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AbstrAct
On-device deep learning technology has 

attracted increasing interest recently. CPUs are 
the most common commercial hardware on 
devices and many training libraries have been 
developed and optimized for them. However, 
CPUs still suffer from poor training performance 
(i.e., training time) due to the specific asymmetric 
multiprocessor. Moreover, the energy constraint 
imposes restrictions on battery-powered devices. 
With federated training, we expect the local train-
ing to be completed rapidly therefore the global 
model converges fast. At the same time, energy 
consumption should be minimized to avoid com-
promising the user experience. To this end, we 
consider energy and training time and propose a 
novel framework with a machine learning-based 
adaptive configuration allocation strategy, which 
chooses optimal configuration combinations 
for efficient on-device training. We carry out 
experiments on the popular library MNN and 
the experimental results show that the adaptive 
allocation algorithm reduces substantial energy 
consumption, compared to all batches with fixed 
configurations on off-the-shelf CPUs.

IntroductIon
Deep learning (DL) technology is widely used by 
mobile devices (smartphones, IoTs, wearables, 
etc) in real-world applications [1], such as input 
methods and virtual assistants. Meanwhile, we 
are witnessing the emergence of a novel para-
digm that directly leverages mobile devices for 
model training/inference, referred to as ubiqui-
tous intelligence [2]. DL inference is known to 
happen on devices due to the advantages of net-
work resilience and quick response without cloud 
offloading [3]. Fueled by the increasingly powerful 
processors, it becomes possible to train models 
on devices apart from inference. This breaks the 
paradigm that the training stage of DL is com-
monly placed on data centers with massive data 
and computing resources.

Though various System of Chips (SoCs) have 
been developed recently, CPUs remain the dom-
inant hardware because mobile devices are 
equipped with them. CPUs have advantages in 
general availability and the mature programming 
environment while other AI accelerators lack a 
uniform interface to facilitate their development 
[4]. For example, GPUs are also widely available 
and have better performance on the majority of 
devices, but cannot support many DL models. The 
training time of GPU is even longer than that of 

CPU since most training libraries are incomplete 
[5]. So CPUs still play a vital role in on-device DL. 
Thus, we mainly focus on CPUs in this paper.

As an emerging on-device computing para-
digm, Federated Training (FT) is an algorithm to 
enable DL training across devices and has gained 
huge attention in both academia and industry [6]. 
The key idea of FT is to employ a set of mobile 
devices to train a model collaboratively under 
the orchestration of a central server. The training 
process of FT takes place on mobile devices with 
uploading model parameters instead of user per-
sonal data. Multiple mobile devices collaboratively 
train local models until the global model con-
verges. In this paper, we focus on efficient local 
training on mobile devices with multiprocessors to 
obtain an optimal model, as shown in Fig. 1. For 
each device with diverse computing capacities, 
DL developers expect on-device training to be fin-
ished as soon as possible to keep a synchronized 
pace. Meanwhile, the energy consumption shall 
be minimized to not compromise user experience 
due to limited battery. This explains why training 
time and energy are critical for mobile devices. 
Inspired by the CPU architecture, we conduct the 
preliminary measurement to explore the training 
performance and the results shed light on the 
future tradeoff between training time and energy.

In this paper, aiming to select the optimal con-
figuration combinations for CPUs in the training 
stage, we propose an overall system framework 
including the profile and execution module 
to reduce energy consumption. In the execu-
tion module, we utilize machine learning-based 
techniques to obtain the energy estimation and 
configuration switching models to better esti-
mate the energy loss and switching overhead. In 
the execution module, we present an adaptive 
scheduling algorithm to identify the most effi-
cient configuration combinations, considering the 
asymmetric CPU architecture. In a nutshell, we 
propose an adaptive configuration combinations 
allocation strategy by adjusting system parame-
ters (e.g., CPU cores, frequency) to reduce the 
energy for training models under the training time 
constraint. The key contributions of our work are 
as follows:
• We investigate the impact of system param-

eters on training performance. We also 
derive some interesting observations, which 
help guide us in the promising direction to 
enable ubiquitous intelligence efficiently.

• We propose a machine learning-based adap-
tive configuration combinations allocation 
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strategy that greatly improves the training 
performance (i.e., training time and energy).

• We deploy a simplified case study of 
on-device training on Meizu 16T. The 
experimental results demonstrate that the 
algorithm performs better than all batches 
with fixed configurations in terms of training 
performance.

relAted Work
Recently, various emerging approaches have been 
designed to optimize FT, including privacy, fair-
ness guarantee, and communication cost between 
servers and devices [7]. Existing FT studies typi-
cally make simulation methods because real-world 
deployment is expensive. As a result, it’s assumed 
that all devices are always equipped with homo-
geneous hardware specifications (e.g., the same 
CPU). However, the assumption could be too 
ideal in real-world applications. More specifically, 
FT usually requires a substantial number of devices 
with hardware specifications to collaboratively 
accomplish a learning task. On-device learning 
works in the existing literature can be divided into 
two categories summarized in Table 1:

The first category is neural network-aware 
implementation. General training techniques are 
to train models with quantized weights, activa-
tions, and gradients since the model size arises to 
be the major bottleneck [8]. That’s because the 
key difference between training and inference is 
training needs to store intermediate activations for 
back-propagation while inference doesn’t. There-
fore, reducing the activation size is critical for 
training. TinyTL [9] leverages a hardware-friendly 
module to refine the feature extractor and reduce 
the training memory footprint. Neural Projec-
tions [10] further extends neural networks with 

computationally efficient operations to generate 
compact representations. Low-bit Neural Net-
work Training [11] and Melon [12] provide a 
memory-friendly framework that enables train-
ing tasks by quantization. Unfortunately, these 
approaches also have a strong dependency on 
low-bit training. Especially for a large-scale dis-
tributed training environment, the quantization 
techniques are no longer enough as the gap 
between high-end networking and the normal 
one is large [8]. The second category is to train 
DL models by optimizing resource scheduling. 
Mandheling [13] enables highly resource-efficient 
on-device training by orchestrating mixed-precision 
training with DSP offloading, which leverages the 
available computing capability of the on-chip DSP 
to improve training performance. Kim et al. [14] 
propose a deep reinforcement learning-based fre-
quency scaling technique to maximize application 
performance. These existing recent works use 
Raspberry Pi and seldom use smartphones which 
is the killer use-case for ubiquitous intelligence. 
Unlike them, our work is to reduce the energy of 
single model training from the system-level per-
spective, which is orthogonal and compatible with 
those existing works.

bAckground
In this section, to investigate the impact of system 
parameters on training, we conduct experiments 
on smartphones based on several typical system 
configurations. Meanwhile, we also obtain some 
interesting observations.

FIGURE 1. The FT system architecture. The work focuses on mobile devices with diverse computing capacities to complete the local train-
ing quickly.

The experimental results demonstrate that the algorithm performs better than all batches with fixed 
configurations in terms of training performance.
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As we all know, mobile devices are energy- 
constrained because users are sensitive to battery 
consumption by nature [15]. For instance, mobile 
devices may experience delay or even failure 
in sending updates because the battery is dead 
in the process of FT. Meanwhile, the asymmet-
ric big.LITTLE technology is widely adopted in 
popular mobile devices [7]. Specifically, Android 
smartphones have a substantial number of adept 
configurations (core number × frequency). The big 
and little processors often have isolated domains 
and thus can set frequency separately. Each SoC 
can be independently managed (e.g., turn on/
off and configuration control) for the dynamic 
workloads. Compared to the big processors, the 
little processors have a lower CPU frequency and 
lower power cost [4]. The training tasks are always 
improperly assigned to the big processors much 
more often than the little ones by the Schedutil 
governor [14]. Unfortunately, we find that the 
training time with the only big processor is even 
shorter than both processors. Meanwhile, the 
high frequency of CPUs is only suitable for train-
ing time rather than energy cost. Taking the low 
frequency as an example, the training time using 
both processors is slower than only big processors, 

although the little processors provide additional 
computing capability. Similarly, it’s challenging to 
find the optimal energy consumption for the exe-
cution of both processors. So we conclude that 
DL training barely gains speedup by using both big 
and little processors compared to just utilizing big 
processors. As such, it is critical to set CPU config-
uration directly for DL training on CPUs.

To have a better understanding of how 
on-device training performs, we set the fixed con-
figuration for all batches of the overall training. 
We combine the CPU configurations between 
core numbers (1×, 2×, 4× big/little cores, 8 
hybrid cores) and frequency of each core (high-
est, medium, lowest). Meizu 16T trained AlexNet 
model based on MNN [3] for 20 epochs and 
the results are summarized in Table 2. Overall, 
the results are consistent with the fact that CPU 
architecture is asymmetric as we stated above. In 
terms of training time, 4× big cores with the high-
est frequency lead to the best performance. In 
terms of energy consumption, 1× small core with 
the lowest frequency achieves the lowest energy 
consumption. The cost of the best energy con-
figuration is only 43.7% of the best training time, 
despite it running 28.9× slower. The results show 
a big potential for energy saving given that devel-
oper set a proper CPU frequency. In other words, 
the results shed light on the tradeoff between 
training time and energy consumption to effi-
ciently enable ubiquitous intelligence. To visually 
show the performance differences among these 
CPU configurations, Fig. 2 exposes the unbal-
anced performance with the most representative 
configurations (1× and 4× big/little cores with 
high/medium/low frequency). Intuitively, we sum-
marize that big processors are good for training 
time, while small processors have smaller energy 
consumption. In fact, such a configuration that 
meets both training time and energy consump-
tion requirements is significant for ubiquitous 
intelligence. Thus, we should adopt those suitable 
parameters to enable efficient local training.

There are still two key challenges in select-
ing the suitable configuration for on-device 
training. Firstly, the optimal system configura-
tion for batches of training is difficult to select in 

Categories Typical Literature Features

Neural-network aware

TinyTL [9]
1) Transfer learning method to reduce the training memory footprint;
2) A memory-efficient bias module to improve the model capacity.

Neural Projections [10]
1) Locality-sensitive projections to generate compact binary representations;
2) Neural nerworks with computationally efficient operations.

Low-bit Neural Network Training [11]
1) Software optimizations by low-bit quantization;
2) Hardware design of a bit-flexible multiply-and-accumulate array sharing
the same sources.

Melon [12] A memory-friendly framework that enables the training tasks with large batch size

Resource scheduling

Mandheling [13]
1) CPU-DSP mixed-precision training;
2) Self-adaptive rescaling.

zTT [14]
A deep reinforcement learning based technique to achieve maximum performance
while ensuring zero thermal throttling.

Our work Adaptive scheduling
1) Choosing the optimal configuration combinations at the training stage;
2) Reducing the energy consumption without compromising the user experience

TABLE 1. Comparisons between our work and on-device training in the existing literature.

CPU Conf.
Time(s) Energy(J)

H M L H M L

Big 1 × 4.2 5.4 10.8 10.6 8.0 6.9

Big 2 × 2.6 3.2 6.4 8.9 7.7 7.0

Big 4 × 2.0 3.3 8.4 7.1 8.7 8.2

Little 1 × 25.0 33.9 57.8 10.4 7.2 3.1

Little 2 × 13.3 18.0 31.8 10.1 8.4 4.8

Little 4 × 8.0 11.0 52.3 11.4 9.6 8.2

Hybrid 8 × 3.8 6.5 50.4 13.4 13.9 14.4

TABLE 2. Training performance with different CPU configurations on Meizu 16T. 
”H”: highest frequency (2.4GHz/1.8GHz for big/little core); ”M”: medium 
frequency (1.6GHz/1.2GHz for big/little core); ”L”: lowest frequency 
(0.8GHz/0.6GHz for big/little core).
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real-world applications due to several configura-
tions and batch numbers. Specifically, there may 
be hundreds or even thousands of batches for 
one training and each batch can also select any 
configuration from the candidate configurations 
(CPU core number × frequency). For this issue, 
we propose an adaptive configuration combina-
tion algorithm to select system configuration for 
each batch instead of manual selection. Secondly, 
switching different configurations between two 
adjacent batches results in extra overhead, when 
selecting the optimal configuration for batches 
in the stage of training. We deem that measur-
ing the cost of real-world training is too costly, or 
even infeasible. Considering the switching cost, 
we propose a machine learning-based model to 
obtain the overhead closer to real applications. 
Overall, to achieve efficient on-device training, 
we propose a framework to seek the optimal 
configuration for minimizing the overall energy 
consumption without compromising the user 
experience. Therefore, we transform this issue into 
the Min-Energy problem.

on-devIce trAInIng WIth AdAptIve processor 
confIgurAtIons

In this section, we introduce the Min-Energy prob-
lem where the goal is to minimize energy while 
satisfying a certain training time threshold as our 
objective. More specifically, we expect to seek 
optimal configuration combinations for local train-
ing on each device. We first model this problem 
by formula.

Let C = (x1, x2, ..., xn) denote a configuration 
combination. It is also a list of tuples xi, which 
indicates that the ith batch selects the CPU 
configuration. n is the number of all batches in 
training. Let E(C) denote the energy of the training 
local model with a configuration combination C 
and the training time constraint is θt. We also have 
T (C) = T(x1, x2, ..., xn) as the real training time. 
Therefore, the Min-Energy problem can be formu-
lated as follows.

 min E(x1, x2, ..., xn) 
 s.t. T(x1, x2, ..., xn) ≤ θt (1)

A basic idea for solving the Min-Energy 
problem is to try all possible configuration com-
binations by brute force. However, the brute 
force method is impossible to find the optimal 
solution due to a large number of combinations. 
Therefore, determining the best configuration 
combination efficiently is a very challenging task. 
In addition, it is also challenging to estimate com-
puting overhead when there are configuration 
switchings, since switching different configurations 
between two adjacent batches inevitably leads to 
extra overhead.

Today there is no existing tool to measure 
the overhead directly, an efficient method shall 
be proposed to estimate the extra energy and 
switching time. So we propose a framework 
that considers energy consumption and training 
time to obtain energy-efficient training, as shown 
in Fig. 3. More specifically, based on time and 
energy estimation models derived from historical 
data, all batches with the least-energy configura-
tion work together to complete local training tasks 

during execution. After a DNN model is loaded in 
the initialization, the adaptive configuration com-
binations bind threads to CPU cores and schedule 
tasks to threads, because each processor has 
isolated a power domain and can set frequency 
separately by the Userspace governor [14].

The proposed framework consists of two main 
modules: the profile and execution modules. In 
the profiling module, we train the energy esti-
mation and configuration switching models. We 
collect samples for training and testing the energy 
loss estimation model. 300 configurations are ran-
domly generated and the energy loss is measured 
on smartphones. Among these samples, the ratio 
is 5:1 for model training and testing, respectively. 
More specifically, we generate the configuration 
combinations by scheduling each configuration 
and repeat the above steps until 300 different 
configuration combinations have been generated.

To train the model, we need to exact features 
from the samples. The feature vector contains 
three parts: configuration, memory, and ther-
mal features. The configuration features include 
the binary variables xi, (i ∈ [1, n]) which indi-
cate whether the ith batch is selected as the 
optimal configuration and the average of their 
energy loss. The memory features include the 
memory space occupied by the configuration 
combinations parameters and input\output data. 
The thermal features include the vectors that 
affect energy consumption. Since the exacted 
feature vectors have different ranges, normaliz-
ing their ranges can improve the performance of 
machine learning models. Min-Max normalization 
is applied to scale the range of features to [0, 1]. 
With the normalized features, we train the model 
to estimate energy loss. The biggest challenge 

FIGURE 2. The unbalanced performance with the most representative configu-
rations. The color of circles represents the CPU frequency (the color from 
light to dark denotes low, medium and high frequency, respectively). The 
number of stars and triangle inside circles denotes the core number.

The results show a big potential for energy saving given that developer set a proper CPU frequency.
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is to decide which model should be used. It is 
also not the best choice in the problem due to 
overfitting, where the model can be learned from 
the training samples well but not generalized to 
new data. The overfitting problem may be caused 
by the small number of samples and low-dimen-
sional features. Therefore, we train some models 
(i.e., Linear Regression, GBRT, etc.) to estimate 
the energy loss and choose the best-performing 
model.

In addition, to better estimate the switching 
time between two adjacent batches, especially 
when many configurations are selected. A config-
uration switching model can be implemented to 
obtain switching overhead. Similar to the energy 
estimation model, we collect several adjacent 
configurations to train the prediction model. Note 
that, although the energy estimation model is 

related to the current configuration while the con-
figuration switching model is involved in the two 
configurations, we can still accurately estimate 
the models. Therefore, it’s necessary to consider 
these models separately for these configuration 
combinations. After all the preparation in the pro-
file module, an adaptive configuration allocation 
algorithm in the execution module is proposed to 
solve the Min-Energy problem. Here we apply a 
dynamic programming-based algorithm to adap-
tively seek the optimal configuration combination 
with the least energy on asymmetric CPUs for 
batches.

A cAse study of on-devIce trAInIng
On-device training performance is related to 
many metrics including training time, energy 
consumption, memory footprint, and thermal 
dynamics [5]. As reported in Section III, these 
metrics guide us to seek an appropriate con-
figuration combination for training. In reality, 
a developer or the OS might control the CPU 
core and frequency to harness such a tradeoff 
between training time and energy consumption. 
To ensure fast convergence of the global model 
in FT, each device should complete the learning 
task as fast as possible and minimize energy con-
sumption. Hence, we focus on the Min-Energy 
problem to choose the optimal configuration 
combination for the batches.

Algorithm 1 shows the pseudocode. More 
specifically, a set S(i) (i ∈ [0, n]) is maintained 
for the optimal configuration combination. S(i) 
is a set of triples, and each triple is donated as 
(C, T, E), which represents the training time T 
and the energy E of training the model with con-
figuration combination C. Initially, we sort the 
configurations in descending order based on their 
energy and assign the configuration with minimal 
energy for the batches. Note that, for the same 
model and device, the difference in training time 
and energy of each batch is negligible because 
a large number of testing results show little bias 
(< 5%) for training time and energy, respectively. 
A triple (C, T, E) is said to dominate another triple 
(Cʼ, Tʼ, Eʼ) if and only if T ≤ Tʼ and E ≤ Eʼ.

We first investigated the DL libraries that 
support training on typical mobile devices. We 
observe that MNN achieves great performance 
on most devices such as IoTs and smartphones 
than its competitors [5]. MNN is already been 
adopted widely in the productions of Alibaba 
Inc. Therefore, this study focuses MNN as the 
training framework. We also utilize Android APIs 
to read the current battery, USB power, and volt-
age supply on mobile devices. We thus obtain 
the real power at the stage of training. Energy 
is integral of power during training over time. 
We calculate it by multiplying the measured out-
put power (USB and the power of the battery) 
and the training duration. The reported energy 
and training time are the arithmetic means of 
many runs when no background application is 
running.

experImentAl settIngs
We used two different datasets in the study: 
MNIST dataset (70,000 images, 10 classes, 28 × 
28 × 1 Input Size) and a subset of ImageNet 
(3,200 images, 4 classes, 224 × 224 × 3 Input 

FIGURE 3. The overview of the proposed framework.

ALGORITHM 1: Solving Min-Energy

Input: the initial configuration combinations C0, prefined threshold θt
Output: the configuration combinations Ebest which satisfies the time requirement
 S(0) ← (C0, T (C0), E (C0)),
 Ebest ← E(C0), Cbest ← C0
 for i = 1 to n do
  for each (C, T, E ) in S(i − 1) do
   for each configuration in candidate set do
   Generate C ′ by adjusting the configuration in C
   if T (C′) ≤ θt then
    Add (C ′, T (C′), E (C ′)) to S(i )
   if Ebest > EC ′ then
    Ebest ← E (C ′), Cbest ← C′
  Remove the dominated triples from S(i )
  Update S(i)
 Return Ebest

Similar to the energy estimation model, we collect several adjacent configurations to train the 
prediction model.
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Size). The larger batch size could be selected 
since a large bath ize benefits the intra-operator 
parallelism to gain more energy-efficient. Fortu-
nately, model training is known to be memory 
hungry and 16 is the maximal bathsize that 
mobile phones can support common models 
[5]. That is different from the inference stage, 
because, during inference, the input is fed into 
the model one by one and the intermediate 
results don’t need to be stored for backward 
propagation.

We also carried out experiments with AlexNet 
(5 convs, 61M parameters) and LeNet (2convs, 
3.2k parameters) on Meizu 16T (Snapdragon 
855, 6GB RAM, 4 big cores + 4 little cores) pro-
duced in 2019. For convenience, we ran AlexNet 
for 20 runs (additional warmup runs are not 
excluded).

numerIcAl results And AnAlysIs
Based on the above experimental design, Fig. 4 
discusses the performance of the proposed algo-
rithm in terms of training time and energy. We 
choose the predefined training threshold including 
4× big cores and 1× little core from the available 
options. These scenarios have a wide time range 
and are also universally represented configuration 
schemes. We thus can get the maximum and min-
imum time thresholds (i.e., including upper and 
lower bounds).

To compare the proposed algorithm with 
benchmark algorithms, we train the models on 
the smartphone and calculate the training time 
and energy consumption respectively. Figure 4a 
describes the training time of training AlexNet. 
Overall, we observe that the proposed adaptive 
configuration algorithm takes less training time. 
When especially the predefined training time is 
small, the adaptive configuration takes the same 
time as the results of the fixed configuration (i.e., 
the lower bounds). The adaptive algorithm has 
the only configuration. Also, using 4× big cores 
with the highest frequency results in the small-
est training time. Figure 4b describes the energy 
consumption of training AlexNet and the pro-
posed algorithm saves 30% energy consumption 
on average compared to fixed configurations. 
Extremely, using 1× little core with the lowest 
frequency leads to the smallest energy. Although 
this scheme has a larger threshold, to obtain 
the lowest energy consumption, the adaptive 
configuration is exactly the same as the fixed 
configuration.

This algorithm also allows training any other 
lightweight models on almost mobile devices. To 
evaluate the generalization performance of the 
algorithm, we trained LeNet as shown in Fig. 4c, 
which shows the performance of training with 
100 epochs. We also observe that the proposed 
algorithm still outperforms the fixed configura-
tion allocation strategy. In general, employing 
the adaptive configuration can show significant 
advantages in training performance. We deem 
that a similar phenomenon also exists in other 
models.

lImItAtIon And dIscussIon
In real-world applications, switching different 
configurations in adjacent batches is inevitably 
bound to incur overhead. Thus, we implement 

experiments with different configurations for train-
ing AlexNet for two adjacent batches on Meizu 
16T. Surprisingly, the switching time generated 
by the configuration transformation is 2−5 ms. 
The energy consumption is also approximately the 
lowest one percent per batch. We conclude that 
the insignificant overhead has little impact on the 
adaptive configuration algorithm.

FIGURE 4. Training performance of the proposed 
algorithm and benchmark algorithms. R1, R2, 
and R3 indicate high, medium, and low fre-
quency in the case of Big 4×. R4, R5, and R6 
indicate high, medium, and low frequency in 
the case of Little 1×. a) Training time of Alex-
Net with different schemes. b) The energy of 
training AlexNet with different schemes. c) The 
energy of training LeNet with different schemes.
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What’s more, choosing the optimal configu-
ration for on-device learning is still challenging, 
as it depends on model structure, batch size, 
hardware specification, status, etc. Due to lim-
itations such as resource-constrained data and 
memory of devices, on-device training can only 
be oriented to simple tasks. The implementa-
tion on devices shall be under root privileges. 
The ability of root permissions is also different 
due to the openness of the different smartphone 
manufacturers’ systems. For instance, with the 
same root privilege, Meizu smartphones set the 
frequency directly through the writing configu-
ration method while other smartphones such as 
Xiaomi through the command line. Notoriously, 
the overhead of syscalls shell commands is much 
greater than w/r files. Overall, the algorithm pro-
vides new attempts but has strict requirements 
for the devices.

conclusIon And future Work
The paper first investigates the impacts of system 
parameters on training performance and finds 
interesting observations. The observations indi-
cate a large space of tradeoff between the two 
metrics. To obtain energy efficiency, we propose 
a framework with one adaptive configuration solu-
tion for each batch by choosing appropriate CPU 
parameters. In addition, we conducted experi-
ments and the results show that our approach 
obtains better performance than traditional fixed 
configurations.

This work also highlights the promising future 
directions for efficient on-device training. It calls 
for more researchers and developers, in both 
system and theory aspects, to enable such ubiqui-
tous intelligence protocol. It calls for more efforts 
to focus on on-device training. We plan to speed 
up the labor-intensive tunning of operators by 
leveraging novel techniques such as an automated 
tensor compiler to generate training operators. 
In addition, we plan to apply dynamic configu-
rations to each batch to obtain more promising 
performance.
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