
IEEE Network • January/February 2024180 0890-8044/23©2023IEEE

AbstrAct
On-device deep learning technology has

attracted increasing interest recently. CPUs are
the most common commercial hardware on
devices and many training libraries have been
developed and optimized for them. However,
CPUs still suffer from poor training performance
(i.e., training time) due to the specific asymmetric
multiprocessor. Moreover, the energy constraint
imposes restrictions on battery-powered devices.
With federated training, we expect the local train-
ing to be completed rapidly therefore the global
model converges fast. At the same time, energy
consumption should be minimized to avoid com-
promising the user experience. To this end, we
consider energy and training time and propose a
novel framework with a machine learning-based
adaptive configuration allocation strategy, which
chooses optimal configuration combinations
for efficient on-device training. We carry out
experiments on the popular library MNN and
the experimental results show that the adaptive
allocation algorithm reduces substantial energy
consumption, compared to all batches with fixed
configurations on off-the-shelf CPUs.

IntroductIon
Deep learning (DL) technology is widely used by
mobile devices (smartphones, IoTs, wearables,
etc) in real-world applications [1], such as input
methods and virtual assistants. Meanwhile, we
are witnessing the emergence of a novel para-
digm that directly leverages mobile devices for
model training/inference, referred to as ubiqui-
tous intelligence [2]. DL inference is known to
happen on devices due to the advantages of net-
work resilience and quick response without cloud
offloading [3]. Fueled by the increasingly powerful
processors, it becomes possible to train models
on devices apart from inference. This breaks the
paradigm that the training stage of DL is com-
monly placed on data centers with massive data
and computing resources.

Though various System of Chips (SoCs) have
been developed recently, CPUs remain the dom-
inant hardware because mobile devices are
equipped with them. CPUs have advantages in
general availability and the mature programming
environment while other AI accelerators lack a
uniform interface to facilitate their development
[4]. For example, GPUs are also widely available
and have better performance on the majority of
devices, but cannot support many DL models. The
training time of GPU is even longer than that of

CPU since most training libraries are incomplete
[5]. So CPUs still play a vital role in on-device DL.
Thus, we mainly focus on CPUs in this paper.

As an emerging on-device computing para-
digm, Federated Training (FT) is an algorithm to
enable DL training across devices and has gained
huge attention in both academia and industry [6].
The key idea of FT is to employ a set of mobile
devices to train a model collaboratively under
the orchestration of a central server. The training
process of FT takes place on mobile devices with
uploading model parameters instead of user per-
sonal data. Multiple mobile devices collaboratively
train local models until the global model con-
verges. In this paper, we focus on efficient local
training on mobile devices with multiprocessors to
obtain an optimal model, as shown in Fig. 1. For
each device with diverse computing capacities,
DL developers expect on-device training to be fin-
ished as soon as possible to keep a synchronized
pace. Meanwhile, the energy consumption shall
be minimized to not compromise user experience
due to limited battery. This explains why training
time and energy are critical for mobile devices.
Inspired by the CPU architecture, we conduct the
preliminary measurement to explore the training
performance and the results shed light on the
future tradeoff between training time and energy.

In this paper, aiming to select the optimal con-
figuration combinations for CPUs in the training
stage, we propose an overall system framework
including the profile and execution module
to reduce energy consumption. In the execu-
tion module, we utilize machine learning-based
techniques to obtain the energy estimation and
configuration switching models to better esti-
mate the energy loss and switching overhead. In
the execution module, we present an adaptive
scheduling algorithm to identify the most effi-
cient configuration combinations, considering the
asymmetric CPU architecture. In a nutshell, we
propose an adaptive configuration combinations
allocation strategy by adjusting system parame-
ters (e.g., CPU cores, frequency) to reduce the
energy for training models under the training time
constraint. The key contributions of our work are
as follows:
• We investigate the impact of system param-

eters on training performance. We also
derive some interesting observations, which
help guide us in the promising direction to
enable ubiquitous intelligence efficiently.

• We propose a machine learning-based adap-
tive configuration combinations allocation

Energy-Efficient Federated Training on Mobile Device
Qiyang Zhang, Zuo Zhu, Ao Zhou, Qibo Sun, Schahram Dustdar, and Shangguang Wang

OPEN CALL ARTICLE

Qiyang Zhang (corresponding author), Zuo Zhu, Ao Zhou, Qibo Sun, and Shangguang Wang are with the Beijing University of Posts
and Telecommunications, Beijing 100876, China; Schahram Dustdar is with the Distributed Systems Group,

Technische Universität Wien, 1040 Vienna, Austria.

Digital Object Identifier:
10.1109/MNET.130.2200471
Date of Current Version:
18 April 2024
Date of Publication:
7 March 2023

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 23,2024 at 08:19:14 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • January/February 2024 181

strategy that greatly improves the training
performance (i.e., training time and energy).

• We deploy a simplified case study of
on-device training on Meizu 16T. The
experimental results demonstrate that the
algorithm performs better than all batches
with fixed configurations in terms of training
performance.

relAted Work
Recently, various emerging approaches have been
designed to optimize FT, including privacy, fair-
ness guarantee, and communication cost between
servers and devices [7]. Existing FT studies typi-
cally make simulation methods because real-world
deployment is expensive. As a result, it’s assumed
that all devices are always equipped with homo-
geneous hardware specifications (e.g., the same
CPU). However, the assumption could be too
ideal in real-world applications. More specifically,
FT usually requires a substantial number of devices
with hardware specifications to collaboratively
accomplish a learning task. On-device learning
works in the existing literature can be divided into
two categories summarized in Table 1:

The first category is neural network-aware
implementation. General training techniques are
to train models with quantized weights, activa-
tions, and gradients since the model size arises to
be the major bottleneck [8]. That’s because the
key difference between training and inference is
training needs to store intermediate activations for
back-propagation while inference doesn’t. There-
fore, reducing the activation size is critical for
training. TinyTL [9] leverages a hardware-friendly
module to refine the feature extractor and reduce
the training memory footprint. Neural Projec-
tions [10] further extends neural networks with

computationally efficient operations to generate
compact representations. Low-bit Neural Net-
work Training [11] and Melon [12] provide a
memory-friendly framework that enables train-
ing tasks by quantization. Unfortunately, these
approaches also have a strong dependency on
low-bit training. Especially for a large-scale dis-
tributed training environment, the quantization
techniques are no longer enough as the gap
between high-end networking and the normal
one is large [8]. The second category is to train
DL models by optimizing resource scheduling.
Mandheling [13] enables highly resource-efficient
on-device training by orchestrating mixed-precision
training with DSP offloading, which leverages the
available computing capability of the on-chip DSP
to improve training performance. Kim et al. [14]
propose a deep reinforcement learning-based fre-
quency scaling technique to maximize application
performance. These existing recent works use
Raspberry Pi and seldom use smartphones which
is the killer use-case for ubiquitous intelligence.
Unlike them, our work is to reduce the energy of
single model training from the system-level per-
spective, which is orthogonal and compatible with
those existing works.

bAckground
In this section, to investigate the impact of system
parameters on training, we conduct experiments
on smartphones based on several typical system
configurations. Meanwhile, we also obtain some
interesting observations.

FIGURE 1. The FT system architecture. The work focuses on mobile devices with diverse computing capacities to complete the local train-
ing quickly.

The experimental results demonstrate that the algorithm performs better than all batches with fixed
configurations in terms of training performance.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 23,2024 at 08:19:14 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • January/February 2024182

As we all know, mobile devices are energy-
constrained because users are sensitive to battery
consumption by nature [15]. For instance, mobile
devices may experience delay or even failure
in sending updates because the battery is dead
in the process of FT. Meanwhile, the asymmet-
ric big.LITTLE technology is widely adopted in
popular mobile devices [7]. Specifically, Android
smartphones have a substantial number of adept
configurations (core number × frequency). The big
and little processors often have isolated domains
and thus can set frequency separately. Each SoC
can be independently managed (e.g., turn on/
off and configuration control) for the dynamic
workloads. Compared to the big processors, the
little processors have a lower CPU frequency and
lower power cost [4]. The training tasks are always
improperly assigned to the big processors much
more often than the little ones by the Schedutil
governor [14]. Unfortunately, we find that the
training time with the only big processor is even
shorter than both processors. Meanwhile, the
high frequency of CPUs is only suitable for train-
ing time rather than energy cost. Taking the low
frequency as an example, the training time using
both processors is slower than only big processors,

although the little processors provide additional
computing capability. Similarly, it’s challenging to
find the optimal energy consumption for the exe-
cution of both processors. So we conclude that
DL training barely gains speedup by using both big
and little processors compared to just utilizing big
processors. As such, it is critical to set CPU config-
uration directly for DL training on CPUs.

To have a better understanding of how
on-device training performs, we set the fixed con-
figuration for all batches of the overall training.
We combine the CPU configurations between
core numbers (1×, 2×, 4× big/little cores, 8
hybrid cores) and frequency of each core (high-
est, medium, lowest). Meizu 16T trained AlexNet
model based on MNN [3] for 20 epochs and
the results are summarized in Table 2. Overall,
the results are consistent with the fact that CPU
architecture is asymmetric as we stated above. In
terms of training time, 4× big cores with the high-
est frequency lead to the best performance. In
terms of energy consumption, 1× small core with
the lowest frequency achieves the lowest energy
consumption. The cost of the best energy con-
figuration is only 43.7% of the best training time,
despite it running 28.9× slower. The results show
a big potential for energy saving given that devel-
oper set a proper CPU frequency. In other words,
the results shed light on the tradeoff between
training time and energy consumption to effi-
ciently enable ubiquitous intelligence. To visually
show the performance differences among these
CPU configurations, Fig. 2 exposes the unbal-
anced performance with the most representative
configurations (1× and 4× big/little cores with
high/medium/low frequency). Intuitively, we sum-
marize that big processors are good for training
time, while small processors have smaller energy
consumption. In fact, such a configuration that
meets both training time and energy consump-
tion requirements is significant for ubiquitous
intelligence. Thus, we should adopt those suitable
parameters to enable efficient local training.

There are still two key challenges in select-
ing the suitable configuration for on-device
training. Firstly, the optimal system configura-
tion for batches of training is difficult to select in

Categories Typical Literature Features

Neural-network aware

TinyTL [9]
1) Transfer learning method to reduce the training memory footprint;
2) A memory-efficient bias module to improve the model capacity.

Neural Projections [10]
1) Locality-sensitive projections to generate compact binary representations;
2) Neural nerworks with computationally efficient operations.

Low-bit Neural Network Training [11]
1) Software optimizations by low-bit quantization;
2) Hardware design of a bit-flexible multiply-and-accumulate array sharing
the same sources.

Melon [12] A memory-friendly framework that enables the training tasks with large batch size

Resource scheduling

Mandheling [13]
1) CPU-DSP mixed-precision training;
2) Self-adaptive rescaling.

zTT [14]
A deep reinforcement learning based technique to achieve maximum performance
while ensuring zero thermal throttling.

Our work Adaptive scheduling
1) Choosing the optimal configuration combinations at the training stage;
2) Reducing the energy consumption without compromising the user experience

TABLE 1. Comparisons between our work and on-device training in the existing literature.

CPU Conf.
Time(s) Energy(J)

H M L H M L

Big 1 × 4.2 5.4 10.8 10.6 8.0 6.9

Big 2 × 2.6 3.2 6.4 8.9 7.7 7.0

Big 4 × 2.0 3.3 8.4 7.1 8.7 8.2

Little 1 × 25.0 33.9 57.8 10.4 7.2 3.1

Little 2 × 13.3 18.0 31.8 10.1 8.4 4.8

Little 4 × 8.0 11.0 52.3 11.4 9.6 8.2

Hybrid 8 × 3.8 6.5 50.4 13.4 13.9 14.4

TABLE 2. Training performance with different CPU configurations on Meizu 16T.
”H”: highest frequency (2.4GHz/1.8GHz for big/little core); ”M”: medium
frequency (1.6GHz/1.2GHz for big/little core); ”L”: lowest frequency
(0.8GHz/0.6GHz for big/little core).

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 23,2024 at 08:19:14 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • January/February 2024 183

real-world applications due to several configura-
tions and batch numbers. Specifically, there may
be hundreds or even thousands of batches for
one training and each batch can also select any
configuration from the candidate configurations
(CPU core number × frequency). For this issue,
we propose an adaptive configuration combina-
tion algorithm to select system configuration for
each batch instead of manual selection. Secondly,
switching different configurations between two
adjacent batches results in extra overhead, when
selecting the optimal configuration for batches
in the stage of training. We deem that measur-
ing the cost of real-world training is too costly, or
even infeasible. Considering the switching cost,
we propose a machine learning-based model to
obtain the overhead closer to real applications.
Overall, to achieve efficient on-device training,
we propose a framework to seek the optimal
configuration for minimizing the overall energy
consumption without compromising the user
experience. Therefore, we transform this issue into
the Min-Energy problem.

on-devIce trAInIng WIth AdAptIve processor
confIgurAtIons

In this section, we introduce the Min-Energy prob-
lem where the goal is to minimize energy while
satisfying a certain training time threshold as our
objective. More specifically, we expect to seek
optimal configuration combinations for local train-
ing on each device. We first model this problem
by formula.

Let C = (x1, x2, ..., xn) denote a configuration
combination. It is also a list of tuples xi, which
indicates that the ith batch selects the CPU
configuration. n is the number of all batches in
training. Let E(C) denote the energy of the training
local model with a configuration combination C
and the training time constraint is θt. We also have
T (C) = T(x1, x2, ..., xn) as the real training time.
Therefore, the Min-Energy problem can be formu-
lated as follows.

 min E(x1, x2, ..., xn)
 s.t. T(x1, x2, ..., xn) ≤ θt (1)

A basic idea for solving the Min-Energy
problem is to try all possible configuration com-
binations by brute force. However, the brute
force method is impossible to find the optimal
solution due to a large number of combinations.
Therefore, determining the best configuration
combination efficiently is a very challenging task.
In addition, it is also challenging to estimate com-
puting overhead when there are configuration
switchings, since switching different configurations
between two adjacent batches inevitably leads to
extra overhead.

Today there is no existing tool to measure
the overhead directly, an efficient method shall
be proposed to estimate the extra energy and
switching time. So we propose a framework
that considers energy consumption and training
time to obtain energy-efficient training, as shown
in Fig. 3. More specifically, based on time and
energy estimation models derived from historical
data, all batches with the least-energy configura-
tion work together to complete local training tasks

during execution. After a DNN model is loaded in
the initialization, the adaptive configuration com-
binations bind threads to CPU cores and schedule
tasks to threads, because each processor has
isolated a power domain and can set frequency
separately by the Userspace governor [14].

The proposed framework consists of two main
modules: the profile and execution modules. In
the profiling module, we train the energy esti-
mation and configuration switching models. We
collect samples for training and testing the energy
loss estimation model. 300 configurations are ran-
domly generated and the energy loss is measured
on smartphones. Among these samples, the ratio
is 5:1 for model training and testing, respectively.
More specifically, we generate the configuration
combinations by scheduling each configuration
and repeat the above steps until 300 different
configuration combinations have been generated.

To train the model, we need to exact features
from the samples. The feature vector contains
three parts: configuration, memory, and ther-
mal features. The configuration features include
the binary variables xi, (i ∈ [1, n]) which indi-
cate whether the ith batch is selected as the
optimal configuration and the average of their
energy loss. The memory features include the
memory space occupied by the configuration
combinations parameters and input\output data.
The thermal features include the vectors that
affect energy consumption. Since the exacted
feature vectors have different ranges, normaliz-
ing their ranges can improve the performance of
machine learning models. Min-Max normalization
is applied to scale the range of features to [0, 1].
With the normalized features, we train the model
to estimate energy loss. The biggest challenge

FIGURE 2. The unbalanced performance with the most representative configu-
rations. The color of circles represents the CPU frequency (the color from
light to dark denotes low, medium and high frequency, respectively). The
number of stars and triangle inside circles denotes the core number.

The results show a big potential for energy saving given that developer set a proper CPU frequency.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 23,2024 at 08:19:14 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • January/February 2024184

is to decide which model should be used. It is
also not the best choice in the problem due to
overfitting, where the model can be learned from
the training samples well but not generalized to
new data. The overfitting problem may be caused
by the small number of samples and low-dimen-
sional features. Therefore, we train some models
(i.e., Linear Regression, GBRT, etc.) to estimate
the energy loss and choose the best-performing
model.

In addition, to better estimate the switching
time between two adjacent batches, especially
when many configurations are selected. A config-
uration switching model can be implemented to
obtain switching overhead. Similar to the energy
estimation model, we collect several adjacent
configurations to train the prediction model. Note
that, although the energy estimation model is

related to the current configuration while the con-
figuration switching model is involved in the two
configurations, we can still accurately estimate
the models. Therefore, it’s necessary to consider
these models separately for these configuration
combinations. After all the preparation in the pro-
file module, an adaptive configuration allocation
algorithm in the execution module is proposed to
solve the Min-Energy problem. Here we apply a
dynamic programming-based algorithm to adap-
tively seek the optimal configuration combination
with the least energy on asymmetric CPUs for
batches.

A cAse study of on-devIce trAInIng
On-device training performance is related to
many metrics including training time, energy
consumption, memory footprint, and thermal
dynamics [5]. As reported in Section III, these
metrics guide us to seek an appropriate con-
figuration combination for training. In reality,
a developer or the OS might control the CPU
core and frequency to harness such a tradeoff
between training time and energy consumption.
To ensure fast convergence of the global model
in FT, each device should complete the learning
task as fast as possible and minimize energy con-
sumption. Hence, we focus on the Min-Energy
problem to choose the optimal configuration
combination for the batches.

Algorithm 1 shows the pseudocode. More
specifically, a set S(i) (i ∈ [0, n]) is maintained
for the optimal configuration combination. S(i)
is a set of triples, and each triple is donated as
(C, T, E), which represents the training time T
and the energy E of training the model with con-
figuration combination C. Initially, we sort the
configurations in descending order based on their
energy and assign the configuration with minimal
energy for the batches. Note that, for the same
model and device, the difference in training time
and energy of each batch is negligible because
a large number of testing results show little bias
(< 5%) for training time and energy, respectively.
A triple (C, T, E) is said to dominate another triple
(Cʼ, Tʼ, Eʼ) if and only if T ≤ Tʼ and E ≤ Eʼ.

We first investigated the DL libraries that
support training on typical mobile devices. We
observe that MNN achieves great performance
on most devices such as IoTs and smartphones
than its competitors [5]. MNN is already been
adopted widely in the productions of Alibaba
Inc. Therefore, this study focuses MNN as the
training framework. We also utilize Android APIs
to read the current battery, USB power, and volt-
age supply on mobile devices. We thus obtain
the real power at the stage of training. Energy
is integral of power during training over time.
We calculate it by multiplying the measured out-
put power (USB and the power of the battery)
and the training duration. The reported energy
and training time are the arithmetic means of
many runs when no background application is
running.

experImentAl settIngs
We used two different datasets in the study:
MNIST dataset (70,000 images, 10 classes, 28 ×
28 × 1 Input Size) and a subset of ImageNet
(3,200 images, 4 classes, 224 × 224 × 3 Input

FIGURE 3. The overview of the proposed framework.

ALGORITHM 1: Solving Min-Energy

Input: the initial configuration combinations C0, prefined threshold θt
Output: the configuration combinations Ebest which satisfies the time requirement
 S(0) ← (C0, T (C0), E (C0)),
 Ebest ← E(C0), Cbest ← C0
 for i = 1 to n do
 for each (C, T, E) in S(i − 1) do
 for each configuration in candidate set do
 Generate C ′ by adjusting the configuration in C
 if T (C′) ≤ θt then
 Add (C ′, T (C′), E (C ′)) to S(i)
 if Ebest > EC ′ then
 Ebest ← E (C ′), Cbest ← C′
 Remove the dominated triples from S(i)
 Update S(i)
 Return Ebest

Similar to the energy estimation model, we collect several adjacent configurations to train the
prediction model.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 23,2024 at 08:19:14 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • January/February 2024 185

Size). The larger batch size could be selected
since a large bath ize benefits the intra-operator
parallelism to gain more energy-efficient. Fortu-
nately, model training is known to be memory
hungry and 16 is the maximal bathsize that
mobile phones can support common models
[5]. That is different from the inference stage,
because, during inference, the input is fed into
the model one by one and the intermediate
results don’t need to be stored for backward
propagation.

We also carried out experiments with AlexNet
(5 convs, 61M parameters) and LeNet (2convs,
3.2k parameters) on Meizu 16T (Snapdragon
855, 6GB RAM, 4 big cores + 4 little cores) pro-
duced in 2019. For convenience, we ran AlexNet
for 20 runs (additional warmup runs are not
excluded).

numerIcAl results And AnAlysIs
Based on the above experimental design, Fig. 4
discusses the performance of the proposed algo-
rithm in terms of training time and energy. We
choose the predefined training threshold including
4× big cores and 1× little core from the available
options. These scenarios have a wide time range
and are also universally represented configuration
schemes. We thus can get the maximum and min-
imum time thresholds (i.e., including upper and
lower bounds).

To compare the proposed algorithm with
benchmark algorithms, we train the models on
the smartphone and calculate the training time
and energy consumption respectively. Figure 4a
describes the training time of training AlexNet.
Overall, we observe that the proposed adaptive
configuration algorithm takes less training time.
When especially the predefined training time is
small, the adaptive configuration takes the same
time as the results of the fixed configuration (i.e.,
the lower bounds). The adaptive algorithm has
the only configuration. Also, using 4× big cores
with the highest frequency results in the small-
est training time. Figure 4b describes the energy
consumption of training AlexNet and the pro-
posed algorithm saves 30% energy consumption
on average compared to fixed configurations.
Extremely, using 1× little core with the lowest
frequency leads to the smallest energy. Although
this scheme has a larger threshold, to obtain
the lowest energy consumption, the adaptive
configuration is exactly the same as the fixed
configuration.

This algorithm also allows training any other
lightweight models on almost mobile devices. To
evaluate the generalization performance of the
algorithm, we trained LeNet as shown in Fig. 4c,
which shows the performance of training with
100 epochs. We also observe that the proposed
algorithm still outperforms the fixed configura-
tion allocation strategy. In general, employing
the adaptive configuration can show significant
advantages in training performance. We deem
that a similar phenomenon also exists in other
models.

lImItAtIon And dIscussIon
In real-world applications, switching different
configurations in adjacent batches is inevitably
bound to incur overhead. Thus, we implement

experiments with different configurations for train-
ing AlexNet for two adjacent batches on Meizu
16T. Surprisingly, the switching time generated
by the configuration transformation is 2−5 ms.
The energy consumption is also approximately the
lowest one percent per batch. We conclude that
the insignificant overhead has little impact on the
adaptive configuration algorithm.

FIGURE 4. Training performance of the proposed
algorithm and benchmark algorithms. R1, R2,
and R3 indicate high, medium, and low fre-
quency in the case of Big 4×. R4, R5, and R6
indicate high, medium, and low frequency in
the case of Little 1×. a) Training time of Alex-
Net with different schemes. b) The energy of
training AlexNet with different schemes. c) The
energy of training LeNet with different schemes.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 23,2024 at 08:19:14 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • January/February 2024186

What’s more, choosing the optimal configu-
ration for on-device learning is still challenging,
as it depends on model structure, batch size,
hardware specification, status, etc. Due to lim-
itations such as resource-constrained data and
memory of devices, on-device training can only
be oriented to simple tasks. The implementa-
tion on devices shall be under root privileges.
The ability of root permissions is also different
due to the openness of the different smartphone
manufacturers’ systems. For instance, with the
same root privilege, Meizu smartphones set the
frequency directly through the writing configu-
ration method while other smartphones such as
Xiaomi through the command line. Notoriously,
the overhead of syscalls shell commands is much
greater than w/r files. Overall, the algorithm pro-
vides new attempts but has strict requirements
for the devices.

conclusIon And future Work
The paper first investigates the impacts of system
parameters on training performance and finds
interesting observations. The observations indi-
cate a large space of tradeoff between the two
metrics. To obtain energy efficiency, we propose
a framework with one adaptive configuration solu-
tion for each batch by choosing appropriate CPU
parameters. In addition, we conducted experi-
ments and the results show that our approach
obtains better performance than traditional fixed
configurations.

This work also highlights the promising future
directions for efficient on-device training. It calls
for more researchers and developers, in both
system and theory aspects, to enable such ubiqui-
tous intelligence protocol. It calls for more efforts
to focus on on-device training. We plan to speed
up the labor-intensive tunning of operators by
leveraging novel techniques such as an automated
tensor compiler to generate training operators.
In addition, we plan to apply dynamic configu-
rations to each batch to obtain more promising
performance.

RefeRences
[1] M. Xu et al., “Video analytics with zero-streaming camer-

as,” in Proc. USENIX Annu. Tech. Conf. (USENIX ATC), 2021,
pp. 459–472.

[2] M. Xu et al., “Approximate query service on autonomous
IoT cameras,” in Proc. 18th Int. Conf. Mobile Syst., Appl.,
Services, Jun. 2020, pp. 191–205.

[3] Q. Zhang et al., “A comprehensive benchmark of deep learn-
ing libraries on mobile devices,” in Proc. ACM Web Conf.,
2022, pp. 3298–3307.

[4] M. Wang et al., “AsyMo: Scalable and efficient deep-learning
inference on asymmetric mobile CPUs,” in Proc. 27th Annu.
Int. Conf. Mobile Comput. Netw., 2021, pp. 215–228.

[5] D. Cai et al., “Towards ubiquitous learning: A first mea-
surement of on-device training performance,” in Proc.
5th Int. Workshop Embedded Mobile Deep Learn., 2021,
pp. 31–36.

[6] W. Y. B. Lim et al., “Federated learning in mobile edge net-
works: A comprehensive survey,” IEEE Commun. Surveys
Tuts., vol. 22, no. 3, pp. 2031–2063, 3rd Quart., 2020.

[7] C. Yang et al., “Characterizing impacts of heterogeneity in
federated learning upon large-scale smartphone data,” in
Proc. Web Conf., 2021, pp. 935–946.

[8] H. Cai et al., “Enable deep learning on mobile devices: Meth-
ods, systems, and applications,” ACM Trans. Design Automat.
Electron. Syst., vol. 27, no. 3, pp. 1–50, Mar. 2022.

[9] H. Cai et al., “TinyTL: Reduce memory, not parameters for
efficient on-device learning,” in Proc. Adv. Neural Inf. Pro-
cess. Syst., vol. 33, 2020, pp. 11285–11297.

[10] S. Ravi, “Efficient on-device models using neural projec-
tions,” in Proc. Int. Conf. Mach. Learn., 2019, pp. 5370–5379.

[11] S. Choi et al., “An optimized design technique of low-bit
neural network training for personalization on IoT devic-
es,” in Proc. 56th Annu. Design Automat. Conf., Jun. 2019,
pp. 1–6.

[12] Q. Wang et al., “Melon: Breaking the memory wall for
resource-efficient on-device machine learning,” in Proc. 20th
Annu. Int. Conf. Mobile Syst., Appl. Services, 2022, pp. 1–14.

[13] D. Xu et al., “Mandheling: Mixed-precision on-device DNN
training with DSP offloading,” 2022, arXiv:2206.07509.

[14] S. Kim et al., “zTT: Learning-based DVFS with zero thermal
throttling for mobile devices,” GetMobile, Mobile Comput.
Commun., vol. 25, no. 4, pp. 30–34, Mar. 2022.

[15] L. L. Zhang et al., “nn-Meter: Towards accurate latency pre-
diction of deep-learning model inference on diverse edge
devices,” in Proc. 19th Annu. Int. Conf. Mobile Syst., Appl.,
Services, 2021, pp. 81–93.

BiogRaphies
Qiyang Zhang (qyzhang@bupt.edu.cn) received the bachelor’s
degree from Henan Normal University in 2018. He is currently
pursuing the Ph.D. degree with the State Key Laboratory of Net-
working and Switching Technology, Beijing University of Posts
and Telecommunications (BUPT). His research interests include
mobile edge computing, ubiquitous computing, and artificial
intelligence.

Zuo Zhu received the bachelor’s degree with the North China
University of Water Resources and Electric Power in 2022. He is
currently pursuing the master’s degree with the State Key Lab-
oratory of Networking and Switching Technology, Beijing Uni-
versity of Posts and Telecommunications (BUPT). His research
interests include mobile edge computing and 5G core network.

ao Zhou (Member, IEEE) is an Associate Professor at the Bei-
jing University of Posts and Telecommunication (BUPT), China.
Her current research interests include cloud computing and
mobile edge computing.

Qibo Sun (Member, IEEE) is an Associate Professor at the Bei-
jing University of Posts and Telecommunication (BUPT), China.
His current research interests include cloud computing, mobile
edge computing, and satellite communication technologies.

Schahram DuStDar (Fellow, IEEE) was an Honorary Professor
of information systems with the Department of Computing Sci-
ence, University of Groningen, Groningen, The Netherlands,
from 2004 to 2010. He is currently a Professor of computer
science with the Distributed Systems Group, Technische Uni-
versitt Wien, Vienna, Austria. He was an elected member of the
Academy of Europe, where he is the Chairman of the Informat-
ics Section.

Shangguang Wang (Senior Member, IEEE) is a Professor at the
School of Computing, Beijing University of Posts and Telecom-
munications (BUPT), China. He is a Vice-Director of the State
Key Laboratory of Networking and Switching Technology. His
research interests include service computing, cloud computing,
and mobile edge computing.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 23,2024 at 08:19:14 UTC from IEEE Xplore. Restrictions apply.

