complexity mainly includes recursion
(the time complexity is O(N™)) and locations selection on
adjacent vertices in lines 6-13 (the time complexity upper to
O(N X Ny, ,)). Therefore, the time complexity is O((N x
NT,i77))M ). Fortunately, M is at most 10 in practice, limited
by the distance threshold d and sample interval § = d/10.
Moreover, the relationship between N, , and M is inversely
proportional. That is, the larger the M, the smaller the N,,, ,,
when M is 10, N,, , is basically 1. In addition, in the road
network G, N is 4 at most, 0 at minimum, and 1.5 on average.
Therefore, in practice, the time complexity is less than (9(410),
and the average complexity is O(1.519), which is a small time
cost.

VII. MULTI-TASK ASSIGNMENT ON OBFUSCATED LOCATIONS

With obfuscated locations of task requesters and workers, it
is complicated to perform well on the multi-task assignment
as far as to obtain high utility and efficiency. Most of existing
works assume trusted third parties [2], [26] or the real location
of the task requester accessible [1], [17], [18], which is not
practical in real life. To implement a multi-task assignment
on obfuscated locations, we design the region distance and
propose a protocol to calculate it with the help of Bayesian
inference (in Section VII-A). Then, we formulate the multi-task
assignment as two relevant problems. The first problem is a
Binary Linear Programming problem solved by the Hungarian
algorithm to obtain the assignment with optimal efficiency (in
Section VII-B). The second problem is formulated to improve
ASR while keeping the increase of ATD within a threshold,
solved by the ASR-aware Optimization algorithm proposed by
us (in Section VII-C).

A. Region Distance Model

Travel distance (introduced in Section III-C) plays an impor-
tant role in multi-task assignment [1], [2], [12], [13], [14], [15],
[17], [18]. However, there are significant errors on distances
among obfuscated locations compared to distances among real
locations. To solve this problem, we design region distance as the
distance between a worker’s real location and a task requester’s
obfuscated location to better implement multi-task assignment.
We firstly define as follows:

Definition 7 (Region Distance (Z)): Given the real location
probability distribution 7; of a task requester I/ ; and the real
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location [}* f of a worker, where 7; consists of possible real loca-
,

; tp gtp t,p ; ; i
tions 1,751, 1,75 9, - -+ 1,5 ., and their corresponding probabili-
; P p P on di

ties Pry ; 1, Pryj 0,0 Pro ), we define the region distance

7;,; as the weighted distance between the real location [;”; of the
worker and the probability distribution 7; of the task requester
It

N
Tij =Y Prid. (14,1 ,), (12)
k=1

where d..(1Y;,1; ;) denotes the shortest distance between [} ; and

l;7 . on road networks G, 7; is generated by Bayesian inference
and the calculation of region distances is arranged on workers’
device, where workers’ real locations can be adopted without
disclosing their location privacy.

1 w w w
Assume there are M unoccupied workers {77, [}y, ..., L7y,
" : t gt ¢
and NV tasks waiting for assignment [, 1,0, 5, ..., 1, y, Where

M > N.Then, we design a protocol to calculate region distance
without disclose workers’ location privacy as follows.

1) The SC server calculates real location probability distri-
bution 7, 7o, ..., ™ based on each real location of task
requesters.

2) The SC server sends 71, 7o, . .., mn to M workers.

3) Each worker generates a region distance vector
Z,=[T1;, 22, +In ]T,1 < j < M based on (12) and
its real location.

4) Each worker sends its region distance vector to the SC
server.

Therefore, our protocol preserves the location privacy of
workers while employing their real locations to calculate region
distances. Finally, the SC server obtains M region distance
vectors constructed as follows:

_I1,1 Lip - Ly; - Il,]\/[_
Ioy I Lo Tom
7| : . : . : ’ 13)
Lin ZLip - Liy - Liu
1 Zn1 Ino Ing -+ Inm]|

where 7 denotes the region distance model organized for multi-
task assignment.

Real Location Probability Distribution: In generating region
distance, it is essential to prepare the probability distribution 7;
of each task’s possible real location in advance, which consists
of two processes.

Firstly, the SC server needs to determine possible real lo-
cations of the task requester. To handle this issue, we enable
several critical parameters of the task requester public to the SC
server, that is, privacy budget €, distance threshold d]. and sample
interval §, where even though € is public, the location privacy
of the task requester can be still guaranteed by e-differential
privacy [28], [32]. Holding these parameters with the obfuscated
location ! ;, the SC server executes OLS to generate possible
real locations WP.
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Thereafter, based on WP, the SC server employs Bayesian
inference (explained in Section III-C) to calculate the probability
of a possible real location lif i in WP as follows:

Pr(lf),i |lf«fk)Pr(l:fk)
leﬁqewp Pr(lfm’ ‘liﬁ,q)Pr(lif,q) 7

Pr(lt7i7k|lz,i) = (14)

T,

where Pr(I%? Kll5.;) and ILP, € WP construct the probability

distribution 7; of the obfuscated location lfm- of a task requester.

B. Multi-Task Assignment on Region Distance

Multi-task assignment on obfuscated locations is composed
of two relevant problems, in which the first problem is multi-
task assignment on region distance, aiming at minimizing ATD
without considering ASR. Note that travel distances have been
replaced by region distances, and we can observe that mini-
mizing the total region distances is equivalent to minimizing
average region distance. In addition, in Spatial Crowdsourcing,
atask can be assigned to only one worker, and a worker can only
accept a task at a time. Assume there are M workers and NV task
requesters at a time, and we formulated Problem 1 as a Linear
Programming problem.

N M
mjn Z ZIi,in7j

i=1j=1

subjectto A; ; =0orl,

M
> Aii=1,
j=1

N
> A<
=1

where A isa N x M matrix, A; ; = 0or 1 means that the task
Z;f is assigned to (A; ; = 1) or not assigned to (A; ; = 0) the
worker [/, ij\ilAi, j = 1 constrains a task assigned to only one

worker, and Z;N=1Ai, ; < 1 means that a worker can only accept
at most one task. Hence, if a constrained matrix contributes to
the minimum value of Z?;Z?;Ii,jv‘li,j’ this matrix is the
assignment with minimum average region distance to assign
multiple tasks.

However, for the constraint .4; ; = 07or™ 1, we observe that
Problem 1 is a Binary Linear Programming (0-1 LP) problem,
where A; ; is constrained to have components equal to zero
or one. This problem is not a convex problem, even though an
optimal solution must exist. If adopting enumeration, we can
find that even though the feasible set is finite, the computation
complexity is O(2V*M). Here, we implement the classic al-
gorithm (i.e., Hungarian algorithm) to solve Problem 1 within
polynomial-time (O(n?)). The algorithm is composed of four
steps:

Step 1: The problem is needed to be balanced by adding
M—N dummy rows (Z; j, N < ¢ < M — N)into Z. Therefore,
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Fig. 3.  Task exchange on the optimal solution of Problem 1.

the problem is transferred as mmzzl\i 1EjM:1L7 ;A ; and the
constrain item Y | A; ; < 1is reformed as Y0 | A; ;= 1;

Step 2: In each row of Z, the algorithm derive the minimum
region distance min(Z;) and subtract it from all the elements in
this row. Homoplastically, after alteration of rows, the algorithm
subtract min(Z;) from all the elements in each column;

Step 3: The algorithm tries to cover all the zero entries
(Zk,q = 0) by recording multiple rows and columns with the
minimum number of records and then determines whether the
number of records is equal to M, if so, the optimal assignment
A* is completed, otherwise, the algorithm continues;

Step 4: The algorithm marks each row without records and
then marks each column with records intersected by marked
rows and finally marks rows with records intersected by marked
columns. After that, the algorithm subtracts the minimum entry
from all the entries intersected by marked rows and unmarked
columns and adds this minimum entry to each entry intersected
by unmarked rows and marked columns. Finally, back to Step
3.

Thereafter, we can obtain the optimal solution .A* of Problem
1 by minimizing total region distances.

C. Utility-Aware Optimization

In order to both high utility and efficiency, we formulate
Problem 2 as a utility-aware optimization problem to optimize
the assignment .A4* of minimum ATD in Problem 1. We have
introduced the constraint that the increase rate of average region
distance should be less than ™ when increasing ASR. Thereby,
assume C denotes total region distance with . A*, Problem 2 aims
atmaximizing ASR subjected to (CT — C)/C < 1™, where C*
denotes the total region distances after the optimization of A*.

This is not a standardized mathematical problem, and not
easy to obtain an optimal solution. Therefore, we propose the
Algorithm 3 called ASR-aware Optimization (ASROpt) to re-
solve this complicated problem. The main idea of ASROpt is to
exchange tasks between failed workers (i.e., workers unable to
complete tasks on time.) and successful assigned workers while
considering the rate of increase of the average region distance.
More specifically, Assume that there are several workers and
task requesters, as shown in Fig. 3. Based on Problem 1, the SC
server obtains the assignment A*={{l},1¥,3.1}, {l,1¥,2.4},
{15, 1,1.3}, {14, 1%, 8.2}, {it, 1%, 0.8} } with the minimum total
region distance equal to 15.8 km. However, with d¥¥ = 8.0km
and Z, 5 = 8.2km, the worker [ can not complete the task [}

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 19,2024 at 10:47:37 UTC from IEEE Xplore. Restrictions apply.



WANG et al.: ROPRIV: ROAD NETWORK-AWARE PRIVACY-PRESERVING FRAMEWORK IN SPATIAL CROWDSOURCING

Algorithm 3: ASR-Aware Optimization (ASROpt).
Input : A*,7,dY, n
Output: A%

1LY L =0,0;

2 Af = sort(A*, 1Y) ;

3 A% =sort(A*, V) ;

4 fort:=1to M do

5 if Zpx wy,i > dy; then

6 Add I into L ;

7 for j=1to N do

8 if Ij,i < d?z' IATU(Z?’),A:(Z;:) < d}ru’l then
9 | Add Aj(l%) into LY ;

10 end

11 end
12 end
13 end

. ¢ .
1 Sisa L] x |t£;j | empty matrix ;
15 for j = 1to L} do

16 | fori=1to|L¥!] do
17 if {I¥; ,fl;‘ji} satisfies Eq. (15) then
18 Azgf =Lag ey, - Lagay g, s
1 AL%; = IA;(z%;j),zgii “Lag e,
- S .
20 Spwyw, = ALy, + ALY
21 end
22 else
23 Sl;u’j,l% =0;
24 end
25 end
26 end
Lot 27 .
z #max )iy Dy Siliy;

s U* = Hungarian(3°,% 1325, u4,)
29 Obtain cost C'" based on U* and A* ;

30 UF = SortU*, S(U*)) ;

31 fori=1to [U}| do

2 | if (CT —C)/C >n7 then

33 ‘ Delete U:; from U ;

34 end

35 else

36 ‘ Break ;

37 end

38 Obtain cost C't based on U and A* ;
39 end

a0 A% = Adjust(A*U}) ;
a1 Return A7 .

on time for Z 5 > d?. Hence, [§’ is a failed worker, and the
ASR=80%. To improve ASR, we want to exchange the task
of the failed worker with other successful assigned workers,
where we observe that there is just one worker [ that can
exchange its task % with failed worker [’ and the region distance
Z4,3 = 6.0km is within 8.0 km. Thereafter, the assignment A*
is optimized as A*={{l},1¥,6.2}, {l§,1¥,2.4}, {I%,1}, 1.3},
{14,1%,6.0}, {It,1¥,0.8}} with total region distance equal to
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16.7 km (the increasing rate 1*=5.7%), while ASR has been
increased to 100%.

There is only one failed worker in Fig. 3. However, we
constantly suffer from situations where multiple workers fail on
their tasks on time in practice. Therefore, we need to consider
several issues. 1) We need to set reasonable metrics to select
successful assigned workers for task exchange. 2) We need to
formulate task exchange into a mathematical expression for opti-
mization. 3) We should adjust task exchange to keep the increase
rate of total region distance within the threshold 1. Hereby,
we design the ASR-aware Optimization algorithm (as shown
in Algorithm 3, comprising three processes to resolve these
three issues: Initialization (issue 1 resolved in (15)), Problem
Formulation (issue 2 resolved in (20)) and Exchange Adjustment
(issue 3).

Initialization (Lines 1-26): Firstly, L}”’t and £ is initial-
ized to two empty lists. Then, we set A and A, as task-
order assignment and worker-order assignment. For example,
A= {14,193, {18,193}, {15,1%}} contributes to A} = {{I} :
3, {15 10} {5 < 157} and AY = ({07 1), {15 < 15}, {1y
I}}. Thereafter, based on workers’ acceptable distance dv,
we select failed worker-task pairs v f{l}”,lfc} and then filter
successful assigned worker-task pairs vs{l%, I*} on the basis of
optimal assignment A*, where the selection of vs{l%, I’} needs
to subject to two constrains:

Izg,j,lﬂ;ii < df,rfv’i» NII},j»l?’,i < dz}u,zgi- (15)
These constraints mean that [}, and [; can successfully carry
out each other’s tasks. We store vy {l%, 1%} and v,{I¥, 1%} in
LY and £, respectively. Finally, we set a |£7})’t\ X |LYE|
matrix S to store the degree of difference by exchanging tasks
of each I’ and each [;. We define S; ; as follows:

Definition 8 (Region Distance Change S; ;). Assume [} ; and
ly; exchange their task Ay, (1% ), A, (1Y;), we define S; ; as the
total change of their region distances of [/ ; and [’;.

AT/ .+ AT? ., if satisfy Eq. (1
Si;= i Tl Sa.tls y Eq. (15), (16)
0, otherwise,
AT]; = Tag e, — Ta v a7
AL =Tu,ap00e, — Layaz e, (1%
L<i <[P, 1<) < (L8, (19)

where AIZ.{ ; and AZ? ; represent the difference of [, and [{’;’s
region distances after the exchange, respectively.

Problem formulation (Lines 27,28): After initialization, the
algorithm obtains the region distance change matrix S. We need
to hold the principle to increase ASR by absorbing a certain
degree of deficiency on the total region distance C'. Therefore, we
formalize this conception as a maximization problem to increase
ASR as follows:

Lt 1CY "]

max > D Silhiy
i=1 j=1
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subject to U; j = Oorl,

In order to solve it, we reformulate this problem as follows:

et 157

min DD (max(S) = 8ij)Us -

i=1 j=1

(20)

In addition, when the successful assigned workers is fewer

than the failed workers, we can simply adjust the constrains
w,t
al

t0 X7, U ; < 1and 04, ; = 1. Then, with the help of
Hungarian algorithm, we obtain the optimal exchange U/*.

Exchange adjustment (Lines 29-41): We have obtained the
optimal exchange U™ so that ASR is closest to 100%. However,
the total region distance C* of the latest assignment, generated
based on U/* and .A*, may exceed the threshold ", where the SC
system accepts the increase on C' satisfying (CT — C)/C < 7.
The algorithm firstly sorts /* from largest to smallest based on
region distance changes. Then, the algorithm loops through the
optimal exchange {/} and determines whether the latest region
distance C'" is out of range (i.e., (CT — C)/C > n7). If so, the
exchange with the largest change will be deleted from U/ and
generates the latest region distance C'. Otherwise it jumps out
of the loop and gets the final task exchange U/ . Thereafter, based
on U, we adjust A* and obtain the final assignment A’ .

VIII. PERFORMANCE EVALUATION

In this section, we conduct extensive experiments on a real-
world dataset to evaluate the performance of our framework. We
first provide details of our experiment setup consisting of the
dataset, baselines, and metrics. Then, the performance of our
framework is analyzed regarding several critical parameters.

A. Experimental Setup

These simulations are implemented on a taxi trajectory dataset
in Roma [24] in Python 3.8 platform and performed on macOS
with an 8-core Apple M1 CPU, 8 GB memory.

1) Dataset: The dataset is collected in Roma, containing
21817851 GPS records of 316 taxis collected over 30 days from
February 1st, 2014, to March 2nd, 2014. In our experiments,
we extract most records (approximate 95%) from the dataset
and divide the coverage area of these records into 8 x 8 regions
as shown in Fig. 4. Then, we count the record proportion of
each region and select region A (59.8%), region B (1.5%),
region C (4.7%), and region D (5.1%) to show the performance
downtown (i.e., the worker-dense region A) and in suburbs (i.e.,
worker-sparse regions B, C, and D).
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Fig. 4. Heat map of GPS records over Roma.

2) Baselines: We introduce three representative differential

privacy-based frameworks as baselines:

® GO Function (CG) [17]: CG only focuses on the location
privacy of workers and considers the road network in SC
by involving a Linear programming problem to maximize
expected estimation error subject to minimum ATD and
geo-indistinguishability [25].

® Framework on 2D (BD) [18]: BD protects workers’ loca-
tion privacy by perturbing locations on two dimensions in
SC:

® Laplacian Mechanism and Multi-task Assignment: Lapla-
cian mechanism is a de facto classic privacy-preserving
mechanism for location privacy on two dimensions. To
compare with our framework, we design this framework
as the combination of Laplacian mechanism and our pro-
cedure of the multi-task assignment demonstrated in Sec-
tion VII-B.

3) Metrics: We need to evaluate three aspects: location pri-

vacy, efficiency and utility of multi-task assignment.

® Location Privacy: Expected Estimation Error (E3) repre-
sents the location privacy of task requesters and workers
in SC, defined as the distance between real locations and
locations inferred by adversaries in Section III-C1. The
higher the E3, the better the location privacy.

e Efficiency of Multi-task Assignment: Average Travel Dis-
tance (ATD) represents the efficiency of multi-task assign-
ments, defined as the average value of multiple distances
from assigned workers to corresponding task requesters in
Section III-C2. The lower the ATD, the better efficiency.

o Utility of Multi-task Assignment: Assignment Success Rate
(ASR) represents the utility of multi-task assignments,
defined as the percentage of success assignments in all
assignments in Section III-C3. The higher the ASR, the
better utility.

4) Parameter Settings: In experiments, we need to consider

the impact of several parameters: privacy budget € and the num-
ber of tasks N. To evaluate location privacy, we set reasonable
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Fig. 5. The impact of € on location privacy downtown and in suburbs.

privacy budget € € {0.1,0.3,0.5,0.7,0.9, 1.1, 1.3}. To evaluate
the efficiency and utility of multi-task assignment, we set privacy
budget € and the number of tasks N € {20, 30, 40, 50, 60}
(There are only approximately 80 taxis work on average in each
day). We set the default value of distance threshold d] = 500 m,
explained in Section VIII-B2. In addition, we set n” = 5% as
the increase threshold of ATD, which is a marginal increase.

B. Experimental Results

In our experiments, we simulate the taxi dispatch system
based on this dataset. The system starts at 8:00 and ends at 20:00
every day, in which a multi-task assignment is implemented ev-
ery half hour. Thus, there are 25 multi-task assignments each day
and 750 times totally. We use the average value of participants’
ATDs and ASRs in each multi-task assignment to represent the
performance of this multi-task assignment. Furthermore, we
employ the average value of all participants’ E3s in 30 days
to show the performance in location privacy protection.

1) Effect of Privacy Protection: Location Privacy. As shown
in Fig. 5, to evaluate location privacy, we set four experi-
ments conducted on regions A, B, C, and D corresponding
to a record-dense region (i.e., downtown) and three record-
sparse regions (i.e., suburb). In addition, we set the range of
W of our framework as d]. = 500m (called RoPriv-500) and
d] = 1500m (called RoPriv-1500), which represent the gen-
eral location privacy protection and the strong location privacy
protection, respectively. Considering that CG and BD can not
provide privacy protection for task requesters, we adopt workers’
location privacy of CG and BD.

Figs. 5(a), (b), (c), and (d) show the impact of privacy budget
€ on location privacy E3 in region A, B, C, and D, respectively.
In these experimental results, we can first observe that with the
increase of privacy budget ¢, the location privacy E3 decreases in
all the frameworks. Therefore, if a participant needs strong loca-
tion privacy protection, setting a small privacy budget is better.
As shown in Fig. 5, under different €, RoPriv-1500 performs best
than any other frameworks in all the regions, where all the E3 of
RoPriv-1500 exceed 800 m. It means that the location, inferred
by the adversary with side information, is more than 800 m
away from the real location of the participant with the help of
RoPriv-1500. Moreover, even though with the set d.. = 500m,
E3 achieved by RoPriv-500 is still more than 300 m, which is
able to guarantee the location privacy for all participants. Hence,

01 03 05 07 09 L1 13 0.1 03 05 0.7 0.9 Ll 13
Privacy budget € Privacy budget €

(c¢) Inregion C (suburb). (d) Inregion D (suburb).

TABLE I
THE RATE OF DISCLOSURE OF PERTURBING BEHAVIORS

Region A | Region B | Region C | Region D
RoPriv 0.00% 0.00% 0.00% 0.00%
CG 0.00% 0.00% 0.00% 0.00%
BD 1.90% 71.4% 11.8% 30.9%
Laplacian 2.10% 68.3% 12.1% 28.6%

our framework can provide sufficient location privacy protection
for task requesters and workers in SC with considering road
networks.

By comparing the performance in record-dense region and
record-sparse region, we find that our privacy-preserving frame-
works (i.e., RoPriv-500 and RoPriv-1500) provide stable loca-
tion privacy protection regardless of the density of records. For
example, RoPriv-1500 achieves E3 in the range of 800m-900 m,
whether downtown or in suburbs. However, CG cannot provide
stable and proper location privacy protection considering the
road network. E3 achieved by CG is less than 100 m downtown
in Fig. 5(a), which can not guarantee the location privacy of
workers. In the remote suburb (i.e., region B), E3 achieved by
CG even exceeds 800 m in Fig. 5(b). The unstable performance
of CG results from the density of workers, which heavily in-
fluences the location privacy protection of CG. Our framework
just consider settings (i.e., d]. and J) of participants without
involving any external factors. Thus, location privacy can be
stably guaranteed with the help of our framework.

The Extensive Privacy: In addition to protect the location
privacy of participants, the behavior of perturbing locations is
needed to be preserved for protecting the extensive privacy of
task requesters and workers. By investigating, we know that
GPS-enabled mobile devices are typically accurate to within
4.9 m under open sky [39]. Hereby, we assume that a participant
will be considered perturbing its location if its location obtained
by the SC server is 20 m away from road networks or lies in ariver
or forest. We conduct several experiments on different regions
to evaluate the effect of preserving the perturbing behavior,
and use the rate of disclosure of perturbing behaviors to show
the effectiveness of our framework, as shown in Table I. It is
obvious that our framework RoPriv well preserves the behavior
of perturbing locations and moreover protects the extensive
privacy. Even though in the remote suburb, the rate of disclosure
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of perturbing behaviors is still 0.0%. However, based on these
frameworks without considering the road network (i.e., BD and
Laplacian), participants suffer from potential extensive privacy
disclosure, especially in the remote suburb with nearly 70%
probability of being recognized. The experimental results verify
the effect of our road network-aware framework for preserving
the perturbing behaviors.

Therefore, our framework can provide sufficient and stable
location privacy protection for task requesters and workers,
whether downtown or in suburbs. Furthermore, our framework
effectively preserves the behavior of perturbing locations for
each participant.

2) Efficiency of Multi-Task Assignment: To evaluate the effi-
ciency of multi-task assignment, we set the optimal assignment
(called Optimal) by implementing multi-task assignment on real
locations. We conduct our experiments downtown (i.e., region
A) and in the remote suburb (i.e., region B). Considering the
impact of the privacy budget € and the number of tasks NN,
we obtain the experimental result as shown in Fig. 6, where
RoPriv and RoPriv+ denote our framework without considering
utility (i.e., ASR) and our framework after improving utility,
respectively.

In Fig. 6, it is obvious that ATD follows Optimal < RoPriv ~
RoPriv+ < CG < BD < Laplacian, where RoPriv performs
best than baselines no matter downtown (ATD < 1.0km) or in
the remote suburb (ATD < 3.75km). Moreover, we can observe
that the ATD achieved by these road network-aware frameworks
(i.e., RoPriv, RoPriv+, and CG) is lower than the ATD achieved
by BD and Laplacian, which proves the increase in efficiency
by considering the road network. Especially, the ATD achieved
by RoPriv is closed to the optimal ATD, and the difference
between them is no more than 100 m in most cases. Even though
efficiency has been weakened for improving utility in RoPriv+,
the performance of RoPriv+ is still extremely closed to RoPriv,
indicating that the increase rate of ATD is constrained well by
n = 5% in Utility-aware Optimization.

In addition, we find that the ATD in Figs. 6(b), (d) is typically
higher than the ATD in Figs. 6(a), (c). That is because most taxis
are concentrated downtown (i.e., region A), and most workers
downtown have to travel a long distance for completing tasks in
the remote suburb (i.e., region B).

Impact of privacy budget e: Figs. 6(a) and (b) present the
impact of privacy budget e on the efficiency of multi-task as-
signment, where as e increases, the ATD generally decreases. In
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(a) Downtown. (b) In the remote suburb.
Fig. 7. The impact of d]. on location privacy and multi-task assignment with

e=0.9, N = 30.

addition, the ATDine = 0.1 ~ 0.7 decreases more than the ATD
in € > 0.9. We have known that the lower ATD represents the
high efficiency of multi-task assignment. Thus, we set € = 0.9
as default value in our experiments.

Impact of the number of tasks N: Figs. 6(c) and (d) present
the impact of the number of tasks NV on the efficiency of multi-
task assignment, where as N increases, the ATD significantly
increases. That indicates N has a large negative impact on the
efficiency of multi-task assignment. Comparing to the ATD in
N = 30 ~ 60, the ATD increases more slowly in N = 20 ~ 30.
Furthermore, with RoPriv and N = 30, ATD ~ 800m down-
town and ATD ~ 3600m in the remote suburb are acceptable
distances for workers. For that, we choose N = 30 as default
value in our experiments.

Impact of the range of W d7.: We set d7 = {100m, 300 m,
500 m, 700 m, 900 m, 1100 m 1300 m, 1500m} and conduct
multiple experiments. As shown in Fig. 7, we consider d] as
horizontal axis, set location privacy (E3) and efficiency (ATD)
as vertical axes to demonstrate the impact of d]. on location
privacy and multi-tasks assignment downtown (cf. Fig. 7(a))
and in the remote suburb (cf. Fig. 7(b)). Intuitively, we find
that as d] raising, E3 increases and ATD increases, which
indicates the improvement on location privacy and reduction on
efficiency. Hence, to balance the location privacy and efficiency,
we need to determine a value of d] as the default value in
our experiments. We can observe that with d]. > 500m, ATD
increases dramatically downtown and in the remote suburb.
Moreover, when d] = 500m, RoPriv provides sufficient loca-
tion privacy exceeding than all the baselines downtown (cf.
Fig. 5(a)). Therefore, we consider the default value of d] as
500 m.
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3) Utility of Multi-Task Assignment: To evaluate the per-
formance on improving utility of multi-task assignment, we
conduct experiments downtown (cf. Fig. 8) and in the remote
suburb (cf. Fig. 9), in which we set ¥ = 800m downtown and
d¥ = 3600m in the remote suburb.

As shown in Figs. 8 and 9, RoPriv+ achieves the high-
est ASR whether downtown or in the remote suburb. More
specifically, the ASR achieved by RoPriv+ is in the range of
83.1%-96.3% downtown (cf. Fig. 8), in which the maximum
ASR is closed to 100%. In the remote suburb (cf. Fig. 9),
the range of ASR of RoPriv+ is 32.8%-78.3%. Even though
there are 60 tasks in the remote suburb waiting for assign-
ment, RoPriv+ still guarantees 32.8% task completed. Com-
paring to baselines, the ASR achieved by RoPriv+ is able
to exceed baselines by up to 26.7% (in Fig. 9(a), ¢ = 0.3).
Hence, RoPriv+ performs well on the utility of multi-task
assignment.

Comparing to the performance on utility between RoPriv+
and RoPriv, we can find that the ASR has been significantly
improved after Utility-aware Optimization. Based on RoPriv+,
the improvement rate of ASR ranges from 1.2% (in Fig. 8(b),

N = 20) to 17.2% (in Fig. 9(a), ¢ = 0.3). This indicates that
our framework enables 17.2% workers to complete tasks on
time after Utility-aware Optimization in the best case. Further-
more, we have demonstrated that there are no obvious increase
in ATD of our framework after Utility-aware Optimization in
Section VIII-B2. Thus, our Utility-aware Optimization indeed
improves the utility of multi-task assignment while keepging the
efficiency tolerable.

In addition, we notice that the ASR downtown is improved
better than the ASR in the remote suburb. Significantly, the
maximum improvement rate of ASR is 6.2% downtown, and
the minimum improvement rate of ASR is 7.5% in the remote
suburb. That is because the ASR is a high degree of RoPriv
downtown.

4) Negative Impact on Efficiency From Improvement in Util-
ity: Wehave known that the improvement of ASR will inevitably
reduce the efficiency of the multi-task assignment and our goal
of the multi-task assignment is to obtain both high utility and
efficiency. Therefore, we analyze representative experiments
composed of experiments downtown and in the remote suburb
(e =0.9, N = 30).
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As shown in Fig. 10(a), we take the improvement AASR of
utility as the horizontal axis and take the increase rate of ATD
as the vertical axis to show the relationship between AASR
and 7). Moreover, we show the relationship between AASR and
the increase distance of ATD in Fig. 10(b). In Fig. 10(a), we
can observe that the increase rate of ATD is well restricted by
the increase threshold 7™ = 5%. Even though there are 40%
workers who are enabled to complete tasks by our Utility-aware
Optimization, the increase rate of ATD is less than 3%, which is
aminor increase. Furthermore, we can see plenty of assignments
improved with n ~ 0%, which indicates that our Utility-aware
Optimization significantly improves the utility while just raising
little influence on the efficiency of multi-task assignment. That
is the trade-off between utility and efficiency.

Comparing the experiment results downtown and in the re-
mote suburb, we find that most AASRs range from 3% to
10% downtown, and AASRs in the remote suburb are mainly
distributed between 10% and 30%, which indicates that our
Utility-aware Optimization performs well in the remote suburb.
In Fig. 10(a), the experimental results downtown present that
the improvement of ASR downtown cause the distance increase
of ATD less than 40 m in most cases. In the remote suburb, the
distance increase of ATD is less than 160 m, which is not a large
value compared to d¥¥ = 3600m.

In summary, our framework can provide stable and sufficient
location privacy protection (cf. Fig. 5) for both task requesters
and workers regardless of regions (e.g., downtown, in the remote
suburb), meanwhile, protect their perturbing behaviors from
disclosure (cf. Table I). In multi-task assignment, our framework
can obtain both high efficiency (i.e., low ATD) and utility (i.e.,
high ASR) by maximizing utility on the basis of ensuring a minor
increase in efficiency (cf. Fig. 10).

IX. CONCLUSION

In this paper, we proposed a road network-aware privacy-
preserving framework to implement a multi-task assignment
with both high utility and efficiency while protecting the location
privacy of both task requesters and workers on road networks in
Spatial Crowdsourcing. We firstly abstracted the road network
into discrete locations and proposed an Obfuscated Locations
Selection algorithm to generate possible obfuscated locations
based on participants’ real locations without disclosing their
location privacy. Then, we designed a Road Network-aware

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 3, MARCH 2024

Exponential Mechanism to perturb locations of task requesters
and workers on the road network, in which the behavior of
perturbing locations had been preserved. Based on obfuscated
locations, we proposed region distance to replace the distance
among obfuscated locations to implement multi-task assign-
ments. Thereafter, with the basis of region distance, we decom-
posed multi-task assignment into a Binary Linear Programming
problem and a Utility-aware Optimization problem to both high
utility and efficiency. Our experimental results on real trajectory
dataset indicated that our framework could provide sufficient and
stable location privacy protection for both task requesters and
workers downtown and in the remote suburb. Furthermore, our
framework obtains both high utility and efficiency in multi-task
assignments.
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