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Abstract— Utilizing the stable underlying and cloud-native
functions of vehicle platoons allows for flexible resource provi-
sioning in environments with limited infrastructure, particularly
for dynamic and compute-intensive applications. To maximize
this potential, we propose the creation of a trading market to
encourage interactions between service supporters (vehicle pla-
toons) and requesters (task vehicles). Current trading decisions
based on game and negotiations can lead to unpredicted handover
costs and increased communication overhead in dynamic environ-
ments. Moreover, existing research tends to overlook a mutually
beneficial trading philosophy by focusing on either the service
supporters’ profitability or the user experience of resource-
restrained requesters. Addressing these issues, we introduce a
multi-objective optimization problem to model environmental
dynamics and uncertainty, aiming to maximize both platoons’
and task vehicles’ long-term utilities while maintaining a satisfac-
tory service access ratio. To tackle the problem within acceptable
time frames, we develop a global-local training architecture,
incorporating a hybrid action space and prioritized sampling
into a multi-agent reinforcement learning algorithm that utilizes
a twin delayed deep deterministic gradient (GL-HPMATD3). This
approach facilitates consensus in the trading market on key
issues, including service request selection, resource allocation, and
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trading pricing. Through extensive experimentation and com-
parison, we demonstrate our mechanism’s superior performance
in convergence, service access ratio, player utility, execution
latency, and trading pricing relative to several state-of-the-art
and baseline methods.

Index Terms— Platooning-assisted vehicular networks, trading
market, multi-agent reinforcement learning (MARL).

I. INTRODUCTION

A. Background

IN RECENT years, Vehicular Edge Computing (VEC)
has emerged as a pivotal approach in the Intelligent

Transportation Systems (ITS) domain, offering and managing
resources near vehicles [1]. Exploring potential computing
resources could alleviate the workload of central Base Stations
(BSs). Beyond Roadside Units (RSUs), any entities boasting
computing, caching, or networking capabilities can serve as
VEC nodes [2]. However, VEC nodes’ limited resources
pose challenges to the execution and viability of compute-
intensive applications, signaling an urgent need for traditional
VEC to evolve. Such progression must better support high
scalability, real-time data delivery, and mobility within vehic-
ular networks. Enhancing road BSs deployment or upgrading
vehicular software and hardware will undoubtedly incur sub-
stantial costs, thus clashing with the economic efficiency and
energy-saving objectives of edge computing [3].

Pooling underutilized resources from various organiza-
tions could create services akin to Computation-as-a-Service
(CaaS), thereby enhancing traditional VEC [4]. Vehicle pla-
toons, a common driving paradigm on motorways, have the
potential to support emerging applications by harnessing intra-
platoon resources. This cloud-native function allows vehicle
platoons to serve as Mobile-Edge-Platooning-Clouds (MEPCs)
[5]. Moreover, deploying MEPCs typically outpaces and offers
a more flexible configuration than traditional clouds. There-
fore, to stimulate vehicle platoons’ active participation in
resource sharing, it is critical to establish a trading market
adaptable to dynamic topologies and diverse Quality-of-
Service (QoS) requirements. We illustrate the potential trading
market scenario in Fig.1. This market can foster resource
trading between MEPCs and task vehicles, thereby ensuring
the sustainability of resource sharing in platooning-assisted
vehicular networks.

However, decision-making strategies based on games or
negotiation often precipitate unpredictable handover costs1

1The handover process involves disconnecting a vehicle from its current
task and establishing a new connection with another task. This transition leads
to a ‘handover cost’ that includes time delays, potential deterioration in service
quality, and additional resource consumption.
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Fig. 1. The trading market in a platooning-assisted vehicular network.

and communication overhead in dynamic, stochastic environ-
ments [6]. Furthermore, a significant proportion of existing
research either prioritizes the profitability of service supporters
or the user experience of the resource-constrained requesters,
neglecting the concept of a mutually beneficial trading phi-
losophy. This necessitates designing appropriate economic
incentives to expedite trading decisions and foster mutually
beneficial trading. Therefore, the relatively uncharted territory
of resource trading in platooning-assisted vehicular networks
has been a major impetus for our research.

Several pertinent questions warrant exploration: 1) How
can we construct a resource trading market that capitalizes
on the potential of vehicle platoons? 2) What are the guide-
lines for formulating a trading policy between supporters and
requesters? 3) What is the strategy for swiftly attaining a
trading consensus rooted in mutually beneficial relationships?
To address these research gaps and explore the challenge
of resource trading in platooning-assisted vehicular networks,
we conduct thorough investigations in the subsequent sections.

B. Challenge and Motivation
In this part, we summarize the main challenges as follows:
1) Resource Trading Market Building: To address the

conflict between compute-intensive applications and resource-
constrained vehicles, resource sharing is an effective strategy
for alleviating computational pressure and enhancing resource
utilization. However, the effectiveness of resource-sharing
mechanisms based on incentives or contracts depends on
thoughtful design, as poorly conceived strategies can harm
motivation and performance, leading to suboptimal out-
comes [6]. Existing models often prioritize requester service
satisfaction, overlooking the equilibrium between supply and
demand. The pace of advanced processing unit installation lags
behind the explosive growth of emerging applications, result-
ing in long-term resource demand. Vehicle platoons, especially
truck platoons on highways, hold the potential for facilitating
resource sharing in the Internet of Vehicles (IoVs) scenario,
but research in this area is limited. Therefore, an adaptive
trading market is crucial to enhance the participation of service
supporters and requesters, considering diverse optimization
objectives, dynamic market participants, and individual service
demands.

2) Real-time Trading Decision-making: The excessive
latency caused by multi-round games and negotiation poses a
significant challenge to trading decision-making. Furthermore,
the dynamic and stochastic conditions of the network affect the
timeliness of decisions as well. The long latency necessary

to achieve consensus cripples service performance. Factors,
such as the latency requirement, varying network conditions,
and dynamically available resources can substantially hinder
trading decision-making among players.

3) Optimization to Multi-objectives: In light of the complex
nature of our multi-stakeholder trading market, we adopt
a multi-objective optimization to shape our scenario. The
complexity primarily stems from the diverse objective require-
ments among task vehicles, MEPCs, and the overall trading
market. Some of these objectives might even be conflicting
under certain circumstances. Moreover, service competition
between MEPCs, potential communication interference, the
changeable resource of MEPCs, and the mobility characteris-
tics of vehicles, coupled with the constraints of trading costs,
collectively amplify the intricacy of the trading scenarios.
Lastly, the dynamic nature of the trading market itself, along
with the continuously evolving environmental conditions,
necessitates the optimization of multiple variables to achieve
a balance among multi-objectives. This approach fosters a
comprehensive balance among diverse factors, bypassing the
shortcomings associated with single-objective optimization.
Nonetheless, navigating the nuances between objectives and
addressing the inherent trade-offs continue to be challenging
dimensions of this methodology.

4) Reinforcement Learning Training Architecture Design-
ing: In platooning-assisted vehicular networks, designing a
decentralized Multi-agent Reinforcement Learning (MARL)
algorithm must address challenges like non-stationarity, scal-
ability, and partial observability. A training architecture
adaptable to the trading market, incorporating a hybrid action
space, and ensuring mutual benefits is essential.

To tackle these challenges, we propose a tailored trading
market for platooning-assisted vehicular networks, supported
by a training architecture for timely trading decisions. Our
approach involves multi-MEPC as service supporters and
resource-constrained task vehicles as requesters, serving as the
key players in resource trading.

II. RELATED WORK AND CONTRIBUTION

Table I provides a systematic overview of related works,
facilitating a thorough comparison while emphasizing the
prevailing gaps, thereby underscoring the significance of this
study’s contributions.

A. Resource Allocation in Vehicular Networks
Driven by advanced 5G/6G wireless communication tech-

nologies, existing studies have focused on resource allocation
in vehicular networks. Strategies like collaborative MEC and
cloud computing for service offloading [7], treating vehicles
with idle resources as fog computing nodes for computation
offloading in fog-based vehicular networks [8], mobility-aware
task offloading and resource allocation schemes [9] have been
proposed. However, few of these works emphasize the impor-
tance of a trading manner in resource allocation. Moreover,
integrating edge servers with individual vehicular clouds faces
challenges due to the irregular distribution of edge servers and
resource constraints of vehicular clouds.

B. Resource Trading
Resource trading involves the dynamic exchange of com-

putational power, storage, or other digital resources in
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TABLE I
SUMMARY OF LITERATURE

a marketplace, guided by algorithms to maximize effi-
ciency and profitability. Several works explore different
aspects: optimizing power producers’ profits [13], offload-
ing strategy-based consortium blockchain in MEPC [3],
market models and resource trading in computing-power net-
work [11], futures-based resource trading approach [10], and
two-tiered Stackelberg game-based computing resource trad-
ing [12]. However, trading decision-making-based games can
lead to unpredictable handover costs and communication over-
head in a dynamic environment. Additionally, existing research
often neglects a mutually advantageous trading philosophy,
focusing excessively on either the profitability of service
supporters or the user experience of resource-constrained
requesters, failing to balance both parties’ interests.

C. Optimization Model
Resource trading and allocation aim to optimize overall

system performance and profitability by efficiently distributing
resources among entities. In IoV, integrated frameworks like
edge cloud are essential for resource management across
vehicles, RSUs, and BSs, handling resource-intensive applica-
tions [15]. Innovative methodologies such as blockchain-based
data trading [16] and fog computing for local energy
trading [14] improve efficiency and stimulate participation.
However, the optimization problem remains challenging.
Single-objective optimization can disadvantage certain stake-
holders, while multi-objective optimization requires intricate
understanding due to the complex interplay between objec-
tives, potentially imposing a substantial computational burden.
Addressing multi-objective challenges often involves trade-
offs, adding analytical complexity to achieve objective
equilibrium.

D. MARL Algorithm and Training Framework
MARL offers a framework for agents to optimize resource

distribution and trading in a shared environment. In [17],
MARL algorithms overcome non-stationarity among multiple
devices. In [18], a comprehensive framework combines hier-
archical reinforcement learning and meta-learning for adap-
tive resource allocation in dynamic vehicular environments.
Vehicle-to-multi-Edges (V2Es) communication framework
proposes dynamic communications status learning between
vehicles and edge nodes for task offloading or edge caching
decisions [19]. A novel MARL algorithm is introduced for
dynamic resource allocation in multi-UAV-aided wireless net-
works [20]. Authors propose an intelligent resource trading
framework integrating MADRL, blockchain, and game theory

for dynamic resource trading [21]. However, for mutually ben-
eficial trading, local and global rewards should be considered,
often overlooked in the existing literature. Additionally, the
complexity of hybrid trading actions is frequently oversim-
plified, hindering actual model training and decision-making
processes [20], [21], [22].

Compared with the existing works, our work has made the
following differences:

Trading Model: We introduce a novel trading scenario
in platooning-assisted vehicular networks, where high-traffic
vehicle platoons with resource-sharing capabilities act as
mobile resource servers and resource-constrained vehicles play
as requesters. This unique scenario enables the construction of
a dynamic trading market that enhances resource utilization
and interaction frequency. In this trading market, we set
comprehensive objectives that not only maximize the utility
of both trading parties but also ensure the sustainability of the
overall market, illustrated by the service access ratio indicator.
Our approach is dynamic and flexible to reflect the constantly
changing nature of vehicular networks. Key decision-making
aspects include the selection of service requests, assignment of
communication resources, allocation of computing resources,
and setting of trading pricing. These decisions are not made
in isolation but are instead interrelated, jointly influencing the
performance and sustainability of the trading market.

Trading Training Architecture: Furthermore, we have
built a global-local training architecture to achieve a mutually
beneficial philosophy. Moreover, the action space of existing
Deep Reinforcement Learning (DRL) frameworks is homo-
geneous, i.e., only continuous or discrete action spaces are
considered [23]. Nevertheless, much of the current research
in DRL has focused on improving the performance of a
single machine within the computing budget, with relatively
little exploration of how to leverage more of the available
resources.

E. Contributions
Generally speaking, this work focuses on the intelligent,

mutually beneficial trading approach based on multi-agent
training architecture. The main contributions are as follows:

Trading Market Building: Considering a specific appli-
cation scenario wherein MEPC could enable VEC, we have
constructed a trading market along the motorway. Here, vehi-
cle platoons act as service supporters, striving not only for
their gains from requesters but also for the overall profitability
of the trading market. Moreover, this trading model has
long-term value in enhancing user experience, thus providing
a sustainable approach to resource exchange.
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TABLE II
SUMMARY OF KEY NOTATIONS

MOOP Formulation: To optimize both the service access
ratio and the utility of trading players, we present a
Multi-Objective Optimization Problem (MOOP). This aims to
determine optimal decisions concerning the selection of ser-
vice access requests, assignment of communication resources,
allocation of computing resources, and setting of trading
prices.

Algorithm Construction: To more intuitively simulate the
interaction and cooperation among trading players, we built
a new MEPC scenario to enrich the use case environment
for reinforcement learning. To effectively address the above
MOOP, we introduce a Global-Local training architecture that
blends a Hybrid action space and Prioritized sampling with
a Multi-agent reinforcement learning algorithm, employing a
Twin Delayed Deep Deterministic gradient (GL-HPMATD3).

The rest of this paper is as follows: Section III introduces
the system model and formulates the MOOP. Section IV
presents the preliminary review of the MARL environment.
Section V develops a MARL environment for resource trading.
Section VI details the proposed GL-HPMATD3 algorithm.
Simulation results are demonstrated in Section VII and con-
cluded in Section VIII.

III. SYSTEM MODEL AND PROBLEM FORMATION

A. Platooning-Assisted Vehicular Network
The high mobility and diverse applications in the vehicular

network lead to frequent changes in network topology and
service requests. To address this, we propose a service-based
trading model in a platooning-assisted vehicular network,
aiming to satisfy QoS demands and promote service trading.
In Table II, we summarize the notations used in this work.

We consider a four-lane road on a motorway, with
M MEPCs driving on the road, denoted as M =
{1, . . . ,m, . . . ,M}. Each MEPC covers different road seg-
ments and drives at a time-varying speed, with some
overlapping among adjacent MEPCs. Task vehicles, denoted

by N = {1, . . . , n, . . . , N}, generate tasks at the beginning
of each time slot t, defined as Xn

t = {vn
t , d

n
t , τ

n
t }, where

vn
t , dn

t , and τn
t represent task size, CPU cycles required

per bit, and maximum tolerance delay at time slot t for
vehicle n, respectively. Task size follows a continuous uni-
form distribution vn

t ∽ U(vs
min, v

s
max). For delay-sensitive

applications, we set the delay constraint not to exceed the
length of a time slot, τn

t ≤ τ , and assume no buffer for
queuing computation requests. When a task vehicle cannot
process a task, it sends a service access request, containing task
details and the vehicle’s driving state (position, velocity), to an
appropriate MEPC. Each MEPC then makes quick trading
decisions, including the selection of service access requests,
allocation of communication and computing resources, and
setting of trading pricing.

B. System Model
We mainly discuss the models (selection of service access

request, assignment of communication resources, allocation of
computing resources, setting of trading pricing) to support the
analysis of the following contents.

1) Selection of Service Access Request: To ensure ser-
vice satisfaction and trading benefits, the selection of the
appropriate service audience is vital. We define the task
vehicle set covered by MEPC m at time slot t as Km

t . Here,
we consider that each task vehicle n can only be served
by one MEPC, while MEPC m can simultaneously serve
multiple task vehicles. It is important to note that some task
vehicles may not be covered by any MEPC. Thus, K∪t ≜
{K1

t ∪ . . .Km
t ∪ . . .KM

t }m∈M ⊆ N is satisfied. The overlap
set for MEPC m can be denoted as

Km,∩
t ≜ {(m′,Km,m′

t )|Km
t ∩ Km′

t = Km,m′

t }m′∈M/m. (1)

The relative distance between task vehicle n ∈ Km
t and

MEPC m at time slot t is denoted as dn,m
t ∈ R. MEPC m
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has a communication range of Rm, so dn,m
t ≤ Rm determines

whether MEPC m can serve task vehicle n. The processing
capability of MEPC is powerful but not unlimited. We define
Nm

t as the maximum number of task vehicles MEPC m
can serve concurrently at time slot t. To make the selection
decision, we introduce the binary variable νn,m

t ∈ {0, 1},
indicating whether MEPC m serves task vehicle n at time
slot t. The set Vm

t = {n|νn,m
t = 1, n ∈ Km

t } represents the
selected task vehicles. There are several preconditions for task
vehicle selection as follows:

Case 1: 0 ≤ |Km
t | ≤ Nm

t , and Km,∩
t = ∅. Namely,

when the number of request vehicles is within the processing
power of the MEPC m and there is no overlap with other
MEPCs, the task vehicle selection process becomes relatively
straightforward. MEPC m can satisfy the computing needs of
all vehicles within its coverage area. This situation is ideal as
it minimizes the potential for resource contention and reduces
the complexity of task assignments.

Case 2: 0 ≤ |Km
t | ≤ Nm

t , and Km,∩
t ̸= ∅. Although

the MEPC m can handle all vehicles within its coverage,
it overlaps with other MEPCs. In this case, the task vehicle
selection process needs to account for the presence of other
MEPCs, which could also provide services to the vehicles.
There may need to be a process to decide which MEPC a
vehicle should choose, perhaps based on factors like signal
strength, latency, or the availability of computing resources.

Case 3: |Km
t | > Nm

t , and Km,∩
t = ∅. Here, the number of

request vehicles exceeds the MEPC’s processing power, but
there’s no overlap with other MEPCs. Task vehicle selection in
this scenario will need to incorporate a mechanism to prioritize
vehicles, possibly based on the urgency or importance of their
tasks. Some vehicles might have to be denied service, leading
to the necessity for an efficient resource allocation strategy.

Case 4: |Km
t | > Nm

t , and Km,∩
t ̸= ∅. This is the

most complex scenario, where the MEPC cannot meet the
computing needs of all task vehicles, and there’s an overlap
with other MEPCs. The task vehicle selection process here
is more challenging and might need to incorporate elements
from both Case 2 and Case 3. A sophisticated mechanism for
vehicle prioritization and MEPC selection could be required.

These preconditions indeed play a pivotal role in shaping
the task vehicle selection process. They inform the rules and
mechanisms for how vehicles choose an MEPC and how an
MEPC allocates its resources so that the selected vehicles can
effectively fulfill the tasks, minimize risks, and optimize the
overall operation of the system.

To better make a selection decision, the service access ratio
for MEPC m is taken as one of the evaluation indicators,
which can be described as:

Wm
t =

|Vm
t |

|Km
t |
,m ∈M, t ∈ T . (2)

2) Assignment of Communication Resources: MEPC m
autonomously assigns appropriate spectrum bands to task
vehicles within the set of selection decisions. The commu-
nication resources pool Bt = {b1, b2, . . . , bK} consists of
orthogonal bands with a time-varying size |Bt|. The assign-
ment of communication resources is represented by Bm

t =
{bn,m

t |bn,m
t ∈ Bt, n ∈ Vm

t }, allowing different vehicles to
use the same spectrum band. To describe communication
interference, we denote the intersection set Km

t as:

Km
t ≜ {m′|Km,m′

t ̸= ∅}m′∈M/m. (3)

There exists other communication interference sources for
the task vehicle n ∈ Vm

t apart from the Additive White
Gaussian Noise (AWGN) N0:

(i) n ∈ Km,m′

t , interference from Vm
t and Vm′

t , bn,m
t =

bn
′,m

t |n′∈Vm
t

, bn,m
t = bn

′,m′

t |n′∈Vm′
t

, m′ ∈ Km
t .

(ii) n /∈ Km,m′

t , interference from Vm
t and Km,m′

t , bn,m
t =

bn
′,m

t |n′∈Vm
t

, bn,m
t = bn

′,m′

t |
n′∈Km,m′

t
, m′ ∈ Km

t

(iii) n /∈ Km,m′

t , interference from Vm
t , bn,m

t =
bn

′,m
t |n′∈Vm

t
.

To quantify the impact of interference on communication
resource assignment, we define the communication interfer-
ence caused by using the same spectrum band as In,m

t :

In,m
t =

∑
n′∈Vm

t

1(bn,m
t = bn

′,m
t )pn′,m

t Gn′,m
t

+
∑

m′∈Km
t

∑
n′∈Km,m′

t

1(bn,m
t = bn

′,m′

t )pn′,m′

t Gn′,m′

t

+
∑

m′∈Km
t

∑
n′∈Vm′

t

1(bn,m
t = bn

′,m′

t )pn′,m′

t Gn′,m′

t , (4)

where 1(·) is the indicator function with 1(·) = 1 if event ·
is true and 1(·) = 0 otherwise. Moreover, pn′,m

t and pn′,m′

t is
the transmission power from task vehicle n′ to MEPC m and

m′. Gn′,m
t and Gn′,m′

t are channel gain.
Then the achievable data rate from task vehicle n to MEPC

m in time slot t is:

Rn,m
t = |bn,m

t | log2(1 + Γn,m
t ), (5)

where bn,m
t indicates the selection of spectrum band between

task vehicle n and MEPC m. Γn,m
t is the Signal-to-

Interference-plus-Noise Ratio (SINR), which is described as:

Γn,m
t =

pn,m
t Gn,m

t

N0 + In,m
t

, (6)

where pn,m
t is the transmission power from task vehicle n to

MEPC m, Gn,m
t is the channel gain, which is shown as:

Gn,m
t = ρn,m

t G0(d0/d
n,m
t )ℵ, (7)

where ρn,m
t denotes the small-scale fading channel gains

between the nth task vehicle and mth MEPC within the time
slot t. Here, G0 signifies the path-loss constant, while d0 and
dn,m

t represent the reference distance and the actual distance
between task vehicle n and MEPC m, respectively. Given
the mobility of task vehicles and platoons, the actual relative
distance is subject to variation over time. The term ℵ stands for
the path-loss exponent. While channel conditions are assumed
to remain consistent throughout a single time slot, they can
exhibit variations across different slots.

Thus, the transmission latency from task vehicle n to MEPC
m can be expressed as:

T tr,n→m
t = vn

t /R
n,m
t . (8)

The energy consumption Etr,n→m
t is considered as the task

vehicle’s extra overhead when transmitting a certain amount
of data to MEPC m via wireless access, which is given as:

Etr,n→m
t = pn,m

t T tr,n→m
t . (9)
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3) Allocation of Computing Resources: Since the result
of the task is relatively small, the time consumption
of the back-haul link can be neglected.2 Make Cm

t =
{cn,m

t |
∑

n∈Vm
t
cn,m
t ≤ Cm,co

t } be mth MEPC’s decision on
the allocation of computing resources at time slot t. We use
Cm,co

t = fNm
t to denote the total processing power of MEPC

m. f is the processing capacity of each Platoon Member (PM).
When a task completes, we calculate the execution latency as:

T co,n→m
t = vn

t d
n
t /c

n,m
t . (10)

The corresponding energy consumption for nth task is:

Eco,n→m
t = µdn

t v
n
t

(
cn,m
t

)2
, (11)

where µ is the effective coefficient related to chip structure.
Overall, the completion time of a task can be defined as the

period from task generation to the return of the results to the
task vehicle. We express the completion time as follows:

Tn,m
t = T co,n→m

t + T tr,n→m
t , n ∈ Vm

t . (12)

Correspondingly, the whole energy consumption of MEPC
m can be written as:

Em
t =

∑
n∈Vm

t

Eco,n→m
t =

∑
n∈Vm

t

µdn
t v

n
t

(
cn,m
t

)2
. (13)

4) Setting of Trading Pricing: To boost the trading econ-
omy, we build the utility model of MEPC and task vehicle,
respectively. We define Pm

t = {Pn,m
t |n ∈ Vm

t } as the decision
on the setting of trading pricing.

MEPC’s Utility Up,m
t : It is defined as the profit made

through the provision of resource services, which consists of
two components: the income Gm

t obtained from trading with
the task vehicles; the cost Em

t incurred by service trading.
We formulate MEPC’s utility as follows:

Up,m
t = ωm,p

t Gm
t − ω

m,e
t Em

t

=
∑

n∈Vm
t

(ωm,p
t Pn,m

t 1(Tn
t < τn

t )cn,m
t − ωm,e

t Eco,n
t ), (14)

where Pn,m
t ∈ [Pmin, Pmax] is the relevant unit price of MEPC

m for compute resources. 0 < ωm,p
t < 1 (in units 1/Dollar)

and 0 < ωm,e
t < 1 (in units 1/Joule) are weights of the trading

income and energy consumption.
Task Vehicle’s Utility Uv,n

t : It is defined as the benefit
obtained from service trading, which mainly involves three
features: the task completion time saved T s,n

t from the MEPC
services; the payment Hn

t for the required resources and
service; and the energy consumption Etr,n→m

t incurred by
offloading tasks to MEPC via Vehicle-to-Vehicle (V2V) com-
munication. Correspondingly, the Uv,n

t is given by:

Uv,n
t = ωm,t

t T s,n
t − ωm,p

t Hn
t − ω

m,e
t Etr,n→m

t

= ωm,t
t (τn

t − Tn
t )− ωm,p

t Pn,m
t 1(Tn

t < τn
t )cn,m

t

− ωm,e
t Etr,n→m

t , (15)

where 0 < ωm,t
t < 1 (in units 1/Second) is the weight of the

saved completion time.

2Drawing from the current literature [24], [25], we assume that the
transmission power for both the task vehicle and the MEPC is equivalent.

C. Problem Formulation

Trading mode: To avoid time consumption caused by the
frequent information exchange between the central controller
and MEPC, we consider distributed trading strategies in this
trading market; MOOP: Make optimal decisions of service
selection, spectrum band assignment, computing resources
allocation, trading pricing setting, and achieve good perfor-
mance in service access ratio and players’ utility. Accordingly,
we can express the MOOP for MEPC m as:

P1 : max
Vm

t ,Bm
t ,Cm

t ,Pm
t

lim
T→∞

1
T

∑
t∈T
Wm

t

lim
T→∞

1
T

∑
t∈T
Up,m

t

lim
T→∞

1
T

∑
t∈T

∑
n∈Vm

t

Uv,n
t

s.t. C1 : Vm
t = {n|vn,m

t = 1, n ∈ Km
t }, v

n,m
t ∈ {0, 1},

C2 : Bm
t = {bn,m

t |bn,m
t ∈ B, n ∈ Vm

t },
C3 : Cm

t = {cn,m
t |

∑
n∈Vm

t

cn,m
t ≤ Cco

m },

C4 : Pm
t ={Pn,m

t |Pn,m
t ∈ [Pmin, Pmax], n∈Vm

t }. (16)

where C1 is the constraint of service selection decision,
C2 enforces the spectrum band to be selected in an inherent
resource pool, C3 ensures that, in each time slot, the total
allocated computing resources cannot exceed the processing
capability of MEPC m, C4 imposes the maximum and mini-
mum trading pricing.

It is a hybrid control (continuous and discrete) prob-
lem for which conventional dynamic programming methods
have no way of solving directly for the optimal solution.
Therefore, we choose DRL methods to find the sub-optimal
solution to this hybrid problem. However, because our
multi-agent environment is fully distributed, the reward of
one MEPC is affected by other MEPCs’ actions. Besides,
existing DRL methods, such as Deep Deterministic Pol-
icy Gradient (DDPG), require that the agents’ reward be
influenced only by their actions and are not suitable for
solving this multi-agent scenario in this work. Hence, we pro-
pose our MARL algorithm and build a training architecture
to tackle the above problem. In the following section,
we then introduce the preliminary study for our MARL
environment.

IV. PRELIMINARIES STUDY FOR MARL ENVIRONMENT

A. Policy Gradients
Given policy π : S → A parameterized by θ, the objec-

tive function is the expected discounted cumulative reward
J(θ) = E

[ ∑∞
t=0 γ

trt
]
. Policy gradient aims to optimize θ by

maximizing this objective through gradient ascent, expressed
as ∇θJ(θ):

∇θJ(θ) = E
[
∇θπ(s|θ)∇aQ(s, a|ϕ)|a = π(s|θ)

]
, (17)

where Q(s, a|ϕ) is a state-action value function parameter-
ized by ϕ, approximated by a neural network known as the
Q-function. DDPG combines ideas from Deterministic Policy
Gradient (DPG) and Deep Q-Network (DQN) to concur-
rently learn Q(s, a|ϕ) and policy π(s|θ). However, DDPG
suffers from overestimated value estimates and sub-optimal
policies [26].
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B. Twin Delayed Deep Deterministic Policy Gradient (TD3)
Twin Delayed Deep Deterministic policy gradient (TD3)

addresses DDPG’s overestimation issue through three key
tricks: Clipped Double-Learning, Delayed Policy Update, and
Target Policy Smoothing Regularization.

Clipped Double-Q Learning: Two Q-functions are learned
and the smaller Q-value is used to be the target value in the
Bellman error loss function, which helps fend off overestima-
tion in the Q-function.

y = r + γ min
i=1,2

Q′(s′, a′|ψ′i), (18)

where ψ′i is the parameter of the target critic network i, and
the arget action is a′ = π′(s′|θ′).

Both Q-functions are learned by regressing to this target
value y, with the loss function below for i = 1, 2:

L(ψi) = Es,a,r,s′∼D

[
(Q(s, a|ψi)− y)2

]
. (19)

The policy π(s|θ) can be learned by maximizing Q as follows:

max
θ

Es∼D

[
Q(s, π(s|θ)|ψ1)

]
. (20)

Delayed Policy Update: The policy (including target policy)
usually updates after twice updates of Q-functions.

Target Policy Smoothing Regularization: Noise is added to
the target policy output to avert the exploitation of Q-function
errors.

a′ = clip(π′(s′|θ′) + clip(ϵ,−c, c), aLow, aHigh), (21)

where ϵ ∼ N (0, σ) is the clipped Gaussian noise.

C. Multi-Agent Twin Delayed Deep Deterministic Policy
Gradient (MATD3)

Multi-agent Twin Delayed Deep Deterministic policy gra-
dient (MATD3) is an extension of TD3 under a multi-agent
setting. Each agent has its own policy π(om|θm),m ∈ M,
and the gradient of each policy is written as:

∇θm
J(θm)

= Es,a∼D

[
∇θmπ(om|θm)

∇am
Q(s, a1, . . . , aM |ψm,1)|am = π(om|θm)

]
, (22)

where Q(s, a1, . . . , am, . . . , aM |ψm,1) is a centralized
action-value function representing the Q-value estimation for
an agent with all agents’ actions and the overall environment
state s. Each agent has its own action space and rewards
function to derive its value function. MATD3 ensures
environment stationarity by obtaining the actions of all other
agents and accommodating changes in their policies. It is a
versatile algorithm in MARL, applicable to hybrid cooperative
and competitive environments [27].

D. Prioritized Experience Replay
Reinforcement learning benefits from experience replay,

reusing past experiences to address correlated updates and
scarce but valuable experiences. Prioritized experience replay
focuses on replaying significant transitions more frequently to
address this limitation [28].

Greedy TD-error Prioritizing: Transitions with higher abso-
lute TD errors are replayed with greater probability. The
weights are updated proportionally to TD error in a Q-learning

manner. New transitions without a known TD error receive
maximal priority to ensure they are replayed at least once.

Stochastic Prioritizing: To address the limitations,3 a
stochastic sampling method is introduced, striking a balance
between pure greedy and random sampling. It allows non-zero
probability for sampling low-priority transitions. The sampling
probability is monotonic concerning the transition’s priority
and shown as:

P (i) = pα
i /

∑
k

pα
k , (23)

where pi > 0 is transition’s priority. α denotes prioritization
usage, especially α = 0 for uniform sampling.

Annealing the Bias: The bias introduced by prioritized
replay are corrected by using importance-sampling weights.

V. MARL ENVIRONMENT FOR TRADING MARKET

In this dynamic and complex multi-MEPC environment,
the decision process does not conform to the stationary
property required by the MDP. Hence, we introduce Par-
tially Observable Markov Games (POMDPs) to represent the
interactions among MEPCs [29]. POMDPs provide a realistic
portrayal of the multi-MEPC scenario. This POMDPsM =<
S,H,R,O, γ > includes the state set S, a hybrid action
space H, an observation space O, a reward function R, and a
discounted factor γ.

A. State Space
S ≜ {st = (S1,S2,S3,S4)} is the state space consisting of

four components as follows:
• The first channel of state S1 includes the

covering conditions of all MEPCs, S1 =
{K1

t , . . . ,Km
t , . . . ,KM

t }m∈M,t∈T .
• The second channel of sate S2 is the task

information of the covered task vehicles, S2 =
{X 1

t , . . . ,Xn
t , . . . ,XN

t }n∈N ,t∈T .
• The third channel of state S3 is the number of PMs Nm

t ,
S3 = {N1

t , . . . ,N
m
t , . . . ,N

M
t }m∈M,t∈T .

• The forth channel of state S4 is the available spectrum
bands, S4 = {|Bt|}t∈T .

B. Observation Space
O ≜ {om

t = (Om
1 ,Om

2 ,Om
3 ,Om

4 )} is a finite observation
space, describing MEPC’s experience. leftmargin=*
• The first channel of observation Om

1 is the covering
condition Km

t of MEPC m. Namely, Om
1 = Km

t , t ∈ T .
• The second channel of observation Om

2 is the information
of vehicles covered by MEPC m. Accordingly, Om

2 =
{Xn

t }n∈Km
t ,t∈T .

• The third channel of observation Om
3 is the number of

PMs of MEPC m. Namely, Om
3 = Nm

t , t ∈ T .
• The fourth channel of observation Om

4 is the available
spectrum bands, which is global information for all
MEPCs. Namely, Om

4 = |Bt|, t ∈ T .
Overall, the observation of MEPC m at time slot t is:

om
t = (Km

t , {Xn
t }n∈Km

t
,Nm

t , |Bt|),m ∈M, t ∈ T . (24)

3Issues include: 1) infrequent replay of transitions with low TD error;
2) significant impact of noise spikes on approximation errors; 3) susceptibility
to overfitting due to lack of diversity.
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C. Hybrid (Discrete-Continuous) Action Space
Different from the action space in conventional RL (only

considering discrete or continuous action space), the hybrid
action space is considered in this work, which can be defined
as: H ≜ {hm

t = (Vm
t ,Bm

t ,Cm
t ,Pm

t )|Vm
t ⊆ N}m∈M,t∈T ,

where the action space of Vm
t and Bm

t are discrete, and the
action space of Cm

t and Pm
t are continuous.

Traditional RL algorithms prove insufficient when applied
to the hybrid action space H. This arises from the standard
policy representations, typically characterized by polynomial
or Gaussian distributions, which fail to account for the
heterogeneity of discrete and continuous actions. Further-
more, implicit policies derived from action value functions
in value-based algorithms are not capable of maximizing
over an infinite hybrid action space. A connection exists
between discrete actions and continuous parameters, wherein
discrete actions generally define the space of their associated
continuous parameters. From a theoretical perspective, before
continuous parameters can be determined, the optimal hybrid
strategy necessitates the prior selection of discrete actions.

D. Reward Function
To ensure mutually beneficial outcomes in this trading

market, we define the local reward function of MEPC to incor-
porate three objectives: service access ratio, service quality,
and trading profit, in a “utility-efficient” manner. Additionally,
a global trading reward is defined to evaluate the overall
trading performance.
• Global Trading Reward: The global reward evaluates the

MEPCs’ cooperation, which defined as:

rt
g =

∑
m∈M

∑
n∈N

lg{1 +
Wm

t

1 + In,m
t

}. (25)

• Local Trading Reward: The local reward measures each
MEPC’s performance (service access ratio, service qual-
ity, and trading profit), which is designed as:

rt
l,m =Wm

t

(
αUp,m

t + (1− α)
∑

n∈Vm
t

Uv,n
t

)
,m ∈M,

(26)

where α is the weight of the MEPC’s utility.

E. MARL Goal
For the M MEPCs, the optimization problems can be

expresses as:

max
θm

J(θm),m ∈M, π(·|θm) ∈ Π, (27)

where π(·|θm) is the policy of MEPC m. Π is the set of
all feasible policies for MEPC m. Each MEPC interacts with
the trading market and takes action according to its policy π,
aiming at solving the optimization problem (16), or in other
words, maximizing its total expected reward (27).

Rewards are functions of states and actions. During the
training stage, a corresponding reward will be returned to
the MEPC at time slot t once the chosen action is taken by
this MEPC at the previous time slot. Then according to the
received reward, each MEPC updates its policy π to direct to
an optimal one. In a single time slot t, each observation om

t
only represents the current observation of a platoon, and each
reward rm

t is just an indicator to measure gains or losses at
this moment.

VI. SOLUTION: GL-HPMATD3-BASED
TRADING DECISION

A. Parameter for Policy and Value-Function of MEPC
To better present our algorithm, we first define the parameter

of each policy and action-value function.
1) Policy π parameterized by

Θ = {θ1, . . . , θm, . . . , θM},m ∈M

where θm represents the learnable variables that define the
behavior of the evaluation network of the local actor.

2) Target Policy π′ parameterized by

Θ′ = {θ′1, . . . , θ′m, . . . , θ′M},m ∈M

where θ′m represents the learnable variables that define the
behavior of the mth MEPC’s target network of the local actor.

3) Action-Value Function Ql parameterized by

Φl = {ϕl,1, . . . , ϕl,m, . . . , ϕl,M},m ∈M

where parameters ϕl,m are determined through the local
critic’s interaction with the environment and are indispensable
for evaluating the quality or value of actions.

4) Target Action-Value Function Q′l parameterized by

Φ′l = {ϕ′l,1, . . . , ϕ′l,m, . . . , ϕ′l,M},m ∈M

where parameters ϕ′l,m are peculiar to the target action-value
function Q′l, connected with the mth MEPC.

5) Global Action-Value Function Qi
g parameterized by

Ψi
g = {ψi

g,1, . . . , ψ
i
g,m, . . . , ψ

i
g,M},m ∈M, i = 1, 2

where parameters ψi
g,m are unique to the global action-value

function Qi
g , corresponding to the mth MEPC.

6) Target Global Action-Value Function Q′,ig parameterized
by

Ψ′,ig = {ψ′,ig,1, . . . , ψ
′,i
g,m, . . . , ψ

′,i
g,M},m ∈M, i = 1, 2

where parameters ψ′,ig,m are specific to the target global
action-value function Q′,ig associated with the mth MEPC.

B. Hybrid Action Space Representation
The action space has a hierarchical structure with dis-

crete actions parameterized by real-valued vectors. The hybrid
action space serves as a latent representation space, enabling
the agent to learn the latent policy. To interact with the real
environment, the agent selects a latent action based on the
latent policy, which is then decoded into the hybrid action
space. The selection of service access is an integral part of
the hybrid action space, but it is not involved in the training
for hybrid action representation. This decision is a prerequisite
for the other three hybrid decisions, as the set of task vehicles
requiring service must be established before proceeding with
the assignment of communication resources, allocation of
computation resources, and setting of trading pricing.

To determine the service access decision, we employ four
pre-set screening scenarios that consider factors such as dis-
tance, task priority, communication conditions, and potential
service capabilities. However, due to environmental dynamics
and complexity, deterministic screening alone is insufficient.
Hence, we utilize a training model to maximize player utility
and service access ratio. This model continuously optimizes
service access decisions, learning from extracted features of
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Fig. 2. The global-local training framework.

screening data. This enables each MEPC to accurately identify
task vehicles needing service, laying a robust foundation for
subsequent hybrid action training and determination.

1) Parameterized Action Space: For each task vehicle n ∈
Vm

t , an applicable parameterized action space is defined as:

Hn = {(b, Cb, Pb)|Cb ∈ Cm
t , Pb ∈ Pm

t for all b ∈ Bt}, (28)

where Bt = {b1, b2, . . . , bK} is the discrete action set, Cm
t and

Pm
t are the corresponding continues parameter sets for each
b ∈ Bt. We call any pair of b, Cb, Pb as a hybrid action and
also call Hn as hybrid action space of task vehicle n for short
in this paper. In this work, different discrete actions can share
the same continuous parameters.

2) Encoding and Decoding: Encoding: eζ,b = Eζ(b),
zc, zp ∼ qσ(·|Cb, Pb, s, eζ,b) where Eζ is an embedding table
with learnable parameter ζ to represent the discrete actions,
qσ(·) is a encoder parameterized by σ to map continuous
action Cb, Pb into the latent variable zc, zp.

Decoding: b = gE(e) = arg minb′∈Bt
∥eζ,b′ − e∥2 Cb, Pb =

pϱ(zc, zp, s, eζ,b), where pϱ(·) is the decoder parameterized by
ϱ to reconstruct the continues parameter Cb, Pb from zc, zp.

3) Dynamic Predictive Representation: The prediction δ̃s,s′

is produced as follows:

δ̃s,s′ = pϱ(zc, zp, s, eζ,b), for s, e, zc, zp. (29)

We minimize the L2-norm square prediction error:

LDyn(σ, ϱ, ζ) = Es,b,Cb,Pb,s′
[
∥δ̃s,s′ − δs,s′∥22

]
, (30)

where δs,s′ = s′ − s is denoted as state residual.
To better represent the hybrid action space, the ultimate

training loss is derived as follows:

LHyAR(σ, ϱ, ζ) = LVAE(σ, ϱ, ζ) + βLDyn(σ, ϱ, ζ), (31)

where β is a hyper-parameter to weight the representation loss
for dynamic prediction. LVAE(σ, ϱ, ζ) can be described as:

LVAE(σ, ϱ, ζ)=Es,b,Cb,Pb∼D,z∼qσ

[
∥Cb − C̃b∥22 +∥Pb − P̃b∥22

+DKL(qσ(·|Cb, Pb, s, eζ,b)∥N (0, I))
]
, (32)

where C̃b, P̃b, are the reconstructed continuous parameters
from zc, zp, respectively. DKL is the Kullback-Leribler diver-
gence. The embedding table Eζ and the conditional VAE qσ ,
qϱ are trained together by minimizing the loss function LVAE.

C. Trading Decision-Based GL-HPMATD3
The optimal discrete action is expected to find by our pro-

posed algorithm to avoid the exhaustive search for continuous
parameters that match it. The global-local training framework
is described in Fig.2.

1) Local DDPG: The local DDPG consists of two main
components: the critic (target critic) and the actor (tar-
get actor). The actor generates an action based on the
policy π using the input observation. The critic, repre-
sented by the action-value function Ql, evaluates the selected
action. The critic network updates its parameters by mini-
mizing the loss, using a random mini-batch of Hs transitions
(om, rl

m,hm,o′m) to update ϕl,m.

L(ϕl,m) = Eom,rl,m,hm,o′
m∼Dg,m

[
(yl −Ql(om, hm|ϕl,m))2

]
,

(33)

where yl is defined as:

yl = rl,m + γQ′l(o
′
m, h

′
m|ϕ′l,m)|h′

m=π′(o′
m|θ′

m). (34)

Update critic parameter

ϕl,m ← ϕl,m − αQ · ∇ϕl,m
L, (35)

where αQ is the learning rate.
We can adjust the ϕl,m with the gradient of the loss function

L(ϕl,m), if L(ϕl,m) is continuously differentiable. Meanwhile,
the actor function is deterministic and approximated by a DNN
with parameter θm. Thus, we define π(om|θm) = hm. The
parameters of the actor can update by maximizing the policy
objective function, which can be described as:

J(θm)=Eom,hm∼Dg,m

[
Ql(om, hm|ϕl,m)|hm=π(om|θm)

]
. (36)

For each MEPC, the policy gradient of the objective func-
tion can be shown as follows:

∇θm
J(θm) = Eom,hm∼Dg,m[

∇hm
Ql(om, hm|ϕl,m)∇θm

π(om|θm)
]
, (37)

where π represents the deterministic policy π : om 7→ hm,
which is continuous. θm can be adjusted in the direction of
∇θm

J(θm). The actor network can be updated by

θm ← θm − απ · ∇θmJ(θm), (38)

where απ is the learning rate for MEPC’s policy.
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A copy of the actor and critic, Q′l and π′, are used for
calculating the target values. With real-time updated θm and
ϕl,m, the parameters of the target networks, θ′m, ϕ′l,m, then
can be softly updated as follows,

θ′m = κπθm + (1− κπ)θ′m
ϕ′l,m = κQϕl,m + (1− κQ)ϕ′l,m (39)

where κπ ≪ 1 and κQ ≪ 1 are the update rate. In this way, the
target network values change slowly, different from the design
in DQN in that the target network stays frozen for some time.
Batch normalization is applied to fix it by normalizing every
dimension across samples in one mini-batch. Modification to
DPG, inspired by the success of DQN, allows it to use neural
network function approximators to learn in large state and
action spaces online.

2) Global TD3: The MATD3 for MEPC m can be written
as:

∇θm
Jm =Es,h∼Dg,m

[
∇hm

Q1
g(s,h|ψ1

g,m)∇θm
π(om|θm)

]
,

(40)

where s = (S1,S2,S3,S4) and h = (h1, . . . , hm, . . . , hM ) are
the total state and hybrid action space. For the trading system,
we consider the modified policy gradient for each MEPC m.

The twin global critics are updated as:

L(ψi
g,m)=Es,h,rg,s′∼Dg,m

[
(Qi

g(s, h1, . . . , hM |ψi
g,m)− yg)2

]
,

(41)

where yg is defined as:

yg = rg + γ min
i=1,2

Q′,ig (s′, h′1, . . . , h
′
M |ψ′,im )|h′

m=π′(o′
m|θ′

m).

(42)

Combine the local and global rewards, we describe the
modified policy gradient of each MEPC as follows:

∇θm
Jm(θm)=

MATD3︷ ︸︸ ︷
Es,h∼Dg,m

[∇hm
Q1

g(s,h|ψ1
g,m)∇θm

π(om|θm)]
+Eom,hm∼Dg,m

[∇hm
Q(om, hm|ϕl,m)∇θm

π(om|θm)]︸ ︷︷ ︸
DDPG

. (43)

3) GL-HPMATD3 Algorithm: Overall, there are three stages
of GL-HPMATD3, initialization, hybrid representation,
and training, the pseudo-code of which are described in
Algorithm 1 [Please refer to Appendix A, See the Supple-
memtary Material].

Initialization: In the initialization stage, we initialize the
parameters of the neural network (global and local network of
each MEPC) and training processing (lines 2-7).

Hybrid representation: In the hybrid representation stage,
the first thing is to prepare the replay buffer Dg,m of each
MEPC. For simplicity, the agent interacts with the environment
and generates data with a random policy. The hybrid action
representation can be pre-trained with each MEPC’s replay
buffer. The parameters of the embedding table and conditional
VAE can be updated by minimizing the loss of dynamic
prediction until reaching the maximum training time of hybrid
representation (lines 11-12).

Training: In the training stage, we first reset simulation
parameters and randomly generate an initial state s (line 16).
Then, select the latent action according to the current policy
and exploration noise (line 19). To interact with the environ-
ment, decode the latent action into the original action (line 20).

After calculating the global and local reward, transitions
are stored in each prioritized replay buffer Dg,m (line 25).
By using Algorithm 4 [Please refer to Appendix B, See
the Supplememtary Material], sample a prioritized mini-batch
of Hs transitions from the replay buffer (line 28). Through
Algorithm 2 [Please refer to Appendix B, See the Sup-
plememtary Material], the global critic networks are trained
(lines 27-35). Meanwhile, the local critic networks are trained
through Algorithm 3 [Please refer to Appendix C, See the
Supplememtary Material] (lines 32-33). Finally, the latent
policy is also continuously updated as the global and local
critic networks are trained (lines 37-39).

The implementation of an advanced MARL algorithm
greatly improves the accuracy of service access selection,
leading to significant reductions in unnecessary handovers.
This predictive modeling approach integrates user mobility
patterns, network conditions, and service requirements, refin-
ing decision-making and minimizing handover costs. The
innovative strategy demonstrates its profound impact on the
overall system performance.

D. Modeling MARL Environment
In this part, we present our “Trading on Motorway” envi-

ronment, which implements the following four API functions.
1) Application Programming Interface Functions: There

are four inherent functions for environment modeling. The
interactive data can be obtained through this environment.
• env.init(): This function can initialize the environ-

ment, including the number, position, velocity of MEPCs
and vehicles, the number of PMs, task information,
available spectrum bands, etc.

• env.reset(): The reset function works the same as
env. init() but is executed at least once after the
environment has initialized.

• env.step(obs_n, action_n) =
[obs_next_n, reward_n, done, info]():
This function output the observation information of the
next time slot, reward value, Boolean value of whether
to end the episode and other optional information
according to the current observation information and
selected action.

• env.render(): This function visualizes the scenario of
multiple MEPCs interactions.

2) MARL Environment Features: In our framework, some
pre-defined environments can be used directly, but of course,
it is also possible to create specific environments by modifying
the following parameters:
• Number of MEPCs and Task vehicles: M , N
• Number of PMs: Nm

t
• Position of Sites: (x, y) for each MEPC and task vehicle
• Task Information: Xn

t = {vn
t , d

n
t , τ

n
t }

VII. NUMERICAL RESULTS

A. Parameter Setting
In this section, we present numerical results to demonstrate

the efficiency of our proposed GL-HPMATD3 algorithm. The
specific parameter setting of the neural network and training
parameters can be found in Table III.

B. Training Performance
1) Change of Loss Curve: The loss curves of local and

global training are depicted in Fig. 3, showcasing a decaying
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TABLE III
THE SPECIFIC PARAMETER SETTING OF NEURAL NETWORK AND TRAINING PARAMETERS

Fig. 3. Training curves on local loss and global loss.

and converging trend, despite occasional spikes. These spikes
are normal and occur due to extreme situations in the trading
process, such as fluctuations in service requests. Notably,
the global loss curve demonstrates superior convergence per-
formance compared to the local loss curve. This advantage
primarily stems from the global network’s training data,
which incorporates information from all MEPCs, effectively
addressing the non-stationarity that arises from the simulta-
neous learning of multiple MEPCs. On the other hand, the
local networks of individual MEPCs utilize only observable
information for policy training, resulting in a relatively slower
decline and convergence of the loss curve.

2) Learning Curves of Cumulative Rewards: In Fig.4,
we also accumulated the immediate local and global reward
for each MEPC in a service trading. We note that the reward
value is always positive since the immediate rewards act as
encouragement, which is always positive according to our
definition. Specifically, each point on the local reward curve is
a cumulative result of the immediate rewards that each MEPC
obtains at each time slot during its trading service process.
In addition, we can see in this figure that the cumulative value
of both global and local rewards increases over time. It is
mainly because the built model has learned a good policy
to guarantee the incremental service access ratio, service
quality, and trading profit. When reaching around 15000 and
20000 timeslots, accumulated and global local rewards start to
saturate with slight fluctuations. This is because the optimal
policy has been learned and the corresponding losses have
stabilized gradually.

Fig. 4. Training curves on discounted cumulative reward.

C. Comparing With Baseline and State-of-the-Art Methods

The methods compared in this section are as follows:
State-of-Art Methods:
DE-MADDPG: A cooperative MARL framework that can

maximize the global and local rewards simultaneously [31].
DRLRM: A DRL algorithm based Resource Management

scheme, which is decoupled into a pricing policy based
on the DDPG algorithm and an offloading policy based on
MADDPG [32].

PS-DDPG: An improved DRL algorithm with the PER and
stochastic weight averaging mechanisms based on DDPG [33].

Baseline Methods:
Baseline-MADDPG: An learning approach based on MAD-

DPG to learn task scheduling and power control policy [34].
Baseline-DDPG: A model-free and off-policy deterministic

RL algorithm based on actor-critic which continuously learns
the Q-function to learn the policy and is well adaptive in
continuous action spaces [35].

Random Policy (RP): For each MEPC, it selects the ser-
vice access request from nearby task vehicles randomly.
The task vehicle in the overlap set is selected accord-
ing to the relative shortest distance. The decisions on
the assignment of communication resources, allocation of
computing resources, and pricing of trading obey uniform
distribution.

Utility Greedy Policy (UGP): To increase each MEPC’s
utility, the overall trading strategy is based on the decisions of
selection, assignment, allocation, and pricing.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 26,2024 at 10:18:06 UTC from IEEE Xplore.  Restrictions apply. 



2154 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024

Fig. 5. Convergence of different algorithms.

1) Convergence Performance of the Proposed GL-
HPMATD3 Algorithm: In Fig.5, we compare the convergence
performance of the proposed GL-HPMATD3 algorithm
with state-of-the-art methodologies (DE-MADDPG(PER),
DE-MADDPG, DRLRM, PS-DDPG) and baseline methods
(MADDPG, DDPG) respectively. The changing trend of
each method curve is roughly the same. As the time slot
increases, the average global reward raises go up well and
eventually tend to a steady value. It can be seen that the
GL-HPMATD3 approach outperforms all other methods by
a significant margin in convergence speed and average
global reward. Compared with DE-MADDPG(PER),
GL-HPMATD3 adopts the TD3 training network to
alleviate the overestimation DDPG caused. Additionally,
the representation of hybrid action space is fully exploited for
system training, which is not considered by other methods.
Compared with DRLRM, GL-HPMATD3 makes the decisions
of request selection, resource allocation, and pricing trading
based on DDPG and MATD3, which is more suitable for the
overall trading market. The DDPG does not meet the needs
of multi-agent training, so the convergence performance
is worse than MADDPG and its variants. The variance in
convergence time slots holds crucial significance in vehicular
networks, particularly for computation-intensive, delay-
sensitive tasks. Even minor disparities in decision-making
can have a profound impact on real-time performance and
user experience, leading to substantial improvements. The
distinction lies in computational complexity and real-time
decision-making capability.

2) Comparison of MEPC’s Utility: In Fig.6 (a)-(c),
we show the utility values of each algorithm of the MEPC
based on different numbers of PMs. At the same time, the
MEPC utility values based on a different number of task
vehicles are shown in Fig.6 (d)-(f). Except for the UGP
algorithm, which is only used to optimal the MEPC utility, our
proposed algorithm GL-HPMATD3 algorithm can ensure that
the utility value of each MEPC remains at a high level. This
is because the utility function of MEPC is formulated as one
objective in the multi-objective function. Our global and local
reward functions are designed based on the objective function
and constraints, which require MEPC to make near-optimal
trading decisions for each accessed task vehicle to maximize
the objective function. Therefore, the MEPC utility values
based on the GL-HPMATD3 algorithm can always be higher
than the MEPC utility values of other algorithms. With the
increase in task vehicles, the MEPC utility gradually increases.
When the number of task vehicles exceeds the MEPC’s capa-
bility, the utility of the MEPC decreases to ensure the service

access ratio. Obviously, with the increase in the number of
PMs, the service capacity of the MEPC becomes powerful,
the number of served task vehicles increases and the utility
function increases accordingly.

3) Comparison of Task Vehicle’s Utility: In Fig. 7,
we present a comparison of the utility values of task vehi-
cles at different driving speeds and MEPCs. Our proposed
GL-HPMATD3 algorithm significantly enhances the vehicle’s
utility compared to DE-MADDPG(PER), DRLRM, MAD-
DPG, PS-DDPG, DDPG, RP, and UGP algorithms. The
vehicle’s utility function is based on energy consumption,
execution latency, and service revenue. Through task offload-
ing to the MEPC, energy consumption, and execution latency
remain low. Task vehicles driving at speeds within the range
of [30, 80] Km/h achieve the highest utility values. This
is because high-speed task vehicles can offload tasks to
slower-moving MEPCs via V2V communication, leveraging
the MEPC’s more relaxed task delay constraints. Conse-
quently, the frequency of task offloading between the task
vehicle and the MEPC increases, resulting in improved user
experience and increased processing revenue, leading to higher
utility values for the task vehicle. Furthermore, as the number
of PMs increases, the MEPC’s processing capacity becomes
more powerful, resulting in more efficient task processing.
As a result, the utility value of the task vehicle increases with
the number of PMs.

4) Comparison of Service Access Ratio: In Fig. 8, the
service access ratio based on different numbers of task
vehicles is compared for various algorithms. Our proposed
GL-HPMATD3 algorithm ensures a higher service access
ratio for MEPCs compared to DE-MADDPG(PER), DRLRM,
MADDPG, PS-DDPG, DDPG, RP, and UGP algorithms.
GL-HPMATD3 achieves this by making quick decisions on
selecting requesters and rearranging service requests, ensuring
that each task vehicle finds an appropriate service supporter.
Consequently, the service access ratio of each MEPC is guar-
anteed to be high. The service access ratio naturally increases
with the number of task vehicles. When the number of task
vehicles is 50, the service access ratio of the first MEPC is
lower than that of other service supporters due to an excess
supply of services relative to the demand. This results in
a lower actual service access ratio for some task vehicles.
However, as the number of requesters increases, supply and
demand become balanced, leading to larger service access
ratios for each service supporter.

In Fig.9, with the increase in the number of task vehicles,
the service access ratio gradually increases, and finally trends
to a stable value. Because the UGP algorithm is designed to
increase the MEPC’s utility without considering the service
access ratio, there is no doubt that UGP has poor perfor-
mance on the service access ratio. We can see that the
proposed GL-HPMATD3 algorithm is ideal in terms of service
access ratio. For DE-MADDPG(PER), DRLRM, MADDPG,
PS-DDPG, DDPG, RP, and UGP, the average deviation
rates between them and GL-HPMATD3 are 11.19%, 13.77%,
18.91%, 37.07%, 43.29%, 58.12%, 63.58%, respectively.
In addition, the gap between our proposed GL-HPMATD3
algorithm and other compared algorithms becomes wider,
which is because the proposed GL-HPMATD3 algorithm can
reasonably distribute global service requests to each MEPC
based on the number of task vehicles, overlap range, and
relative motion.
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Fig. 6. MEPC utility of different algorithms: (a) Number of PMs is 5. (b) Number of PMs is 10. (c) Number of PMs is 15. (d) Number of task vehicles is
50.(e) Number of task vehicles is 100. (f) Number of task vehicles is 150.

Fig. 7. Task vehicle utility of different algorithms: (a) Vehicle speed range
is [30,50]Km/h. (b) Vehicle speed range is [50,80]Km/h. (c) Number of PMs
is 5. (d) Number of PMs is 10.

Fig. 8. Service access ratio of different algorithms: (a) Number of task
vehicle is 50. (b) Number of task vehicle is 100. (c) Number of task vehicle
is 150. (d) Number of task vehicle is 200.

5) Comparison of Execution Latency: In Fig.10 (a) and (b),
we show the comparison of the execution latency with different
algorithms as the number of task vehicles increases. As the
number of task vehicles increases, the execution latency to
each algorithm increases. For an MEPC, the service requests
will increase with the increase of task vehicles. When the
service request exceeds the capacity of MEPC, some task vehi-
cles will be rejected, and the execution latency will increase
accordingly. The MEPC with 10 PMs has better performance
in execution latency than the MEPC with 5 PMs.

Fig. 9. Service access ratio of per MEPC versus the different task vehicle
number.

Fig. 10. Execution latency vs. the number of task vehicles: a) the execution
latency when PMs is 5. b) the execution latency when PMs is 10.

In Fig. 11, we present a comprehensive comparison of
execution latency across various speed ranges. In contrast
to algorithms such as DE-MADDPG(PER), DRLRM, and
MADDPG, our proposed GL-HPMATD3 algorithm demon-
strates superior performance in terms of execution latency.
This edge is rooted in our optimization goal, which bal-
ances the utility value of task vehicles against task execution
latency constraints.4 Importantly, the driving speed has a

4If the majority of vehicles are concentrated in the lower speed range, there
is a heightened overall processing latency due to the high delay tolerance.
Conversely, when vehicles predominantly operate at higher speeds, resource
contention becomes a significant challenge, likely causing task processing
disruptions and subsequently prolonging the processing delay.
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Fig. 11. Execution latency of different algorithms under different speed
range: a) the speed range of vehicle is [30,50]Km/h. b) the speed range
of vehicle is [50,80]Km/h. c) the speed range of vehicle is [30,80]Km/h.
d) average execution latency of different driving speed ranges.

Fig. 12. Performance of trading pricing: a) change curve of trading pricing.
b) trading pricing vs. different capability. c) average execution latency of
different trading pricing. d) average vehicle utility of different trading pricing.

pronounced effect on the execution latency of our platoon
cloud. The data in the figure underscores that execution
latency is optimal within the 30 to 80 km/h speed bracket.
This trend emerges from the shifting task execution latency
constraints due to varied driving speeds. Therefore, our platoon
cloud astutely channels more communication resources to
compute-intensive, latency-sensitive tasks, refining the overall
performance.

6) Trading Pricing: In Fig. 12, we observe the performance
of trading pricing. Fig. 12(a) shows the fluctuation of trading
pricing with the increase in transaction times, reflecting the
equilibrium of the trading market. Fig. 12(b) illustrates the
changes in trading pricing as the number of task vehicles
increases, where a demand-supply imbalance results in a
market premium. In Fig. 12(c) and (d), we present the average
execution latency and average utility under different trading
pricing. Our proposed GL-HPMATD3 algorithm consistently
maintains a lower average execution latency and higher utility
values for varying trading pricing. This superiority stems from
GL-HPMATD3’s ability to adjust trading decisions for each
service access vehicle, leading to optimized outcomes in terms
of execution latency and utility.

VIII. CONCLUSION

In conclusion, this study introduces an innovative trad-
ing market in platooning-assisted vehicular networks, where
vehicle platoons act as service providers and task vehicles
as service requesters. To achieve mutually beneficial trading
and overall performance, we formulate an MOOP for opti-
mal trading decisions, encompassing service access requests,
resource allocation, and trade pricing. To efficiently solve the
MOOP, we devise a global-local training architecture using
the GL-HPMATD3 algorithm. Simulation results demon-
strate the superior performance of GL-HPMATD3, showing
improved convergence, service access ratio, and player utility,
along with reduced execution latency.

Looking ahead, we recognize the importance of validating
our model under complex, real-world conditions. We plan to
extend our validation using NS3 for network dynamics and
SUMO for mobility patterns to simulate more realistic and
complex environments in the future [36], [37].
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