Future Generation Computer Systems 158 (2024) 530-544

Contents lists available at ScienceDirect L =
FIGICIS!
Future Generation Computer Systems
journal homepage: www.elsevier.com/locate/fgcs =
)
Distributed realtime rendering in decentralized network for mobile web At

augmented reality

Huabing Zhang ®°, Liang Li *>*, Qiong Lu®, Yi Yue %4, Yakun Huang ¢, Schahram Dustdar

aKey Lab of Film and TV Media Technology of Zhejiang Province, Hangzhou, Zhejiang 310018, China

b School of Media Engineering, Communication University Of Zhejiang, Hangzhou, Zhejiang 310018, China

¢ China Unicom Research Institute, Beijing, China

d National Engineering Research Center of Next Generation Internet Broadband Service Application, Beijing, China

¢ State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
f Distributed Systems Group, Technische Universitit Wien, 1040 Vienna, Austria

ARTICLE INFO ABSTRACT

Keywords:

Mobile web-based augment reality
Real-time rendering computing
Decentralized network

Distributed collaborative computing
Mobile computing

Device-to-Device

Low-latency, real-time rendering of 3D objects is critical for mobile web-based augmented reality (MWAR)
applications. While cloud-based or edge-based server rendering offloading can reduce the latency for mobile
devices, a high volume of user requests in user aggregation scenarios can overload servers and transmission
channels. It can result in a poor user experience due to resource consumption and high latency. This paper
presents a decentralized and collaborative real-time rendering offloading network architecture (CRCDnet) to
address this issue. CRCDnet makes contributions in the following three areas: (1) In the user aggregation
scenarios, mobile devices that perform the same services are used as service nodes to perform the offloading
of rendering computing and a collaborative rendering computing network is established. (2) For data exchange
in decentralized networks, a data sharing middle layer based on blockchain key indexes separates sensitive
service data and ensures a secure, reliable exchange mechanism and efficient data exchange. (3) A data request
and computing offloading scheduling approach is proposed for the collaborative rendering computing network

to optimize the rendering computation delay.

1. Introduction

Augmented reality (AR) is a popular technology that enhances users’
perception of the real world. However, native-based AR solutions suffer
from issues with portability and service construction costs. Mobile web-
based augmented reality (MWAR) is a lightweight and cross-platform
alternative that is expected to enable users to interact with the real
world conveniently [1]. In user aggregation scenarios, MWAR can
quickly establish a rich information interaction with external objects
through a wide range of user communication channels, as shown
in Fig. 1. However, the lack of computing resources, Web security
restrictions, and interpreter execution mechanism of mobile device’s
Web browsers lead to high rendering response delay and poor media
rendering quality [2].

To address the problem of insufficient computing resources in mo-
bile Web browsers, real-time computing offloading based on remote
servers such as cloud or edge servers is a popular solution [3]. In this
approach, the remote server performs rendering computing in real-
time to generate multimedia streams for mobile devices, which are

then loaded onto the mobile browser via the HTTP protocol [4,5].
However, current approaches for rendering computing offloading are
limited in the user aggregation scenario. The first approach uses pub-
lic cloud servers with sufficient computing resources and scalability
advantages to perform low-latency rendering computing for mobile
devices. However, this approach consumes more communication re-
sources than traditional 3D model files for rendered data transmission,
especially when multiple users request real-time rendering. This leads
to delivery delays that users cannot tolerate. The second approach uses
edge servers with high-bandwidth connections to provide low-latency
and high-quality rendering computing offloading services. However,
real-time rendering computing requires high computing resources, par-
ticularly for large 3D scenes and complex user interactions [6]. When
multiple mobile devices send many rendering computing requests in the
short term, the mobile edge servers undertaking render computing or
cache management computing experience a high delay in responding.
The third approach is collaborative computing offloading deployed
between cloud servers, edge servers, and clients, which can address

* Corresponding author at: Key Lab of Film and TV Media Technology of Zhejiang Province, Hangzhou, Zhejiang 310018, China.
E-mail addresses: huabingzhang@cuz.edu.cn (H. Zhang), liliang@cuz.edu.cn (L. Li), lugiong@cuz.edu.cn (Q. Lu), yuey80@chinaunicom.cn (Y. Yue),

ykhuang@bupt.edu.cn (Y. Huang), dustdar@dsg.tuwien.ac.at (S. Dustdar).

https://doi.org/10.1016/j.future.2024.04.050

Received 27 April 2023; Received in revised form 24 April 2024; Accepted 25 April 2024

Available online 27 April 2024
0167-739X/© 2024 Elsevier B.V. All rights reserved.

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
mailto:huabingzhang@cuz.edu.cn
mailto:liliang@cuz.edu.cn
mailto:luqiong@cuz.edu.cn
mailto:yuey80@chinaunicom.cn
mailto:ykhuang@bupt.edu.cn
mailto:dustdar@dsg.tuwien.ac.at
https://doi.org/10.1016/j.future.2024.04.050
https://doi.org/10.1016/j.future.2024.04.050
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2024.04.050&domain=pdf

H. Zhang et al.

0On@..
on<r

- Intelligent watch

|
porary bd

edge server — —{]
- AR advertising

- AR commentany - Virtual lottery

- Sport interaction

- Product introduction

mobile

G-k,
OO

- Exhibition interaction - Advertising
- Virtual explanation - Introduction
- Scene reproduction - Interation

Fig. 1. Augmented reality in the user aggregation scenarios.

the issue of computing and communication costs in user aggregation
scenarios. However, the dependence of collaborative approaches on
core computing devices and communication links can also bring huge
reliability issues to computing offloading in user aggregation scenarios.
Furthermore, deploying mobile edge servers can incur additional de-
ployment costs for operators, particularly for temporary active service
scenarios.

In this paper, our main motivation is to address the computing
and transmission pressure caused by centralized offload approaches
by proposing a decentralized rendering approach. In user aggregation
scenarios, many mobile devices with similar or varying service purposes
and real-time rendering computing services can be shared based on
computing resources or rendered data. Inspired by this, we introduce
a distributed collaborative real-time rendering computing offloading
network (CRCDnet) for MWAR. However, implementing this network
presents three key technical challenges:

* The centralized rendering computing offloading framework can-
not provide low-latency rendering and computing offload services
for application terminals in the peer-to-peer device architecture
of user aggregation scenarios [7], which requires a decentralized
approach.

The existing data exchange approach based on blockchain is com-
plex and can cause huge transmission delays, making it unsuitable
for exchanging rendered data in a timely manner [8].

The current computing offloading scheduling algorithm cannot
effectively organize multiple mobile devices to perform collabora-
tive real-time computing offloading [9], especially in multi-device
collaborative service environments with random participation.

To overcome these challenges, we present an approach for con-
structing a decentralized real-time rendering computing service net-
work using mobile devices as computing offloading devices. This ap-
proach is based on WebGL (Web Graphics Library)’s underlying ren-
dering computing interface in a Web browser and builds a distributed
collaborative rendering environment in a decentralized network. Our
approach consists of three key components. First, we utilize a dis-
tributed computing approach to provide low-latency rendering com-
puting services in user aggregation scenarios. Second, we introduce
the concept of an index that uses blockchain to enable high-capacity
data exchange between mobile devices. Lastly, we propose an opti-
mal algorithm for constructing a data-sharing pool to accommodate
multiple mobile devices’ spontaneous and random participation in
rendering computing offloading. The contributions of our work can be
summarized as follows:

531

Future Generation Computer Systems 158 (2024) 530-544

» We propose a collaborative real-time rendering offloading service
framework based on a decentralized network and a multi-source
rendering approach based on the WebGL rendering binary data.
By aggregating the computing capability of mobile devices in user
aggregation scenarios, the framework provides lower latency and
higher quality real-time rendering services than other approaches
based on WebGL rendering.

We propose a data exchange approach based on the blockchain
key index to facilitate the direct and efficient exchange of ren-
dered data between mobile devices. This approach separates sen-
sitive service data from desensitized rendered data, simplifies
computing offloading requests, and ensures a secure and trust-
worthy mechanism for distributed exchange.

We propose a collaborative-driven algorithm based on a data-
sharing pool to schedule real-time rendering on distributed com-
puting efficiently. All mobile devices connected to the data and
resource sharing ring are considered part of the collaborative ren-
dering system. The scheduling strategy for rendering computing
is dynamically determined to optimize delays.

2. Preliminary

For real-time rendering computation offloading in user aggregation
scenarios, collaborative and distributed rendering with decentralized
networks is the main motivation to address the three challenges re-
ferred to in Section 1. Meanwhile, sharing rendering data between
mobile devices and direct connections between mobile devices are
the foundation of collaborative rendering computing based on decen-
tralized networks. This section will discuss the decentralized network
service paradigm, the direct connection approaches of mobile devices,
and rendering data interaction approaches in a decentralized network
service environment, providing a foundation for our work.

2.1. Decentralized network service

In the user aggregation scenarios, many users with the same ser-
vice purpose will trigger real-time requests for computing or data
resources to a remote server in a short amount of time and within a
specific area. Once the 3D model is loaded and rendered, users will
engage in personalized and differential interaction according to their
individual needs. These time and space-intensive scenarios can lead
to computing overload and communication congestion on the remote
server. As a result, traditional centralized service architecture, such
as Browser/Server(B/S) and Client/Server(C/S) structures, is unable to
meet the requirements of constructing low-latency and stable services
in such a highly time- and space-intensive user aggregation scenario.

The decentralized network service mode represents a paradigm shift
in network service construction from centralization to decentraliza-
tion. It is based on a decentralized network architecture, where many
complex feedback loops exist between service terminals [10]. This
decentralized network has several characteristics that make it partic-
ularly suitable for rendering computing offloading in user aggregation
scenarios.

+ Distributing the computing pressure: By allowing each de-
vice to provide computing resources and rendered data services,
the computing pressure can be distributed across the network,
avoiding overloading a single server [11].

Enabling short-distance communication: Computing devices
can directly communicate with each other using short distance
communication channels, which can alleviate communication
pressure between the central server and the edge base station [12].
Protecting users’ privacy: The decentralized network’s infor-
mation encryption and token mechanism based on blockchain
technology can protect users’ privacy while maintaining network
operation [13].

H. Zhang et al.

Remote cloud server Legend

<--> D2D network

<= Cellular network
<---> Core network

data
resource

Computing
resource

N

N

0<

da

mobile la node
. - I‘eSOu _
B it G s
pad ! o . &1
2 u| >0
- = -S;H-é-
smart class
cellular D2D communication
network Decentralized network

Fig. 2. Structure of decentralized network.

Based on these characteristics, a decentralized network service pro-
vides a promising opportunity to construct rendering computing of-
floading services for MWAR applications in user aggregation scenarios.
In such a network, the mobile devices of different users can act as
3D model rendering computing and data service [10]. Each relevant
mobile device loads 3D model file blocks and performs rendering com-
puting according to a certain control strategy. The rendered data can
then be communicated through short-distance channels such as Device-
to-Device (D2D) or Wi-Fi Direct between devices, and the service client
can aggregate the rendered computing data. Finally, the service client
reorganizes the rendered computing data to implement the 3D scene
construction of the MWAR application. The structure is shown in Fig. 2.

In this process, the construction of communication channels and
the exchange of rendered data are the foundation of the decentral-
ized collaborative rendering computing service network. The following
subsection will analyze these works further.

2.2. Communication channel between devices

The direct and short-distance communication channel between de-
vices is the foundation of the decentralized collaborative rendering
service network [14]. Direct communication between mobile devices
is not allowed in cellular networks, but with the rapid popularization
of intelligent terminals and the explosive growth of network com-
munication capacity, D2D, Wi-Fi Direct, flash LINQ, and Bluetooth
technologies have become the main means of direct connection for
mobile devices [15]. D2D is more flexible than other direct connection
technologies between mobile devices that do not rely on infrastruc-
ture, as it can connect and allocate resources under the control of
the base station and exchange information when there is no network
infrastructure [16].

In a decentralized rendering service network, each mobile device
can send and receive signals and automatically route (forward) mes-
sages. Participants in the network share a portion of their computing
and data resources, including information processing, storage, and
network connectivity [17]. These shared resources are directly acces-
sible by other users without intermediaries. In a D2D communication
network, each device simultaneously plays the roles of both a server
and a client, as illustrated in Fig. 2. Mobile devices can detect each
other’s presence and independently form a virtual or physical group. By
utilizing the proximity and data pass-through features of D2D, mobile
devices can conserve spectrum resources and extend the application
scenarios of MWAR.

Cache technology is crucial in satisfying the high-speed and low-
delay requirements of rendered data transmission, particularly in the

532

Future Generation Computer Systems 158 (2024) 530-544

case of large-scene MWAR. The rendered data can be stored by special
devices or auxiliary devices distributed throughout the network, which
can be accessed by the local network buffer without requiring high
throughput, as depicted in Fig. 2. This approach addresses the high
communication costs associated with the initial rendering of a 3D
model object or scene.

2.3. Data format of computing resource exchange

Multiple mobile devices collaborate in a decentralized network to
render computation services or share rendered computation data. The
rendered data from various sources needs to meet two conditions:
firstly, it can be reused based on frames or media segments in the
channel [18], and secondly, it can be serialized and computed on the
Web browser Canvas container [19].

A shared channel is used for communication and data transmission
in the decentralized distributed collaborative rendering service, involv-
ing multiple source rendering services and multiple target rendering
services. To meet the requirements of real-time rendering computation,
multiple mobile devices need to aggregate the already rendered data
to the common rendering service targets in real-time through channel
multiplexing. The divisibility and re-usability of the already rendered
data become crucial for effective transmission [20]. By implementing
the divisibility and re-usability of the already rendered data, multiple
mobile devices can aggregate their rendering results in real-time to the
common rendering service targets through channel multiplexing. This
enables efficient collaborative rendering computation in a decentral-
ized network environment, fulfilling the real-time rendering needs and
enhancing overall rendering system performance and scalability [18].

Serialization computation of rendered data on the browser is a crit-
ical technological process. Rendering approaches based on continuous
media elements like videos can provide client-side offloading services
with lower latency and higher response efficiency. However, serializing
the rendered video segments generated by multiple mobile devices
on a mobile browser consumes substantial computational resources.
This is because the computational capabilities of mobile browsers are
relatively limited and need help to process and compute large amounts
of video data efficiently. Furthermore, decentralized mobile devices
cannot support real-time video streaming media rendering services,
which limits the applicability of decentralized rendering computation
approaches [19].

In this paper, we introduce a primitive approach. This primitive ren-
dering offloading approach uses WebGL to leverage the computational
resources of the browser for rendering 3D scenes. It converts the ren-
dered computation data into binary data for exchange among different
devices. WebGL loads the model’s geometric information into memory,
compiling vertex and fragment shaders to handle vertex coordinates
and pixel color computation. Then, WebGL creates buffer objects to
store 3D model data, such as vertex coordinates, texture coordinates,
and colors. These buffer objects are bound to attribute variables of
the vertex shader, and the rendering state of the shader is set. By
invoking WebGL drawing functions, the scene and the 3D model are
drawn and stored as binary data, which can be shared among devices
in a decentralized network through mobile device network interfaces.
Suppose the scene includes data such as animation; the scene and
model states can be updated between each rendering frame, such as
computing transformation matrices, updating material properties, or
modifying 3D model data. Finally, by iterating the rendering steps in
a rendering loop, the scene and 3D model are continuously updated
and rendered to achieve real-time and continuous sharing of already
rendered data. The rendering service targets can receive binary data
from multiple sources and directly perform serialized computation,
pushing the binary data to the browser’s Canvas to meet the user’s
real-time interaction needs.

H. Zhang et al.
Mobile Devices
e - Rendering Computing Module
g g
= o ~ .
b= S Rendering Computing
— Eo @ computing resource
RN
g 2 go £ Collaborative Rendering Control Module
-~ B 1]
= 8 5, Collaborative rendering control
2 2 %]
< =
2 = Network Computing
= Performance
al ® parameter L parameter
< = monitoring
Lo S
£ 38 5}
5= 8 2 Network Control Cache Management
Bz =0 module Module
& s ° Data cache
A Network unit (IndexedDB)
o |] N |
2 = A
Z 2 . o
2 g Heterogeneous netw ork / device connectivity
-
2 5 ; o
S E= ‘ i Sharing driven ring
g] ' .
g § Blockchain connection
Q <
j3
= 4
[| L4
Data cache
_?Uf 2 a Network unit (IndexedDB)
=] g £
50 53 . :
§ £= Rendering Computing Module
E =2 . ¥ . =
g SE Rendering Computing
3 computing resource

Fig. 3. Structure of decentralized and collaborative real-time rendering offloading
network.

3. CRCDnet solution overview

CRCDnet proposes a distributed-based decentralized network frame-
work for real-time rendering services in user aggregation scenarios for
MWAR applications. It utilizes decentralized networks and D2D com-
munication to minimize communication costs and speed up rendering
response. Meanwhile, CRCDnet uses mobile devices or virtual machines
based on mobile devices for rendering. CRCDnet comprises six parts, as
shown in Fig. 3.

+ Interactive Monitoring Module: The Interactive Monitoring
Module monitors the user’s interaction through feedback from
mobile device sensor data and other mobile devices’ feedback
data through the network. It converts the user’s interactive func-
tions, such as zoom, translation, and rotation, into virtual camera
parameters in the 3D scene. The Interactive Monitoring Module
establishes the camera trajectory parameter sequence of the client
interaction, which serves as the basis for rendering computing.
Rendering Display Module: The Rendering Display Module col-
lects the rendered data from the mobile devices and loads it into
the Web browser. It creates a new canvas and uses the binary
data to draw the corresponding image with the pixel data from
multiple mobile devices. The canvas displays the correspond-
ing rendered data in the interactive process through the media
stream.

Network Control Module: The Network Control Module estab-
lishes the communication link between the application terminal
(Web browser) and the auxiliary mobile devices. When the service
environment is initialized, CRCDnet establishes a decentralized
network through a D2D connection between mobile devices. Af-
ter establishing the service environment, the Network Control
Module controls the transmission of camera interaction trajectory
parameters, rendered data, and rendering control instruction data

533

Future Generation Computer Systems 158 (2024) 530-544

between the application terminal and the auxiliary rendering
devices.

Rendering Computing Module: The Rendering Computing Mod-
ule stores the RGBA pixel values of the rendered data in a custom
frame buffer by using the off-screen rendering approach of We-
bGL to generate binary streams. By default, the screen does not
directly read the pixel data in the buffer, which is obtained
through the specific API of WebGL and returned to the application
terminal.

Cache Management Module: When rendering the 3D model
in the Web browser, CRCDnet uses indexedDB as the container
for exchanging data, which is a transactional (nonrelational)
database deployed on a browser for storing large amounts of
structured data on the Web browser. The intermediate data (in the
form of binary streams) of rendered data is exchanged through
caches to reduce the rendering computing pressure of the Web
browser. After receiving the request from the Web browser, the
corresponding binary data is found from the indexed database and
returned to the Web browser according to the position parameters
of the received camera.

Collaborative Rendering Control Module: The Collaborative
Rendering Control Module is mainly used to control the collab-
orative rendering of each device in the decentralized network.
The Collaborative Rendering Control Module is deployed on ap-
plication terminals and each mobile device to monitor and collect
network and computing parameters in the service environment.
When the service environment is initialized or changed, the Col-
laborative Rendering Control Module controls each mobile device
through the collaborative monitoring unit for rendering com-
puting according to the pre-determined strategy through control
instructions.

In CRCDnet’s service control, establishing the decentralized network
and sharing rendered data are controlled as two independent threads.
The first mobile device that joins the service environment requests
3D model data from the server and constructs the service based on
independent rendering. When a new mobile device joins CRCDnet,
it broadcasts to nearby mobile devices to monitor if they have the
same service. If mobile devices have the same service and the network
has not been constructed, the network control module triggers the
establishment of a D2D connection channel between the mobile devices
to construct or join the collaborative rendering decentralized network.
Then, CRCDnet calls the computing resources of each mobile device to
determine the rendering strategy based on the computing parameters of
existing mobile devices in the current network. When a decentralized
rendering computing network exists, the new mobile devices register
with the computing resource parameters (CPU cycle, cache, etc.) and
join the current network as a computing device. The Collaborative
Rendering Computing Module of the new mobile device broadcasts to
the existing mobile devices to change the current computing strategy.

The collaborative, decentralized rendering network is critical in the
CRCDnet service, providing the foundation for end-to-end collaborative
rendering. In this process, the Web browser sends interaction requests
to mobile devices, which then perform computation or data caching
sharing based on the camera parameters. Within the collaborative
rendering decentralized network, requests and transaction information
between mobile devices are traded through the blockchain. Rendered
binary data are exchanged and controlled by the Collaborative Ren-
dering Module and then routed to the application terminal through
the D2D network. Finally, the Web browser obtains the corresponding
binary data and pushes it on the canvas, implementing the collaborative
rendering service process. To ensure the smoothness of the collabo-
rative rendering, it is essential to understand its construction process
thoroughly. Therefore, the following sections (Section 4 and Section 5)
will provide a detailed introduction to this process.

H. Zhang et al.

Device A Device B

- Legend
Loading &
scenes,
-
cameras and

Camera
loading scene

@

@ Window width and height

l‘ﬂﬂdl!‘lﬁ . . Off screen loadin,
i 2
| ini " alization
Render 1€}) @ Pvic‘turcv information and initialization
T > Canvas loading | identification
pictures X X
buffer @ Camera control orbitcontrols. js
@ 1 ® Picture number, Camera position
\
® . parameters
. Momt(_)r ® Which group of data is the camera
interactive it .
position parameter
© methods Picture number and picture
p
J information
Changing camera Monitor Load pictures
camera < position — image — in subscript
pos1|tlon o) change change orTer
©) 0 v
Render picture image
| Target >| information stream
buffer stored switching

Fig. 4. Single device rendering for another single device.

4. Rendering computing offloading between mobile devices

In user aggregation scenarios, MWAR real-time rendering offloading
often requires mirroring rendering computations between mobile de-
vices. However, in the case of CRCDnet, the main task is to exchange
camera parameters and the rendered data between mobile devices in
real-time. This section, therefore, focuses on the challenges of dis-
tributed rendering computing and explains the principle of sharing
rendering parameters among mobile devices. Finally, we introduce the
solution of multi-device collaborative rendering.

4.1. End-to-end collaborative rendering computing offloading

In the collaborative real-time rendering computing of CRCDnet, effi-
cient sharing of computing resources between mobile devices is crucial.
This is achieved by establishing a mirroring of rendering computing
between mobile devices, which enables the efficient initialization of
the computing environment between mobile devices and facilitates the
exchange of camera parameters and rendered data. This subsection
focuses on the rendering computing mirroring between mobile devices,
assuming that a single device serves as a computing offloading server
to provide rendering computing services to another single device,
as depicted in Fig. 4. CRCDnet can render the 3D model in images
frame-by-frame on canvas or other computing units.

In the example illustrated in Fig. 4, Device, provides assistance
to Devicep in rendering, but does not display the 3D model. Devicep
obtains the rendering computing of Device, and loads the 3D model
images frame-by-frame. In the following discussion, we refer to Devicep
as the application terminal and Device, as the auxiliary mobile device.

In CRCDnet, after loading the camera parameters, Devicep records
the window width (W,,,,,) and height (W},,,) and communicates
with Device, through the D2D channel to request the initialization im-
age for the 3D model. Device, loads the 3D model off-screen based on
the received message, and instead of rendering the 3D model directly
to the screen, it is stored in a screen description function. CRCDnet
executes the browser’s 3D rendering interface to load pixel data ren-
dered off-screen into a binary array instance. The binary information
is converted into Base64 code and sent to Devicep. Upon receiving
the Base64 code and converting it into binary information, Deviceg
transforms it into a uint-8 array (an 8-bit unsigned integer fixed array).
Then, a new canvas is created on Devicey, which can be obtained

534

Future Generation Computer Systems 158 (2024) 530-544

through the Web browser’s rendering approach to get a 2D object. It
enables the initialization 3D model image to be successfully displayed
on Deviceg.

After the user interaction, the camera parameters are obtained
by monitoring the location of the user interaction in Deviceg’s Web
browser. The CRCDnet uses a tool (OrbitControls.js) to control the
3D model object or scene, enabling zooming, panning, and rotation,
changing the camera parameters rather than the scene. The Deviceg
Web browser then encapsulates the camera’s position parameters and
the current window’s width and height into an object and assigns a
number to record which image it corresponds to.

After the off-screen rendering as initialization, Device, converts the
binary information into Base64 encoding and sends the corresponding
image identification package to Devicey. Upon receiving the package,
Devicey checks the identification to see if the media fragment is the
next to be played. If it is, playback starts to cycle back while simul-
taneously checking whether the next picture in the picture array has
been obtained. If the media fragment is not the next one to be played,
it will save the picture array or media fragment with the corresponding
subscript.

It should be noted that, in this Subsection, we introduce a more
primitive approach. This primitive approach offloads rendering com-
putation by utilizing the computational resources of the Web browser
through WebGL for rendering the 3D model. Some rendering computa-
tion approaches based on images or binary data streams exhibit better
performance in terms of latency, we will further discuss in Section 6.5.

4.2. D2D collaborative rendering data sharing

As discussed in Section 2.3, the client’s Web browser can leverage
caching technology to exchange intermediate rendered data and reduce
the computing pressure on mobile devices when rendering a 3D model.
CRCDnet utilizes indexedDB as the container for exchanging data of col-
laborative rendering computing in a cache-based rendered data sharing
scheme, as shown in Fig. 3. Similar to Section 4.1, Device, performs
off-screen rendering and saves the rendered data in the local cache
to assist Deviceg in rendering. Devicep obtains the matching image
information in the local cache through the D2D communication channel
with Device,. Additionally, Devicey communicates with Device, using
the D2D communication channel to send the location parameters of the
camera after initialization or user interaction, as well as the sequence
identification of the pictures. The sequence identification of the picture
is a unique number assigned to each picture or fragment, representing
the order in which they are displayed or played. Devicep uses this
sequence identification to identify the corresponding data in the local
cache for rendering. The location camera parameters of Devicey are
defined as follows, where ‘position’ represents the three-dimensional
spatial coordinates of the camera, and ‘rotation’ represents the polar
coordinates of the camera’s spatial rotation angle.

camera:{
position:{

N < M
[=NelNo]

}’
rotation:{

N < M
(= elNo]

During the rendered data sharing process, Device, receives the
location camera parameters, opens the indexedDB, and searches for the
rendered data that matches the camera’s location parameters. If the
data is found, the rendering result and corresponding image sequence

H. Zhang et al.

identification are packaged and sent to Deviceg. Devicey monitors the
picture acquisition and checks the picture identification. If the picture
is the next one to be played, the playback cycles back while checking
whether the next picture in the picture array has been obtained. Oth-
erwise, CRCDnet saves the rendered data in the picture array with the
corresponding subscript, generating a media stream fragment.

4.3. Multi collaborative rendering computing

In a service environment, multiple mobile devices are required to
provide computing offloading or rendered data-sharing services for var-
ious devices to achieve collaborative rendering. For instance, multiple
mobile devices can provide services for a single mobile device. Similar
to Sub Section 4.1, multiple Device,,, Device,, ..., Device,, jointly
perform rendering computing service for Deviceg. The construction of
multi-device collaborative rendering offloading provides data services
for a single mobile device in two aspects, i.e., computing resource
sharing and computing data sharing. To effectively control multiple
mobile devices to provide rendering service, it is necessary to identify
the mobile devices on the common data connection channel and sort
various devices on the Deviceyp side. For complex media sequence
computing of picture-based rendering offloading, the auxiliary comput-
ing device needs to perform generation computing of media stream
segments. We refer to the approach proposed in the literature [21]
for this purpose. This literature proposes a low-complexity framework
based on media stream segments to minimize the computing latency
for all tasks. This subsection mainly discusses the control of multi-
source media stream segments for collaborative rendering computing
offloading. The service process of rendering computing is as follows:

* Devicep loads the scene and records the window’s width (W,;4,,)
and height (W),,;,,) as rendering computing parameters. Then
Devicey communicates with auxiliary mobile devices queue

O(Devicey;,0 < i < n) (including Device,,, Devicey;, ...,

Device ,) through the D2D communication channel and initial-

izes the sending of the message ‘Ping’ along with the window

parameters (W, s, th[ght)'

Upon receiving ‘Ping’ and the window parameters, Q(Device;,
0 < i < n) loads the scene and camera according to the window
parameters and sends ’helper Ping’ along with the user ID to
Devicep.

Deviceg receives "helper_Ping‘ and the user ID, then adds the user
ID to an array called helperArr based on the order received, and
returns the subscript index of the user ID in helperArr to the
device.

For instance, suppose there are three auxiliary computing devices,
denoted as Q(Devicey;,i < 2), with user IDs helper,, helper,, and
helper,. Upon receiving the “Ping” from Devicep, Q(Devicey;,i < 2)
start sending “helper Ping” and user ID to Devicep. The sequence in
which Devicey receives helper_Ping’ and user ID is helper,, helper,, and
helper,. Consequently, the indexes received by Q(Device,;,i < 2) are 2,
1, and 0, respectively. When Devicep initializes the 3D model (i.e., ob-
tains the first media stream fragment of the 3D model) and monitors
the interactive movement, it acquires the position parameters of the
camera. It appends them to an empty initialized array, positionArr. Sub-
sequently, Devicep assigns its number as 0, 1,2 based on its subscript in
the array. Assuming that each device in Q(Devicey;,i < n) has nearly
equal computing resources and an equal chance of performing the
same computing tasks, the following sections discuss the approaches
of collaborative rendering computing and rendered data sharing.

+ Collaborative rendering computing offloading: Devicep sends
a request to Q(Device,;,0 < i < n) to obtain the corresponding

binary data information. The following principles apply to the
binary data and equipment: The device with ID

535

Future Generation Computer Systems 158 (2024) 530-544

helper Arr[M %hel per Arr.Length] encapsulates the binary data ren-
dered by the 3D model with the received number and sends it
back to Devicey through off-screen rendering. In other words,
Device oy por arr[M%helper Arr.Lengtn) PTOCESSES the i, i+helper Arr.Length,
i + helperArr.Length * 2, ..., i + helper Arr.Length *

(M helperArr.Length) fragments in the binary data. (The changes
in the 3D model during mouse movements are reflected in the
switching of binary data.) Devicep monitors the acquisition of
binary data and checks the fragment number. If the binary data
is the next one to be played, the playback starts and contains
whether the next fragment has been acquired.

Collaborative cache rendering computing output-data shar-
ing: For each fragment, Devicep sends the parameters and data
to the device corresponding to the user ID in helperArr. It queries
whether there is a corresponding binary data fragment. If the
query finds the fragment, the query ends, and the system checks
the binary data fragment ID. If the fragment is the next one to
be played, CRCDnet starts the playback and checks whether the
next binary data has been obtained. Otherwise, the system saves
the fragment in the corresponding array index.

The above assumptions assume that each device has roughly equiv-
alent computing resources and equal opportunity to perform the same
computing tasks. However, in the actual service environment, the
computing capabilities of mobile devices can vary. A greedy algorithm
can allocate more rendering tasks to devices with stronger computing
capabilities to address this issue. While we will not delve into a detailed
analysis of this approach here, relevant literature [22,23] suggests its
effectiveness in improving rendering efficiency.

5. Construction of collaborative rendering decentralized network

To enable distributed collaborative rendering services, it is essential
to establish a reliable network connection between mobile devices and
ensure the sustainability of the collaborative rendering service. In this
section, we will discuss the key features of decentralized networks for
collaborative rendering computing.

5.1. Construction of rendering computing network

During end-to-end collaborative rendering offloading, it is crucial
to establish a robust network connection between mobile devices to
sustain the collaborative rendering service. In a decentralized service
network, each node has a high degree of autonomy and can provide
computing resources and data services for other devices. By distribut-
ing the computing pressure of the server to nearby mobile devices,
we can prevent the remote server from bearing too much comput-
ing pressure. Rendering mobile devices can skip the remote server
center and directly carry out short-distance communication between
devices, addressing the issue of excessive communication pressure be-
tween the remote central server and the scene edge base station.
The core of the decentralized network is blockchain technology, and
building a blockchain that carries collaborative rendering computing
services in user aggregation scenarios is another core task of CRCDnet
implementation.

The construction of the decentralized collaborative rendering com-
puting service network follows the construction approach of blockchain.
The network mainly carries requests and transaction information. It
maps the mobile device’s internal network address and port to the
external network address and port using the Universal Plug and Play
(UPnP) or nat-pmp approach. Rendered data is exchanged using a
structured D2D communication network. The concrete implementation
involves two steps: (1) surrounding devices return a data packet con-
taining an array of TCP connection ports and IP addresses of many
neighbor devices after receiving a request, and (2) the mobile device

H. Zhang et al.

1. nodeA sends UDPbroadcasts to find
| | nearby nodes. I

—m 2. After receiving the UDP request from &]
M,: nodeA, nodeB sends tableB data to nodeA -

and tells nodeA about other nodes.

z
&

Table A Node A

3.nodeA receives the IP and port ofnodeC in the tableB,
nodeA can establish TCP connection with nodeC,send
messages to each other.
l 4.When nodeC receives the

iﬁ message from nodeA, it
5 E .| alsoadds the IP and port of
table C Node C

nodeA to tableC.

Fig. 5. Establishment of the decentralized network.

communicates with surrounding devices through the D2D communi-
cation network connection mode, using the IP and port sent by the
surrounding devices to realize the communication of interactive data,
control data, and rendering data. Fig. 5 illustrates the establishment
process of the decentralized collaborative rendering computing service
network.

The decentralized network utilizes the blockchain hash for data
storage and management. To ensure non-repetition of the hash, devices
(IP and machine port) and keys (resource identification) are mapped
to the same space. SHA-1 is selected as the hash function, generating
a space of 2!%0 each of which is a large integer of 16 bytes. These
integers can be connected end-to-end to form a ring that is arranged
clockwise. Devices and keys are hashed to the ring, and the nearby
device maintains each key (resource). The state of the whole D2D
communication network is a virtual ring. This way, CRCDnet constructs
a blockchain for collaborative rendering computing services.

In the collaborative rendering computing service blockchain, the
mechanisms for devices joining, exiting, and becoming invalid are es-
sential for maintaining the service. Following the traditional blockchain
maintenance approach, the mechanisms for device joining, exiting, and
failure are described as follows:

» Device Join: In this process, a new device, Device,,,,, needs the
assistance of a known device called the wizard. Any device in the
Chord network can play this role. The joining process consists of
two stages: the new device’s join operation and its discovery by
other devices. Here are the steps involved:

- Device,,,, requests the wizard to find its successor, Device
and initializes Device,,,,’s successor as Device,,.

wew CONNECts to its successor, Device,,.

— The predecessor device of Device,,,, Device,,, connects

with Device,,,, and disconnects from Device,

or0>

— Device

new or0*

Device Exit:

We use the chain list structure in the decentralized network to
manage device exits. Assuming the exit device is Device,,;,, and
the predecessor and successor devices are Device,,, and Device,,,,
respectively, the following steps are taken:

- Change the predecessor device of Device,,. to Device,,,.

suc

to Device

- Change the successor device of Device,,, e

— Delete Device,,;, from the successor list of its predecessor.

Device Failure:

To address the issue of devices leaving the network suddenly
without informing other devices, we adopt the following ap-
proaches:

Future Generation Computer Systems 158 (2024) 530-544

— Each device in the decentralized network periodically de-
tects its preceding and following devices.

— If a device detects its successor device has failed, it finds the
first available device replacement from the successor chain
list.

— The device sets itself as the predecessor of the first available
device.

A solution based on the cache invalidation mechanism has been
introduced in decentralized network environments for distributed ren-
dering computation. This solution aims to address the issues of data
consistency and cache consistency among nodes and leverage the ad-
vantages of edge servers to accelerate the rendering computation pro-
cess [24]. Initially, each node establishes a cache on an edge server
and replicates the chunks of rendering tasks within the cache, enabling
proximity access and high-speed computation capabilities. When a node
needs to access cache data, it first queries its local cache; if the data is
missing, it sends a request to other nodes. During the data transmission
among nodes, the event-driven mechanism based on cache invalidation
plays a crucial role. When the cache data on the edge server changes,
it triggers cache invalidation notifications, informing all relevant nodes
to update their cache data for consistency. Upon receiving the no-
tification, the node updates its local cache and clears the obsolete
data accordingly. The edge server can also dynamically optimize cache
allocation and replacement strategies based on node usage and task
workload, enhancing overall rendering performance. This combined
approach of cache invalidation mechanism and leveraging edge servers
enables efficient, reliable, and fast completion of distributed render-
ing computation in decentralized network environments. Moreover,
it reduces data transmission and computational load among nodes
by utilizing edge servers’ storage and computing capabilities, thereby
improving system responsiveness and overall performance. This novel
solution provides important methodological and technological sup-
port for deploying and applying distributed rendering computation in
decentralized network environments.

5.2. Shared scheduling for delay optimization

In CRCDnet, computing resources for rendering computing and ren-
dered data are deployed on each mobile device, managed by a virtual
ring constructed by the decentralized network’s blockchain. Quickly
locating the computing resources or rendered data that the client needs
on the shared service ring is crucial to optimize the rendering response
delay.

Due to the convenience and ubiquity of mobile browsers, the ser-
vice environment of MWAR applications exhibits characteristics such
as large scale, complexity, and user randomness. These characteris-
tics pose challenges locating the required computational resources or
rendered data in the shared service environment. To address these
issues, we apply the Chord algorithm [25], based on Distributed Hash
Table (DHT) and suitable for large-scale and complex service environ-
ments [26]. Firstly, the Chord algorithm ensures the even distribution
of data throughout the system by dynamically re-allocating data and
devices when devices join or leave. Each device is responsible for main-
taining and processing data within its neighboring range, balancing
load, and ensuring the equitable distribution of computational re-
sources and data indexing, especially in many user scenarios. Secondly,
the Chord algorithm exhibits good scalability, allowing for adding or
removing devices without significantly impacting the overall system
performance and availability. When new devices join, they only need
to connect with a few devices to obtain neighboring index information
rather than communicating with every device in the system. In the
MWAR service environment, frequent users join, and offline events do
not affect the distribution of the shared environment, thus providing
robustness to the collaborative rendering computational environment.
Lastly, the Chord algorithm provides redundancy and fault tolerance

H. Zhang et al.

through data replication. Each data item is typically stored in multiple
devices, ensuring accessibility and recovery through backup devices in
case of offline or failure.

Combined with the strong dependence on timing in rendering com-
puting, we optimized the Chord algorithm using specific nonlinear
search approaches:

Each device maintains a Finger table, a routing table that stores
all devices on the chain. The table’s length is m (e.g., 160 bits in
Chord Bit). The ith item of the table stores the (n+2i —1) mod
2™ successor (1 <i < m) of Device,.

Each device maintains a list of predecessors and successors, which
allows for quickly locating the predecessor and successor and
periodically checking their health status.

The stored successor is increased proportionally by a multiple
of 2. The modulus is necessary because the successor of the last
device is the first few devices. For example, the next device of the
largest device is defined as the first device.

The resource key is stored on the following device: along the
Chord ring, the first device where hash(Device) > hash(Key) is
the successor of this key.

To find the device where the corresponding resource is located,
that is, to find the successor of the key when searching for
resources (if the search is performed on Device,), follow the steps
below.

When searching for resources, the user attaches a value to the
given key to display priority and determines priority based on
the sequence of data frames that need to be displayed. Other
user devices adjust the data processing queue according to task
priority.

In the consensus mechanism of CRCDnet, we adopt the Practical
Byzantine Fault Tolerance (PBFT) algorithm. PBFT is an extensively
used algorithm in the consensus mechanism for distributed rendering
computation in decentralized networks [27]. In decentralized networks,
the consensus mechanism is crucial for ensuring the integrity and
consistency of distributed rendering computation. PBFT addresses the
Byzantine Generals Problem and provides an efficient and validated
fault-tolerant algorithm for collaborative rendering computation in
large-scale scenarios, considering mobile devices’ frequent joining and
leaving causing node failures. Firstly, PBFT enables the nodes in the
network to reach a consensus on the order of rendering tasks, ensuring
the consistency of the final rendered output. It utilizes a three-phase
protocol involving message exchanges and computations among nodes
to achieve consensus on the generated rendering frames. Secondly,
PBFT ensures the fault tolerance of nodes even in situations where up to
one-third of nodes could be malicious or faulty, making it suitable for
decentralized networks where trust among nodes cannot be guaranteed.
By leveraging cryptographic techniques and digital signatures, PBFT
provides a defense against various attacks, such as data tampering,
message forgery, and collusion among malicious nodes. It enhances
the security and reliability of distributed rendering computation in the
presence of potentially adversarial participants. Moreover, PBFT offers
notable advantages in terms of performance. It exhibits lower com-
munication overhead compared to other consensus algorithms [28],
making it suitable for real-time rendering scenarios with high latency
requirements. PBFT achieves this efficiency by reducing the required
message exchanges and minimizing the computational load on each
node during the consensus process.

5.3. Optimization of network initialization

The construction of a service sharing data in a decentralized net-
work is a critical factor affecting service response delay. WebGL’s
rendering approach requires each device participating in collaborative
rendering computing to download the complete 3D model file before

537

Future Generation Computer Systems 158 (2024) 530-544

performing rendering computing. Rendered data is then deployed to the
virtual data-sharing ring in parallel. Multiple mobile devices must share
the direct network bandwidth from the server to the base station. The
following factors influence this process: (1) The amount of 3D model
size impacts the service response delay. In rendering computing, the
size of the 3D model affects the downlink delay of transmission from
the remote server. Especially when multiple mobile devices participate
in the initialization of the service sharing ring, the 3D model size
influences the delay. (2) The time distribution of service requests in
the service environment, where multiple mobile devices participate in
initializing the service sharing ring, presents randomness and directly
affects the calculation response delay.

The two points above can be summarized as follows: the number of
mobile devices participating in the initialization of the service sharing
data affects the response delay. More participating devices lead to lower
rendering delay, but too many devices can cause downlink channel
blocking and affect response delay. Fewer participating devices result
in lower downlink communication delay but larger rendering delay
of mobile devices. Therefore, optimizing service construction involves
determining the number of network initialization devices in different
situations.

To study the validity of this approach, we make the following
assumptions. We assume that the shared bandwidth of the connec-
tion between the mobile device and the remote server is w, and the
bandwidth is relatively constant during the service time. The com-
puting resources provided by each mobile device to the rendering
collaborative computing network are relatively constant and equal at f
units. M devices request MWAR applications in time ¢, and the request
time distribution probability follows a normal distribution. The unit
time ¢ is much less than the download time of participating network
initialization devices. The granularity of the rendering task partition is
small so that we can ignore its effect in practice.

We assume that the 0-th device initiates the service at time 0, and
the initialization time of the sth device is };_, 4t;. Thus, when n devices
participate in establishing the service sharing ring in the decentralized
network, the total download delay #(n) from the remote server can be
calculated using Eq. (1).

n! p- X
k

oading(n) = 2. X z At +

i=1

(€8]
n

In Eq. (1), k describes the complexity of rendering computation,
which is expressed as the proportional relationship between rendering
computation latency and the volume size of the original 3D model,
as well as the CPU cycle of the mobile device. The p represents the
rendering calculation expansion coefficient of the 3D model, which is
expressed as the proportional relationship between the rendered data
volume and the original 3D model volume. Moreover, assuming that
the delay of a mobile device to complete all rendering computing tasks
is T, we can represent the delay of n devices in implementing the
rendering computing task as % The delay of the nth device joining
the service sharing ring to perform the rendering computing task is
expressed in Eq. (2):

T -y i

n

(2)

trender(n) =

Therefore, when n devices participate in the initialization of the
service sharing ring, the total construction delay is expressed in Eq. (3):

n—1

-5t

i=1

p T
At +n= + =
) -

3)

CRCDnet determines the optimal initialization construction strategy
for the service sharing ring by finding the minimum value of #(n). To
simplify the initialization calculation strategy for joining the ring, we
examine the relationship between #(n+ 1) and #(n); if #(n+ 1) is less than
t(n), new mobile devices can join the initialization process. Otherwise,

H. Zhang et al.

Algorithm 1: service sharing ring initialization construction
strategy

Input: T, p, k, n, ringga.
/* ring,. is the state of service sharing ring

initialization construction completion. */
Output: bool State,,,
/* State,,, is the state of a new mobile device
participating in the construction of
service-shared ring initialization. */

1 At[imit(”) = (nZ + I’l) X (27:_]1 (,,Zl+n - %]Ati + [i - #) While(new
mobile device join the network)
{
3 if (ringy,, =true) then
/* If service sharing ring initialization

construction complete, return

(3]

true;else,return false. */
4 State,,,.,~false;
5 break;
6 else
7 if (4r,_, > At};,,;,) then
8 Device,,,, = Ring . ices
9 State,,.,=true;

/* the new mobile device participates in
the initialization of the service
sharing ring construction */

10 At)jis(n) = Aty (n + 1);
11 else
12 next;
/* wait for the newmobile device */
13 end
14 end
15 }

t(n) is the optimal state. We use At(n) = t(n + 1) — #(n) to represent the
difference between these two states, as expressed in Eq. (4):

n—1

OEDY
i=1

In this equation, T, p, and k remain constant when the service envi-
ronment is determined, and the initialization strategy of the CRCDnet
service sharing ring is mainly affected by 47; and n. The relationship be-
tween At; and n that allows new mobile devices to join the initialization
of the service sharing ring is expressed in Eq. (5):

At

i x A1,
n2+n i

4, p

n2+n k

T
n2+n

4

i X At;

n2+n

(5)

n—1
ai(m)> (7 +myx (Y[Ay
= i k
Therefore, to determine the initialization strategy of the CRCDnet
service sharing ring, the algorithm performs the following steps: When
the initial construction strategy of the service shared ring changes
(n changes), CRCDnet calculates the value of At} (n) = (n* + n) x
(Z:’;ll[,ﬂ:_ - %]At, +2 - ﬁ). When a new mobile device joins the
network, CRCDnet determines the relationship between 4t,_, (the time
span between the current device request (¢-thdevice) and the nth device
request) and At If 4t,_, > Av,,,, the current device participates in
the initialization of the service sharing ring construction. Otherwise,
CRCDnet waits for the next mobile device to join the network. The new
mobile device will not join the service sharing ring initialization con-
struction and perform computing until the new device’s 4¢,_, is greater
than 47,,,;, and the service sharing ring initialization construction has
not been completed.
The algorithm for the CRCDnet service sharing ring initialization
construction strategy is presented as Algorithm 1:

538

Future Generation Computer Systems 158 (2024) 530-544
6. Performance evaluation

In this section, we present our evaluation with three objectives.
Firstly, we aim to evaluate the optimization efficiency of CRCDnet on
mobile devices’ average delay in the user aggregation scenarios by
comparing it with traditional client file-based rendering and remote
cloud-based rendering to highlight its advantages. Secondly, we aim
to investigate the impact of blockchain index-based data exchange ap-
proaches on latency in collaborative rendering networks by comparing
data exchange latency under different data exchange capacities and
mobile device numbers. Finally, we aim to validate the effectiveness
of the collaborative rendering network construction approach by com-
paring the collaborative intelligent optimization algorithm with the
traditional construction approach to demonstrate the effectiveness of
the collaborative algorithm under the actual service environment.

6.1. Experiment setup

We have designed an experimental service environment that con-
sists of multiple dockers and remote cloud servers. In this setup, Docker
is used to simulate mobile devices in user aggregation scenarios, and
each Docker is set as a single CPU with a main frequency of 2.5 GHz
and 2 GB of memory. We deploy a common server with a six-core Intel
processor of 2.9 GHz and 16 GB RAM near the docker containers. To
ensure stable network conditions, we use Wonder Shaper. This tool
allows us to limit the bandwidth of network adapters and control
the network conditions between the remote cloud server and mobile
devices.

It should be noted here that Docker guarantees validation effective-
ness without GPU acceleration. Firstly, the relatively new WebGPUs
currently cannot provide support for operation on general mobile de-
vices. The current popular GPU acceleration method for mobile web
browsers uses a dedicated Javascript engine to retrieve GPU resources
from the bottom layer of the browser for parallel computing. However,
this method is limited by the parallel computing power of mobile
devices and the use of browser resources, and there is no significant
performance improvement. Secondly, the popularity of GPUs in mobile
devices is relatively low, and many outdated mobile devices in the
market lack GPU support to provide computing services. Moreover,
the performance of mobile device GPUs does not match that of PC
GPUs, and they cannot provide powerful computing resource support
for presenting computing services in an immersive service environment
like PC GPUs. Therefore, in our verification process, we simulated
mobile devices using Docker containers to execute CRCDnet distributed
rendering computing services without GPU computing resources. In
addition, when comparing the initialization delays of different meth-
ods of collaborative rendering computation, we used the same client
environment (with the same CPU, cache, and Docker, without GPU)
to ensure the persuasiveness of our validation. Although devices with
GPUs exhibit a certain proportion of latency changes compared to
simulated mobile devices without GPUs, the overall trend remains
consistent in both environments.

To construct our experimental service application, this evaluation
selected two models for effect validation (as shown in Table 1). The
first 3D model chosen was of moderate size, approximately 6.87 MB, to
represent loading the same original 3D model on different application
terminals and performing partially (approximately 30%) differentiated
distributed rendering based on personalized data (e.g., facial recon-
struction). The 3D model was fully rendered in each Web browser
and presented to the user for the corresponding service interaction.
The second 3D model selected was a high-precision model with a size
of 43.4 MB. For service requirements, each browser only needed to
display an image of a certain angle of this 3D model. When multiple
browsers requested the same 3D model, the viewing angles were evenly
distributed in space. Additionally, each browser had a specified viewing
field range of 0-120 degrees. Therefore, while different mobile Web

H. Zhang et al.

Table 1

The properties of 3D Model #1 and #2.

Properties 3D model #1 3D model #2
Volume 6.87 MB 43.4 MB
Triangle 80,328 664,665
Point 45,589 339,794

browsers loaded the same 3D model, each browser only rendered a
portion of the 3D model due to different viewing angles. Since the
recognition, tracking, and other computational processes in MWAR are
not related to our study, we focused solely on the rendering process
delay of the 3D model.

6.2. Effectiveness of initialize rendering

To determine under which circumstances CRCDnet outperforms
mobile-based and remote cloud-based rendering, we varied the number
of mobile devices in a user aggregation scenario. Each mobile device
acted as an application terminal in this evaluation, and its mobile
browser sent MWAR service requests to remote servers simultaneously.
Here, we use 3D Model #1 and 3D Model #2 referred in Section 6.1 to
evaluate. We measured each Web browser of the service environment’s
average service response delay in MWAR rendering computation. This
process involves the overall latency of multiple procedures, including
node execution of rendering computation tasks, communication of ren-
dered data, browser aggregation, and loading during the initialization
of MWAR applications. Moreover, the rendering data for 3D models
#1 and #2 and the rendered data were optimized using appropriate
approaches [29] during transmission from remote servers or mobile
devices to browsers. This approach allows mobile device browsers to
operate without waiting for the full frame sequence data of the model
to load in the cache, thereby reducing initialization latency. In cloud-
based, client-based, and CRCDnet approaches, the computing nodes
on these devices both utilize the WebGL-based rendering approach. In
the approach, frames containing fully or partially rendered data of 3D
models are stored in the cache, and the corresponding frame data is
pushed onto the browser’s canvas element. Using Web browsers, we
simulated service requests sent simultaneously by mobile devices in the
user aggregation scenarios and presented the average delay in Fig. 6.

Fig. 6(a) shows that as the few mobile devices, remote cloud ren-
dering exhibited better performance. This result indicates that the core
network’s transmission delay primarily affects cloud rendering avail-
ability. Cloud rendering can leverage sufficient computing resources to
provide low-latency rendering offloading services to application termi-
nals without core network transmission limitations. However, as mobile
devices increased, cloud rendering performed poorly compared to other
approaches. The performance of CRCDnet and the traditional client-
side file approach demonstrated different trends. The average delay
of the traditional client-side file approach increased with the mobile
devices because many mobile devices obstructed the core network and
access network resources when requesting original 3D models, even
with edge storage and CDN solutions. On the other hand, the average
delay of the CRCDnet approach decreased with an increase in mobile
devices. However, many requests for the original data caused conges-
tion in the core and access networks, increasing the number of mobile
devices participating in the rendering and reducing the client-side
rendering delay. In contrast, in the traditional client-based approach,
this delay remained fixed. Collaborative computation and data sharing
among mobile devices reduce the response delay in the CRCDnet ap-
proach. In Fig. 6(b), the trends observed with increasing devices differ.
When the count of devices is small, rendering based on cloud servers
exhibits better delays. This is because, for 3D model #2, the partial
rendering strategy effectively reduces the transmitted data pressure on
the downstream channel. However, as the Web browsers that request

539

Future Generation Computer Systems 158 (2024) 530-544

2200 :
{ |—®— Server Rendering %7
2000 ——@— CRCDnet
1 |—*— Client Rendering /I§|§0/
1800
- 1795
£ 1600 s ,33//
= |
< 1400
a . 127
- ;.
2 1200
g- 4
g 1000 TG
& |
800 / 759) 717 702 7 744
600 s /()j ; 68 693 713
Wigs 584
400 -1
10 20 30 40 50 60
Terminal Count
(a) Latency with 3D model #1
1—=— Server Rendering 789
18001 —e— CRCDnet 171
1600 |4 Client Rendering | 1549 1604
-
Jlazs 1497 1502
[2) 1aca 1359 1363
’;1400 1436 14641 '33\\1('-’ 1321 .
E 1246 3
z 1310
< 1200 ;. —~e¢
a 1200 1171
£ 1000 Lo
: e
2 800 ;|/8|94
& 38
600
4007304
01 10 20 30 40 50 60

Terminal Count
(b) Latency with 3D model #2

Fig. 6. Latency of initialize rendering.

MWAR in the service environment increase, the CRCDnet approach out-
performs rendering based on remote servers in terms of delay. This is
because as the number of mobile devices increases, despite optimizing
redundant data during downstream transmission, the concurrency of
multiple device requests and the large data volume of rendered data
result in high data transfer and response delays for rendering services.
For browser-based rendering methods, the large size of the original 3D
model imposes significant loading and rendering pressure on mobile
Web browsers. Based on these phenomena in Fig. 6(a) and Fig. 6(b),
we can conclude that CRCDnet is more suitable for user aggregation
scenarios. The decentralized network’s distributed rendering approach
can effectively resolve the computational and rendering pressures of
remote rendering on core computing nodes and networks. However, it
should be noted that the mobile devices that decentralized networks
can support will be limited by the complexity and scalability of the
blockchain running on them, which will be discussed in Section 6.5.
Additionally, we compared the delay performance of the 3D models
#1 and #2 for different numbers of mobile devices. 3D model #2
exhibited less delay performance when using a cloud-based rendering
method than 3D model #1. This is because the partial rendering
strategy used for the 3D model #2 resulted in smaller rendered data

H. Zhang et al.

Future Generation Computer Systems 158 (2024) 530-544

Table 2
The data exchange delay with different Web Browser (ms).
Volume Approach Device, Device, Devicey Device, Devices Deviceg Device, Deviceg Devicey Devicey, Average
100 kb Blockchain 1786 1820 4209 1551 4833 1431 1877 2039 4890 4452 2888.8
CRCDnet 189 167 175 168 152 144 151 166 158 170 164
1000 kb Blockchain 7285 3658 3931 3685 3845 3797 5551 4484 6842 4911 4798.9
CRCDnet 352 388 367 348 350 332 378 340 388 364 360.7
5000 kb Blockchain 14365 25787 16542 18454 31254 15474 16522 17789 19122 16144 19145.3
CRCDnet 489 446 512 488 431 425 440 460 478 484 465.3
than the 3D model #1, allowing reduced data transfer pressure on 25000 ‘ ‘
the downstream link. In the CRCDnet-based approach, the delay per- []Blockchain
formance of 3D model #1 was less than that of 3D model #2. This []CRCDnet 21454
is mainly due to the larger size of the original 3D model file for 20000 I
3D model #2, leading to a longer delivery time from the server to =
the Web browser. Furthermore, although 3D model #1 had a higher g
overall rendering load than 3D model #2, 3D model #1 performed % 15000 —
better in terms of delay when loading the original file and rendering g
computations in WebGL. This is because the decentralized network’s 2
distributed rendering approach effectively addresses the delay caused 510000 921 —
by the high computational complexity of rendering. The loading of ;:a 1843 BL22
larger original 3D model files is limited by insufficient browser caching, 6347
resulting in longer delays in the rendering process. Therefore, it can 5000
be concluded that CRCDnet is more suitable for service scenarios with 1820
smaller 3D model file sizes and higher rendering complexity. 759 722 714 702 697 716
0 S s O s I s S s N s
10 20 30 40 50 60

6.3. Effectiveness of exchange rendered data

Additionally, we investigated the data exchange efficiency in de-
centralized collaborative drawing computation networks. Data are typ-
ically encrypted and exchanged through blockchain in decentralized
networks to ensure users’ privacy and security. However, the complex-
ity of blockchain can affect the responsiveness of distributed rendering
in decentralized networks. We proposed an index-based decentralized
network data exchange approach. In this subsection, we compare the
efficiency of traditional decentralized network data exchange and the
CRCDnet data exchange approach from two perspectives. Firstly, we
verified the feasibility of the index-based decentralized network data
exchange approach by changing the capacity of blockchain-based data
exchanged. In this section of the evaluation, to make the evaluation
more comprehensive, we separated the data exchange process from
the rendering calculation and verified the effectiveness of the CRCDnet
data exchange approach by exchanging fixed-capacity data between
various mobile devices. The results are shown in Table 2. Secondly, we
simulated the performance efficiency of the CRCDnet data exchange
approach in service environments with different user capacities by
changing the number of application terminals and determining the ap-
plication scenarios of the CRCDnet data exchange method. The results
are shown in Fig. 7.

Table 2 shows that the blockchain-based data volume exchange
latency varies significantly with increased data exchanged between
clients. In addition to network resource limitations, device compu-
tational resources are important factors influencing the latency of
rendering data exchange. In blockchain-based data exchange, each
device needs to encrypt and process the rendering data, which may
result in high latency when encrypting a large amount of data on
client devices with low computational resources. CRCDnet reduces
the data exchange volume on the blockchain, reducing the device’s
demand for computational resources. Therefore, CRCDnet demonstrates
better adaptability to various environments than traditional decen-
tralized network data exchange methods. Furthermore, in terms of
data exchange latency performance, blockchain-based data exchange
shows poor latency stability, as shown in Table 2. Some devices expe-
rience significant increases in rendering latency compared to others.
This is due to computational concurrency and network congestion,

Terminal Count

Fig. 7. The latency performance with different count device by blockchain and
CRCDnet.

which cause computational congestion on certain devices under lim-
ited computational resources. On the other hand, the CRCDnet data
exchange method, with a smaller exchange data volume based on
blockchain, exhibits more stable latency performance. This ensures that
each user has a better user experience in MWAR. Furthermore, Fig. 7
shows the latency changes caused by the increase in mobile devices
for both blockchain-based data exchange and the CRCDnet method.
Increasing application terminals brings about complex computational
consumption and higher data exchange complexity for devices. The
performance of the CRCDnet approach is better than that of blockchain-
based data exchange. The CRCDnet approach only involves transaction
computation for smaller sensitive information data on the blockchain,
reducing the amount of data exchanged and improving the efficiency
of distributed rendering. Based on these observations, we can conclude
that the CRCDnet data exchange approach suits service environments
with larger data exchange capacities, especially for applications like
MWAR, where the rendered data has a significant volume. Further-
more, in scenarios with increasing users, the CRCDnet data exchange
approach performs better in latency than blockchain-based data ex-
change methods. In other words, the CRCDnet data exchange approach
is more suitable for service environments with more users.

6.4. Cooperative service network

To further evaluate the efficacy of the CRCDnet’s service sharing
ring construction algorithm, we conducted verification using the 3D
model #1 referred to in Section 6.1. We varied the time distribution of
mobile devices joining the network to investigate the impact of Eq (5)
on constructing a service sharing ring in the decentralized network.
The time distribution when mobile devices join the network is shown
in Fig. 8(a). We record the rendered time of the last mobile device to
join the network to evaluate the efficiency of the service sharing ring
construction, and the measurement data are presented in Fig. 8(b):

540

H. Zhang et al.

4.5

4.0

W
W

w
o

N
n
.

g

(=]
°
]

—
W

Time Join the Network (s)

—_
(=]
L]
L]
g

o
n

g
o
L]

20 30 40

Mobile Devices

50 60

(a) Time join the network

6428
[] Tradition

[]CRCDnet

6000 1

5000

N
=3

4000 3928

= 3449

3025 3112

3000 ol
2445 2644

1988 2098

Response Delay (ms)

2000

=
L
g

101<IO44

"I

5 10

15 20 30

Terminal Count

40 50 60

(b) Average delay of devices

Fig. 8. Efficiency of self-organizing networks.

As shown in Fig. 8(b), when mobile devices join the network ini-
tialization satisfies Eq. (5), the rendered time of the last mobile device
to join the network is lower than in other cases. These results suggest
that the CRCDnet service sharing ring construction algorithm performs
better regarding service response delay.

6.5. Discussion

The preceding Subsections compare the CRCDnet and cloud ren-
dering computation approaches, browser rendering computation ap-
proaches, and data interaction approaches based on blockchain in a
decentralized network environment. However, there are a few aspects
that require clarification to enhance the effectiveness of this work.

First, as referred to in Section 4.1, in this work, the decentralized
rendering computation on application terminals and mobile devices
is performed using a primitive remote rendering offloading approach
based on the WebGL engine. This primitive approach, compared to
the novel approaches [30-32], is considered more rudimentary and
exhibits poorer performance in remote rendering latency. However,
this approach clarifies the remote rendering process, especially when

541

Future Generation Computer Systems 158 (2024) 530-544

] \ \ \
2000 —=— DCR Based CRCDnet /‘..4(’
1800 —o— DCR Based Tradition
= 1600 1511
g
g 1400 1203~
2]
2 1200
§ 1000 1 1027
= | 859 /
W
& P
800 _ o /
600 43 /5‘2
1 556 552 542 535 537
4001330
T
01 10 20 30 40 50 60

Terminal Count

Fig. 9. The latency performance on other remote rendering approach based CRCDnet.

incorporating lighting, animation, and other physics-based phenomena
in the 3D model scenes. The Web browser can execute the corre-
sponding physics calculations through the underlying WebGL interface
and achieve frame multiplexing between multiple devices in media
fragments. Additionally, we did not employ rendering computation
acceleration approaches such as WebGPU in our experiments. Due to
the diversity of service environments, outdated mobile devices may not
support newer rendering acceleration approaches.

Furthermore, certain novel remote rendering approaches can lever-
age the decentralized network organization proposed in this study and
the data-sharing-driven approach to optimize decentralized distributed
rendering computation. In our experiments, we employed the DCR
approaches referred to in the literature [7] for decentralized rendering
computation. In this work, we compared the delay performance of
distributed rendering computing services using DCR alone and using
DCR and CRCDnet collaboratively to validate the effectiveness of the
CRCDnet approach. We will verify the latency performance of the 3D
model #1 referred to in Section 6.1 under different numbers of mobile
devices. The evaluation results are shown in Fig. 9.

As shown in Fig. 9, the distributed collaborative rendering com-
puting approach based on CRCDnet exhibits lower response latency
compared to the traditional distributed collaborative rendering com-
puting approach. In particular, with some novel remote distributed
client rendering computing methods (such as DCR [7]), CRCDnet can
better organize multiple mobile devices in the user aggregation scene
to provide rendering computing services. This is attributed to adopting
a collaboration-driven algorithm based on a data-sharing pool in the
CRCDnet approach. This algorithm collaboratively maximizes the com-
puting capabilities of multiple mobile devices and constructs a shared
pool to effectively drive rendering computation services for mobile
devices, reducing network congestion issues caused by multiple mobile
devices. Consequently, it can be concluded that CRCDnet, in collab-
oration with other channel-based frame or media segment reusability
methods, provides rendered computational services for immersive ap-
plications, offering lower latency rendering computational services for
mobile devices, especially in user aggregation scenarios with multiple
devices for MWAR environments. However, it should be noted that dur-
ing the collaboration process, the efficiency of frame or media segment
reusability directly impacts the efficiency of rendering computation
services, as discussed in Section 2.3. Therefore, in collaboration with
CRCDnet rendering computation services, it is advisable to adopt a
rendering method based on data formats with low-latency reusability
(such as JSON) to meet multiple users’ real-time rendering computation
demands.

H. Zhang et al.

Secondly, the count of mobile devices will impact the performance
of CRCDnet. As demonstrated in Section 6.3, we constructed a collab-
orative decentralized rendering computation network with 60 mobile
devices as the maximum number of nodes. However, based on Fig. 6(a),
we further increase the number of mobile devices using the CRCDnet
approach. When the mobile device reaches 150, the delay is 693 ms.
Although the delay performance is smaller than that of 60 mobile
devices, the optimization efficiency is significantly lower than that of
the decentralized network formed by the 60 mobile devices. It is a delay
of 867 ms for the number of mobile devices reaches 300, the latency
performance is already higher than that of the decentralized network
composed of 60 and 150 mobile devices. As the number of devices in
decentralized networks continues to increase, the latency of collabo-
rative rendering computation will increase. It is due to two reasons.
Firstly, the computational complexity of blockchain-based data ex-
change introduces additional computation latency for mobile devices,
especially weaker computational mobile devices. As the count of de-
vices in the network increases, the blockchain approach we have chosen
imposes significant computation pressure on application terminals and
mobile devices. Second, each mobile device in the decentralized col-
laborative rendering computation needs to receive the rendered binary
data from multiple devices and render it in the container of the mobile
browser. The browser needs to perform serialized calculations on the
data from multiple devices to support smooth interaction with the ren-
dered 3D objects. When the count of mobile devices is large, serialized
calculations will result in significant latency, affecting the efficiency
of overall rendering offloading. In our experiment, virtual machines
have relatively limited computing resources and cannot support overly
complex blockchain networks. To address these challenges, we can
adopt a decentralized network grouping approach that draws inspira-
tion from multi-layer federated learning (M-FL). Taking into account
factors such as the participation time and available resources of mobile
devices, we can establish a scientifically layered collaborative rendering
computation network architecture [33,34]. By leveraging collaborative
distributed rendering computation within and between groups in the
layered structure, we can effectively address the excessive consumption
of mobile device computational resources in a decentralized network.
Additionally, with the organization of rendered image data by specific
computing nodes (edge servers) in the decentralized network under the
layered structure, we can alleviate the excessive computation latency
generated by serialized calculations of multi-source binary data on the
terminals. However, as these concepts draw on relevant approaches
from the existing literature, further discussion of them is beyond the
scope of this work. It will also be the focus of our future work.

7. Related work

In CRCDnet, collaborative rendering approaches mainly involve
two core technologies: distributed remote rendering and decentralized
network. We will discuss the relevant literature on these two aspects
and the current challenges.

Distributed rendering computing is currently the main means to
solve the computational and communication pressure problems of core
devices and networks in rendering computing. Distributed computer
rendering has been explored by A Joshi et al. who presented initial
findings on this topic [35]. They discussed the potential benefits and
challenges of distributing rendering tasks across multiple devices. Dis-
tribution scenarios, requirements, and synchronization techniques were
classified by Hoppen et al. providing a comprehensive understand-
ing of distributed rendering [36]. In the context of mobile devices,
C. Glez-Morcillo, etc., presents a novel approach based on grid ap-
proach and the P2P model for distributed rendering [37]. In Distributed
rendering computing, computing resource distribution in networks is
challenging and requires addressing gaps in existing network setups.
Alexander Clemm et al. identified these challenges, highlighted areas

542

Future Generation Computer Systems 158 (2024) 530-544

that require improvement in current networks, and proposed an im-
provement approach for Distributed rendering computing [38]. Dan
Liu et al. introduced load-balancing strategies for distributed render-
ing, with the aim of effectively distributing tasks and optimizing re-
source utilization [39]. Constantin Nandra et al. experimented with a
general-purpose distributed processing solution for rendering 3D object
scenes [40]. Dante Abate et al. implemented a platform for efficient
multi-user online sharing of high-quality 3D textured models, lever-
aging a remote HPC infrastructure [41]. In the rendering approach in
distributed computing, Huan Cheng et al. [42] proposed visualization
algorithms to quickly display massive data. Hao Fang et al. introduced
an image-based distributed rendering architecture that enables mul-
tiple clients sharing a space to receive rendering results [43]. These
works contribute to the development and improvement of distributed
rendering techniques. However, most existing approaches are based
on the assumption that the surrounding computing resources are idle
and sufficient without fully considering the computational and net-
work congestion caused by many concurrent service requests from
mobile devices in user aggregation scenarios. This computation and
network blocking will cause more latency in delivering rendered data.
Meanwhile, the random addition of mobile devices belonging to differ-
ent users in user aggregation scenarios can also bring uncertainty to
distributed collaborative computing. Ineffective scheduling of changes
in computing resources will increase collaborative rendering latency,
leading to a negative user interaction experience.

In decentralized networks, the data exchange mechanisms enable
efficient service provision. Mobile devices in the decentralized network
are connected through blockchain technology, and existing research
focuses on the security aspects of data exchange between blockchain
nodes. For instance, literature [44] proposed a data exchange approach
based on smart contracts to facilitate secure information exchange.
Similarly, the literature [45] proposed a Distributed Denial of Service
(DDoS) data exchange platform for the Internet of Things (IoT) en-
vironment, leveraging blockchain technology to overcome trust and
fairness issues. However, existing research has primarily focused on
ensuring high security and non-real-time data exchange, neglecting
the efficiency of data exchange. Some studies have explored real-time
performance and switching efficiency to address this limitation. For
example, the literature [46] proposed an approach of offloading block
transmission transactions to RDMA NIC, which can improve block
broadcast speed and reduce block synchronization delay. Additionally,
literature [47] proposed a lightweight blockchain transaction process
modeling to enhance the applicability of blockchain in scenarios with
weak computing resources. Nonetheless, these studies are inadequate
for rendering computing offloading in MWAR due to the large data
capacity and high-efficiency data exchange requirements between mo-
bile devices. Moreover, the real-time variability of MWAR can cause
traditional approaches to lose data, affecting the integrity of data
exchange between devices. Therefore, novel approaches are needed to
address these challenges.

8. Conclusions and future work

This study presents CRCDnet, a decentralized and collaborative
rendering computing offloading network architecture for MWAR ap-
plications in the user aggregation scenario. CRCDnet aims to reduce
bandwidth usage and lower latency by introducing a decentralized net-
work to render computing offloading services between mobile devices.
We propose a data request and computing offloading scheduling ap-
proach for the collaborative rendering computing network to optimize
the rendering computation delay. Our results show that CRCDnet pro-
vides more private and stable rendering computing offloading devices
and performs better in rendering latency and application expansibility
in practical Web AR applications. These findings motivate us to expand
CRCDnet to more complex service environments in future research. To
provide smooth and efficient rendering computing data services for

H. Zhang et al.

MWAR applications, we need to further optimize the data exchange
approach and data loading mechanism between mobile devices. Addi-
tionally, conducting simulations in different systems can provide more
insightful knowledge for future development.

CRediT authorship contribution statement

Huabing Zhang: Writing — review & editing, Formal analysis, Data
curation. Liang Li: Visualization, Software, Methodology, Conceptu-
alization. Qiong Lu: Writing — original draft, Funding acquisition. Yi
Yue: Project administration, Data curation. Yakun Huang: Funding
acquisition, Conceptualization. Schahram Dustdar: Writing — review
& editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The authors are unable or have chosen not to specify which data
has been used.

Acknowledgments

This work is supported in part by the National Natural Science Foun-
dation of China under Grant 62202065, in part by the Zhejiang provin-
cial natural science foundation, China under Grant LTGG23F020001,
in part by the Key Lab of Film and TV Media Technology of Zhejiang
Province, China under Grant 2020E10015, in part by 2023-2025 Young
Elite Scientists Sponsorship Program of Beijing Association for Science
and Technology, China.

References
[1] 1. Coma-Tatay, S. Casas-Yrurzum, P. Casanova-Salas, M. Fernandez-Marin, FI-
AR learning: a web-based platform for augmented reality educational content,
Multimedia Tools Appl. 78 (5) (2019) 6093-6118.
Y. Huang, X. Qiao, P. Ren, L. Liu, C. Pu, J. Chen, A lightweight collaborative
recognition system with binary convolutional neural network for mobile web
augmented reality, in: 2019 IEEE 39th International Conference on Distributed
Computing Systems, ICDCS, 2019, pp. 1497-1506, http://dx.doi.org/10.1109/
ICDCS.2019.00149.
Z. Weini, L. Yongquan, G. Pengdong, Q. Chu, Q. Quan, A new software
architecture for ultra-large-scale rendering cloud, in: 2012 11th International
Symposium on Distributed Computing and Applications To Business, Engineering
& Science, 2012, pp. 196-199, http://dx.doi.org/10.1109/DCABES.2012.10.
J. Doellner, B. Hagedorn, J. Klimke, Server-based rendering of large 3D scenes
for mobile devices using G-buffer cube maps, in: Proceedings of the 17th
International Conference on 3D Web Technology, in: Web3D ’12, Association
for Computing Machinery, New York, NY, USA, 2012, pp. 97-100, http://dx.
doi.org/10.1145/2338714.2338729.
A. Evans, M. Romeo, A. Bahrehmand, J. Agenjo, J. Blat, 3D graphics on the web:
A survey, Comput. Graph. (2014).
E. Gobbetti, F. Marton, M.B. Rodriguez, F. Ganovelli, M. Di Benedetto, Adaptive
quad patches: An adaptive regular structure for web distribution and adaptive
rendering of 3D models, in: Proceedings of the 17th International Conference on
3D Web Technology, in: Web3D 12, Association for Computing Machinery, New
York, NY, USA, 2012, pp. 9-16, http://dx.doi.org/10.1145/2338714.2338716.
L. Li, Y. Huang, X. Qiao, Y. Meng, D. Yu, P. Ren, S. Dustdar, Towards distributed
collaborative rendering service for immersive mobile web, IEEE Netw. early
access (2023) 1-10.
K. Salah, M.H.U. Rehman, N. Nizamuddin, A. Al-Fuqaha, Blockchain for Al
Review and open research challenges, IEEE Access 7 (2019) 10127-10149.
J. Chen, P. Chen, X. Niu, Z. Wu, L. Xiong, C. Shi, Task offloading in hybrid-
decision-based multi-cloud computing network: a cooperative multi-agent deep
reinforcement learning, J. Cloud Comput. 11 (1) (2022) 1-17.
X. Qiao, Y. Huang, S. Dustdar, J. Chen, 6G vision: An Al-driven decentralized
network and service architecture, IEEE Internet Comput. 24 (4) (2020) 33-40.

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

543

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Future Generation Computer Systems 158 (2024) 530-544

Q. Huang, M. Dong, Analysis and design for the decentralized network sharing
of static resources, in: Proceedings of the 2020 4th International Conference
on Electronic Information Technology and Computer Engineering, EITCE ’20,
Association for Computing Machinery, New York, NY, USA, 2021, pp. 885-890,
http://dx.doi.org/10.1145/3443467.3443873.

S. Liu, F. Yang, D. Li, M. Bagnulo, B. Liu, X. Huang, The trusted and decentralized
network resource management, in: 2020 29th International Conference on
Computer Communications and Networks, ICCCN, 2020, pp. 1-7, http://dx.doi.
org/10.1109/ICCCN49398.2020.9209590.

A. Zwitter, J. Hazenberg, Decentralized network governance: Blockchain
technology and the future of regulation, Front. Blockchain 3 (2020) 12.

M. Wang, Z. Yan, A survey on security in D2D communications, Mob. Netw. Appl.
22 (2) (2017-04-01) 195-208, http://dx.doi.org/10.1007/s11036-016-0741-5.
K. Ali, HX. Nguyen, P. Shah, Q.-T. Vien, N. Bhuvanasundaram, Architecture
for public safety network using D2D communication, in: 2016 IEEE Wireless
Communications and Networking Conference Workshops, WCNCW, 2016, pp.
206-211, http://dx.doi.org/10.1109/WCNCW.2016.7552700.

J. Liu, B.B. Li, B. Lan, J.R. Chang, A resource reuse scheme of D2D communi-
cation underlaying LTE network with intercell interference, Commun. Netw. 5
(3C) (2013) 187-193.

E. Yaacoub, H. Ghazzai, M.-S. Alouini, A. Abu-Dayya, Achieving energy efficiency
in LTE with joint D2D communications and green networking techniques, in:
2013 9th International Wireless Communications and Mobile Computing Con-
ference, IWCMC, 2013, pp. 270-275, http://dx.doi.org/10.1109/IWCMC.2013.
6583571.

X. Yao, J. Chen, T. He, J. Yang, B. Li, A scalable mixed reality platform for
remote collaborative lego design, in: IEEE INFOCOM 2022 - IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), 2022, pp. 1-2,
http://dx.doi.org/10.1109/INFOCOMWKSHPS54753.2022.9798010.

Y. Jiang, J. Kang, D. Niyato, X. Ge, Z. Xiong, C. Miao, X. Shen, Reliable
distributed computing for metaverse: A hierarchical game-theoretic approach,
IEEE Trans. Veh. Technol. 72 (1) (2023) 1084-1100, http://dx.doi.org/10.1109/
TVT.2022.3204839.

C. Wu, B. Yang, W. Zhu, Y. Zhang, Toward high mobile GPU performance
through collaborative workload offloading, IEEE Trans. Parallel Distrib. Syst. 29
(2) (2018) 435-449, http://dx.doi.org/10.1109/TPDS.2017.2754482.

L. Zhang, X. Wu, F. Wang, A. Sun, L. Cui, J. Liu, Edge-based video stream
generation for multi-party mobile augmented reality, IEEE Trans. Mob. Comput.
(2022) 1-15, http://dx.doi.org/10.1109/TMC.2022.3232543.

M. Sun, X. Xu, X. Tao, P. Zhang, Large-scale user-assisted multi-task online
offloading for latency reduction in D2D-enabled heterogeneous networks, IEEE
Trans. Netw. Sci. Eng. 7 (4) (2020) 2456-2467, http://dx.doi.org/10.1109/TNSE.
2020.2979511.

F. Wei, S. Chen, W. Zou, A greedy algorithm for task offloading in mobile edge
computing system, China Commun. 15 (11) (2018) 149-157, http://dx.doi.org/
10.1109/CC.2018.8543056.

Q. Zheng, T. Yang, Y. Kan, X. Tan, J. Yang, X. Jiang, On the analysis of cache
invalidation with LRU replacement, IEEE Trans. Parallel Distrib. Syst. 33 (3)
(2022) 654-666, http://dx.doi.org/10.1109/TPDS.2021.3098459.

B. Leong, B. Liskov, E.D. Demaine, EpiChord: Parallelizing the chord lookup
algorithm with reactive routing state management, Comput. Commun. 29 (9)
(2006) p.1243-1259.

W. Jiang, C. Xu, M. Huang, J. Lai, S. Xu, Improved chord algorithm in mobile
peer-to-peer network, in: Advanced Intelligence and Awareness Internet (AIAI
2011), 2011 International Conference on, 2011, pp. 244-251.

W. Li, C. Feng, L. Zhang, H. Xu, B. Cao, M.A. Imran, A scalable multi-layer
PBFT consensus for blockchain, IEEE Trans. Parallel Distrib. Syst. 32 (5) (2021)
1146-1160, http://dx.doi.org/10.1109/TPDS.2020.3042392.

J. Ye, J. Liang, X. Li, Q. Chen, A distributed energy trading framework with
secure and effective consensus protocol, in: 2022 IEEE 42nd International
Conference on Distributed Computing Systems Workshops, ICDCSW, 2022, pp.
1-6, http://dx.doi.org/10.1109/ICDCSW56584.2022.00010.

Z. Cui, Y. Zhao, C. Li, Y. Song, W. Li, Content-aware load balancing in
CDN network, in: 2020 IEEE 6th International Conference on Computer and
Communications, ICCC, 2020, pp. 88-93, http://dx.doi.org/10.1109/ICCC51575.
2020.9345240.

Y. Zhang, Z. Li, S. Xu, C. Li, J. Yang, X. Tong, B. Guo, RemoteTouch: Enhancing
immersive 3D video communication with hand touch, in: 2023 IEEE Conference
Virtual Reality and 3D User Interfaces, VR, 2023, pp. 1-10, http://dx.doi.org/
10.1109/VR55154.2023.00016.

J. Venerella, T. Franklin, L. Sherpa, H. Tang, Z. Zhu, Integrating AR and VR
for mobile remote collaboration, in: 2019 IEEE International Symposium on
Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), 2019, pp. 104-108,
http://dx.doi.org/10.1109/ISMAR-Adjunct.2019.00041.

Q. Jiao, G. Sun, Z. Chen, L. Han, J. Fan, A 3D webgis-enhanced represen-
tation method fusing surveillance video information, IEEE Access 11 (2023)
97024-97036, http://dx.doi.org/10.1109/ACCESS.2023.3312156.

M. Aloqaily, I. Al Ridhawi, F. Karray, M. Guizani, Towards blockchain-based
hierarchical federated learning for cyber-physical systems, in: 2022 International
Balkan Conference on Communications and Networking (BalkanCom), 2022, pp.
46-50, http://dx.doi.org/10.1109/BalkanCom55633.2022.9900546.

http://refhub.elsevier.com/S0167-739X(24)00192-4/sb1
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb1
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb1
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb1
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb1
http://dx.doi.org/10.1109/ICDCS.2019.00149
http://dx.doi.org/10.1109/ICDCS.2019.00149
http://dx.doi.org/10.1109/ICDCS.2019.00149
http://dx.doi.org/10.1109/DCABES.2012.10
http://dx.doi.org/10.1145/2338714.2338729
http://dx.doi.org/10.1145/2338714.2338729
http://dx.doi.org/10.1145/2338714.2338729
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb5
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb5
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb5
http://dx.doi.org/10.1145/2338714.2338716
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb7
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb7
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb7
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb7
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb7
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb8
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb8
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb8
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb9
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb9
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb9
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb9
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb9
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb10
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb10
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb10
http://dx.doi.org/10.1145/3443467.3443873
http://dx.doi.org/10.1109/ICCCN49398.2020.9209590
http://dx.doi.org/10.1109/ICCCN49398.2020.9209590
http://dx.doi.org/10.1109/ICCCN49398.2020.9209590
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb13
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb13
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb13
http://dx.doi.org/10.1007/s11036-016-0741-5
http://dx.doi.org/10.1109/WCNCW.2016.7552700
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb16
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb16
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb16
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb16
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb16
http://dx.doi.org/10.1109/IWCMC.2013.6583571
http://dx.doi.org/10.1109/IWCMC.2013.6583571
http://dx.doi.org/10.1109/IWCMC.2013.6583571
http://dx.doi.org/10.1109/INFOCOMWKSHPS54753.2022.9798010
http://dx.doi.org/10.1109/TVT.2022.3204839
http://dx.doi.org/10.1109/TVT.2022.3204839
http://dx.doi.org/10.1109/TVT.2022.3204839
http://dx.doi.org/10.1109/TPDS.2017.2754482
http://dx.doi.org/10.1109/TMC.2022.3232543
http://dx.doi.org/10.1109/TNSE.2020.2979511
http://dx.doi.org/10.1109/TNSE.2020.2979511
http://dx.doi.org/10.1109/TNSE.2020.2979511
http://dx.doi.org/10.1109/CC.2018.8543056
http://dx.doi.org/10.1109/CC.2018.8543056
http://dx.doi.org/10.1109/CC.2018.8543056
http://dx.doi.org/10.1109/TPDS.2021.3098459
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb25
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb25
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb25
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb25
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb25
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb26
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb26
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb26
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb26
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb26
http://dx.doi.org/10.1109/TPDS.2020.3042392
http://dx.doi.org/10.1109/ICDCSW56584.2022.00010
http://dx.doi.org/10.1109/ICCC51575.2020.9345240
http://dx.doi.org/10.1109/ICCC51575.2020.9345240
http://dx.doi.org/10.1109/ICCC51575.2020.9345240
http://dx.doi.org/10.1109/VR55154.2023.00016
http://dx.doi.org/10.1109/VR55154.2023.00016
http://dx.doi.org/10.1109/VR55154.2023.00016
http://dx.doi.org/10.1109/ISMAR-Adjunct.2019.00041
http://dx.doi.org/10.1109/ACCESS.2023.3312156
http://dx.doi.org/10.1109/BalkanCom55633.2022.9900546

H. Zhang et al.

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

S. Xin, L. Zhuo, C. Xin, Node selection strategy design based on reputation
mechanism for hierarchical federated learning, in: 2022 18th International
Conference on Mobility, Sensing and Networking, MSN, 2022, pp. 718-722,
http://dx.doi.org/10.1109/MSN57253.2022.00117.

A. Joshi, S. Ismail, Experimental parallel architecture for rendering 3D model
into MPEG-4 format, in: Proceedings of World Academy of Science: Engineering
& Technology, Vol. 50, 2009, pp. 63-65.

M. Hoppen, R. Waspe, M. Rast, J. Rossmann, Distributed information processing
and rendering for 3D simulation applications, Int. J. Comput. Theory Eng. 6 (3)
(2014) 247-253.

C. Glez-Morcillo, D. Vallejo, J. Albusac, L. Jimenez, J. Castro-Schez, A new
approach to grid computing for distributed rendering, in: 2011 International
Conference on P2P, Parallel, Grid, Cloud and Internet Computing, 2011, pp.
9-16, http://dx.doi.org/10.1109/3PGCIC.2011.12.

A. Clemm, M.T. Vega, H.K. Ravuri, T. Wauters, F.D. Turck, Toward truly immer-
sive holographic-type communication: Challenges and solutions, IEEE Commun.
Mag. 58 (1) (2020) 93-99, http://dx.doi.org/10.1109/MCOM.001.1900272.

D. Liu, L. Wei, Q. Zheng, P. Ding, Y. Shen, Design and implementation
of distributed rendering system, in: 2022 IEEE Smartworld, Ubiquitous
Intelligence & Computing, Scalable Computing & Communications, Digital
Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicles
(SmartWorld/UIC/ScalCom/DigitalTwin/PriComp/Meta), 2022, pp. 2366-2371,
http://dx.doi.org/10.1109/SmartWorld- UIC-ATC-ScalCom- Digital Twin-PriComp-
Metaverse56740.2022.00332.

C. Nandra, V. Bacu, D. Gorgan, Distributed, workflow-driven rendering of 3D
object scenes on a big data processing platform, in: 2018 IEEE International
Conference on Automation, Quality and Testing, Robotics, AQTR, 2018, pp. 1-6,
http://dx.doi.org/10.1109/AQTR.2018.8402773.

D. Abate, S. Migliori, S. Pierattini, B.J. Fendndez-Palacios, A. Rizzi, F. Re-
mondino, Remote rendering and visualization of large textured 3D models, in:
2012 18th International Conference on Virtual Systems and Multimedia, 2012,
pp. 399-404, http://dx.doi.org/10.1109/VSMM.2012.6365951.

H. Cheng, K. Xie, C. Wen, J.-B. He, Fast visualization of 3D massive data based
on improved Hilbert R-tree and stacked LSTM models, IEEE Access 9 (2021)
16266-16278, http://dx.doi.org/10.1109/ACCESS.2021.3051911.

H. Fang, N. Okumura, K. Ishii, S. Saito, Distributed rendering on grid computers
for multiple users in shared virtual space, in: 2022 International Conference on
Cyberworlds, CW, 2022, pp. 47-54, http://dx.doi.org/10.1109/CW55638.2022.
00016.

Y. Zhuang, L.R. Sheets, Y.-W. Chen, Z.-Y. Shae, J.J. Tsai, C.-R. Shyu, A patient-
centric health information exchange framework using blockchain technology,
IEEE J. Biomed. Health Inf. 24 (8) (2020) 2169-2176, http://dx.doi.org/10.
1109/JBHI.2020.2993072.

L.-Y. Yeh, P.J. Lu, S.-H. Huang, J.-L. Huang, SOChain: A privacy-preserving
DDoS data exchange service over SOC consortium blockchain, IEEE Trans.
Eng. Manage. 67 (4) (2020) 1487-1500, http://dx.doi.org/10.1109/TEM.2020.
2976113.

B. Huang, L. Jin, Z. Lu, X. Zhou, J. Wu, Q. Tang, P.C.K. Hung, BoR: Toward high-
performance permissioned blockchain in RDMA-enabled network, IEEE Trans.
Serv. Comput. 13 (2) (2020) 301-313, http://dx.doi.org/10.1109/TSC.2019.
2948009.

T.-S. Kang, M.-I. Joo, B.-S. Kim, T.-G. Lee, Blockchain-based lightweight transac-
tion process modeling and development, in: 2021 23rd International Conference
on Advanced Communication Technology, ICACT, 2021, pp. 113-118, http:
//dx.doi.org/10.23919/ICACT51234.2021.9370771.

Huabing Zhang is currently an associate professor at the
Communication University of Zhejiang(CUZ) and deputy
director of the School of Media Engineering. Her main
research interests lie in digital media technology, computer
vision, media communication, and image quality evaluation.
She has authored or coauthored over 10 academic papers
in core journals and international conferences.

544

il

&

v

Future Generation Computer Systems 158 (2024) 530-544

Liang Li is currently a professor at School of Media
Engineering, Communication University Of Zhejiang and
Key Lab of Film and TV Media Technology of Zhejiang
Province, Hangzhou, China. He has authored or co-authored
over ten technical papers in international journals and at
conferences. His research interests lie in augmented reality,
virtual reality, services computing, computer vision, and 5G
networks.

Qiong Lu is currently an associate professor at School of
Media Engineering, Communication University of Zhejiang
(CUZ), Hangzhou, China. Her research interests lie in media
content management and computer control.

Yi Yue received the Ph.D. in Computer Science and
Technology from the Beijing University of Posts and
Telecommunications in 2021. He is currently serving as a
senior engineer in the China Unicom Research Institute and
the National Engineering Research Center of Next Genera-
tion Internet Broadband Service Application. His research
interests include next-generation internet, cloud computing,
and 6G technology.

Yakun Huang is currently a Postdoctoral Researcher at the
State Key Laboratory of Networking and Switching Technol-
ogy, Beijing University of Posts and Telecommunications,
Beijing, China. His current research interests include video
streaming, mobile computing, and augmented reality.

Schahram Dustdar is a Full Professor of Computer Sci-
ence at the TU Wien, heading the Research Division of
Distributed Systems, Austria.He is co-founder of edorer.com
(an EdTech company based in the US) and co-founder and
chief scientist of Sinoaus.net, a Nanjing, China based R&D
organization focusing on IoT and Edge Intelligence.

He is Editor-in-Chief of Computing (Springer). He
is an Associate Editor of IEEE Transactions on Services
Computing, IEEE Transactions on Cloud Computing, ACM
Computing Surveys, ACM Transactions on the Web, and
ACM Transactions on Internet Technology, as well as on
the editorial board of IEEE Internet Computing and IEEE
Computer. Dustdar is recipient of multiple awards: IEEE
TCSVC Outstanding Leadership Award (2018), IEEE TCSC
Award for Excellence in Scalable Computing (2019), ACM
Distinguished Scientist (2009), ACM Distinguished Speaker
(2021), IBM Faculty Award (2012). He is an elected member
of the Academia Europaea: The Academy of Europe, as
well as an IEEE Fellow (2016) and an Asia-Pacific Artificial
Intelligence Association (AAIA) Fellow (2021) and the AATA
president (2021).

http://dx.doi.org/10.1109/MSN57253.2022.00117
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb35
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb35
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb35
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb35
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb35
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb36
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb36
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb36
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb36
http://refhub.elsevier.com/S0167-739X(24)00192-4/sb36
http://dx.doi.org/10.1109/3PGCIC.2011.12
http://dx.doi.org/10.1109/MCOM.001.1900272
http://dx.doi.org/10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00332
http://dx.doi.org/10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00332
http://dx.doi.org/10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00332
http://dx.doi.org/10.1109/AQTR.2018.8402773
http://dx.doi.org/10.1109/VSMM.2012.6365951
http://dx.doi.org/10.1109/ACCESS.2021.3051911
http://dx.doi.org/10.1109/CW55638.2022.00016
http://dx.doi.org/10.1109/CW55638.2022.00016
http://dx.doi.org/10.1109/CW55638.2022.00016
http://dx.doi.org/10.1109/JBHI.2020.2993072
http://dx.doi.org/10.1109/JBHI.2020.2993072
http://dx.doi.org/10.1109/JBHI.2020.2993072
http://dx.doi.org/10.1109/TEM.2020.2976113
http://dx.doi.org/10.1109/TEM.2020.2976113
http://dx.doi.org/10.1109/TEM.2020.2976113
http://dx.doi.org/10.1109/TSC.2019.2948009
http://dx.doi.org/10.1109/TSC.2019.2948009
http://dx.doi.org/10.1109/TSC.2019.2948009
http://dx.doi.org/10.23919/ICACT51234.2021.9370771
http://dx.doi.org/10.23919/ICACT51234.2021.9370771
http://dx.doi.org/10.23919/ICACT51234.2021.9370771

	Distributed realtime rendering in decentralized network for mobile web augmented reality
	Introduction
	Preliminary
	Decentralized Network Service
	Communication Channel Between Devices
	Data Format of Computing Resource Exchange

	CRCDnet Solution Overview
	Rendering Computing Offloading Between Mobile Devices
	End-to-end Collaborative Rendering Computing Offloading
	D2D Collaborative Rendering Data Sharing
	Multi Collaborative Rendering Computing

	Construction of Collaborative Rendering Decentralized Network
	Construction of Rendering Computing Network
	Shared Scheduling for Delay Optimization
	Optimization of Network Initialization

	Performance Evaluation
	Experiment Setup
	Effectiveness of Initialize Rendering
	Effectiveness of Exchange Rendered Data
	Cooperative Service Network
	Discussion

	Related Work
	Conclusions and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

