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Abstract—Client-edge-cloud Federated Learning (CEC-FL) is
emerging as an increasingly popular FL paradigm, alleviating the
performance limitations of conventional cloud-centric Federated
Learning (FL) by incorporating edge computing. However, im-
proving training efficiency while retaining model convergence is
not easy in CEC-FL. Although controlling aggregation frequency
exhibits great promise in improving efficiency by reducing commu-
nication overhead, existing works still struggle to simultaneously
achieve satisfactory training efficiency and model convergence per-
formance in heterogeneous and dynamic environments. This pa-
per proposes FedAda, a communication-efficient CEC-FL training
method that aims to enhance training performance while ensuring
model convergence through adaptive aggregation frequency ad-
justment. To this end, we theoretically analyze the model conver-
gence under aggregation frequency control. Based on this analysis
of the relationship between model convergence and aggregation fre-
quencies, we propose an approximation algorithm to calculate ag-
gregation frequencies, considering convergence and aligning with
heterogeneous and dynamic node capabilities, ultimately achieving
superior convergence accuracy and speed. Simulation results vali-
date the effectiveness and efficiency of FedAda, demonstrating up to
4% improvement in test accuracy, 6.8× shorter training time and
3.3× less communication overhead compared to prior solutions.

Index Terms—Aggregation frequency, client-edge-cloud, com-
munication, federated learning, training efficiency.

I. INTRODUCTION

F EDERATED Learning (FL) [1] has emerged as an in-
novative and promising approach for training AI models

over massive data generated at the network edge, fostering the
advancement of artificial intelligence (AI) systems [2]. Con-
ventionally, FL employs a cloud-centric architecture, where
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geographically dispersed end devices serve as clients to collec-
tively train AI models. Throughout the training process, clients
iteratively update the model parameters using their local datasets
and periodically send these updated parameters to a central
cloud server. Subsequently, the cloud server consolidates these
local updates to improve the global model. However, such a
client-cloud FL (CC-FL) system encounters a communication
bottleneck arising from constrained communication resources
between the remote cloud server and distributed clients [3].
Empowered by edge computing, the recently proposed client-
edge-cloud Federated Learning (CEC-FL) system [4] offers a
promising solution to alleviate the communication bottleneck
encountered by CC-FL. CEC-FL facilitates the aggregation of
model updates from multiple clients to edge servers for local
aggregation. Subsequently, a single copy of the aggregated result
is transmitted to the cloud for global aggregation, effectively
reducing communication traffic to the cloud.

However, it is not easy to enhance the training performance
of the CEC-FL system by controlling the frequency of model
parameter aggregation. For example, to facilitate model con-
vergence, clients may need frequent updates [4], which in turn
increases traffic and communication time, consequently slowing
down the training speed. On the other hand, reducing aggrega-
tion frequency can decrease communication overhead during
training, but it may also raise the risk of model overfitting and
hence impact model quality. Moreover, the heterogeneity and
dynamics of resources among different clients and edges will
further exacerbate the complexity of controlling aggregation
frequency.

Despite many studies have been proposed to optimize the
aggregation frequency, most of them focus on CC-FL [5], [6],
[7], [8], [9], [10], while only a few recent solutions are dedi-
cated to CEC-FL [4], [11], [12]. HierFAVG [4] and HFL [11]
pioneered the training method with reduced aggregation fre-
quency for CEC-FL. They focus on homogeneous environments
and investigate the impact of aggregation frequencies through
experiments. Their results show that controlling aggregation
frequencies can improve training performance, but the effect
varies greatly under different frequencies. They do not provide
calculation algorithms and cannot determine appropriate aggre-
gation frequencies for heterogeneous environments. RAF [12],
the state-of-the-art heterogeneity-aware solution, adaptively
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controls aggregation frequencies and presents a heuristic to
compute frequencies for different nodes. It aims to alleviate
synchronization barriers under resource heterogeneity but lacks
guarantees for model convergence. This absence of a solid
theoretical foundation may fail to consistently ensure model con-
vergence while achieving high training efficiency in CEC-FL.

In this paper, we propose FedAda, an efficient CEC-FL
method that aims to improve training efficiency while maintain-
ing high model quality through adaptive aggregation frequency
control. To this end, we explore the joint optimization of local
aggregation frequency at the edge and global aggregation fre-
quency in the cloud. Optimizing local aggregation frequency to
achieve high training efficiency with convergence guarantee is
already challenging for CEC-FL system [11], even under ho-
mogeneous resource conditions. Joint optimization of local and
global aggregation frequencies further increases the complexity
of model training, particularly in networks with dynamic and
heterogeneous resources. Although joint optimization has the
potential to significantly improve communication efficiency, it
should be done with great caution. For FL training that relies on
synchronous update mechanisms [1], [4], improper aggregation
frequencies for nodes with heterogenous resources can cause
severe synchronization barriers when coordinating updates from
multiple nodes [3], [12]. These barriers may introduce sub-
stantial latency, potentially offsetting or outweighing the com-
munication efficiency gains, ultimately diminishing the overall
training efficiency. Therefore, we first quantify the relationship
between aggregation frequency and model convergence. Based
on this, we compute benchmark aggregation frequencies for
model quality and adjust them according to node computa-
tional and communication capabilities to improve training ef-
ficiency. In summary, this work mainly makes the following
contributions:
� We propose FedAda, a novel method that jointly optimizes

local and global aggregation frequencies in the client-edge-
cloud hierarchical Federated Learning (CEC-FL) system.
By optimizing these frequencies, FedAda effectively bal-
ances the computational workload of local training nodes,
the communication between clients and edges, and the
communication between edges and the cloud in resource-
constrained dynamic heterogeneous networks.

� We provide a theoretical analysis of the convergence of
CEC-FL training when employing optimized aggregation
frequencies for efficiency improvement. This convergence
analysis lays the foundation for the development of our
algorithm.

� Motivated by the convergence analysis, we propose an ap-
proximate algorithm that calculates appropriate benchmark
aggregation frequencies for model quality improvement.
We further propose an online adaptive adjustment strategy
to tune these benchmark frequencies according to resource
heterogeneity for efficiency improvement.

� Extensive experiments validate the superiority of FedAda
in terms of both training efficiency and model performance
compared to state-of-the-art methods, with up to 4% im-
provement in accuracy, 6.8× shorter training time, and
3.3× less communication overhead compared to baselines.

Next, Section II discusses related works and their limitations.
Section III presents the learning problem and aggregation fre-
quency control in the CEC-FL system. Section IV formulates the
adaptive frequency optimization problem for model training in
CEC-FL. The theoretical analysis of convergence upper bound
and an approximation algorithm are presented in Sections V
and VI, respectively. Finally, Section VII evaluates the proposed
algorithm, and Section VIII concludes this work.

II. RELATED WORK

To improve the training efficiency of FL systems, researchers
have recently studied the optimization of FL frameworks, com-
munication, etc. We briefly review the existing works that are
most relevant to this work.

The past few years have seen a lot of work on the communica-
tion optimization for the CC-FL framework (i.e., [13], [14], [15],
[16]). A body of previous FL research focuses on traditional
data compression methods and investigates the application of
quantization or sparsification to reduce the data transmitted in
each communication connection during training. For example,
prior work [17] leverages quantization, using a limited number
of bits to represent each model gradient or parameter that needs
transmission, thus compressing data and reducing communica-
tion overheads. While previous work [18] uses sparsification
to decrease communication costs by selectively transmitting a
portion of gradients or model parameters.

In addition to data compression techniques, aggregation fre-
quency control is emerging as an effective solution to reduce
communication overhead. This approach optimizes how of-
ten participating nodes communicate for model aggregation.
Straightforwardly, it is feasible and effective to mitigate com-
munication costs by decreasing aggregation frequency to cut
down the rounds of communication among nodes [19]. The
work [1] demonstrates the possibility of reducing aggrega-
tion frequency and verifies the performance improvement over
full-batch stochastic gradient descent [20] through numerous
experiments. However, this work lacks theoretical proof of the
relationship between model convergence and the aggregation
frequency, a gap addressed by [21]. Fang et al. [5] argue that
it should be careful to reduce the aggregation frequency as
decreased communication may impact training performance.
Many subsequent studies aim to strike a trade-off between
training efficiency and model quality [6]. For example, Ma-
linovsky et al. [6] attempt to trade off model convergence,
and communication costs with aggregation frequency control.
Luo et al. [7] consider resource limitations in real networks
and explore adaptive aggregation frequency control for clients
under such constraints. To further enhance training efficiency,
recent works such as [8] and [9] propose integrating compression
techniques with aggregation frequency control. Liu et al. [10]
go a step further by proposing adaptive control of aggregation
frequency and batch size, exploiting their interactions to trade
off convergence, cost, and training completion time in dynamic
environments.

Unlike CC-FL, which only controls aggregation frequency at
the cloud, CEC-FL needs to manage two types of aggregation
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Fig. 1. Illustration of CEC-FL network architecture and training process with FedAda.

frequencies, local at the edge and global at the cloud [22].
The CEC-FL system leverages edge computing by introducing
edge servers as local aggregators in addition to the cloud-based
global aggregator, thereby implementing a two-tier aggregation
mechanism. Model updates from multiple clients undergo local
aggregation at the edge server, with only the aggregated result
transmitted from the edge to the cloud. This significantly dimin-
ishes the traffic load on communication links to the cloud. Liu et
al. [4] were the first to propose controlling both local and global
aggregation frequencies, investigating training performance un-
der various frequency settings through extensive experiments.
Wang et al. [11] theoretically demonstrate the benefits of local
aggregation in accelerating model convergence. However, none
of the aforementioned approaches address the challenge posed
by dynamic heterogeneous networks. Recently, the RAF [12]
proposes to adopt a weak synchronization mechanism [23] to
mitigate the straggler problem caused by dynamic heteroge-
neous networks. It also designs a heuristic to calculate the
aggregation frequencies for different nodes, however, it lacks
convergence guarantees. Wu et al. [24] propose an approach
that combines synchronous local aggregation and asynchronous
global aggregation. While it decreases communication over-
head, it also notably complicates the algorithm [25]. The authors
of [26] suggest allowing edge servers with training data to
participate in the model training with clients. This approach
solely focuses on optimizing local aggregation frequency.

In summary, previous research on aggregation frequency
optimization primarily focuses on CC-FL systems. Applying
these approaches to CEC-FL systems would fall short in training
performance. While some studies exist on aggregation frequency

control for CEC-FL, they often concentrate on optimizing one
aspect or struggle to adapt to dynamic heterogeneous networks,
lacking convergence guarantees. Thus, a gap remains in under-
standing how to optimize aggregation frequency while ensuring
convergence and improving training performance for CEC-FL,
especially in heterogeneous and dynamic network scenarios.

III. OVERVIEW OF CEC-FL SYSTEM

In this section, we present the overall architecture of FedAda,
including the learning problem, training process, and aggrega-
tion frequency control.

A. Learning Problem

We consider a typical cloud-edge-end network as shown in
Fig. 1, which consists of N distributed end devices, M edge
servers, and a cloud server. In this system, all edge servers are
interconnected with the cloud server. Each edge server i (i =
1, 2, . . .,M) establishes connections with a distinct group of
end devices, denoted as Ai, where the number of end devices in
this group is represented by Ni = |Ai|. Consequently, the total
number of end devices in this system is given byN =

∑M
i=1 Ni.

The parameter-server (PS) architecture is employed for model
training in this cloud-edge-end network to form a client-edge-
cloud Federated Learning system. End devices act as clients, and
each client j keeps a local dataset Dj and trains a local model
ωj ∈ Rd over this dataset, where ω is the model vector and d is
the dimension size. Edge servers act as local parameter servers,
aggregating local model updates from clients connected to them
and maintaining aggregated local modelsωi ∈ Rd. Cloud server
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acts as the centralized PS, globally aggregating model updates
from all edge servers and maintaining the global modelω ∈ Rd.

The goal of CEC-FL is to obtain an optimal global model ω∗

that minimizes the global loss function f(ω) after a series of
global training rounds, which can be expressed as

min
ω∈Rd

f (ω) � 1

N

M∑
i=1

Nifi (ωi)

ω∗ := arg min
ω∈Rd

f(ω) (1)

where fi(ωi) is the loss function corresponding to the i-th edge
server, which is defined as the average loss function of clients
in Ai as (2) shows. Fj(ωj) is the loss function of the j-th client
in Ai.

fi (ωi) �
1

Ni

∑
j∈Ai

Fj (ωj) (2)

B. Training Process

Consistent with many previous FL works, we adopt the gra-
dient descent algorithm [27] as the solution to address (1). Each
client employs the mini-batch stochastic gradient descent (SGD)
for each local iteration of model training. Specifically, in each
iteration, the client takes a mini-batch randomly sampled from
its local dataset to update the local model. After several local
iterations, each client pushes the learned model parameters to the
associated edge server. The edge server aggregates the models
from all its connected clients to update the aggregated model
and distributes it to clients for the next local round of model
training. Periodically, after certain local aggregation rounds are
completed, edge servers further transmit their aggregated models
to the cloud server for aggregation into an improved global
model. The cloud then broadcasts the updated global model back
to the edges, and each edge distributes the latest global model
to its connected clients for the next global round of training.
The above local training at clients, periodic local aggregation at
edges, and global aggregation at the cloud constitute the process
of one global training round considered in this work. This
process is iteratively repeated until the global model converges
or reaches resource limits. In short, the key steps in each global
round are: local model updates by clients, local aggregation by
edge servers, and global aggregation by the cloud.

Local update by clients: Letω(s,r)
j (t) denotes the local model

of client j at the t-th local iteration in the s-th local aggregation
round of global round r. The model update in the local training
iteration of client j using mini-batch SGD [28] can be expressed
by (3).

ω
(s,r)
j (t+ 1) = ω

(s,r)
j (t)− η�Fj

(
ω

(s,r)
j (t), ξ

(s,r)
j (t)

)
(3)

where �Fj(ω
(s,r)
j (t), ξ

(s,r)
j (t)) is an unbiased gradient estima-

tion and η is the learning rate. ξ(s,r)j (t) represents the mini-batch
randomly sampled from the local dataset Dj .

Local aggregation by edges: For every edge server, it performs
a local aggregation after receiving the updated models from all
required clients. As mentioned before, each client uploads its

TABLE I
KEY NOTATIONS USED IN PROBLEM FORMULATION

learned model to the corresponding edge server after a given
number of local iterations. Specifically, we use local aggregation
frequency prj to control the number of local iterations of client j

in each global round r. Therefore, the model ω(r)
i (s) updated at

the end of s-th local aggregation within global round r at edge
server i, which can be expressed by (4).

ω
(r)
i (s) =

1

Ni

∑
j∈Ai

αr
jω

(s,r)
j (prj) (4)

where αr
j is the local aggregation weight among clients and∑

j∈Ai

αr
j

Ni
= 1. We can see ω

(s,r)
j (0) = ω

(r)
i (s− 1), ∀j ∈ Ai.

Global aggregation by the cloud: While for the cloud server, it
performs a global aggregation after receiving the model updates
from all required edge servers. Similarly, we adopt global aggre-
gation frequency qri to control the number of local aggregations
performed by edge server i in global round r. By the end of
the r-th global round, the cloud server follows (5) to update the
global model ω(r).

ω(r) =
1

M

M∑
i=1

αr
iω

(r)
i (qri ) (5)

where αr
i is the weight for global aggregation among edge

servers and
∑M

i=1
αr

i

M = 1. Similarly, ω(r)
i (0) = ω(r−1), ∀i =

1, . . . ,M . Some key notations are listed in Table I.

C. Aggregation Frequency Control: Motivation and Basic Idea

Motivation: Considering the heterogeneity and dynamics of
the limited node capacities, we should carefully control the
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aggregation frequency to improve the training efficiency and
performance for CEC-FL. First, clients may have heterogeneous
computational and communication capabilities. If all clients are
required to perform the same round of local iterations before
each local aggregation, this will cause powerful clients to wait
for weak clients, thereby introducing non-negligible or even un-
acceptable latency. A similar synchronization-blocking problem
also arises during global aggregation if all the edges are asked
to undergo the same round of local aggregations before each
global aggregation. In addition, an FL training task usually lasts
for a long time, e.g., several hours or even days [29], during
which resources may change greatly. It is not suitable to use
fixed aggregation frequencies throughout the training process.

Basic idea: In a nutshell, we propose FedAda to adaptively
control aggregation frequencies for participating nodes to ad-
dress the above challenges in CEC-FL. The core idea is to adjust
the aggregation frequency based on model training and network
status, as shown in Fig. 1. Local aggregation frequencies (prj ) and
global aggregation frequencies (qri ) can vary across nodes and
rounds. As a tie-in to such frequency control approach, FedAda
uses weak synchronization mechanism [12], [23] for model
aggregation and update. The right bottom of Fig. 1 illustrates the
training process using adaptive aggregation frequency control in
a toy CEC-FL system with one cloud server, two edge servers (1
and 2), and four clients (1 to 4). In the r-th global round, clients
perform varying local iterations (controlled by prj , j = 1, . . . , 4)
before pushing updates to edges for local aggregation. Edges
perform different rounds of local aggregation (controlled by
qri , i = 1, 2) before pushing models to the cloud for global
aggregation. FedAda may change local and global aggregation
frequencies for the next round as the algorithm detailed in
Section VI.

IV. OPTIMIZING AGGREGATION FREQUENCY FOR CEC-FL:
PROBLEM FORMULATION

In this section, we answer the question of how to determine
the appropriate aggregation frequencies for participating nodes
in CEC-FL. As local and global aggregation frequencies jointly
impact overall model training performance, we propose optimiz-
ing both frequencies together to minimize training time. Next,
we present the total training time calculation and formulate the
time minimization problem under joint frequency optimization
in a resource-constrained, dynamic heterogeneous network.

A. Training Time Model

To attain model convergence, a CEC-FL task essentially in-
volves multiple rounds of training, where the duration of training
depends on the number of global rounds and the time taken to
complete each round. Considering a CEC-FL task with a total
number ofR global rounds, where the time required to complete
the r-th round is denoted as tr, then the overall training time
can be calculated by T =

∑R
r=1 t

r. Now, let’s elaborate on the
computation of tr. As previously mentioned (see §III-B), the
cloud server cannot globally update the model until receiving
local aggregated models from all edge servers in each global
round. In this synchronous training manner, tr is primarily

determined by the processing time of the slowest edge server.
Let tri denote the round time of edge server i and μr

cloud denote
the computation time for the cloud server performing model
aggregation in global round r, tr can be expressed as follows.

tr = max
i=1,...,M

{tri }+ μr
cloud (6)

tri = qri × tredge,i︸ ︷︷ ︸
local aggregation time

+ βr
edge,i︸ ︷︷ ︸

communication time

(7)

In addition to the communication timeβr
edge,i required to upload

the aggregated model to the cloud server, tri also includes the
local aggregation time for gathering the local updated models
from all required clients in Ai, as shown in (7). The local
aggregation time of edge server i in global round r is the product
of the global frequency qri and the completion time tredge,i of a
local aggregation round.

For local aggregation performed by the edge servers, we still
consider a synchronous manner. Therefore, the local aggregation
time of an edge server depends on the slowest client associated
with it. Let trclient,j denote the completion time of client j in each
local aggregation round andμr

edge,i denote the computation time
for the edge server i performing local aggregation, tredge,i can
be computed by (8). The time trclient,j of client j in each local
round depends on the computation time for local training and
the communication time βr

client,j of pushing the trained local
model to the corresponding edge server for local aggregation.
Note that as aforementioned, nodes may also transmit their
resources or training status for frequency computation. We omit
such transmission time because the network status information
is only a few bytes, which is negligible compared to models
with millions or even tens of millions of bytes. The computation
time for local training is the product of the local aggregation
frequency prj and the computation time μr

client,j for a single
local iteration, which can be denoted as (9).

tredge,i = max
j∈Ai

{
trclient,j

}
+ μr

edge,i (8)

trclient,j = prj × μr
client,j︸ ︷︷ ︸

local training time

+ βr
client,j︸ ︷︷ ︸

communication time

(9)

To simplify matters, we make two simplifications to the above
time computation models as many prior works (i.e., [30], [31],
[32]) in this field. Firstly, considering the downstream bandwidth
is consistently much higher than the upstream bandwidth in the
CEC-FL network [33], we can safely exclude the communi-
cation time required for downloading models, as it is not the
performance bottleneck. Additionally, we can also exclude the
computation times μr

edge,i and μr
cloud associated with model

aggregation on both the edge servers and the cloud server, in
line with the common practice of existing works [7], [12], [33].
The reason is that the computation time required for updating or
aggregating a model on a powerful server is negligible compared
to the time involved in training the model on clients with weak
capabilities. Formally, the completion time tr of each global
round at the cloud server and the completion time tredge,i of each
local aggregation round at the edge server i can be rewritten as
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(10) and (11), respectively.

tr ≥ qri × tredge,i + βr
edge,i, ∀i = 1, . . .,M (10)

tredge,i ≥ prj × μr
client,j + βr

client,j , ∀j ∈ Ai (11)

B. Mathematical Formulation

With the above time computation models, we formulate the
problem of minimizing the total CEC-FL training time under
several necessary practical constraints. To improve the training
performance and efficiency, our key idea is to adaptively control
the aggregation frequency for both clients and edge servers
during the training process to accelerate the model convergence.

Decision Variables: To deal with resource heterogeneity, we
allow clients and edge servers to use different local and global
aggregation frequencies in each global round. Furthermore, to
improve training performance under changing training process
and network status, we employ adaptive control that allows
participating nodes to adopt different frequencies across various
global rounds. To capture these decisions, we introduce prj and
qri to denote the local aggregation frequency of client j and
global aggregation frequency of edge server i in global round r,
respectively.

Convergence Constraint: Model convergence is the primary
performance requirement in a CEC-FL task. Let f(ωR) and
f(ω∗) denote the global loss function after R global rounds and
the optimal global loss function, respectively. To ensure model
convergence, it is desirable for f(ωR) to approximate f(ω∗).
This can be expressed as (12), where ε is a threshold to measure
the gap.

f(ωR)− f (ω∗) < ε (12)

Average Waiting Time Constraint: Considering the discrepan-
cies in computational and communication capabilities between
nodes, the presence of a synchronization barrier will have nodes
with superior capabilities wait for those with inferior capabili-
ties. To quantify this, we measure the average waiting time of
edge servers, denoted asW r

edge, and such that of clients, denoted
as W r

client. Moreover, we introduce thresholds εe and εc to limit
the average waiting time to as small as possible. The waiting
time of edge server i can be expressed as (tr − tri ) and that of
client j can be denoted as (tredge,i − trclient,j). Therefore, the
constraints on average waiting time can be formulated as

W r
edge =

1

M

M∑
i=1

(tr − tri ) ≤ εe (13)

W r
client =

1

Ni

∑
j∈Ai

(
tredge,i − trclient,j

) ≤ εc (14)

Objective: To enhance the training efficiency of CEC-FL, we
aim to minimize the total time to complete the entire training
process as shown in (15). With the above decision variables
and constraints, we can formally formulate the problem of
minimizing the total time by implementing adaptive control
of local and global aggregation under a resource-constrained

CEC-FL system, as shown in P1.

P1 min

R∑
r=1

tr (15)

s.t. (10)− (14)

R∑
r=1

M∑
i=1

qri ×
∑
j∈Ai

prj × crj ≤ C (16)

R∑
r=1

M∑
i=1

⎛
⎝bri +

∑
j∈Ai

qri × brj

⎞
⎠ ≤ B

prj ∈ N+, qri ∈ N+,

∀r = {1, . . . , R}, i = {1, . . . ,M}, j = {1, . . . , N}
(17)

Eqs. (10)–(14) are the constraints relating to convergence and
waiting time. Besides, the computational and communication
resource constraints should not be violated, denoted by (16) and
(17), which imply that the computational and communication
overheads during the training process cannot exceed the system
upper bounds C and B. We adopt a summation approach to de-
fine the resource constraints [8] and consider the case where node
resources are heterogeneous. To capture client heterogeneity,
we introduce parameters crj and brj to express the computational
overhead of one local iteration and the communication overhead
of model transmission on client j at global round r, respectively.
We also consider edge heterogeneity and introduce parameter
bri to express the communication overhead of transmitting a full
model from edge server i to the cloud.

V. CONVERGENCE ANALYSIS

In this section, we analyze the convergence upper bound of the
mean square gradient after R global rounds, with the following
three assumptions [34].

Assumption 1 (Lipschitz Continuous Gradient): There exists
a constant L > 0, such that:

‖�F (ω1)− �F (ω2) ‖ ≤ L‖ω1 − ω2‖, ∀ω1,ω2 (18)

Assumption 2 (Unbiased Estimated Gradient): Let ξ be a
random sample from local dataset D, then the estimated local
gradient is unbiased:

E [�F (ω; ξ)] = �F (ω) (19)

Assumption 3 (Bounded Variance): There exists a constant
σ, such that the variance of the estimated local gradient can be
bounded by:

E
[‖�F (ω; ξ)− �F (ω) ‖2] ≤ σ2 (20)

To obtain the convergence upper bound as described in
Theorem 1, we present three important lemmas as follows.

Lemma 1: According to Assumption 1, the expected inner
product between full batch gradient and stochastic gradient can
be bounded with:

E < �f (ωr) , gr >
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≤ L2

2N

M∑
i=1

αr
i

q∑
s=1

∑
j∈Ai

αr
j

p∑
t=1

‖ωr − ωt,s,r
j ‖2

− 1

2N

M∑
i=1

αr
i

q∑
s=1

∑
j∈Ai

αr
j

p∑
t=1

‖�f (ωr)2 ‖2

− 1

2N

M∑
i=1

αr
i

q∑
s=1

∑
j∈Ai

αr
j

p∑
t=1

‖�Fj

(
ωt,s,r

j

) ‖2 (21)

where gr = 1
N

∑M
i=1 α

r
i

∑q
s=1

∑
j∈Ai

αr
j

∑p
t=1 �Fj(ω

t,s,r
j ).

Lemma 2: Under Assumptions 2 and 3, we have the following
bound:

E‖gr‖2 ≤ 1

N2

M∑
i=1

(αr
i )

2
q∑

s=1

∑
j∈Ai

(
αr
j

)2 p∑
t=1

σ2

+
p

N2

M∑
i=1

(αr
i )

2
q∑

s=1

∑
j∈Ai

(
αr
j

)2 p∑
t=1

‖�Fj

(
ωt,s,r

j

) ‖2 (22)

Lemma 3: Under Assumptions 3 and according to [11], we
have the following bound:

E‖ωr − ωt,s,r
j ‖2 ≤ η2

[(
q − 1

Nq

)2

+
(p− 1)2

Np2q2

]

·
M∑
i=1

q∑
s=1

∑
j∈Ai

p∑
t=1

[
p‖�Fj

(
ωt,s,r

j

) ‖2 + σ2
]

(23)

Based on the above assumptions and lemmas, we can obtain
the convergence upper bound of the mean square gradient as
described in Theorem 1.

Theorem 1: Assuming that all nodes are initialized to the
same model parameters ω0, then the upper bound of the mean
square gradient after R global rounds can be expressed as:

1

R

R∑
r=1

‖�f (ωr) ‖2 ≤ 2
[
f
(
ω0
)− f (ω∗)

]
ηα1α2pqR

+
Lηα1α2

N
σ2

+
L2η2pq

N
σ2 +

L2η2p

q
σ2 (24)

where p = max{prj}, q = max{qri }, α1 = max{αh
j }, α2 =

max{αh
i } and the learning rate η satisfy:

L2η2

[
p2 (q − 1)2

Nq
+

(p− 1)2

q

]
+

Lηα1α2p

N
≤ 1 (25)

For the proof of Theorem 1, please refer to https://github.com/
LesLieZC0324/FedAda. The core idea of FedAda is to adap-
tively adjust the local and global aggregation frequency for both
clients and edge servers. Therefore, according to Theorem 1,
we analyze the relationship between the convergence upper
bound and the above two frequencies as shown in Theorem 2.

Theorem 2: Let the learning rate η = c1
q√
RpL

, local aggre-

gation weight α1 = c2
√

pN/M and global aggregation weight
α2 = c3

√
qM , where c1, c2 and c3 are all constants, then the

convergence upper bound can be transformed as:

1

R

R∑
r=1

‖�f (ωr) ‖2 ≤ 2L
[
f
(
ω0
)− f (ω∗)

]
c1c2c3q2

√
pqRN

+
c1c2c3

√
q3√

RNp
σ2 +

c21q
3

RNp
σ2 +

c21q

Rp
σ2

(26)

With Theorem 2, FedAda can achieve a linear speedup of
convergence rate O(1/q

√
pRN).

VI. COMPUTING LOCAL AND GLOBAL AGGREGATION

FREQUENCIES: ALGORITHM DESIGN

In this section, we propose an adaptive control algorithm to
solve problem P1, which computes and adapts local and global
aggregation frequencies for clients and edge servers with model
convergence and resource heterogeneity in mind. Based on this,
we give the corresponding procedures at the client, edge server
and cloud server sides to show how they collaborate during the
training process.

A. Heterogeneity-Aware Computation Strategy

Approximation to P1: It is not hard to see that P1 is NP-hard
and difficult to solve in polynomial time. Thus, we design an
approximate algorithm to compute the solution, namely the
aggregation frequencies of clients and edge servers per global
round, which can improve the training quality while guarantee-
ing convergence.

According to the convergence analysis in Section V, the
training model can eventually converge if the right side of (26)
is always smaller than a small constant ρ. Given the learning
rate η = c1

q√
RpL

, we can use q = up to express the relationship
between the aggregation frequencies of the clients and the edge

servers, where u = ηL
√
R

c1
. Thus, the right side of (26) can be

rewritten as

Φ(R, p, u) =
2L · f(ω0)

u2p3
√
uRN

+

(√
u3p√
RN

+
u3p2

RN
+

u

R

)
σ2 ≤ ρ (27)

where ρ contains c1, c2, c3 and tends to 0. Now, we need to
ensure that the value of Φ(R, p, u) remains consistently smaller
than a small constant ρ to ensure convergence. To this end, in
each global round, we first compute the optimal values of p∗

and u∗ that can minimize Φ(R, p, u) according to the model
training information that evolves as the training process. Then,
we calculate q∗ = u∗p∗ accordingly. Theoretically, we can let
all clients and edge servers respectively use the optimal results
of p∗ and q∗ as their frequencies during the training process.
However, in a heterogeneous scenario, there may be a big gap
in the computational and communication capabilities among
participating nodes (i.e., edge servers and clients). As a result,
the resources of faster nodes may be underutilized as they have
to wait for slower nodes because of the synchronization barrier.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 08,2025 at 12:12:28 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/LesLieZC0324/FedAda
https://github.com/LesLieZC0324/FedAda


3248 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 6, NOVEMBER/DECEMBER 2024

Next, we will show how to fully use heterogeneous resources to
improve training efficiency.

Awareness of heterogeneity: The key idea is to use the optimal
results of p∗ and q∗ as the benchmarks of local and global
aggregation frequencies, thereby ensuring convergence. On this
basis, appropriate adjustments are made according to the ca-
pability of each node to enhance efficiency by minimizing the
waiting time between them. To minimize the waiting time for
the local aggregation on each edge server, we try to have all
clients managed by that edge server complete local updates and
model upload tasks involving a single local aggregation in the
same amount of time. Therefore, for each edge server i, we
first find a client that can complete p∗ local training iterations
and upload the local model to this edge server at the fastest
speed. Then, we assign p∗ as the local aggregation frequency of
the fastest client based on the condition that p∗ is maximal in
Theorem 1 and denote the corresponding completion time of the
r-th global round as Γ r

i = minj∈Ai
{p∗ × μr

client,j + βr
client,j}.

Finally, we calculate the corresponding number of local itera-
tions for other clients associated with this edge server according
to (28). Similarly, to minimize the waiting time for the global
aggregation on the cloud server, we use the time Γ r of the
fastest edge server that can finish q∗ local aggregations as a
benchmark and compute the number of local aggregations for
other edge servers according to (29). Γ r can be calculated
by Γ r = mini=1,...,M{q∗ × Γ r

i + βr
edge,i}. For other symbols,

please review Table I.

For clientj ∈ Ai : prj = 	Γ
r
i − βr

client,j

μr
client,j


 (28)

For edge serveri : qri = 	Γ
r − βr

edge,i

Γ r
i


 (29)

With this design, the clients and edge servers with weaker
capabilities will perform fewer local updates and local aggre-
gations respectively in each global round, thus mitigating the
delay caused by the synchronization barrier. It should be noted
that assigning p∗ and q∗ to the fastest nodes may cause other
nodes with poor performance to perform fewer model updates,
thereby slowing down the convergence speed to a certain extent.
However, this can be compensated because the fastest node in
different global rounds often changes in a dynamic network. The
experimental results prove that this choice has little impact on
the convergence speed (see Section VII).

B. Dynamic Adjustment During Training Process

Due to the differences in performance between participating
nodes, we need to dynamically select the local and global
aggregation frequency for the nodes within each global round.
At the same time, due to the dynamic changes of the network,
we dynamically adjust the above two frequencies across global
rounds. The main idea is to first estimate the values of p∗ and
q∗ that minimize Φ(R, p, u) according to the training status in
the current global round and then adapt them according to (28)
and (29) to obtain the aggregation frequency of every client and
edge server applied for the next global round. Meanwhile, we

Algorithm 1: Procedure at Client j (∀j ∈ Ai).

assume that the network status information received in the r-th
global round is relatively stable during the (r + 1)-th global
round. Specifically, we let the cloud server control the optimal
calculation of frequencies p∗ and q∗ and the adjustment of the
global aggregation frequency for edge servers, while each edge
server controls the adjustment of the local aggregation frequency
for clients.

Next, we explain how to dynamically adjust the local and
global aggregation frequencies in detail by illustrating the pro-
cedures at the sides of the client (Algorithm 1), edge server
(Algorithm 2), and cloud server (Algorithm 3) in each global
round.

At the client side: Algorithm 1 gives the procedure of each
client. Client j first estimates its own computational and com-
munication resource overhead, and then receives global model,
local aggregated model and local aggregation frequency from
the associated edge server i. Subsequently, client j iteratively
performs local update (line 5), estimates Lipschitz constant Lj

and gradient estimation variance σ2
j locally (lines 8-9), then

informs the associate edge server i of the estimated results along
with its local model, resource consumption, computational and
communication capability, with the given frequency prj .

At the edge server side: The edge server sits between the
cloud server and the clients, and Algorithm 2 shows its workflow
in each global round. Considering that the time of each global
round is relatively short, we assume that the resources of all
clients are relatively stable within each global round, but fluctu-
ate between global rounds. Each edge server i aggregates local
models from clients by the end of each local aggregation and gets
the training process parametersLs

i , (σ2)si and status information
sent by clients in Ai (lines 8-10). Meanwhile, it adaptively
adjusts the local aggregation frequency for clients following
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Algorithm 2: Procedure at Edge Server i (∀i ∈ M ).

the heterogeneity-aware computation strategy presented in Sec-
tion VI-A (lines 11-12). Then, before completing the required
rounds of local aggregation qri , the edge server i distributes the
aggregated models back to clients to continue training for the
next local round. Otherwise, edge server i aggregates the training
parameters and status information to obtain Li, σ2

i , Cr
i and Br

i ,
and subsequently uploads them and the aggregated model to the
cloud server.

At the cloud server side: As Algorithm 3 shows, the cloud
server initializes the local and global aggregation frequencies
based on the maximum settings of local SGD in [11] and initial-
izes the search space to ensure q is smaller than p to accelerate
convergence [4]. In each global round, the cloud server first
updates the global model and the resource status according to
the updated models and network information received from edge
servers (lines 8-9). Subsequently, it aggregates parametersL, σ2

received from edge servers (lines 10). On the basis of estimated
L,σ2, the optimal value of pr andu is determined by minimizing
Φ(R, p, u) in a specified search space, and accordingly the
benchmark global aggregation frequency qr for the next global
round is calculated (lines 16-17). Finally, it adaptively adjusts
the global aggregation frequency for edge servers following the
heterogeneity-aware computation strategy presented in §VI-A
(lines 18-19). The training process will be stopped if the resource
constraints cannot be satisfied or the model reaches convergence
(line 21). It should be noted that pr and u are obtained by
traversing the search under the powerful arithmetic of the cloud
server, and the computation time is negligible.

Algorithm 3: Procedure at the Cloud Server.

VII. PERFORMANCE EVALUATION

In this section, extensive experiments are conducted to eval-
uate the performance of FedAda, and the simulation results
demonstrate its effectiveness and efficiency.

A. Methodology

Datasets and Models: We use two real-world datasets for FL
training, Fashion-MNIST [35] and CIFAR-10 [36], both datasets
contain 10 different classes. Fashion-MNIST comprises 60,000
28 × 28 10-class grey-scale images, including 50,000 training
samples and 10,000 testing samples. While CIFAR-10 contains
samples of 32 × 32 three-channel color images, with the same
total number of image samples, image classification, and dataset
partitioning as Fashion-MNIST. We conduct experiments on
both IID data and Non-IID data, except for Non-IID data, all
datasets are distributed uniformly across clients by default. To
generate Non-IID data, we introduce a parameter ϕ ∈ [0.1, 1]
to represent the proportion of dominant classes within the
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dataset. The remaining samples were randomly and uniformly
selected from the other nine classes. The parameterϕ reflects the
heterogeneity, where the heterogeneity of the dataset enlarges
as ϕ increases. Based on the above real-world datasets, we
train two popular models, CNN and ResNet9. Both CNN and
ResNet9 are lightweight neural network architectures, which
are well-suited for CEC-FL systems characterized by clients
with limited computational resources. The datasets and models
we chose are consistent with the experimental settings used in
many prior Federated Learning studies such as [4], [8], [37]. The
former is a CNN model specialized for Fashion-MNIST dataset,
which has about 0.58 M parameters with two convolutional
layers, two pooling layers, and one fully-connected layer. It is
more challenging to train a model on CIFAR-10 dataset. The
well-known ResNet9 model (about 2.45 M parameters) is used
for it.

Baselines: We compare FedAda with state-of-the-art CEC-FL
solutions that employ aggregation frequency control to enhance
training performance like this work. Details are described below.
� HierFAVG [4] is the first CEC-FL solution that adopts a

two-layer aggregation style to our knowledge. To make
the results comparable, the frequency setting of (p = 6,
q = 10) that yields the best training efficiency in their paper
is used in experiments.

� HFL [11] also provides a solution based on two-level
aggregation, along with a theoretical analysis of the ef-
fectiveness of local aggregation. Like HierFAVG, it lets
participating nodes in the same layer adopt the same ag-
gregation frequency. When evaluating performance, the
frequency setting (p = 5, q = 50) they reported to have
the best training efficiency is used in the experiments.

� RAF [12] allows participating nodes with different capa-
bilities to use different aggregation frequencies. It employs
a heuristic to compute aggregation frequencies, setting the
frequency of the slowest client and edge server to one and
adjusting the frequencies of other nodes based on these
benchmarks.

Similar to FedAda, both HierFAVG and HFL offer theoretical
analysis and convergence guarantees, although they focus on
homogeneous resource scenarios. In contrast, RAF focuses on
dynamic and heterogeneous networks as this work. These three
baselines are currently the closest counterparts to this work.

Performance metrics: In the evaluation we mainly consider
the following performance metrics.
� Test accuracy: measures the ability of a trained model

to make correct predictions and is calculated as the ratio
between the number of accurate predictions in the test
dataset and the total number of that dataset. It is the primary
metric of interest for an FL solution.

� Total time: includes the overall computation and communi-
cation time that an FL task takes for the model to reach the
target or convergence accuracy. It reflects the convergence
speed of an FL algorithm.

� Average waiting time: measures the ability of an algorithm
to mitigate the delay caused by the synchronization barrier,
which can be calculated via (13) and (14). This is often a

concern for heterogeneous scenarios, as it reflects whether
an FL solution effectively uses limited network capacities.

� Communication overhead: measures the amount of traffic
load incurred by an FL training task to achieve the target
or convergence accuracy, which is also a major concern in
resource-constrained systems.

Simulation setup: We implement FedAda and all compared
algorithms on the most popular FL framework, PyTorch. To con-
duct experiments, we simulate a CEC-FL system on a deep learn-
ing workstation equipped with an AMD Ryzen 9 5950X 16-Core
CPU, 2 NVIDIA GeForce RTX 3090 GPUs, and 128 GB RAM
and deploy the system using Docker. This system consists of one
cloud server, four edge servers and 20 clients, with five clients
under each edge server. In each global round, we randomly
select 10 out of 20 nodes as clients to participate in the training
process. This selection method simulates, to a certain extent, the
intermittent availability of clients in real-world scenarios. All
comparison algorithms are subjected to the same heterogeneity
and training settings, which are described as follows.

For performance evaluation under heterogeneous resources,
we assume that the computation time to complete one local itera-
tion varies across models and clients and that network bandwidth
may also vary between nodes. To simulate this heterogeneity,
we first give an average value, and then based on this, use
the factor γ ∈ [0, 1) to adjust the degree of heterogeneity of
resources between nodes. Specifically, following prior related
work [4], the average computation time μ is 0.5 s and 4.0 s
for a local training iteration over CNN (Fashion-MNIST) and
ResNet9 (CIFAR-10), respectively. The average bandwidth β
available to clients and edges for transmitting model parameters
is 4Mbps [12]. The local iteration computation time follows
a uniform distribution of μ ∼ U((1− γ)μ, (1 + γ)μ) and the
bandwidth fluctuates between (1− γ)β Mbps and (1 + γ)β
Mbps [8]. Note that γ = 0 indicates that available resources are
homogeneous among all nodes. To simulate network dynamics,
we change the values of local iteration computation time and
bandwidth at regular intervals.

For model training, three different scenarios are considered:
(i) IID data and homogeneous resource, (ii) IID data and het-
erogeneous resource, and (iii) Non-IID data and heterogeneous
resource. The number of global rounds for training CNN on
Fashion-MNIST are 400, while for training ResNet9 on CIFAR-
10 are 400, 800, and 600, respectively. Besides, we use the
momentum-SGD algorithm as an optimizer for all compared
algorithms, where the momentum is set to 0.9. The local and
global aggregation weights are averaged. The learning rate and
batch size are set as 0.01 and 32 for all algorithms, respectively.

B. General Performance

First, we investigate the performance in terms of test accu-
racy, training time, average waiting time, and communication
overhead of all compared algorithms under a wide spectrum of
scenarios.

Accuracy and training time: Fig. 2 and Table II show the con-
vergence results of all compared CEC-FL algorithms on IID data
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Fig. 2. Test accuracy (IID data, homogeneous resource).

TABLE II
TOTAL TIME (S) NEEDED TO ACHIEVE SPECIFIED ACCURACY (IID DATA,

HOMOGENEOUS RESOURCE).

distribution in the homogeneous resource scenario. Fig. 2 shows
the convergence process. FedAda always yields the best test
accuracy for all trained models. HierFAVG, HFL, and RAF come
second and have similar test accuracy. However, RAF has a much
slower convergence speed. As Fig. 2(a) shows, FedAda Hier-
FAVG and HFL converge to 92% accuracy at approximately
18,000 seconds, while RAF has not yet converged at that time
and only achieves 90% accuracy. A similar situation occurs
when training ResNet9 on CIAFR-10, and it is more obvious. At
around 200,000 seconds, RAF is nearly 5% lower than the other
three algorithms. Fig. 2(b) also shows that FedAda improves the
test accuracy by 0.6% compared to baselines. Table II records
the total time needed to achieve specified accuracy. FedAda
has the fastest convergence speed, taking 6, 949 s to reach 92%
accuracy for CNN on Fashion-MINIST, while HierFAVG, HFL,
and RAF take 7, 532 s, 7, 697 s and 47, 139 s, respectively.
While for ResNet9 on CIFAR-10, FedAda achieves a much
faster convergence speed than HierFAVG, HFL, and RAF, with a
speedup of about 2.1×, 1.8×, and 6.8×, respectively, to achieve
90% accuracy. When the computation and bandwidth resources
are homogeneous, RAF will degenerate into HierFAVG with the
aggregation frequency of (p = 1, q = 1). As a result, it incurs
frequent communication and produces the slowest convergence
speed.

We also investigate the heterogeneous resource scenario, and
Fig. 3 and Table III report the simulation results. In this part, we
set γ = 0.8 to generate heterogeneous computation and com-
munication capacities for the participating nodes. The results
show that FedAda still achieves the highest test accuracy in
this scenario, achieving around 92% and 91% test accuracy on
CNN and ResNet9, respectively. We can also see from Fig. 3(b)
that FedAda improves up to 0.3% test accuracy, compared
with the other three baselines. It is worth noting that, unlike
the homogeneous resource scenario, RAF now achieves faster

Fig. 3. Test accuracy (IID data, heterogeneous resource).

TABLE III
TOTAL TIME (S) NEEDED TO ACHIEVE SPECIFIED ACCURACY (IID DATA,

HETEROGENEOUS RESOURCE).

Fig. 4. Test accuracy (Non-IID data, heterogeneous resource).

TABLE IV
TOTAL TIME (S) NEEDED TO ACHIEVE SPECIFIED ACCURACY (NON-IID DATA,

HETEROGENEOUS RESOURCE).

convergence speed. This improvement should be due to the
heterogeneous-aware adjustment mechanism of RAF, which
helps it benefit from local aggregation. Table III shows that
FedAda maintains the fastest convergence speed on both CNN
and ResNet9. Specifically, FedAda reaches 92% accuracy on
CNN with 9, 895 s, 2.04× and 2.88× faster than HierFAVG
and RAF, respectively. Regarding the training of RestNet9, it
achieves a speedup of 2.76× and 4.27× to reach 90% accu-
racy compared to HierFAVG and HFL, respectively. We can
also observe that both HierFAV, HFL, and FedAda take longer
to achieve the specified accuracy in heterogeneous resources
compared to homogeneous scenarios (see Table II). However,
the increase of FedAda is minimal.
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Fig. 5. Average waiting time of local aggregation.

Fig. 6. Average waiting time of global aggregation.

Further, we evaluate algorithm performance under a more het-
erogeneous scenario, namely Non-IID data and heterogeneous
resource scenario. Fig. 4 and Table IV show the results. Unless
otherwise stated, the experiments in this part use ϕ = 0.6 and
γ = 0.8 to simulate the heterogeneity of data and resource,
respectively. We can see from Fig. 4(a) and (b) that the test
accuracy of all algorithms drops compared with the first two
scenarios. However, FedAda still achieves the highest accuracy,
around 89% for CNN and 82% for ResNet9. Meanwhile, its
performance is more stable while the accuracy of HFL, Hier-
FAVG, and RAF decreases more drastically, especially training
ResNet9 on CIFAR-10 (see Fig. 4(b)). In addition, as shown in
Table IV, FedAda has the fastest convergence speed and RAF
ranks second. Compared to HierFAVG and HFL, FedAda signif-
icantly improves the convergence speed by achieving a speedup
of 3.3× and 5.7× respectively for CNN on Fashion-MNIST
and 3.3× and 6.4× respectively for ResNet9 on CIFAR-10.
Even compared to the RAF, FedAda is still 1.4× and 1.6×
faster. The superior performance over RAF lies in the frequency
computation of FedAda takes into account model convergence
and not just resource heterogeneity.

Average waiting time: In the above experiments, we also
record the average waiting time when CEC-FL uses different
algorithms to perform local aggregation and global aggregation
at the edge and cloud, respectively. Figs. 5 and 6 show the av-
erage waiting time in the scenario where both data and resource
are heterogeneous. The result of the heterogeneous resource
scenario with IID data is similar, we omit the presentation to
save space. As expected, FedAda and RAF perform similarly, far
better than HierFAVG and HFL. The reason is that both FedAda
and RAF adaptively control aggregation frequency to match
the computational and communication capabilities of nodes.

Fig. 7. Communication overhead (Normalized by FedAda).

However, HierFAVG and HFL allow nodes to use the same
and fixed frequency during training, resulting in long waiting
times when resources between nodes are heterogeneous. In fact,
heterogeneous resources are very common in real client-edge-
cloud networks, limiting the practicality of HierFAVG and HFL.
We can also see from Fig. 6(a) and (b) that for all compared
algorithms, the waiting time of global aggregation is much
longer than that of local aggregation. The reason is that before
each global aggregation, the edge server may perform multiple
rounds of local aggregation, resulting in accumulated waiting
time.

Communication overhead: Further, we analyze the commu-
nication overhead of different algorithms to achieve a spec-
ified test accuracy. Fig. 7 shows the results normalized by
FedAda, where FedAda outperforms all baselines. Specifically,
FedAda saves 0.7×, 1.4×, and 0.3× communication overhead
for CNN on Fashion-MNIST reaching 92% accuracy compared
to HierFAVG, HFL, and RAF, respectively. The communication
overhead for FedAda to reach 90% accuracy on ResNet9 with
CIFAR-10 saves 1.7×, 3.3×, and 1.2× compared to HierFAVG,
HFL, and RAF, respectively. These results are consistent with
the convergence speed of FedAda because FedAda introduces
fewer rounds of communication in the entire process, signifi-
cantly reducing communication overhead and accelerating con-
vergence. Overall, FedAda outperforms all compared baselines
for CEC-FL training in a variety of scenarios, both homoge-
neous and heterogeneous. The most important reason is that
it adaptively adjusts the aggregation frequency throughout the
training process, by considering both model convergence and
resource heterogeneity. This facilitates better utilization of node
computing and communication capabilities, as well as improved
model quality and convergence speed.

C. Performance Under Different Heterogeneity Levels

The above experiments show that the training performance
has a great relationship with data and resource heterogene-
ity. Concretely, data heterogeneity can impact model accuracy
and resource heterogeneity largely impacts convergence speed.
Therefore, we further investigate how these two heterogeneities
impact algorithm performance.

Impact of data heterogeneity: First, we run FL training tasks
separately under different levels (ϕ) of data heterogeneity. Fig. 8
shows the experiment results that all the algorithms suffer from
an increasing loss in test accuracy as the Non-IID level grows.
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Fig. 8. Convergence accuracy under different data heterogeneity levels.

Fig. 9. Total time to reach target accuracy under different resource hetero-
geneity levels.

However, FedAda is more robust than other baselines. We also
see that the accuracy loss of CNN on Fashion-MINIST is less
than that of ResNet9 on CIFAR-10. For CNN on Fashion-
MINIST, when ϕ increases from 0.2 to 0.6, the accuracy drops
by less than 1%, and when ϕ increases from 0.6 to 0.8, the loss
increases to 2%− 3%. While for ResNet9 on CIFAR-10, we
can see more loss, nearly 20% when the ϕ increases from 0.2
to 0.8. Nevertheless, FedAda maintains a high standard when
the level of data heterogeneity is relatively low (i.e., ϕ ≤ 0.6).
However, the results indicate that high-level data heterogeneity
will seriously affect model quality and needs to be handled more
carefully. Fortunately, we have seen many techniques [38], [39],
[40] proposed to deal with the performance degradation issue
of Non-IID data. In the future, we will further investigate how
to combine these techniques with adaptive frequency control to
address the challenge of Non-IID data with high-level hetero-
geneity.

Impact of resource heterogeneity: Then, we rerun FL train-
ing tasks under different levels (γ) of resource heterogeneity.
Fig. 9(a) and (b) show the total time for CNN and ResNet 9 to
achieve the specified accuracy of 89% and 78% at different levels
of resource heterogeneity, respectively. The data heterogeneity
is set to ϕ = 0.6 in these experiments. The results demonstrate
that FedAda still maintains the shortest completion time and
exhibits stable performance in all cases. As expected, HierFAVG
and HFL increase as the resource heterogeneity level grows.
Since both algorithms allow all nodes in the same layer to use
the same frequency, the synchronization-blocking effect will
become more severe as the degree of resource heterogeneity
increases. As a result, the completion time of each local and
global aggregation round increases with the degree of resource

Fig. 10. Aggregation frequency over time under different resource hetero-
geneity levels.

heterogeneity, as does the total training time. Interestingly, RAF
has a decreasing completion time as the level of resource het-
erogeneity rises. This is because when the heterogeneity level is
low, RAF incurs frequent communication that takes up a large
portion of the total time, whereas as the heterogeneity level
increases, more local aggregations are allowed and result in a
speedup of convergence. This again confirms the benefit of local
aggregation in accelerating model convergence.

Finally, we conduct experiments under different levels of
resource heterogeneity and see how the aggregation frequency
changes as training proceeds. Fig. 10 depicts how the aggrega-
tion frequency changes over time, in terms of global training
rounds. In these experiments, we use Non-IID data with a
heterogeneity level of ϕ = 0.6 for FL training. Fig. 10(a) shows
that the local aggregation frequency p generally decreases as the
number of global rounds increases, and increases as the resource
heterogeneity γ increases. The reason why local aggregation
frequency decreases as training progresses is that the deviation
of the local model from the global model gradually decreases,
and fewer local iterations help prevent model overfitting. The
reason why p increases with the resource heterogeneity is that
as γ increases, the number of local iterations of clients with few
resources decreases, resulting in insufficient local training and
an increasing deviation from the global model. Therefore, when
γ increases, p needs to be increased to ensure that poor clients
also experience enough local iterations to ensure the quality of
the global model. Compared with p, Fig. 10(b) shows that the
global aggregation frequency q is more stable and only fluctuates
between 1 and 4 throughout the training process. This shows that
FedAda effectively exploits the advantage of edge computing,
allowing more local aggregation and less global aggregation,
thereby fully obtaining the benefits of local aggregation in
promoting model convergence and improving communication
efficiency.

VIII. CONCLUSION

This article investigates the aggregation frequency control
problem for efficient FL training in dynamic heterogeneous
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and resource-constrained client-edge-cloud networks. To solve
this problem, we formulate it as an optimization problem and
theoretically analyze the influence of the aggregation frequency
on model convergence. Based on our convergence analysis, we
present an adaptive aggregation frequency adjustment method to
improve training quality and speed. Extensive evaluation results
demonstrate the effectiveness and efficiency of the proposed
method.
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