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Learning Semantic Behavior for Human Mobility
Trajectory Recovery
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Zheng Qin , You Li, and Schahram Dustdar , Fellow, IEEE

Abstract— Trajectory recovery aims to restore missing data
for reconstructing high-quality human mobility trajectory, which
benefits a wide range of intelligent transportation system appli-
cations ranging from urban planning to travel recommendation.
Inspired by the inherent regularity of human mobility, existing
approaches capture spatial-temporal transition regularities in
historical trajectory for data recovery. Although promising,
existing solutions suffer from two limitations. i) These methods
fail to recover occasionally-visited points (OVP) due to the lack of
semantic information when learning spatial-temporal transition
regularities. ii) The information before and after missing data
is not be fully utilized for trajectory recovery. To overcome
the limitations, we propose a novel semantic-aware trajectory
recovery framework. First, we leverage heterogeneous informa-
tion network (HIN) to encode various semantic correlations
for obtaining rich semantic embeddings, which are fused with
temporal information to form spatial-temporal semantic context.
Then, we develop a behavior attention mechanism to capture
semantic behavior transition regularities for trajectory recovery
based on the bidirectional spatial-temporal semantic context
before and after missing data. Extensive experiments on four
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real-world datasets show that our proposed method outperforms
the state-of-the-arts by 7%-11% in term of recall, F1-score and
mean average precision.

Index Terms—
Human mobility, trajectory recovery, heterogeneous informa-

tion network, attention mechanism.

I. INTRODUCTION

MINING knowledge from human mobility trajectory
facilitate Intelligent Transportation System (ITS) and

urban planning applications [1]. For instance, people’s travel
patterns and preferences can be retrieved from human mobil-
ity trajectory, which provide essential understanding of the
interrelation between human behavior and the physical envi-
ronment. It hence facilitates various applications in urban
planning [2], [3], [4], traffic management [5], [6], [7], [8],
pollution diagnosis [9], [10], travel recommendation [11] and
public safety management [12].

The high-value human mobility trajectory relies on the
completeness of the data, which is unfortunately not often the
case in many ITS applications [13]. In practice, missing data is
a common issue in human mobility trajectory. Using trajectory
with missing data for analysis and modeling will lead to incor-
rect results and unreasonable inference [14], thereby degrading
the performance of downstream ITS applications. In this line,
how to obtain high quality human mobility trajectory without
missing data becomes a vital problem for ITS applications.
Intuitively, the problem can be solved in the process of the tra-
jectory collection. However, it is with high cost or even impos-
sible to collect high quality human mobility trajectory due to
the constraints of device and environment, resulting in missing
or even sparse trajectory data [13]. Alternatively, researchers
turn to develop trajectory recovery techniques to restore miss-
ing data and rebuild high-quality human mobility trajectory.

A prevalent solution for trajectory recovery is to treat human
mobility trajectory as time series location data and leverage
spatial-temporal correlations among locations to interpolate
missing data. Earlier studies lie in the assumption that miss-
ing locations can be approximated by a simple function
(e.g., Gaussian function [15], linear function [16] or nearest-
neighbor function [17]) based on the distances as well as time
spans between each missing point and its contextual points.
The shortcoming of those methods is that their performance
degrades significantly in sparse scenario, as they cannot cap-
ture the high uncertainty between two consecutive with long
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time span. An optional thought is to explore individual mobil-
ity pattern from historical trajectories for trajectory recovery
with recent advanced models including topic models [18],
[19], gradient boosting decision tree [20], ensemble transfer
learning [21] and recurrent neural networks [22]. Neverthe-
less, these methods mainly focus on adjacent transitions and
local regional correlations, which may lead to unsatisfactory
performances in highly spare scenarios due to the absence
of long-term dependencies and global correlations among
locations. Recently, model-based location prediction methods
are developed [23], [24], [25], [26], [27], which leverage
attentive deep neural networks to capture complex mobility
regularity and long short-term spatial-temporal dependencies
among different locations with sparse trajectories.

Despite the inspiring results, existing methods fail to prop-
erly handle the recovery of occasionally-visited points (OVPs)
in the mobility trajectory. The OVPs are locations that visited
infrequently by user. Note that OVPs may occupy a large
proportion in trajectory, thereby inevitably leading to degraded
performance for trajectory recovery. Fig. 1 shows the ratio of
OVPs that are visited only once in four widely used human
mobility datasets: NYC,1 TKY,1 PriCar2 and Gowalla.3 As
shown in Fig. 1, there is a considerable number (20% to
50%) of OVPs in four datasets when trajectory length is
less than 200. In particular, the ratio of OVPs is as high
as 40% to 50% in datasets PriCar and Gowalla, even when
considering very long trajectory sequences (length = 400).
Specifically, one can observe that, on the one side, many OVPs
in trajectory are not in line with the inherent regularity of
human mobility; on the other side, these numerous OVPs are
not isolated, they share same properties with other locations
in trajectory, which forms semantic behavior patterns and
exhibits relative strong regularities. For instance, Alice likes
to taste different flavors of food at different restaurants (e.g.,
Chinese restaurant, Japanese restaurant, Italian restaurant,
etc.). From a geographical perspective, she visited lots of
OVPs, and these OVPs share the same semantic behavior (i.e.,
have meals). Motivated by this observarion, state-of-the-art
approaches [24], [25], [26], [27] attempt to recover the missing
locations via learning spatial-temporal transition regularities.
On the downside, OVPs can hardly be covered by the learned
spatial-temporal transition regularities due to their low visit
frequencies and the absence of semantic information such as
location attribute. As such. it remains a a challenging issue to
effectively recover the OVPs in human mobility trajectory.

To address the key issue of restoring OVPs, we develop
a novel Semantic-aware Trajectory Recovery method, namely
STR, to learn semantic behavior for trajectory recovery. The
main idea of STR is to utilize heterogeneous information
network [28] to obtain semantically rich embeddings. These
embeddings contain both geographic and semantic informa-
tion, so that can accurately describe the similarity between
location points in trajectory. Following that, we leverage
attention mechanism to learn semantic behavior transition

1https://sites.google.com/site/yangdingqi/home/foursquare-dataset
2https://github.com/HunanUniversityZhuXiao/PrivateCarTrajectoryData
3https://snap.stanford.edu/data/loc-gowalla.html

Fig. 1. Analysis on travel behaviors: the ratio of OVPs with respect to
trajectory length in four datasets: NYC, TKY, PriCar and Gowalla. High ratio
of OVPs implies there are many infrequently visited locations in trajectory,
which may be caused by user’s similar semantic behaviors at different places.

regularities, which use semantic information for similarity
retrieval and prediction. In other words, as a crucial insight for
recovering VOPs, our proposed STR method selects location
points as candidate prediction based on semantics, even if
their geographical locations are completely different. The main
contributions of this work are summarized as follows.

• We leverage heterogeneous information network to rep-
resent rich semantic information by invoking multiple
users’ trajectory that share similar geographical and
semantic locations attributes. In doing so, it can encode
various semantic correlations (e.g., user-location and
location-location) in heterogeneous information network
to obtain semantically rich embeddings, which are essen-
tial for identifying user behaviors and conducive to
recovery missing OVPs.

• We develop a semantic behavior attention mechanism
with three major characteristics to ensure a satisfactory
performance of capturing semantic behavior transition
regularities. First, we consider not only geographical
and semantic location attributes, but also the spatial and
temporal intervals between locations to construct the rich
semantic context for representing semantic behaviors.
Second, only relevant time slots are chosen for behavior
attention to avoid huge computing and storage overhead.
Third, bidirectional information before and after missing
data are utilized to avoid bias when capturing semantic
behavior transition regularities.

• We conduct extensive experiments to evaluate the pro-
posed method on four widely-used human mobility
trajectory datasets. The results demonstrate the proposed
method outperforms state-of-the-arts by 7%-11% in term
of recall, F1-score and mean average precision. In addi-
tion, we perform statistical analysis and the results further
verify the superiority of the proposed method.

The remaining parts of this paper are organized as follows.
The literature on related work is reviewed in Section II.
Section III presents the preliminaries. After that, the motiva-
tions and details of STR are discussed in Section IV. Extensive
experiments on real-world datasets are given in Section V.
Finally, we conclude this paper in Section VI.
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II. RELATED WORK

In this section, we first introduce the related methods of
trajectory recovery, and then discuss the recent related works
on heterogeneous network representation learning.

A. Trajectory Recovery

Trajectory recovery has been drawn attentions for years
and a number of techniques have been proposed in literature.
A straightforward solution that adopted by early trajectory
recovery methods is to treat human mobility trajectory as
spatial-temporal series and leverage spatial-temporal correla-
tions among locations to interpolate missing locations. Early
studies assume that missing locations can be approximated
by Gaussian function [15], linear function [16], or nearest-
neighbor function [17]. However, the mobility of individuals
is dynamic, especially in sparse scenarios, where and how
far do individuals travel is not available, which makes these
interpolation-based methods ineffective.

Song et al. [29] revealed that human mobility exhibits
certain transition patterns, in this regard, pattern-based tra-
jectory recovery methods are studied to explore individual
behavioral regularities and periodicity. The first line is to
leverage machine learning approaches to fill the missing val-
ues. Fan et al. [18] leveraged topic model to infer individual
movement patterns via collaborative filtering and restored the
missing locations with hidden Markov model using the topic
distributions. Li et al. [20] incorporated similarity among indi-
viduals to investigate the individual mobility patterns, and
used four classic machine learning models to reconstruct
individual trajectories. Xiao et al. [21] leveraged ensemble
transfer regression framework to learn spatial-temporal corre-
lations from historical trajectory for interpolation. The second
line focuses on utilizing deep learning approaches (e.g.,
recurrent neural networks) for trajectory recovery due to
their strong power of learning complex transition patterns.
Wang et al. [13] integrated a LSTM-based subseq2seq model
with Kalman Filter to capture complex transition patterns
between locations for trajectory recovery. Xi et al. [30] lever-
aged LSTM to model the transition patterns as well as personal
preference for trajectory recovery. Similar studies can also
be found in [22], [23], [31]. However, these methods mainly
focus on adjacent transitions and local regional correlations,
which may lead to unsatisfactory performances in highly spare
scenarios due to the absence of long-term correlations and
global correlations among location points in trajectory.

More recent developments turn to model-based methods
for trajectory recovery. They leverage attentive deep neu-
ral networks to capture complex mobility regularity and
long short-term spatial-temporal dependency among different
locations in spare scenarios. Ren et al. [32] utilized GRU-
based multi-task seq2seq model to recover missing points and
map matched them onto the road network simultaneously,
where the GRU-based multi-task seq2seq model learned the
mobility regularity and the attention mechanism captured
global correlations among locations. Shi et al. [25] developed
a GAN-based framework to generate missing POI check-ins
based on the distribution of locations. Xia et al. [26] tried

to solve the problem of trajectory recovery by proposing
an attentional neural network. First, an intra-trajectory atten-
tion mechanism was proposed to initially fill in the blanks
of the current trajectory. Second, inter-trajectory attention
mechanism was designed to learn spatial-temporal constraints
from observed locations to better rebuild the trajectory.
Sun et al. [27] leveraged graph neural network to capture
location transition patterns and generate location embedding
correspondingly, then attention mechanism was employed to
select locations from historical trajectory for the recovery.
However, one limitation of recent model-based methods is
that the context has been typically modeled based on single
individual trajectory without semantic information. If the miss-
ing locations are visited infrequently and little correlation is
contained in historical trajectory, then they are difficult to be
restored with existing methods.

B. Heterogeneous Network Representation Learning

Heterogeneous information network (a.k.a. heterogeneous
graph) has achieved success in recommender systems [28] and
network security [33] due to its strong power of representing
different kinds of nodes and different types of relations.
Heterogeneous network representation learning (a.k.a. het-
erogeneous graph embedding), as a critical research issue
in heterogeneous information network, aims to learn rep-
resentations in a lower-dimension space while preserving
the heterogeneous structures and semantics for downstream
tasks [34].

Recently, a number of approaches have been proposed to
utilize heterogeneous graph embedding to better model user
behaviors in recommendation [35], user profiling [36], urban
flow pattern mining [37], mobility prediction [38] and so on.
These approaches cannot be applied to trajectory recovery
directly because they either ignore the spatial-temporal correla-
tions or lack the use of bidirectional information. For instance,
approaches for recommendation or link prediction are more
concerned about whether there is a connection between users
and locations in the future, while the spatial-temporal transi-
tion patterns and regularities cannot be captured effectively.

III. PRELIMINARIES

In this section, we first introduce the basic definition and
notations used in this work, and then elaborate on the problem
statement. TABLE I presents the main notations in the work.

Definition 1 (Trajectory): A trajectory Tu of user u can be
expressed as Tu = {l1

u , l
2
u , . . . , l

n
u }, where n is the number of

time slots, l i
u denotes the visited location of i-th time slot

for a given time interval (e.g., every 30 minutes). All the
visited locations form a time-ordered location sequence. Keep
in mind that l i

u is marked by null if the location of time slot
i is unobserved.

Problem Statement: In the context of trajectory recovery,
we have a set of M users U = {u1, u2, . . . , uM }, a set of N
locations L = {l1, l2, . . . , lN }, a universe set of K location
attributes A = {a1, a2, . . . , aK } and a set of user trajectory
T = {T1, T2, . . . , TM }. Given the target user u’s trajectory
Tu = {l1

u , l
2
u , . . . , l

n
u } ∈ T , recover the missing locations, i.e.,

∀null in Tu to rebuild the complete trajectory.
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Fig. 2. Overview of the proposed STR.

TABLE I
NOTATIONS

IV. METHODOLOGY

In this section, we propose a semantic-aware trajectory
recovery method (STR) to recover the missing data in human
mobility trajectory. First, we present the overview of STR.
Then, we discuss the details of each component in STR.

A. Overview

Fig. 2 presents an overview of STR, which consists of
four main components, i.e., i) heterogeneous graphs construc-
tion; ii) semantic-aware embedding; ii) behavior attention; iv)
trajectory recovery layer. First, the heterogeneous graphs are
constructed based on the target user’s raw trajectory and

other relevant users’ raw trajectories to express different
semantic correlations. Second, a semantic-aware embedding
module is designed to encode the semantic correlations con-
tained in the heterogeneous graph. Afterwards, the output of
semantic-aware embedding is fused with temporal embed-
dings, which are encoded by a full-connected layer, to form
the spatial-temporal context. Third, a behavior attention layer
is developed to capture semantic behavior transitions based
on the spatial-temporal context. Finally, a trajectory recovery
layer is devised to generate the missing locations for recovery
according to knowledge learned by the behavior attention.

B. Heterogeneous Graph Construction

A heterogeneous graph can be defined as G = (V, E, φ, ψ),
where V is the set of nodes, E represents the set of edges, φ
is a node type mapping function and ψ is a link type mapping
function. Each node v ∈ V has a node type φ(v) ∈ A
and each edge e ∈ E has an edge type ψ(e) ∈ R, where
A and R denote the sets of node types and edge types,
|A| + |R| > 2. There are two edge types in G. The first
type is the user-location relation, which describes the fact that
a user visits a certain location at a certain time. The second
type is the location-attribute relation, indicating that a locations
belongs to a PoI category. Note that there are no correlations
between same type nodes, and no relationships between users
and attributes.

To obtain sufficient representations, we construct hetero-
geneous graph to gather different interactions among user,
location and attributes. The purpose of heterogeneous graph
construction is two-fold. First, more collaborative information
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between location and attribute can be retrieved. With the
attribute information, the user’s semantic behavior patterns
can be captured as different locations, which share same
attribute and can be considered as similar activity locations.
Furthermore, locations with same attribute are included in the
heterogeneous graph even if the locations are not covered
by the target user’s trajectory. Doing so is an essential step
for restoring missing OVPs. Second, more collaborative infor-
mation between location and user can be captured, which is
important for trajectory recovery as users with similar tastes
may have similar mobility patterns. This high-order semantics
contains all potential locations for the target user, thereby
providing effective information support for trajectory recovery.

Algorithm 1 Heterogeneous Graph Construction
Input: the hop number h, the set of users U , the set of

attributes A, the user u and her trajectories Tu
Output: the h-hop extracted heterogeneous graph Gu
1: U = U f = {u}, L = L f = ∅, A = A f = ∅

2: for i = 1, 2, . . . , h do
3: U ′

f = {ui : ui ∼ L f }\U
4: L ′

f = {li : li ∼ (U f ∪A)}\L
5: A′

f = {ai : ai ∼ L f }\A
6: U f = U ′

f , L f = L ′

f , A f = A′

f
7: U = U ∪ U f , L = L ∪ L f , A = A ∪ A f
8: end for
9: Let Gu be the vertex-induced heterogeneous graph whose

nodes E is consisted of (U, L , A)
10: return Gu

Note: In line 3 to 5, the symbol ∼ means relation. For
example, {ui : ui ∼ L f } is the set of user nodes which have
relations with L f .

Algorithm 1 presents the process of heterogeneous graph
construction, which is the extension of the enclosing subgraph
extraction methods in [39]. The main idea is to build a
heterogeneous graph by adding nodes (i.e., user, location or
attribute) related to user u in the trajectory sequence Tu within
h-hops range. Besides, Algorithm 1 describes the details how
we extract h-hop heterogeneous graphs, the entire construction
process is divided into h rounds. The heterogeneous graph is
initialized with only user u. A toy example of the construction
is given in upper right of Fig. 2.

C. Semantic-Aware Embedding

To achieve expressive representations of each node in het-
erogeneous graph, we propose a semantic-aware embedding
approach to encode different semantic correlations between
nodes and edges. The key idea is to treat all nodes in
heterogeneous graph as homogeneous nodes and assign dif-
ferent weights to each node’s neighbor nodes. After that,
we aggregate all neighbors hidden stats recursively to form the
final node embedding by message passing. Follow the com-
mon strategies that are used in heterogeneous graph attention
networks [40], [41], [42], we stack S layers to obtain the node
representations of the whole graph, where each layer contains

two operations: correlation attention and neighborhood aggre-
gation.

1) Correlation Attention: Note that we cannot use existing
homogeneous graph embedding methods to capture different
semantic correlations in heterogeneous graph, since different
types of nodes contained in heterogeneous graph are naturally
embedded in distinct spaces. To tackle this issue, a trans-
formation operation is employed to project all nodes from
different node spaces to the same low-dimensional target node
space. Before the projection, we utilize the straightforward
one-hot encoding method to obtain the initial hidden state.
In doing so, for each node vi ∈ V of heterogeneous graph
G = (V, E, φ, ψ), we have the initial hidden state h0

vi
. Then,

a transformation operation is employed to project all nodes
from different node spaces to the same low-dimensional target
node space. Let hx

v j
denote the embedding hidden state of node

v j in x-th layer. Then, the projection of hx
v j

to target space vi
in x-th layer can be expressed as follows.

px
v j (v j →vi )

= hx
v j

W x
v j →vi

(1)

where vi ∈ V , v j ∈ V and W x
v j →vi

∈ R1×d is matrices of
learning parameter.

2) Neighborhood Aggregation: After the projection, it is
applicable to aggregate all the relevant neighbor nodes for
preserving the semantic correlations between nodes. Let Ni
denote the set of direct neighbors of node vi via edge e ∈ E
in graph G. With the embedding value hx

vi
of node vi and

the projections of its neighbors in x-th layer, we obtain the
embedding value hx+1

vi
of node vi in (x+1)-th layer.

hx+1
vi

= W x
s hx

vi
+

∑
v j ∈Ni

αx
i, j W x

n px
v j (v j →vi )

(2)

where W x
s ∈ R1×d and W x

n ∈ R1×d are two learnable
parameters. αx

i, j is the attention weight between node vi and
its neighbor node v j , which can be obtained as follows.

αx
i, j = so f tmax(σ (a⊺

[W x
s hx

vi
||W x

n px
v j (v j →vi )

])) (3)

σ is an activation function implemented by LeakyReLU
function [43], || denotes the concatenation operator and a ∈

R1×d is the trainable attention parameter. The key process of
semantic-aware embedding is illustrated in the middle right
of Fig. 2. The weight matrices W x

s and W x
n are designed to

distinguish the updating nodes from different neighbors. Fur-
thermore, they are layer-dependent so as to generate different
attention weight αx

i, j for learning contributions of different
hops away from the updating nodes.

Finally, all the embedding vectors of nodes in the het-
erogeneous graph can be obtained. Intuitively, the trajectory
recovery problem can be transformed into a heterogeneous
graph completion problem, namely, predict whether there
exists edges between user and location. However, the het-
erogeneous graph completion problem are less dependent on
spatial-temporal information than trajectory recovery problem,
as the former focuses on whether the target user visited the
location, while the latter is more concerned on when and where
the user had visit. As such, it is not suitable to treat trajectory
recovery problem as graph completion problem.
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Accordingly, the key to solve trajectory recovery problem
is to exploit spatial-temporal semantic transition regularities
of human mobility. To that end, we try to extract the spatial-
temporal context. Recall that we have already obtained the
node embeddings, next, we will discuss how to obtain the
expressive temporal embedding.

Previous studies reveal that human mobility shows strong
regularity with various granularity such as day and week [5],
[19], [44]. To reflect this, we fuse two different time scales
(i.e., time of day and day of week) into the temporal features.
Both time scales are embedded with one-hot encoding method.
Specifically, day of week is mapped to seven slots (from
Monday to Sunday) and time of day is mapped to 24 slots.
Then, those two parts are concatenated into the representation
of time et ∈ R(7+24). To facilitate the later concatenation,
we apply a two-layer fully-connected neural network to pro-
duce d-dimension embedded temporal data, which have the
same dimension with user and location embedding. Then,
we can obtain the i-th time slot spatial-temporal embedding
E i

u by concatenating the embedding of user, time and location.

E i
u = eu + eti + eli (4)

where eu is the embedding of user, eli denotes the embedding
of location and eti represents the embedding of time. Note
that, we set up a trainable embedding vector enull ∈ Rd to
represent missing locations. Then, the trajectory Tu of target
user u can be converted to embedded vectors.

D. Behavior Attention

As mentioned above, The key to solve trajectory recovery
problem is to exploit spatial-temporal semantic transition regu-
larities of human mobility. Motivated by the inherent regularity
of human mobility, we strive to capture the long-term and
short-term correlations based on spatial-temporal similarity.
To achieve this goal, we propose the behavior attention based
on self-attention. The core idea is to infer the missing location
based on other locations that share similar spatial-temporal
context. Naturally, the spatial-temporal embedding defined
in (4) is an essential part of spatial-temporal context. In prac-
tice, the spatial and temporal intervals between two visits are
important parts of spatial-temporal context. We only consider
the spatial intervals, since the temporal interval is a fixed time
slot as defined in 1. Specifically, the precise spatial interval
between li and l j can be calculated as Haversine(li , l j ).
To avoid sparsity, we use scaled spatial distance instead of
using precise spatial distance to represent spatial interval. Note
that the precise spatial distance difference between locations
may be very large and become very sparse after discretization.
Given the visited location sequence Tu = {l1, l2, . . . lN } of
user u, the minimal spatial interval (other than 0) is 1min , the
maximum spatial interval between two locations is clipped to
k. Then, the scaled spatial interval 1i j can be calculated as
follows.

1i j = min(k, ⌊
Haversine(li , l j )

1min ⌋) (5)

Fig. 3. Attention array.

The trajectory spatial interval matrix 1 ∈ RN×N can be
represented as follow.

1 =


111 112 . . . 11N
121 122 . . . 12N
...

...
. . .

...

1N1 1N2 . . . 1N N

 (6)

Note that, there are missing locations denoted by null in Tu
and the spatial intervals between missing locations and existing
locations are set to k. With the spatial-temporal embeddings
and the spatial interval matrix, we can restore the missing
location with behavior attention.

Human behavior is influenced by both short-term and long-
term spatial-temporal correlations among different locations.
To capture such long short-term spatial-temporal correlations
between locations, we perform behavior attention operation
on the user’s whole trajectory. However, if we apply behavior
attention on the whole trajectory directly, the computation
and memory consumption will not be affordable as they
increase exponentially with the increasing number of locations.
To cope with the issue, we design an attention array to choose
the trajectory of most relevant time slots. Inspired by the
multi-level regularity (e.g., day and week) of human mobility,
we choose the trajectory within p days and share same time
slots within q weeks before and after missing data. Fig. 3
shows an example of attention array, each block represents
a time slot and the number on the block denotes the time
(e.g., 8 denotes the time is 8:00). In Fig. 3, the time slot of
missing location is 8:00, all the time slots before and after
the missing location within p days are selected. In addition,
all the 8:00 time slots before and after the missing location
within q weeks are selected. Hence, the attention array needs
to be predefined in advance and may be different according to
the corresponding trajectory recovery task.

Afterwards, we define Lu to denote all the locations whose
corresponding time slots are contained in the attention array.
We incorporate the spatial interval to the spatial-temporal
context and extend the scaled dot-product approach [45] to
compute the relevance between time slot i and j . To stabilize
the learning process, we adopt multi-head attention [45] and
the attention weights under head h can be expressed as follows.

α
(h)
i, j =

exp( f (h)(E i
u, E j

u ))∑
k∈Lu

exp( f (h)(E i
u, Ek

u))
(7)

f (h)(E i
u, E j

u ) =
⟨W (h)

Q E i
u,W (h)

K E j
u ⟩ +1i j

√
ds

(8)

where h is the attention header number, ⟨, ⟩ denotes the inner
product function, W (h)

Q , W (h)
K ∈ Rd×d are the transformation

matrices and α(h)i, j is the attention weights. The scale factor
√

ds
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is used to avoid large values of the inner product, especially
when the dimension is high.

Then, we obtain Ẽ i(h)
u by aggregating the information from

other locations with corresponding attention weights.

Ẽ i(h)
u =

n∑
j=1

α
(h)
i, j (W

(h)
V E j

u ) (9)

where n is the total time slot in the trajectory Lu , W (h)
V is the

transformation matrix under head h.
After that, we concatenate all the output of different heads

to obtain the final embedding value of the time slot i .

Ẽ i
u = Ẽ i(1)

u ||Ẽ i(2)
u || . . . ||Ẽ i(H)

u (10)

where || is the concatenation operator, H is the number of
attention headers.

E. Trajectory Recovery

Given the final representation denoted by Ẽ i
u , we calculate

the probability that user u visits location l at time slot i as
follows.

P i
u(l) =

〈
Ẽ i

u, el

〉
∑

k∈Lu

〈
Ẽ i

u, ek

〉 (11)

where ⟨, ⟩ is the inner product function, P i
u(l) ∈ R|Lu | denotes

the normalized probabilities of all locations visited at time slot
i . The location with the maximum probability is identified as
the missing location.

Algorithm 2 Training Algorithm for STR
Input: The set of users U , the set of locations L, the set of

attributes A, the set of trajectory T = {T1, T2, . . . , TM },
the target user u and her trajectories Tu

Output: Trained Model θ
1: Construct training instances D
2: Initialize the model parameters θ
3: for i = 1,2,. . . ,Epoch do
4: Shuffle the training instance D into mini-batches
5: for j = 1,2,. . . ,Batch number do
6: Construct heterogeneous graph according to

Algorithm 1 in section IV-B
7: Update θ by minimizing the objective loss L
8: end for
9: Stop training when criteria is met

10: end for
11: return Output trained Model θ

F. Model Training

The overall loss function consist of two parts. One is the
loss Le for semantic-aware embedding, and the other loss Lr is
for the final trajectory recovery. In semantic-aware embedding,
it is optimal to restrict those embeddings of users and locations
share similar neighbors to be similar with each other. For
the final trajectory recovery, we choose the cross-entropy loss

TABLE II
SUMMARY OF DATASETS

function as it is a inherently good and straightforward choice.
Therefore, the overall loss function is defined as follows:

L = Lr + λLe + η∥θ∥2

= −

∑
u∈U

∑
t∈T m

yt
u log(P t

u)

+ λ(
∑
r∈R

S∑
x=1

∥W x+1
n − W x

n ∥
2
)+ η∥θ∥2 (12)

where yt
u is the one-hot representation of the location at

t-th time slot in user u’s trajectory, P t
u ∈ R|Lu | denotes

the probability of all locations visited at t-th time slot, T m

denotes the set of missing time slots, S is the number of
semantic-aware embedding layers, W x

n is the weight matrix to
distinguish neighbors with different types in (2), θ contains all
learnable parameters in the neural network, λ is the weighting
hyperparameter, η is a parameter to control the power of
regularization. Algorithm 2 outlines the training process of
STR and the process is done through stochastic gradient
descent across Adam optimizer [46].

According to Algorithm 1 and Algorithm 2, we analyze
that the time complexity of STR is O(NEpoch NBatchhhop|U |),
where NEpoch and NBatch are the number of iterations
and batch numbers, hhop is the longest number of hops
between nodes in heterogeneous graphs. The larger its value,
the richer the node semantics that the heterogeneous graph
can express, but the overall computational complexity also
increases accordingly. |U | is the number of users in dataset.
Note here NEpoch , NBatch , and hhop are fixed and have mod-
erate values in real scenarios. Therefore, the time complexity
of STR grows linearly with |U |, indicating that the time
complexity grows linearly with the problem size.

V. EXPERIMENTS AND DISCUSSIONS

We evaluate the effectiveness of STR on four real-life
mobility trajectory datasets (NYC, TKY, PriCar and Gowalla).
The spatial-temporal transition characteristics are different in
these four datasets, which can verify the generalizations of
STR and baselines over various scenarios. The experiments
are conducted based on the MindSpore framework platform.
The details of datasets are given in Sec. V-A.

A. Datasets

We perform experiments on four location based on four
widely used human mobility datasets. Table II presents the
summary of datasets.

• NYC1: A popular location based social network dataset.
This dataset is collected from Foursquare and released
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in [47], containing check-ins in New York, the time span
is about 10 month (from 12 April 2012 to 16 February
2013).

• TKY1: This dataset is collected from Foursquare [47],
it is similar to NYC except that check-ins are collected
in Tokyo.

• PriCar2: This dataset is obtained from [5], [48], which
contains the stop-and-wait locations trajectories of 15,504
private cars from February 1, 2018, to February 1, 2019,
in Shenzhen, China.

• Gowalla3: Another widely used location based social
network dataset. It is collected from [49], which contains
6,442,890 check-ins from Gowalla over the period from
Feb. 2009 to Oct. 2010.

We treat PoI category as the attribute of location. Note that
the PoI categories are contained in datasets NYC, TKY and
PriCar. We manually collect the PoI categories for Gowalla
from website.4 Following [26], [27], we set time interval as
30 minutes. We remove the incomplete data, filter out the
trajectories with less than 34 time slots (i.e., 70% of one day)
and the users with less than 5 day’s trajectories.

B. Baselines

• TOP: A simple counting-based method, which chooses
the most popular visited locations of each user in the
training set as recovery.

• LSTM [50]: A classical RNN model, which contains a
memory cell and three multiplicative gates to learn long-
term dependence.

• GRU [51]: Similar to LSTM, but has fewer parameters
than LSTM, as it lacks an output gate.

• Bi-STDDP [24]: A missing PoI check-in recovery
method, which incorporates the bi-directional global spa-
tial and local temporal information to capture complex
dependence relationships for recovery.

• Bi-G2AN [25]: A Missing POI Check-in recovery
method, which fuses generative adversarial network and
gated recurrent unit to recovery the trajectory.

• AttnMove [26]: A state-of-the-art trajectory recovery
method, which leverages various attention mechanisms
to model the regularity and periodical patterns of user’s
mobility.

• PeriodicMove [27]: A state-of-the-art trajectory recov-
ery method, which introduces graph neural network and
attention network to capture location transition patterns
and shifting behavior of human mobility periodicity.

To evaluate the effectiveness of trajectory recovery models,
we employ three popular user next location prediction methods
as downstream applications. Given the historical trajectory
with length n of user u, T u

n = pu
1 pu

2 · · · pu
n , the objective of

user next location prediction is to infer the next location of
user u.

• ST-RNN: It incorporates spatial-temporal contextual
information in recurrent neural networks [52].

4https://www.openstreetmap.org/

• HST-LSTM: It extends LSTM model for location predic-
tion by fusing spatial and temporal factors into internal
gate [53].

• DeepMove: It utilize recurrent neural networks and atten-
tion mechanism to capture individual regularity and
personal preference for location prediction [44].

C. Environmental Settings and Hyperparameters

Following the existing works such as [24], [25], [26], [27],
three widely-used metrics: Recall (Recall@K), F1-score (F1-
score@K) and Mean Average Precision (MAP), are employed
to measure the performance. Recall@K is 1 if the ground
truth location appears in the top-K ranked list; otherwise is
0. The final Recall@K is the average value over all testing
instances. F1-score@K is a comprehensive index reflecting
both precision and recall. MAP is a global evaluation for
ranking tasks, which is used to evaluate the quality of the
whole ranked lists including all locations. Empirically, we set
K to 1, 5 and 10. We mask time slots as ground truth and
randomly select 60% datasets for training, 20% datasets for
validation and 20% datasets for testing.

The classical trajectory recovery models (TOP, LSTM and
GRU) and STR are implemented with pytorch, the baseline
models are obtained from the author’s Github pages. All
the models are trained on a machine with NVIDIA GeForce
RTX 2080 Ti GPU with 11GB memory, 124 GB RAM and
Intel (R) Xeon (R) CPU E5-2678. For LSTM and GRU,
we only use a single direction data to recover the miss-
ing locations. The hyperparameters of Bi-STDDP, Bi-G2AN,
AttnMove and PeriodicMove are default values as they are
studied for trajectory recovery using similar datasets and
their original hyperparameters achieve the best performance.
The hyperparameters of three location prediction methods are
set by the default values. For STR, we set the number of
semantic-aware layer S = 3, the day length in attention array
p = 5, the week length in attention array q = 2, the dimension
of output vector d = 128 and the scale factor in behavior
attention

√
ds = 8, the training epochs e = 100, the learning

rate lr = 0.001 and the batch size bs = 32. We repeat our
experiments ten times with different random seed, and the
result is presented as “mean±standard deviation”.

D. Performance Comparison

In this subsection, we evaluate the performance of STR and
baselines through inspecting the prediction results. Besides,
we investigate the impact of using only forward (STR-F)
and backward (STR-B) trajectory information for trajectory
recovery. For each model, we repeat the experiments ten
times and report the average result as well as the standard
deviation. TABLE III shows the overall performance of STR
and baselines. Based on the results, we have the following
observations.

For the simple method TOP, it fails to achieve acceptable
performance because it restores the missing locations only
with the most popular visited locations, which inevitably
ignores the spatial-temporal transition regularities in human
mobility.
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TABLE III
PERFORMANCE COMPARISON (MEAN±STD) OF DIFFERENT MODELS IN FOUR DATASETS

LSTM and GRU perform better than TOP as they can
model simple spatial-temporal transition regularities. However,
according to the experiment results, they show shortcomings
in capturing long-term spatial-temporal correlations given the
following reasons. First, LSTM and GRU methods restore
the trajectory from a single forward direction perspective,
which ignores another direction information. Second, they
fail to capture long-term regularity in sparse scenarios due
to vanishing sequential dependency.

Compared with LSTM and GRU, Bi-STDDP and Bi-G2AN
demonstrate superiority thanks to their sophisticated archi-
tectures and utilization of bidirectional information around
missing locations. However, the weakness of these models
in capturing long-term transition regularities prevents them
from achieving excellent performance, which is verified by
the experimental results. The reason behind is that, for Bi-
STDDP, it only uses a simple feed-forward neural network by
concatenating spatial-temporal context directly. This, unfortu-
nately, is not an effective way to capture omplex (e.g., day
and week regularity) spatial-temporal transition regularities.
For Bi-G2AN, it is a RNNs-based method and has the inherit
flaw of capturing long-term regularity in sparse scenarios.

AttnMove and PeriodicMove perform better than
Bi-STDDP and Bi-G2AN. This stems from the superiority
of attention mechanism in capturing both short-term and
long-term mobility transition regularities. When comparing
with the proposed STR, the experimental results show that
these two method have room for improvement. On the
one hand, they lack the ability to perceive the semantic
information, so as not to effectively recover the missing
OVPs. On the other hand, AttnMove and PeriodicMove
only use the information in a short period of time (e.g., one
day) instead of long-term bidirectional information around
the missing data. This leads to semantic bias in capturing
mobility transition regularities.

STR outperforms AttnMove and PeriodicMove with 7% and
15% improvement in terms of Recall, F1-score and MAP
in NYC and TKY datasets. The improvements increase to
11% and 18% in PriCar and Gowalla. It is explained that
there are more missing OVPs in these two datasets and
STR can recover more OVPs compared with AttnMove and
PeriodicMove. These results verify that the heterogeneous
information network can effectively extract global semantic
information. Besides, the behavior attention mechanism helps
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Fig. 4. Comparison of different models’ ability to recover OVPs.

to boost the ability of capturing semantic behavior transition
regularities.

STR-F and STR-B denote the variants of STR that only
use forward and backward trajectory, respectively. As shown
in TABLE III, the performance of both STR-F and STR-B is
reduced compared with STR, which is in line with intuitive
expectations. The reason is that, using only one-direction
trajectory cannot fully capture the user’s semantic behavior
transition regularities, thereby leading to bias in the learned
transition regularities.

We conduct experiments on the recovery ratio of OVPs
in four datasets for each recovery model. The results are
shown in Figure 4, from which we can observe that the STR
model outperforms the baselines in terms of the recovery
performance of OVPs. The reason is that the heterogeneous
graph in the STR model contains the POI semantic information
of OVPs and the collaborative information between different
users. As such, the proposed method can distinguish OVPs
with similar semantics and recover OVPs based on the mined
semantic patterns.

Furthermore, we employ three popular location predic-
tion methods (ST-RNN [52], HST-LSTM [53], and Deep-
Move [44]) as downstream applications to evaluate the
effectiveness of trajectory recovery models. We use three
metrics to evaluate the performance of location prediction:
(1) Hitting ratio (hit), which shows that the ground-truth
location appears in the next prediction result; (2) F1-score,
which calculates the mean of precision and recall; (3) Mean
reciprocal rank (MRR), which is the multiplicative inverse of
the rank of the first correct next answer.

M R R =
1

|Q|

|Q|∑
i=1

1
ranki

, (13)

where |Q| is the total number of testing instances, and ranki
is the predicting rank of instance i .

The next location prediction results are shown in
TABLE IV. It is shown that all location prediction models
have improved prediction performance by more than 14%
in datasets that are recovered by STR compared with the
stat-of-the-art recovery model AttnMove and PeriodicMove.
It validates the idea that STR can more accurately recover
missing trajectory information and provide higher quality
trajectory data for downstream applications.

E. Ablation Study

To investigate how does the semantic-aware embedding
and behavior attention take effect, we consider two important
components in STR: semantic-aware embedding layer and
behavior attention layer. To study each component contributing
to the performance of STR, we evaluate the following variants:

• STR-SE: STR without semantic-aware embedding layer.
In this variant, the semantic-aware embedding layer is
replaced with one-hot embedding.

• STR-BA: STR without behavior attention layer. In this
variant, the behavior attention layer is replace with
LSTM.

To analyze the efficiency of different components in differ-
ent scenarios, we measure the performances of all variants on
four datasets. TABLE V shows the performance of STR and
its variants in terms of Recall@K, F1-score@K and MAP.
To reflect the data more intuitively, we visualize the result in
Fig. 5. According to the results, we can obtain that:

First, both semantic-aware embedding and behavior atten-
tion are essential as both STR-SE and STR-BA have evident
performance drop on Recall, F1-score and MAP. Without
semantic-aware embedding, the performance of STR was
reduced by about 18%. Without behavior attention, the per-
formance of STR was reduced by about 32%. The results
illustrate that the effectiveness of both components.

Second, The performance of STR-BA is worse than STR-SE
in terms of all metrics, which indicates that the behavior
attention module makes a greater contribution than semantic-
aware embedding.

F. Hyper-Parameter Sensitivity

STR involves a number of parameters and we study how
different choices of parameters affect the performance of STR.
There are two core parameters in STR: (1) the number of
semantic-aware embedding layers S, we tried the number of S
over {1, 2, 3, 4, 5}; (2) the output dimensionality d of latent
vectors, which affects the ability of representation, we tried the
output dimensionality d over {16, 32, 64, 128, 256}; We only
report the results on NYC dataset because we observe similar
trends on other three dataset. We summarize the results and
have the following observations:

Fig. 6 shows that increasing the number of semantic-aware
embedding layers is capable of boosting the performance sub-
stantially. Because more layers can learn high-order semantic
information better. We also observer that the performance can
only achieve marginal improvement when the number of layer
is larger than 3, it suggests that a three-layer stacked semantic-
aware embedding could be sufficient to capture the semantic
information in all these four datasets.

Fig. 7 shows the performance of STR with different dimen-
sion of output hidden state, the result indicates that the optimal
value of dimension of hidden state d is around 128. When d
is larger than 128, the model may be tuned to over-fitting
and the performance starts to decline. The result is also in
line with previous studies [26], [27]. The possible reason
is that embedding value with 128 dimensions is enough for
representing spatial-temporal context in these four datasets,
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TABLE IV
PERFORMANCE COMPARISON (MEAN±STD) OF LOCATION PREDICTION MODELS WITH DIFFERENT RECOVERY MODELS

TABLE V
PERFORMANCE COMPARISON OF DIFFERENT VARIATIONS, WHERE δ DENOTED THE PERFORMANCE DECLINE

using oversize dimensions may increases the complexity and
leads to overfitting during model training.

G. Robustness Analysis

To evaluate the robustness of STR, we conduct an experi-
ment to investigate the performance STR and baselines with
respect to dataset with different missing ratios (i.e., the per-
centage of missing locations). We mask some time slots to
simulate the effect of data sparsity and the missing ratio varies
from 20% to 80%. For simplicity, we only report the results

on PriCar data in Fig. 8 as the results on other datasets are
similar. According to the results shown in Fig. 8, we have the
following observations:

The performance of STR and other baselines decreases
when the missing ratio increases. When the missing ratio
increases, the trajectory becomes more sparse with less
critical information. Consequently, the human mobility tran-
sition regularities become more difficult to be captured,
which directly leads to the performance degradation of all
algorithms.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 13,2024 at 13:01:36 UTC from IEEE Xplore.  Restrictions apply. 



8860 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 8, AUGUST 2024

Fig. 5. Performance comparison of different variations of STR.

Fig. 6. Performance of STR with different number of semantic-aware embedding layer.

Fig. 7. Performance of STR with different output dimensionality.

Fig. 8. Performance compare w.r.t missing ratios on PriCar dataset.

Compared with baselines, STR shows the best robustness.
For one reason, STR can gather more correlations among
locations by constructing heterogeneous graph to make up
for missing data. This attains strong ability to alleviate per-
formance degeneration in data with high missing ratio. For
another reason, the attention mechanism can effectively cap-
ture spatial-temporal correlation in sparse data, which can be
verified by the results that attention-based models (e.g., Attn-
Move and PeriodicMove) generally perform better RNN-based
models (e.g., LSTM, GRU). In addition, the behavior attention

mechanism adopted in STR plays an essential role in keeping
the robustness when facing high missing ratio dataset.

H. Statistical Analysis

To further evaluate the performance of the proposed method,
we apply the Friedman test [54] to determine whether or not
there is a statistically significant difference between STR and
other baselines. To accurately and comprehensively reflect the
performance of different algorithms, we divide the original
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TABLE VI
PERFORMANCE COMPARISON OF DIFFERENT MODELS ON DATASETS WITH RESPECT TO DIFFERENT MISSING RATIO

4 datasets into 16 datasets with different values of missing
ratios. Without loss of generality, we only report the result on
MAP as the results on other metrics are similar. Let the null
Hypothesis (H0) of the Friedman test be that the performance
of all models are equivalent. First, we calculate the average
Friedman test rank of all models with the equation as follows.

R j =
1
N

N∑
i=1

r j
i (14)

where r j
i denotes the rank of the j-th model on the i-th dataset,

N represents the number of datasets.
Then, we obtain the average Friedman’s rank of all eight

models and the results are shown in Table VI, where R8(TOP)
= 8, R7(LSTM) = 6.5, R6(GRU) = 6.5, R5(Bi-STDDP) = 5,
R4(Bi-G2AN) = 4, R3(AttnMove) = 3, R2(PeriodicMove) =

2, R1(STR) = 1. With the average Friedman’s rank, we obtain
the Friedman statistics FF with the following equation.

FF =
(N − 1)χ2

F

N (K − 1)− χ2
F

(15)

where K is the number of models, N is the number of datasets,
and χ2

F is defined as:

χ2
F =

12N
K (K + 1)

∑
j

R2
j −

K (K + 1)2

4

 (16)

which is distributed according to the F-distribution with K-1
and (K-1)(N-1) degrees of freedom.

Finally, we obtain the value of Friedman statistics FF =

1,245. Since χ2
F is distributed according to the F-distribution

with K-1 and (K-1)(N-1) degrees of freedom, we have χ2
F =

F((8-1),(8-1)×(16-1)) = F(7,105) F(7,105). Without loss of
generality, let the significance level α = 0.05, then, F(7,105)
= 2.098, which is less than the value of FF = 1,245. On this
basis, the null Hypothesis H0 is rejected, which means the
performance of all 8 models is different.

To determine the specific differences, we choose the Holm
procedure [55] as a post hoc test due to its simplicity and

TABLE VII
OUTCOME OF HOLM STATISTICAL TEST WITH SIGNIFICANCE LEVEL α =

0.05

efficiency. The test statistics for comparing the i-th and j-th
models is defined as follows.

z =
Ri − R j√
K (K + 1)

6N

(17)

where the z-value is used to find the corresponding probability
from the table of normal distribution, Ri and R j denote the
average rank of the i-th and j-th models, respectively. K and
N denote the number of comparison models and the number
of datasets, respectively.

We consider the null Hypothesis H0 as the pair of compared
models are equivalent. Then, we obtain the z-value based
on (17). Accordingly, the probability p-value can be computed
by using the normal distribution table. In this work, we choose
the most commonly-used value, i.e., 0.05, as the significance
level α. Finally, we obtain the z-value and p-value of all
models in Table VII. As presented in Table VII, the p-value is
less than the significance level α in most cases, which implies
that the null Hypothesis H0 is rejected. These results validate
that the proposed STR performs better than most baseline
models. Additionally, STR outperforms PeriodicMove by 7%-
20% as shown in Table VI, while the difference between STR
and PeriodicMove is not statistically significant.
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VI. CONCLUSION

In this work, we investigate the problem of trajectory
recovery and propose a novel method to learn seman-
tic behavior for restoring sparse human mobility trajectory.
Specifically, we introduce the heterogeneous information net-
work to encode semantic knowledge beyond single individual
trajectory. Beyond that, we design a behavior attention mech-
anism to capture semantic transition regularities for trajectory
recovery. Compared to existing trajectory recovery models
that mine geographic location transition regularities, our pro-
posed model utilizes semantic information to extract semantic
transition regularities, which not only includes geographic
location transition regularities, but also mines regularities
with different geographic information (but with semantically
similar locations). It overcomes the problem of geographic
location transition regularities being unable to recover OVPs
in sparse trajectories. We evaluate our proposed model
based on four popular human mobility datasets and the
experiments demonstrate the effectiveness of the proposed
model.

In the future, we will devote to incorporate side information
(such as user’s stay time, weather and event information, etc.)
into the recovery model so as to more accurately understand
the underlying motivation of user mobility behaviors for
achieving better recovery performance.
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