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ABSTRACT | The development of cloud computing delivery

models inspires the emergence of cloud-native computing.

Cloud-native computing, as the most influential development

principle for web applications, has already attracted increas-

ingly more attention in both industry and academia. Despite

the momentum in the cloud-native industrial community, a

clear research roadmap on this topic is still missing. As a

contribution to this knowledge, this article surveys key issues

during the life cycle of cloud-native applications, from the per-

spective of services. Specifically, we elaborate on the research

domains by decoupling the life cycle of cloud-native applica-

tions into four states: building, orchestration, operation, and
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maintenance. We also discuss the fundamental necessities and

summarize the key performance metrics that play critical roles

during the development and management of cloud-native

applications. We highlight the key implications and limitations

of existing works in each state. The challenges, future direc-

tions, and research opportunities are also discussed.
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N O M E N C L AT U R E
SOC Service-oriented computing.
DevOps Combination of development and operations.
CNCF Cloud Native Computing Foundation.
VM Virtual machine.
KVM Kernel-based virtual machine.
SDN Software-defined network.
CNF Cloud-native network function.
GRE Generic routing encapsulation.
LVM Logical volume manager.
CNI Container network interface.
RBAC Role-based access control.
SDK Software development kit.
NAT Network address translation.
PaaS Platform as a Service.
JCT Job completion time.
REST Representational state transfer.
GA Genetic algorithm.
QoS Quality of Service.
FaaS Function as a Service.
VPA Vertical pod autoscaler.
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ANN Artificial neural network.
GNN Graph neural network.
LSTM Long short-term memory.
SOA Service-oriented architecture.
CI/CD Continuous integration and continuous

delivery.
API Application programming interfere.
ISP Internet service provider.
K8s Kubernetes.
NFV Network function virtualization.
VXLAN Virtual eXtensible Local Area Network.
MPLS Multiprotocol label switching.
RAID Redundant array of independent disks.
CSI Container storage interface.
DNS Domain name system.
TLS Transport layer security.
SaaS Software as a Service.
IaaS Infrastructure as a Service.
CRUD Create, read, update, and deletion.
HPC High-performance computing.
QoE Quality of Experience.
SLO Service-level objective.
BaaS Backend as a Service.
HPA Horizontal pod autoscaler.
MARL Multiagent reinforcement learning.
BGP Border gateway protocol.
RNN Recurrent neural network.

I. I N T R O D U C T I O N
Services are self-describing and technology-neutral compu-
tation entities that support rapid and low-cost composition
of web applications in distributed network systems [1].
SOA is the principle of designing software systems by pro-
visioning independent, reusable, and automated functions
as reusable services and providing a robust and secure
foundation for leveraging these services [2]. In recent
years, the most influential variant of SOA is the microservice
architecture, which decouples a monolithic application into
a collection of loosely coupled, fine-grained microservices,
communicating through lightweight protocols [3]. Over
the last decade, the microservice architecture has become
more and more appealing, as it allows software organiza-
tions to be more productive in building systems with the
support of DevOps [4] through CI/CD pipelines [5].

Accompanied by the development of microservices, a
new terminology, cloud-native, or cloud-native computing,
is attracting increasing attention in academia. In accor-
dance with CNCF, the open-source, vendor-neutral hub of
cloud-native computing,1 cloud-native is the collection of
technologies that break down applications into microservices
and package them in lightweight containers to be deployed
and orchestrated across a variety of servers.2 In addition to
the microservice architecture, cloud-native is also charac-
terized by the following terminologies.

1https://www.cncf.io/about/who-we-are/
2https://github.com/cncf/toc/blob/main/DEFINITION.md

1) Containerization: It is a function isolation mechanism
that leverages the Linux kernel to isolate resources,
creating containers as different processes in Host OS
[6], [7]. Docker, with a ten-year development, is the
most popular implementation of the containerization
techniques [8]. Combining containerization with the
microservice architecture, each part of an application,
including processes, libraries, and so on, is packaged
into its own container. This facilitates reproducibility,
transparency, and resource isolation.

2) Orchestration: It is the automated configuration,
management, and coordination of the interrelated
microservices to build elastic and scalable function-
alities. Since microservices are deployed in the way
of containers, orchestration reduces the automation
of the operational effort to manage the containers’
life cycle, including resource provisioning, deploy-
ment, scheduling, scaling (up and down), network-
ing, load balancing, and so on, in order to execute the
applications’ workflows or processes. K8s [9], orig-
inated from Google’s Borg cluster manager [10], is
the most popular open-source container orchestration
software.

In conclusion, a cloud-native application can be viewed
as a distributed, elastic, and horizontal scalable system
composed of interrelated microservices, which isolates
the state in a minimum of stateful components [11].
Cloud-native can be regarded as cloud computing ver-
sion 2.0. Specifically, cloud computing provides the infras-
tructure and backend services over the Internet [12]
while being cloud-native involves an application archi-
tecture and development approach that maximizes the
benefits of cloud computing. Being cloud-native adopts
practices including microservices, containerization, and
orchestration to enable agility, scalability, and rapid devel-
opment, and deployment of applications. Applications
that are built with cloud-native technologies generally
follow these steps: 1) separating the monolith into self-
deployed, function-explicit microservices and letting them
communicate with each other through REST APIs (for
synchronous communication) and lightweight messaging
protocols (for asynchronous communication); 2) using
lightweight operating system virtualization technology,
i.e., containerization, to pack each microservice into a con-
tainer; 3) orchestrating these containers into an organic
whole for functionalities with automatic configuration and
management throughout their life cycle; and 4) using
DevOps and CI/CDs to deliver the cloud-native applica-
tions with reliability and scalability.

Considering that cloud-native is better known in the
industry, in this article, we try to survey the past and
present of cloud-native applications with respect to the key
problems during their life cycle from a research perspec-
tive. We attempt to merge the industrial popularity, includ-
ing the widely used open-source software and platforms,
with the trending research, either theoretical or systematic,
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Fig. 1. Research roadmap for cloud-native computing, designed from the life cycle of cloud-native applications.

from the perspective of services computing. We divide the
life cycle of a cloud-native application, which is viewed
as a service in the field of SOC, into four states: building,
orchestration, operation, and maintenance. As shown in
Fig. 1, different key problems are emphasized in different
states. In addition, we also collect the performance metrics
that are frequently mentioned when building cloud-native
applications and analyze them from three levels: infras-
tructure, platform, and software. Apart from the service life
cycle and performance metrics, Fig. 1 also demonstrates
the foundation of cloud-native computing. In our opinion,
the fundamental issue to be dealt with for building cloud-
native applications is adaptive resource management, i.e.,
elastic resource virtualization and provisioning, such that
business agility can come true. Besides, as the foundation,
it should provide general function modules for the building
and running of cloud-native applications. We divide the
functions into three cases: security, performance, and effi-
ciency, and demonstrate the corresponding popular plat-
forms and tools. Sections II–VII will be presented surround-
ing the roadmap.

To the best of our knowledge, this is the first sur-
vey focusing on key issues during the life cycle of

cloud-native applications from the perspective of ser-
vices. There are some studies on the origin, status quo,
challenges, and opportunities of cloud-native applications
[11], [13], [14], [15], [16]. However, they mainly pro-
vide high-level opinions and ignore the comprehensive
review of the state-of-the-art research works. As a result,
researchers may find it struggling to grasp and compre-
hend each issue in the development and management
of cloud-native applications. It is worth mentioning that
there are surveys focusing on specific topics in cloud-
native computing. For example, Duan [17] discusses the
recent developments of architectural frameworks for intel-
ligent and autonomous management for cloud-native net-
works. This article comprehensively reviewed the technical
trend toward cloud-native network design and network-
cloud/edge convergence. Moreover, the scheduling of
microservices and containers, which has a strong connec-
tion with the orchestration platform K8s, is reviewed in
[18] and [19]. However, due to the lack of systematic
knowledge, challenges and proposed solutions will lack
high portability and compatibility for various cloud-native
applications. To this end, this survey is inspired to propose
a pipelined design and summarize the research domains
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Table 1 Typical Open-Source Projects in Cloud-Native Computing

from different views. It can help researchers and practition-
ers to further understand the nature of cloud-native appli-
cations. As shown in Fig. 1, we analyze the key problems
across the whole life cycle of cloud-native applications,
from the building state to the maintenance state. We
also discuss the performance metrics and the fundamental
necessities when developing cloud-native applications.

The rest of the survey is organized as follows.
Section II–VII introduces the foundation, performance
metrics, and the four states demonstrated in this roadmap.
Section VIII discusses the issues, challenges, limitations,
and opportunities of cloud-native. We conclude this arti-
cle in Section IX. We summarize the definitions of the
acronyms that will be frequently used in this article in
Nomenclature for ease of reference.

II. F O U N D AT I O N O F C L O U D - N AT I V E
C O M P U T I N G
In this section, we demonstrate the fundamental neces-
sities of cloud-native. From the perspective of clusters,
we demonstrate the central issue of the foundation and
general function modules that play critical roles when
building cloud-native applications. Widely used tools and
open-source projects in cloud-native are listed in Table 1
for ease of reference.

A. Hierarchical Structure of Infrastructure

A cluster is a set of computing nodes that are connected
to each other through fast local area networks. On top of
the physical nodes, OS-level virtualization techniques are
utilized to create VMs such that operating costs and down-
time can be minimized. By maintaining a pool of VMs, fast
provisioning of resources can be realized with cluster man-
agement software. Cluster management is always tightly

coupled with resource management and task scheduling.
K8s, as we have mentioned before, is widely adopted
across industries and has become a de facto standard. K8s
has the ability to manage nodes (including both physical
servers and VMs) with the module Node Controller,3 which
is responsible for node registration, keeping the nodes up-
to-date, and monitoring their health. In addition to K8s,
Mesos [20], Docker Swarm [21], and Hadoop YARN [22]
are also widely used cluster managers.

1) K8s: It is the most influential open-source platform in
the cloud-native ecology since its release in 2014. K8s
originates in Google’s Borg [10], which has been used
for managing containerized workloads in Google’s
inner clusters for more than a decade. K8s is a
distributed software deployed across nodes, whose
target is the automation of the deployment, man-
agement, and scaling of containerized applications
by efficiently managing heterogeneous resources.4

With the center being K8s, an open-source ecosys-
tem gradually forms to improve and facilitate the
management of cloud-native applications. In the ever-
growing K8s ecosystem, publishing, installing, remov-
ing, and upgrading cloud-native applications can be
managed with Helm.5 The traffic between internal
microservices within an application can be managed
with Istio,6 which is the most influential implementa-
tion of Service Mesh [23]. Istio extends K8s to estab-
lish a programmable, application-aware network by
taking Envoy7 as the proxy. The monitoring of nodes

3https://kubernetes.io/docs/concepts/architecture/nodes/
4The architecture of K8s can be found in the official document:

https://kubernetes.io/docs/concepts/overview/components/
5https://helm.sh/
6http://istio.io/
7https://www.envoyproxy.io/
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and applications can be realized with Prometheus8

and Grafana,9 while logging can be managed with
Kibana.10

2) Mesos: It is implemented in a two-level architecture.
The first level is a master resource manager that con-
trols which resources each framework scheduler owns.
In the second level, each framework scheduler, such as
Hadoop, MPI, and Mesos Marathon, is responsible for
scheduling specific tasks at the application level [20].

3) YARN: It manages Hadoop clusters. It consists of
clients, containers, resource managers, node man-
agers, and application masters. Here, the container
is defined as a collection of physical resources, such
as RAM, CPU cores, and disk on a single node. It is a
node manager that takes care of each node and man-
ages applications and workflows on that particular
node. When a job is submitted by a client, the cor-
responding application master negotiates resources
with the resource manager and requests a container
from the node manager [22].

4) Docker swarm: This is the native inbuilt orchestration
tool for Docker, which is called “swarm mode.” Docker
Swarm is composed of Docker nodes, Docker services,
and Docker tasks. There are two kinds of Docker
nodes, manager and worker, which are similar to the
master/worker in K8s. The manager, as the name
suggests, is responsible for maintaining the cluster
status, scheduling the services, and serving swarm
mode HTTP API endpoints. By contrast, the workers
are nothing but the instances of the Docker engine for
running Docker containers [24].

The following contents are mainly focusing on K8s
since, in cloud-native, many rigor progresses are achieved
based on K8s. Apart from the above cluster managers, it
is worth pointing out that there are orchestration frame-
works that extend the native capabilities of K8s to the
network edge. KubeEdge11 is a representative one. Edge
computing has a three-level hierarchy: cloud-edge-device
[25]. To take full advantage of this hierarchy, KueEdge
divides its components into two parts: CloudCore and
EdgeCore. CloudCore handles the communication between
it and the API server of a K8s cluster and communicates
with the edge nodes. EdgeCore is responsible for com-
municating with CloudCore and manages the containers
and services that are deployed on the edge devices.12 In
a recent project, KubeEdge is reported to stably support
100 000 concurrent edge nodes and manage more than
one million pods13 [26].

8https://prometheus.io
9https://grafana.com
10https://www.elastic.co/kibana/
11https://kubeedge.io/en/
12The architecture of KubeEdge can be found in the official docu-

ment: https://kubeedge.io/en/docs/kubeedge/
13In K8s, a pod is the smallest deployable unit that represents a

single instance of a running process. A pod encapsulates one or more
containers, storage resources, and unique network IP, as well as options
that govern how the container(s) should run.

On top of cluster managers, development tools, includ-
ing SDKs and middleware, are developed as the building
blocks for cloud-native applications. The hierarchical struc-
ture of hardware, OS-level software, cluster managers,
and middleware constructs the fundamental necessities for
building cloud-native applications.

B. Resource Provisioning and Management

Virtualization refers to a collection of techniques for
building and managing virtual resources on top of actual
hardware, with key benefits including high redundancy,
unified interfaces for users, and highly efficient resource
utilization. It is the infrastructural foundation of today’s
cloud-native orchestration at all scales. When provisioning
resources at a large scale, virtualization manages all low-
level and possibly heterogeneous resources such that better
global efficiency can be reached in comparison to the
traditional way of letting service users decide on their own
since service users often do not have access to the global
resource utilization information. Typical computation vir-
tualization technologies are summarized in Table 2.

There are multiple types of virtualization in the comput-
ing field, among which computation virtualization, stor-
age virtualization, and network virtualization are most
commonly used in cloud-native design. Due to the diver-
sity of resources that can be virtualized, orchestrating all
these heterogeneous types of devices is challenging. In
this section, we will review virtualization technologies of
different resources, their latest development, and the role
they play when building cloud-native applications.

1) Computation Virtualization: Computation virtualiza-
tion refers to creating an abstraction layer over compu-
tation, often in the form of VMs or containers. This is
the core of all cloud-native deployments. The properties
and efficiency of a specific virtualization technology deeply
influence the entire deployment.

From the perspective of where the hypervisor resides,
virtualization technologies can be divided into Hypervisor
Type 1 and Type 2. A hypervisor is a software layer that
controls the creation and execution of VMs. Type 1 hyper-
visors, also known as “bare-metal” hypervisors, directly
run on hardware, while Type 2 hypervisors rely on an
OS. Both hypervisors support unmodified guest OSs. Since
Type 1 hypervisors directly communicate with hardware,
they offer better performance and efficiency. Type 2 hyper-
visors, on the other hand, offer the best flexibility and
compatibility, at the cost of a small portion of performance
loss.

Another commonly used hypervisor in today’s server
hosting industry is KVM [27]. It is worth noting that KVM
cannot be simply put into Type 1 or Type 2 hypervisor.
While KVM runs in the Linux kernel and turns the kernel
into a Type 1 hypervisor, the entire set of solutions does
operate on an existing operating system, making it Type 2
by definition.
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Table 2 Computation Virtualization Technologies

Instead of running the entire OS, containers choose
another approach to virtualize computation resources. This
new approach has been highly successful in today’s cloud-
native scenarios due to its high efficiency [28]. Containers
share the OS kernel with the host OS but have a dedicated
userland filesystem. Moreover, the filesystem only contains
necessary binaries, libraries, and resource files, so the final
image could be as low as a few hundred kilobytes. In many
applications, having a completely isolated environment
and a dedicated kernel is, in fact, a huge overkill. Currently,
most cloud-native orchestration implementations, includ-
ing K8s, are based on Docker or other container engines
[8], [29]. This is mainly due to several unique advantages
containers possess, including simplicity, low overhead, fast
deployment, and ease of design and build.

2) Network Virtualization: Network virtualization is
another important level of virtualization in cloud-native.
With network virtualization, traditional switches and
routers are replaced with programmable devices, therefore
allowing smarter operation. In this section, we will make
a brief introduction to several key network virtualiza-
tion technologies in the cloud-native context, including
SDN, NFV, service mesh, and overlay networks, to under-
stand how they enable efficient and intelligent network
management.

SDN includes a set of techniques to decouple the
data plane and control plane to enable programmatical
a dynamical management of network forwarding devices,
such as routers and switches. Traditionally, network oper-
ators leverage white-label devices from vendors to run
their networks. This approach does not fit current quickly
developing cloud-native environments due to the inflex-
ibility and high price of vendor-made devices. A typical
SDN system consists of several controllers and more for-
warders. Traditional route or forward tables are replaced
by unified flow tables, which are dynamically calculated by
controllers and sent to forwarders. Forwarders then simply
forward or drop traffic by looking up relevant table items
from flow tables. The logically centralized control plane
provides good visibility of the entire network, easing the
management of network resources [30].

NFV is another layer of virtualization in networking
technologies. While SDN decouples the data plane and
control plane, NFV focuses on decoupling software and
hardware. With the quick development of computation

virtualization, using virtualized software to replace net-
work devices has become possible. Together with SDN,
there have been several solutions, including firewall [31]
and router [32]. Furthermore, CNF, a new cloud-native
aware trend of virtual network function, has emerged. It
is designed to run in containers instead of VMs, with the
advantages of cloud-native fully leveraged. To sum up, by
utilizing NFV and SDN, network operators such as ISPs
and cloud computing companies will benefit from reduced
cost and improved flexibility to keep up with today’s fast-
evolving cloud-based trends.

3) Storage Virtualization: Storage virtualization is the
technique of creating an abstraction layer over storage
devices, to provide large, fast, and redundant storage
pools across multiple hard disks. As I/O operations take
a large portion of the entire turnaround time, storage
virtualization deeply affects the efficiency of the entire
system. Furthermore, data redundancy and safety are
inherent requirements of cloud-native systems, which is
often offered by storage. We identify three major lay-
ers of storage virtualization: host-based virtualization,
storage device-based virtualization, and network-based
virtualization.

Host-based virtualization is building the storage pool on
the end host. An example of host-based virtualization is
LVM. LVM is installed onto the OS and creates a storage
pool using storage devices connected to the host. Device-
based virtualization moves the virtualization layer from
the OS to the device itself. A well-known example of
this is RAID. There have been multiple combinations of
RAID technologies (e.g., RAID-0, RAID-1, RAID-10, and
RAID-60), for different requirements in regard to speed,
redundancy, and other specialized needs. Finally, network-
based virtualization is often used in data centers. The
network-based storage pool is built as a dedicated cluster
of storage devices and is connected to the end host using
fast network links. As the storage cluster often lives in the
same data center as the hosts, optimal performance can
still be achieved. All these three solutions do not need any
modification on high-level applications, as they have the
same behavior as regular disk partitions. Therefore, good
compatibility can be guaranteed.

To integrate low-level storage systems into containers,
CSI14 is proposed and introduced since K8s v1.9. The CSI

14https://kubernetes-csi.github.io/docs/
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is a standard for exposing arbitrary low-level storage sys-
tems to containerized applications orchestrated by cloud
orchestration systems. To start using a new type of storage
system, developers of the storage system are able to create
a CSI plugin, without modifying the core of the cloud
orchestration system in use. This is helpful in customized
cloud-native deployments.

C. General Supporting Function Modules

In this section, we demonstrate the general function
modules provided by the K8s ecosystem that plays critical
roles in the building and managing of cloud-native appli-
cations.

1) Security: K8s is designed with several security mech-
anisms to ensure the safety and confidentiality of data and
resources within the cluster.

1) RBAC: It15 is a security feature in K8s that enables
system administrators to define specific access levels
and permissions for each user or group of users within
the cluster. With RBAC, it is possible to restrict certain
privileges to only authorized entities.

2) Pod security policies: K8s provides pod security policies
that restrict the behavior of containers running inside
the pods. They can prevent containers from executing
privileged actions and running as root. By default, K8s
also isolates pods from one another, which adds an
additional layer of protection.

3) Secret management: K8s offers a facility, named
secret,16 for securely storing and managing sensitive
data, such as passwords, certificates, and keys. The
secret data are encrypted at rest and in transit, and
access to this data is restricted using RBAC.

2) Performance: Since the performance of containeriza-
tion is mainly guaranteed by the underlying container
engines, here, we mainly discuss the performance of pod-
to-pod (container-to-container, pod-to-service, and so on)
communications.

While SDN and NFV offer flexible network environ-
ments, they focus more on low-level communication,
which is not easy to integrate with microservices. Ideally,
microservices should focus on application logic, rather
than low-level communications. In addition, with hun-
dreds even thousands of microservices cooperating with
each other, it is harder to manage network communications
as the number grows. K8s’s inbuilt network support is able
to provide basic network connectivity. Nevertheless, it is
more common to use third-party network implementations
that plug into K8s using the CNI APIs. Typical implemen-
tations include Flannel,17 Calico,18 Weave,19 and so on.
Flannel is the most popular implementation to configure

15https://kubernetes.io/docs/reference/access-authn-authz/rbac/
16https://kubernetes.io/docs/concepts/configuration/secret/
17https://github.com/coreos/flannel
18https://github.com/projectcalico/cni-plugin
19https://www.weave.works/oss/net/

Fig. 2. Sidecar proxies along with each microservice form a

mesh-like network.

a layer 3 network fabric for K8s. By using Flannel, each
node will be installed a binary called flanneld, which is
responsible for allocating a subnet lease to each node out
of a larger, preconfigured address space. The network built
by Flannel uses VXLAN and many other cloud integrations
for package forwarding [33]. Different implementations of
CNI are compared in [34], [35], and [36]. K8s also has an
inbuilt DNS such that Pods and Services can be discovered
and visited though their domain names.

Note that the implementation of CNI is mandatory for
building a working K8s cluster. However, to have reliable,
observable, and secure communication, the vanilla net-
work is far from enough. Under the circumstances, the ser-
vice mesh is proposed, which is a software infrastructure
working in the application layer for controlling and mon-
itoring internal, service-to-service traffic in microservice-
based applications [23]. Fig. 2 shows an illustration. A
service mesh provides dynamic discovery of services, intel-
ligent load balancing across services, security features with
encryption and authentication, and observability tracing
by leveraging a so-called Sidecar Design Pattern, where a
sidecar proxy is dynamically injected into each pod for han-
dling incoming requests. In service mesh, the control plane
manages and configures proxies to route traffic and collects
and consolidates data plane telemetry. Correspondingly,
the data plane is implemented as sidecar proxies. As we
have mentioned before, the envoy is the most popular
high-performance open-source implementation of sidecar
proxy.

3) Efficiency: DevOps, as a portmanteau of development
and operation, is a collaborative and multidisciplinary
effort within an organization to automate the continuous
delivery of new software versions while guaranteeing their
correctness and reliability [4]. With DevOps, development
and operation teams work together across the entire cloud-
native applications’ life cycle. DevOps is strongly connected
with CI/CD, which is a multistage pipeline of continuous
integration (build → test → merge), continuous delivery
(automatically release the code to repository), and contin-
uous deployment (automatically deploy the application in
production). DevOps has already become the cornerstone
of developing microservice-based cloud-native applications
nowadays.
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In the K8s ecosystem, KubeSphere DevOps is a powerful
CI/CD platform that has attracted much attention from
the industry [37]. KubeSphere DevOps provides CI/CD
pipelines based on Jenkins.20 It offers automation toolk-
its, including binary-to-image (B2I) and source-to-image
(S2I), and boosts continuous delivery across K8s clusters.
A key character of KubeSphere DevOps is that it scales
Jenkins Agents dynamically such that the CI/CD workflows
can be accelerated flexibly.

III. P E R F O R M A N C E M E T R I C S
By the top-down decomposition, the cloud-native archi-
tecture is mainly composed of the application layer, the
platform layer, and the infrastructure layer. Different layers
provide different types of services from different perspec-
tives. First, in the application layer, various softwares are
deployed as different services that can be accessed by
customers over the network. The performance metrics
related to the application contextual are latency, response
time, completion time, makespan, and so on. Then, the
platform layer provides the facilities and APIs to sup-
port the building and delivering of various services. The
performance indicators related to the platform layer are
scalability, stability, availability, and so on. Finally, the
infrastructure layer provides the raw computing, storage,
and network resources required by the service providers.
The main performance metrics related to the infrastructure
contextual are resource utilization, resource failure, energy
consumption, and so on. All in all, the service provision
should be determined by a single performance metric or
jointly considering multicriteria. We describe these perfor-
mance metrics in detail as follows.

A. Performance Metrics in Application Level

Various applications are encapsulated in different con-
tainers and provide services to customers by deploying
these containers to physical hosts in a cloud environment.
Benefiting from the convenience of installing and running
the application programs, in the application layer, the key
problem is to guarantee the QoS for applications that can
be measured by multiple performance metrics, such as
latency, response time, completion time, and makespan.
These performance metrics are very similar and are often
easily confused. However, in fact, they have different
meanings. In this article, we distinguish these performance
indicators and review the related work optimizing these
indicators.

1) Latency: It is usually referred to as the time between
when something happens and when it is perceived.
Some efforts presented in [38] and [39] take latency
as an important metric. For example, Zheng et al. [39]
extend K8s mechanisms to support multitenants at
the cost of introducing moderate latency and through-
put overheads.

20https://www.jenkins.io/

2) Response time: It refers to the time from the request
submission to the result return. Response time usually
consists of the transmission time of data required by
the request, the queuing time, the processing time,
and the result return time. Many works also con-
sider optimizing the response time. For example, Woj-
ciechowski et al. [40] extend the K8s mechanism to
schedule pod according to dynamic network metrics,
the goal of which is to reduce the application response
time.

3) JCT: It is the time from the start time of the entry task
in the job to the finish time of the last task. Different
from the response time, JCT mainly concentrates on
its processing time. Some efforts presented in [41],
[42], [43], and [44] explicitly consider the JCT.

4) Throughput: It is defined as the ratio of processed
requests to the total number of arrived requests
at the system. A higher throughput indicates that
many more requests are processed in unit time, and
much less response time is incurred by each request.
Hence, optimizing throughput essentially is to opti-
mize response time as well. Many works take the
throughput maximization as an optimization objec-
tive [45], [46].

5) Mobility: The mobility of terminals brings great chal-
lenges to service performance assurance. Specifically,
the service provision problem in the driver-less sce-
nario has attracted extensive attention from aca-
demics and industry. Many works explore a series
of problems of service provision in terms of service
placing, service scheduling, and service migration,
aiming at guaranteeing service performance in the
case of terminal moving. For instance, Chen et al.
[38] explicitly investigate the influence of terminal
mobility on service performance and design some
strategies to guarantee service performance.

6) SLO: It is a key performance indicator that defines the
level of service. It typically defines the minimum level
of service that a provider must deliver to its customers
and can be used to set expectations and establish
accountability. A number of works presented in [47]
and [48] try to guarantee SLO for an application.

B. Performance Metrics in Platform Level

PaaS provides all facilities and APIs to build and deliver
various services conveniently, which efficiently avoids the
tedious overhead incurred by downloading and installing
the required software. The metrics to measure the platform
service mainly include scalability, stability, reliability, and
availability. These metrics characterize the performances of
platform service from different perspectives. We describe
these metrics and review these related studies optimizing
these indicators in detail.

1) Scalability: It is the ability of a system to dynamically
adjust the amount of resources allocated to con-
tainerized applications according to their potential
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workload fluctuations, which ensures that the appli-
cations are supported with enough resources to
minimize SLA violations. Scaling can be performed
vertically, horizontally, or both [49]. At present,
some efforts presented in [49], [50], [51], [52],
and [53] explicitly consider horizontal autoscaling,
vertical autoscaling, and both. For example, in [54],
it can create many more container replicas to meet
more application resource requirements. In [55], it
reallocates the amount of resource to the existing
containerized application to best utilize the new hard-
ware resource capacity.

2) Stability: It is a system’s ability to keep a num-
ber of required properties (e.g., queue length and
waiting time) within a bounded region when the
system encounters some disturbances. Guaranteeing
the stability of a system is a fundamental issue to
ensure service performance. Therefore, some works
investigate system stability problems and design var-
ious container deployment or placement approaches
to guarantee service performance. For example, in
[56], an adapted reinforcement learning algorithm
is adopted to achieve horizontal and vertical elas-
ticities of cloud applications for increasing the flexi-
bility to cope with varying workloads and guarantee
performance stability. In [57], a two-step algorithm
is designed to solve the container deployment prob-
lem in a geodistributed computing environment. In
the first step, a reinforcement learning approach is
adopted to dynamically control the number of replicas
of individual containers on the basis of the application
response time. In the second step, a network-aware
heuristic algorithm is designed to place containers on
geodistributed computing resources. Its main goal is
to satisfy the QoS requirements of latency-sensitive
applications.

3) Reliability: It refers to the system’s ability to deliver
services without service disruption, errors, or signifi-
cant reductions in performance even when one or sev-
eral of its software of hardware components fail. Sys-
tem reliability is also a very important performance
metric. Many research efforts investigate the system
reliability problem and design different software and
hardware schemes to optimize this performance met-
ric. To improve the reliability of the system and reduce
makespan, a heuristic algorithm is proposed to bal-
ance load among VMs in [58]. To maintain reliability
and elasticity for the system, a dynamic scheduling
algorithm is proposed to balance the workload of VMs
in a cloud environment elastically based on resource
provisioning and deprovisioning methods. The above
works mainly concentrate on solving software compo-
nent failure to guarantee system reliability. Different
from these above works, other works concentrate on
solving hard component failure problems to guaran-
tee system reliability. De Santo et al. [59] predict the
disk drives’ failure and overlap the time of regular

data operation and data restoring to significantly
improve service reliability and reduce data center
downtime.

4) Availability: It is the proportion of time a system
is in a functioning condition. Along with scalability,
stability, and reliability, availability is also a prevail-
ing issue for platform service. To cope with possible
failure caused by the mobility of parked vehicles and
improve service availability, Nguyen et al. [60] design
the dual cost and utility-aware heuristic algorithm to
solve the problem of multireplica task scheduling in a
collaborative computing paradigm consisting parked
vehicles.

C. Performance Metrics in Infrastructure Level

IaaS provides the raw computing, network and storage
resources, and corresponding operating middleware soft-
ware to customers on demand. One of the main benefits of
IaaS is free from the burden of infrastructure maintenance.
In contrast to application as a service and PaaS, IaaS
mainly provides the resource service at the lowest level.
The performance metrics to measure the resource service
mainly include resource utilization (computation, storage,
and network), failure rate, interference, or energy. We
describe these performance metrics and review the related
research optimizing these indicators.

1) Resource utilization: It is an important performance
metric used to describe the percentage of a system’s
available resource, such as computation resource,
storage resource, and network resource, which is
occupied over an amount of available time (or capac-
ity). In recent years, some efforts presented in [61],
[62], [63], [64], and [65] explore resource planning
and resource scheduling problems with the maximiza-
tion of the CPU and RAM utilization. Specifically,
Beltre et al. [62] extend the K8s mechanisms to fairly
allocate multiresource (such as CPU, memory, and
disk) for containerized workloads of multitenants.
In [66], a storage service orchestration platform is
designed and implemented to support stateful appli-
cations. In [67], a workload orchestration frame-
work is proposed to match infrastructure owner and
tenants, aiming at optimizing the use of infrastruc-
ture while satisfying the application requirements.
Not only that, but the network traffic is also taken
as an optimization indicator [68], [69], [70]. For
example, Santos et al. [70], [71] design a network-
aware scheduler to automatically manage and deploy
containerized applications, aiming at reducing the
network latency.

2) Interference: In cloud-native environments, various
types of workloads are encapsulated in the form of
containers. However, the isolation of the container is
weaker than that of the VM. Multiple containerized
workloads (such as computing intensive and storage
intensive) colocated on the same server can interfere
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with each other, which seriously affects system per-
formance. The interference issue incurred by colocat-
ing different types of workloads becomes a pressing
issue. Therefore, many works presented in [41], [45],
[72], [73], and [74] explicitly consider the inference
between colocate containerized jobs. For instance, Fu
et al. [41] propose a container placement scheme
that balances the resource contention on the worker
nodes.

3) Energy consumption: It is the amount of energy used.
The significant amount of energy consumed by data
centers can incur high costs and environmental pollu-
tion. Moreover, the energy consumption problem is
also very important for resource-constrained termi-
nals due to their limited battery capacity. In recent
years, there exist research efforts on designing various
energy-efficient schedulers [72], [75], [76], [77],
[78]. For example, Chhikara et al. [75] propose
an energy-efficient container migration scheme to
migrate containers for reducing energy consumption.
Kaur et al. [72] design a scheduler to minimize energy
consumption and interference.

4) Cost: Currently, the big infrastructure service
providers, such as AWS, Azure, and Alibaba, mainly
adopt the pay-as-you-go payment model. Therefore,
the financial cost of renting infrastructure resources
is also a very import performance metric. In recent
years, some research efforts presented in [79], [80],
[81], and [82] take financial costs as an optimization
goal and find an optimal orchestration solution by
selecting diverse cloud services according to their
pricing models and computing capability. Their main
goals are to minimize the overall financial costs while
satisfying the QoS requirements.

5) Fault tolerance: It is the ability of a system to behave
in a well-defined manner once faults occur. Failures
could occur due to dynamic changes in the execution
environment. The failures in the IaaS layer or the
physical hardware have a heavily negative effect on
the system. Hence, it is import to design various fault
tolerance mechanisms to cope with this problem and
minimize the risk of failure. For instance, Kim et al.
[83] develop a new container storage driver to solve
the global failures and bundled performance problem.

IV. S E R V I C E B U I L D I N G
In the service building state, the key steps are: 1) architec-
ture selection and 2) code development and packing.

A. From Monolith to Microservices

Before the rise of the microservice architecture, many
traditional applications adopt monolithic architectures. In
this case, the application is deployed in the shape of a
single-tiered monolith, which combines different compo-
nents into a single program. Typical components are listed
as follows.

1) Business logic: The application’s core business logic,
for example, e-commerce websites, the logic of inven-
tory, and shipping management.

2) Database: The data access objects responsible for the
CRUD of data.

3) Interaction and presentation: The component respon-
sible for handling HTTP requests and responding with
either HTML or JSON/XML (for web services APIs)
objects.

4) Integration: The component responsible for the inte-
gration with other internal or external services though
message protocols or REST APIs.

With monolithic architectures, all components are tightly
coupled and run as a single service. As a result, any compo-
nent of the application experiences a spike in demand, and
the entire architecture has to be scaled. Besides, adding
or improving a monolithic application’s features becomes
complex as the code base grows. This greatly increases
the risk for availability since many dependent and tightly
coupled components increase the impact of a single failure.

To solve the above problems, the microservice
architecture is proposed, and it becomes the dominant
architectural style choice for service-oriented software
[3]. With a microservice architecture, an application is
built as independent components that run separately
as a single service. These services communicate via a
well-defined interface using lightweight APIs. Services are
built for business capabilities, and each service performs
a single function module. Since they are independently
run, each service can be updated, deployed, and scaled to
meet the demand for specific functions of an application
[84], [85], [86]. The microservice architecture brings
in many benefits, such as agility, flexible scaling, easy
deployment, and resilience. When developing cloud-native
applications, the primary task is to select an appropriate
architecture (monolith or microservice) based on specific
business logic.

B. Packing Microservices Into Containers

Microservices are usually packaged as container images
using container technologies such as Docker and then pub-
lished to an image registry. Containers provide a consistent
environment across different development, testing, and
production stages. In K8s, the basic building block, i.e.,
pod, is the smallest deployable unit. A pod contains one
or more tightly coupled containers that share the same
network namespace and storage. Microservices are often
deployed as individual containers within separate pods.
The most popular choice for deploying these container
images in K8s is Helm. Helm charts contain references to
the publicly accessible container registry in order to pull
the necessary container images. Nevertheless, certain com-
panies and organizations uphold their own private cloud
infrastructure. In such cases, accessing public container
image registries or the Internet from within the private
cloud is restricted. To deploy an application in such a
limited environment, it becomes necessary to bundle all
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Table 3 Representative Works in Service Orchestration

the required artifacts, including container images, Helm
charts, documentation, and so on, into an archive.

It is worth mentioning that if the cloud-native applica-
tion is published through serverless functions, the devel-
oper only needs to upload the code to the serverless
platform, and the containerization and orchestration are
automatically executed by the underlying middleware and
tools. Serverless computing is a method of providing back-
end services on an as-used basis [87]. A serverless provider
allows users to write and deploy code without the hassle of
worrying about the underlying infrastructure. A company
that gets backend services from a serverless vendor is
charged based on their computation and does not have
to reserve and pay for a fixed amount of bandwidth or
number of servers, as the service is autoscaling. Note that
despite the name serverless, physical servers are still used,
but developers do not need to be aware of them. Serverless
computing allows developers to purchase backend services
on a flexible “pay-as-you-go” basis, meaning that develop-
ers only have to pay for the services they use. Detailed
reviews of recent works on serverless computing will be
given in Section V-A3.

V. S E R V I C E O R C H E S T R AT I O N
Service orchestration is the automated configuration,
management, and coordination of multiple microservices
to deliver end-to-end services. Since microservices are
encapsulated in the form of containers, service orches-
tration is essentially container orchestration. As a popu-
lar open-source container orchestration tool, K8s is able
to automatically deploy a large number of containers
and coordinate them to work together in congruence,
thereby greatly reducing operational burdens. The key
technology to support service orchestration lies in effective
service placement and dynamic service scheduling [19],

[46]. In K8s, the scheduling and placement of containers
are performed by kube-scheduler. We illustrate the
workflow of the kube-scheduler as follows: 1) the kube-
scheduler maintains a queue of pods called podQueue
that keeps listening to the API Server; 2) when a pod is
created, the pod metadata is first written to etcd through
the API Server; 3) the kube-scheduler watches the
unbound pods from the etcd; it takes an unbound pod
from the etcd and adds it into the podQueue at each time;
4) the fourth step is that the main process continuously
extracts pods from podQueue and assigns them to the
most suitable servers; 5) the kube-scheduler updates
the binding information of the pod in the etcd; and 6) the
kubelet component running in the selected server, which
monitors the object store for assigned pods, is notified that
a new pod is in pending execution and it executes the
pod. Finally, the pod starts running on the selected server.
The more details can be further referred to [19, sec. 3.2].
For the research academia, there are also a lot of studies
about these two key technologies. The service orchestra-
tion solution is mainly affected by the characteristics of the
applications and the computational architectures. Hence,
these orchestration solutions can be classified based on the
type of applications and the computational architectures.
The subcategories match the following questions. Repre-
sentative works are listed in Table 3.

1) What types of applications are orchestrated in a
cloud-native system?

2) What computational architectures are used in the
service orchestration?

A. Application Types

Different types of applications have significantly distinct
characteristics, such as their QoS requirements, type, and
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Fig. 3. Service orchestration under different application types.

structure. These characteristics of the applications have
a significant impact on the service orchestration. A wide
range of applications from HPC, machine learning, batch,
web service, or serverless is handled in a cloud-native
system. In the following, we review these research studies
of service orchestration for different types of applications.
Fig. 3 outlines the structure of this section.

1) Machine Learning: As a subfield of machine learning,
deep learning has become a very popular research topic
due to its advancement in various applications. A stan-
dard deep learning development pipeline consists of model
training and model inference in two stages. These two-
stage tasks are characterized by unique and complicated
features. Specifically, the model training task is a long-
lived offline task, while the model inference task is a short-
lived online task. Moreover, these two-stage tasks focus on
different performance metrics, in which the model training
task focuses on achieving high performance and the model
inference task pays more attention to the response latency
and inference accuracy. Their unique characteristics and
different performance requirements impose some specific
challenges to orchestrating model training tasks and model
inference tasks. We comprehensively review and summa-
rize these studies related to model training task orchestra-
tion and model inference tasks, respectively.

a) Model training task orchestration: Model training
is the process of learning a model over a large dataset
using a machine learning algorithm. Due to increasingly
complicated models and larger datasets, model training
is an extremely time-consuming and resource-consuming
task. Thus, it is urgent to train deep learning models in a
distributed manner. Distributed training of deep learning
model is to train a neural network across multiple devices
or machines, thereby accelerating the training process. The
procedure of the distributed training of deep learning can
vary based on the types of parallelism model training. At
present, there are four types of mainstream parallel model
training: data parallelism [88], [113], [114], [115], [116],

model parallelism [89], pipeline parallelism [90], [117],
[118], [119], and mixed parallelism [91], [120]. In the
following, we illustrate these parallelism model training.

Data parallelism, as illustrated in Fig. 4, is to place mul-
tiple replicas of a model on multiple workers and divide
the datasets into many subsets to feed to these multiple
workers. These multiple workers simultaneously perform
the model training tasks and synchronize their training
results in the form of parameter servers or all-reduce and
so on. By data parallelism, the speed for model training
can be greatly accelerated, and the performance for model
training can be enhanced. For example, in [88], a novel
online preemptive scheduling framework is designed to
dispatch machine learning jobs to workers and parameter
servers to reduce the average JCT. Analogously, Albahar et
al. [92] present a heterogeneity-aware scheduler that can
efficiently collocate deep learning jobs on GPUs by exploit-
ing the predicting information of GPU memory demand
and JCTs. Its main goal is to improve the GPU resource
utilization and reduce the makespan. However, with the
increase in model complexity, a model with a large number
of parameters cannot be launched on a single worker.
Thus, model parallelism is proposed.

Model parallelism, as illustrated in Fig. 5, is to divide
a model into multiple disjoint partitions and place these
partitions on multiple workers. Since each worker only
has one part of the model, only one worker is performing
the model training task at any one time. One of the
problems for the model parallelism is the long training
latency incurred by the communication among multiple
workers. To address this problem, a novel parallelism
model training, called pipeline parallelism, is proposed.

Pipeline parallelism, as illustrated in Fig. 6, is to divide
a model into multiple stages and place multiple stages
on multiple workers. Besides, pipeline parallelism further
divides the datasets into multiple microbatches. Multiple
workers can process multiple microbatches simultaneously.
Thus, pipeline parallelism training can greatly reduce the

Fig. 4. Data parallelism.
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Fig. 5. Model parallelism.

training latency. For example, to achieve an efficient and
task-independent model parallelism, Huang et al. [90]
introduce a pipeline parallelism library to partition a
deep neural network across multiple workers and split
the datasets into minibatches. Finally, mixed parallelism
with data and model parallelism is proposed to reduce the
training latency and resource consumption. For example,
Wang et al. [91] design a job scheduling system that
enables machine learning jobs to be implemented with
data parallelism and model parallelism in clusters. The
proposed system greatly reduces the JCT and improves
accuracy.

b) Model inference task orchestration: Model infer-
ence is the service’s ability to make predictions on new
data based on a trained model. Model inference tasks
are usually deployed as online short-lived services (e.g.,
automatic driving and face recognition). How to deploy
and orchestrate model inference tasks has attracted much
attention in industry and academia. For industry, many
mainstream deep learning frameworks, such as Tensor-
Flow Serving [121] and MXNet Model Server [122], have
implemented the orchestration function for model infer-
ence tasks. For academia, there are also a lot of studies
about model inference task orchestration. These studies
mainly can be classified into two types: the individual
model inference task orchestration and the multiple model
inference task orchestration. For the single model inference
task orchestration, Liang et al. [123] and Gholami et al.
[124] design some optimization techniques to efficiently
orchestrate model inference task. However, the execution
of a single model inference task not only fails to meet
the requirement of application scenarios but also causes
a waste of resources. Thus, many researchers further
study multiple model inference task orchestration. They
design different heuristic-, modeling-, or prediction-based
mechanisms to orchestrate multiple model inference tasks
[93], [125], [126]. Specifically, Shen et al. [94] adopt a
heuristic approach to select the requests to be colocated
on the same GPU. First, they assign the optimal batch
sizes, given the latency requirement of existing inference

task requests. Finally, they establish the node runtime
cycles, aiming at maximizing the resource utilization while
satisfying the latency requirement. Analogously, Wu et al.
[93] colocate these model inference tasks where the total
of their peak GPU requirement does not exceed the capac-
ity and heuristically schedule the newly arrived model
inference task to the worker with the smallest completion
time, aiming at reducing the total delay. However, all of
the above studies mainly exploit the heuristic method to
orchestrate certain deep learning model scenarios at a
limited scale. The performance of these heuristic meth-
ods could dramatically degrade when the deep learning
models vary. Thus, these heuristic methods cannot be
applied to cope with dynamic colocation mechanisms for
managing the inference workloads. With the complexity
and dynamics of model inference tasks, many researchers
turn to learning-based methods such as multiarmed bandit
and reinforcement learning. For instance, Yeung et al.
[45] investigate the JCT slowdown problem caused by
the interference between colocated deep learning jobs.
To address this problem, an interference-aware resource
manager is designed to effectively colocate heterogenous
deep learning jobs for improving resource utilization and
job throughput.

2) High-Performance Computing: HPC jobs are usually
large workloads such as large-scale financial, scientific
computing, and engineering simulation. To execute these
HPC jobs, an amount of computing power, memory, and
network speeds tends to be required. HPC jobs are often
submitted to an HPC cluster and wait to be scheduled
by an HPC job scheduler. However, the existing HPC job
schedulers lack microservice support and container man-
agement capacities. Therefore, it is a challenge how to
efficiently support HPC workloads on K8s. In recent years,
there exist research efforts on efficiently orchestrating
HPC jobs on cloud clusters [127], [128], [129], [130].
These state-of-the-art studies on HPC job orchestration
can be divided to four categories: added functionalities to

Fig. 6. Pipeline parallelism.
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HPC workload managers [131], [132], [133], connector
between cloud and HPC [95], [134], [135], [136], cohab-
itation [98], [137], [138], and metaorchestration [139],
[140], [141]. For added functionalities to HPC workload
managers, it mainly extends HPC workload manager to
support container orchestrator for HPC application. For
example, Zhou et al. [95] and Misale et al. [96] inves-
tigate the problem of running HPC workloads efficiently
on K8s clusters and implement a plug-in to efficiently
schedule the HPC workloads. The benefit of this HPC
job orchestration approach is less intrusive. However, its
disadvantage is that the added functionalities are limited.
To address the shortcomings of added functionalities to
HPC workload managers, the connector between the cloud
and HPC is proposed. The connector enables to bridge
the gap between HPC and cloud systems and achieves
HPC job orchestration on the cloud platform. For example,
in [97], a scheduler plug-in for K8s is implemented to
efficiently schedule the HPC applications on cloud plat-
forms managed by K8s. In [142], a workflow management
system is implemented to schedule the containerized HPC
applications, such as nextflow, which greatly improves
the numerical instability incurred by variations across
computational platforms. The benefit of the connector is
nonintrusive and enables to exploit orchestration strategies
of orchestration platforms. However, its disadvantage is
that the network latency between the cloud and HPC is
high. Therefore, an HPC job orchestration approach, called
cohabitation, is proposed. The cohabitation is to coexist
HPC workloads manager and cloud orchestrators on an
HPC cluster. For instance, Beltre et al. [98] investigate the
service orchestration problem toward HPC workloads. To
address this problem, the authors modify the configuration
and setup of K8s to support HPC workloads and evalu-
ate the performance of HPC workloads. The cohabitation
has the advantage of fully exploiting the functionalities
of orchestration platforms. However, the cohabitation is
extremely intrusive. Therefore, an HPC job orchestra-
tion approach, called metaorchestration, is designed. The
metaorchestration approach is to implement an additional
orchestrator on top of the cloud orchestrator and HPC
workload manager. For example, in [143], a framework
called Kube-batch is designed to enable HPC workloads
execution on K8s. In [99], an open-source tool is designed
to manage the full life cycle of HPC workloads in cloud
architectures. In [100], a framework that is compatibility
with Prometheus is proposed to automatically deploy the
benchmarking workload for containerized HPC applica-
tions and analyze their performances. The advantage of
the metaorchestration approach is less intrusive. However,
its disadvantage is to increase the complexity of the archi-
tecture and the efforts of maintenance.

3) Serverless Computing: Serverless computing is a new
execution model of cloud computing, which is an integra-
tion of both FaaS and BaaS, allowing developers to focus
on the business logic without dealing with the underlying

servers. There are some key characteristics of serverless
computing, such as microservices architecture, automatic
scaling, and high availability. Specifically, serverless appli-
cations are often built using a microservice architecture,
where each function represents a small, independent piece
of functionality. This enables modular development and
easier maintenance. Benefiting from its advantages, server-
less computing recently attracted a lot of attention in both
industry and academia. However, the inextricable depen-
dencies between massive functions pose a great challenge
to serverless orchestration. Moreover, how to automatically
scale applications to response to demand and provide high
availability is also another challenge to serverless orches-
tration. To address these challenges, there are plenty of
related research efforts. In the industry community, several
open-source platforms and serverless computing frame-
works, such as Kubeless [144], OpenFaas [145], Open-
Whisk [146], or Fission [147], are designed to support
the serverless computing orchestration. These open-source
frameworks with different architectures enable them to
dynamically manage, scale, and provide different types
of resources for serverless applications. In the academic
community, some research efforts presented in [101] and
[102] design diverse scheduling schemes for serverless
applications. These strategies can roughly be divided into
two categories: centralized scheduling [103], [104], [105]
and distributed scheduling [106], [148]. For the cen-
tralized scheduler, Fan and He [101] present a double
exponential smoothing approach to calculate the optimal
number of pods for serverless applications. Analogously, in
[102], a serverless computing framework, called Pigeon,
is presented to schedule the FaaS function to prewarmed
containers. Moreover, the framework introduces a static
prewarmed container pool to cope with the burst func-
tion arrival. Both novelty mechanisms can greatly reduce
the response time for serverless applications and improve
the system’s performance. Moreover, Deng et al. [42]
investigate the influence of the composite property of
services on the scheduling scheme at the serverless edge.
To address this problem, a dependent function embedding
algorithm is designed to get the optimal edge server for
each function, aiming to minimize its completion time.
All of these approaches are centralized. The centralized
schedulers are vulnerable to a single point of failure and
high communication overhead. To address these problems
of the centralized scheduler, some distributed scheduling
strategies are proposed. For example, Wang et al. [106]
design a scheduler based on deep reinforcement learning
to dynamically make decisions on the number of functions
and their resources, aiming at making a tradeoff between
cost and performance.

4) Batch Jobs: More and more diverse tasks are running
on cloud data centers, of which batch jobs account for
a large proportion. There exist many works dealing with
batch job scheduling. These works are mainly carried
from the system implementation and algorithm optimiza-
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tion two aspects. For the works on system implemen-
tation, Gu et al. [107] design a cloud-native platform
called Fluid that can co-orchestrate the data cache and
deep learning jobs to improve the overall performance
of multiple deep learning jobs. Analogously, in [108], a
scheduling system based on the real server utilization and
a sliding window-based algorithm are designed to sched-
ule and reschedule batch jobs and, thereby, effectively
improve the resource utilization in K8s. For the works on
optimization algorithm, there are mainly three kinds of
methods to solve it: sophisticated heuristics, metaheuris-
tic algorithms [109], [110], [111], [112], and reinforce-
ment learning [149], [150]. The sophisticated heuristics,
such as fair scheduling [151], first-fit [152], and simple
packing strategies [153], are usually easy to understand
and implement. However, it needs manual adjustment to
gradually improve the algorithm. Therefore, metaheuristic
algorithms, such as GA or ant colony algorithm, are pro-
posed to orchestrate batch jobs. For example, Chen et al.
[109] adopt the metaheuristics optimization algorithm to
schedule batch jobs to achieve higher resource utilization.
In [110], a redundant placement problem for microservice-
based applications is formulated to be a stochastic opti-
mization problem. To address this problem, a GA-based
server selection algorithm is designed to efficiently decide
how many instances and on which edge sites to place
them for each microservice. Its main goal is to reduce
service execution latency and improve service availabil-
ity. Analogously, in [111], a stochastic hybrid workflow
scheduling algorithm is designed to jointly schedule offline
batch workflows and online stream workflows in cloud
container services. Its main goal is to minimize the cost
and improve resource utilization in cloud container ser-
vices. Moreover, Hu et al. [112] formulate the concur-
rent container scheduling problem to be a minimum cost
flow problem. To address this problem, an efficient solu-
tion is designed to lower the average container com-
pletion time and improve resource utilization. However,
the batch job orchestrations based on metaheuristic algo-
rithms cannot efficiently cope with the dynamics of the
batch jobs and the variety of the execution environment.
To address this problem, reinforcement learning methods
are adopted to handle dynamic orchestration problems
of batch jobs. For instance, Huang et al. [149] adopt a
deep reinforcement learning algorithm to schedule inde-
pendent batch jobs among multiple clusters adaptively.
Analogously, Gu et al. [150] propose a graph learning
approach to discover the insightful properties and patterns
of batch jobs. Based on these characteristics, batch jobs
can be better scheduled in a production cloud computing
environment.

It is worth mentioning that service orchestration for
various applications can be combined with cloud ser-
vice recommendation. This integrated approach stream-
lines the process of selecting and provisioning the right
cloud services based on specific requirements, optimiz-
ing resource utilization, and ensuring a cohesive and

Fig. 7. Service orchestration under different computation

paradigms.

well-orchestrated deployment [154], [155]. Specifically,
cloud service recommendations can be part of a larger
workflow that involves multiple services. Service orches-
tration ensures that these services are executed in the
correct sequence, automating the end-to-end process from
recommendation to deployment.

B. Cloud Types

Existing mainstream computing paradigms include
single-cloud, multicloud, and cloud-edge synergies. Dif-
ferent computing paradigms have different characteristics,
which have an important impact on service orchestration.
Plenty of research studies have investigated service orches-
tration under three different computing paradigms. We
categorize them by the mainstream computing paradigms
and overview them. Fig. 7 outlines the structure of this
section.

1) Single Cloud: The single-cloud paradigm is a new
service model that delivers complex hardware and soft-
ware services to external customers through the Inter-
net [109]. In order to improve the utilization of cloud
resources and reduce the response time of cloud service,
efficient cloud service orchestration is the key. Currently,
a large number of approaches are proposed to handle
service orchestration [63], [64], [73], [79], [80], [156],
[157], [158], [159], [160], [160]. These approaches can
be classified into two types: static heuristic-based service
orchestration [156], [157] and machine learning-based
service orchestration [64], [73], [158]. For static heuristic-
based service orchestration, various heuristic algorithms,
including bin-packing algorithms, GA, particle swarm opti-
mization, and so on, are adopted to orchestrate service in
certain workload scenarios at a limited scale. For example,
Wang et al. [156] formulate the placement of containers
to be a variable-sized bin packing problem. To address this
problem, an elastic scheduling algorithm for microservices
in clouds is proposed. Its main goal is to minimize the cost
of VMs while meeting deadline constraints. Analogously,
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Zhao et al. [157] design some heuristic algorithms to
schedule container cloud services to implement load bal-
ance and improve application performance. However, the
performance of static heuristic algorithms could dramat-
ically degrade when the system scales up. They cannot
cope with the increasingly diverse and dynamic work-
loads and environments. To address this problem, machine
learning algorithms, including reinforcement learning,
K-means, RNN, and so on, are accordingly employed to
orchestrate service. For example, in [73], a containerized
task scheduler employs K-means++ algorithms to charac-
terize the workload features and identify their behavior,
and accurately colocate heterogeneous workloads in an
interference-aware manner. This scheme greatly improves
resource utilization and reduces the rescheduling rate.
Moreover, in [64], a K8s scheduler extension that adopts
a machine learning algorithm to predict QoE and schedule
the resource based on the predicted QoE is designed to
improve the average QoE and eliminate overprovisioning
altogether in the cloud. Also, in [158], a self-adaptive
K8s scheduler (re)deploys these time-sensitive applications
by predicting their required resource in the cloud. These
machine learning-based service orchestration schemes can
build certain machine learning models for diverse and
dynamic workloads and environments and predict multidi-
mensional performance metrics. These schemes could fur-
ther improve the quality of resource provisioning decisions
in response to the changing workloads under complex
environments.

2) Multicloud: With the surge of cloud workloads,
the single-cloud paradigm cannot meet their various
requirements, such as resource requirements, cost require-
ments, and reliability requirements. Therefore, a multi-
cloud paradigm is proposed. The multicloud paradigm
enables resources among different clouds to be shared
to cope with a burst of incoming tasks. In addition,
the multicloud paradigm can efficiently improve service
reliability and reduce service costs. Although benefiting
from these advantages of the multicloud paradigm, the
heterogeneity of the underlying resources and services
for different cloud systems brings some new challenges
to service orchestration in the multicloud paradigm. To
cope with these new challenges, some related research
works about service orchestration in multicloud paradigm
[161], [162], [163], [164], [165], [166] are conducted.
Their main optimization objectives are service cost and
service performance. According to these two optimization
objectives, these research works can be divided into two
types: cost-optimal service orchestration and performance-
optimal service orchestration. For cost-optimal service
orchestration, Rossi et al. [161], Das et al. [162], and
Akhtar et al. [163] evaluate and select diverse cloud
services according to their pricing models and computing
capacity, and design various service orchestration strate-
gies to minimize the financial costs. For performance-
optimal service orchestration, Aldwyan et al. [164] adopt

a metaheuristic algorithm to continuously make elastic
container deployment plans in geographically distributed
clouds and aim to maintain performance while minimizing
operating costs. Also, Shi et al. [166] propose a hybrid
GA-based approach to deploy a new type of composite
application in multicloud. Its main goal is to optimize per-
formance and control the budget. However, these heuristic
algorithms rely on the prior knowledge of the system
and cannot cope with the high variable workloads. Thus,
Shi et al. [165] turn to the learning-based method. They
adopt deep reinforcement learning to dispatch the new
arriving requests for applications in multicloud, the goal
of which is to minimize the network latency and satisfy the
budget satisfaction.

3) Cloud-Edge Synergy: With the explosive growth of
data generated by the terminal devices of IoT, transmit-
ting these massive data to the remote cloud to process
commonly leads to significant propagation delays, band-
width, and energy consumption. It drives the centralized
cloud to sink its computation and storage resources down
to the network edge to process data, which is called
the cloud-edge synergy paradigm. The cloud-edge syn-
ergy paradigm has the characteristics of resource het-
erogeneity, device mobility, and connection uncertainty.
These characteristics bring some new challenges to the
service orchestration in the cloud-edge synergy paradigm.
There are plenty of researcher studies to investigate these
challenges [46], [75], [162], [167], [168], [169], [170],
[171], [172], [173]. Their optimization objectives mainly
include response time and energy consumption. Based
on their optimization objectives, we classify these studies
into two types: latency-aware service orchestration and
energy-efficient service orchestration. For latency-aware
service orchestration, Han et al. [46], Das et al. [162],
Sami et al. [167], Yan et al. [168], Wang et al. [170], and
Tang et al. [174] adopt Markov decision process, reinforce-
ment learning, deep reinforcement learning, and heuristic
methods to offload the containerized applications in cloud-
edge synergy paradigm. Their main goal is to optimize
latency. Specifically, in [46], a learning-based scheduling
framework for edge-cloud systems is designed to dispatch
service requests and orchestrate multiple microservices
instances, the goal of which is to improve the long-term
system throughput rate. Analogously, in [169], a network-
aware scheduler plugin is designed to place container-
ized applications on distributed cloud-edge clusters. The
placement strategy of these applications considers both
current network conditions and communication require-
ments between microservices, which is suitable for the
placement of time-critical applications. For energy-efficient
service orchestration, Chhikara et al. [75] adopt best-
fit algorithms to place the containers, aiming to reduce
energy consumption. Also, in [72], a competent controller
is presented to schedule containerized applications in an
edge-cloud system, aiming at minimizing interference and
energy consumption.
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Table 4 Representative Works in Service Operation

VI. S E R V I C E O P E R AT I O N
Service operation, which encompasses load balancing,
service migration, and resource autoscaling, is crucial
for maintaining a high-performing and efficient system
infrastructure. K8s abstracts a group of pods with ser-
vice objects. Services distribute requests to backend pods
through K8s components based on preconfigured load
balancing policies, such as round-robin, IP hashing, or least
connections. K8s supports automatic pod scheduling and
migration. By employing controllers, K8s maintains the
desired state of pods such that high availability is ensured.
In the case of node failure or maintenance, K8s migrates
pods to available nodes without service interruption. To
do this, K8s provides both horizontal and vertical scaling
capabilities. Horizontal scaling is managed by HPA, which
automatically adjusts the number of pods based on mon-
itored metrics. Meanwhile, vertical scaling is handled by
VPA, changing resource requests and limits for individual
pods based on their resource usage. By integrating load
balancing, service migration, and resource autoscaling
in the operation state, we can enable robust and effi-
cient service management dynamically and at scale. These
mechanisms establish a K8s operating environment, guar-
anteeing applications with high availability, scalability,

and reliability. Representative works are listed in
Table 4.

A. Load Balancing

Load balancing is a technique used to address the prob-
lem of workload imbalance across multiple containers. It
enables optimal utilization of resources, improves through-
put, and reduces response time and makespan. In cloud-
native environments, the primary goal of load balancing is
to prevent the overloading of a single container or cluster
while keeping other containers idle. Cloud-native applica-
tions with high throughput and parallel computing archi-
tectures require effective load-balancing techniques. One
such technique involves redistributing heavy workloads
from a single virtual server to multiple virtual servers,
ensuring optimal resource utilization. In Section VI-A1, we
will provide a comprehensive analysis of load-balancing
algorithms. Section VI-A2 introduces the current tech-
niques for implementing load balancing in cloud-native.

1) Algorithm Design and Analysis: Load balancing can be
divided into two categories: centralized and distributed, as
illustrated in Fig. 8. Centralized load balancing can further
be classified into static and dynamic algorithms based on
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Fig. 8. Algorithms for load balancing.

whether the algorithm incorporates prior knowledge of
the system. On the other hand, distributed load balancing
employs multiagent algorithms that offer greater flexibility
and scalability than centralized algorithms.

a) Static algorithms: In cloud-native environments,
static load-balancing algorithms are widely adopted due to
their ability to leverage prior knowledge of system states.
These algorithms, such as round-robin, first in, first out
(FIFO), and MIN-MIN, do not require detailed informa-
tion about the current workload running in the system.
Instead, they rely on factors such as CPU usage, memory
usage, storage availability, or network bandwidth utiliza-
tion. Implementing static algorithms in a cloud-native sys-
tem is generally straightforward. Heuristic algorithms play
a significant role in developing load-balancing strategies
for cloud systems under fixed conditions. For example,
Miao et al. [175] propose a static algorithm called APDPSO
that utilizes a particle swarm optimization method. They
treat the allocation of suitable hosts as a discrete optimiza-
tion problem. Similarly, Zhao et al. [157] propose a load-
balancing solution based on service performance. They
employ a statistical method to optimize the collaboration
problem heuristically.

While static load-balancing algorithms are efficient and
easy to implement, it is essential to consider server perfor-
mance and continuously monitor the current load status
to prevent exacerbating load imbalances during long-term
execution. Regular maintenance and adjustment of the
load-balancing algorithm are necessary to ensure optimal
performance and resource utilization.

b) Dynamic algorithms: Dynamic load-balancing algo-
rithms offer superior performance in adaptively execut-
ing load balancing, especially when dealing with sudden
changes in workload. They can effectively operate on
a cloud-native platform without prior knowledge of the
system or workload. These algorithms adjust the allocation
of resources dynamically based on real-time information,
such as server availability and network bandwidth utiliza-
tion, ensuring optimal resource utilization and reduced
response times.

Load balancing involves transferring tasks to appropri-
ate servers to alleviate the burden on overloaded servers.

One crucial aspect is designing an efficient scheduling
strategy to minimize the average load across all servers
and reduce the makespan of the system. Lu et al.
[176] propose a theoretical game algorithm that balances
tasks by offloading them to edge servers while ensur-
ing SLOs. Another approach to dynamic load balancing
revolves around resource allocation. Ebadifard et al. [58]
design a heuristic algorithm-based optimization algorithm
that evaluates overloaded, loaded, and balanced VMs to
achieve load balancing. However, these efficiency-focused
load-balancing algorithms may not be suitable for large-
scale VM environments.

To meet the requirements of reliability and elasticity in
large-scale systems, Kumar and Sharma [177] propose a
dynamic scheduling algorithm based on the last optimal
k-interval VMs strategy that balances workload through
resource provisioning and de-provisioning methods. This
algorithm effectively balances the workload of VMs in
a cloud environment through resource provisioning and
deprovisioning methods. Regarding load balancing among
microservices, Yu et al. [178] introduce a graph-based
model to analyze dependencies among microservices and
adopt a polynomial approximation method to solve the
QoS-aware load-balancing optimization problem. Network
traffic is another critical metric for monitoring the state
of cloud-native systems, often triggering load-balancing
operations. Huang et al. [179] address service unrelia-
bility and dynamic network traffic challenges by design-
ing a load-balancing strategy based on traffic allocation
consistency and DNS granularity, aiming to achieve an
approximate solution to the QoS optimization problem.
To efficiently route network traffic, Wang et al. [180] pro-
pose an approximation algorithm with a polynomial-time
complexity that follows a two-step process to implement
service deployment.

c) Multiagent algorithms: In large-scale clusters,
centralized load-balancing solutions can become time-
consuming due to the reliance on a single machine for
decision-making. These solutions gather system informa-
tion from the involved servers, which introduces delays
in the decision-making process. On the other hand, dis-
tributed load-balancing schemes offer advantages in terms
of scalability and flexibility, particularly in cloud-native
environments. Imbalanced workloads among heteroge-
neous servers in the cloud can result in performance
degradation within the cloud platform. To address this
challenge, Gutierrez-Garcia and Ramirez-Nafarrate [181]
design a distributed approach that focuses on migrating
VMs to achieve load balancing. Their approach outper-
forms the centralized load-balancing method. However,
it should be noted that collecting global information for
load-balancing decisions in each agent can still be time-
consuming. To tackle this issue, Menon and Kalé [182]
propose a distributed load-balancing scheme that leverages
partial information about the global state of the cloud
system. Their scheme involves two steps: global informa-
tion propagation and workload transfer. By utilizing partial
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information, the load-balancing process can be expedited
while still achieving effective load distribution. Another
proposed scheme, F-TORA, by Xu et al. [183], focuses
on task load balancing. It utilizes fuzzy neural networks
and game theory to optimize task allocation and resource
utilization. F-TORA aims to ensure timely and high-quality
services by intelligently distributing tasks among avail-
able resources. These distributed load-balancing schemes
offer advantages over centralized solutions in cloud-native
environments. They provide scalability, flexibility, and
improved performance by efficiently distributing work-
loads across servers or VMs. However, it is important
to consider the specific requirements and characteristics
of the system before choosing the most suitable load-
balancing scheme.

The advent of intelligent algorithms, such as rein-
forcement learning, has opened up new possibilities for
distributed load balancing. Reinforcement learning tech-
niques, including Q-learning and MARL, have gained pop-
ularity in this domain. Yao et al. [184] propose an MARL
framework that specifically addresses the dynamics of
arrival workload. This framework overcomes the limita-
tions of independent and selfish algorithms commonly
used in load-balancing schemes. By leveraging MARL,
the proposed approach enables agents to collaborate and
make coordinated decisions, leading to more effective load
balancing in dynamic workload scenarios. Asghari and
Sohrabi [185] design a multiagent deep Q-network with
coral reefs optimization (MDQ-CR) to minimize the energy
consumption of cloud computing. This approach combines
the power of deep Q-networks, a variant of reinforcement
learning, with coral reefs optimization, a nature-inspired
optimization algorithm. The combination of these tech-
niques enables efficient load balancing while considering
energy consumption as a critical factor. Houidi et al.
[186] utilize a GNN-based method to model the network
as a graph and apply MARL techniques to tackle the
load-balancing problem while scheduling traffic flow. By
representing the network as a graph, the authors cap-
ture the dependencies between nodes and leverage GNNs
to process and aggregate information effectively. MARL
techniques are then used to optimize load balancing and
traffic scheduling based on the learned graph represen-
tations. These studies highlight the application of rein-
forcement learning, particularly MARL, in distributed load
balancing. These intelligent algorithms provide a promis-
ing avenue for addressing load-balancing challenges and
optimizing various aspects, such as workload dynamics,
energy consumption, and traffic flow in cloud computing
environments.

2) Tools and Systems: The most widely used load bal-
ancing techniques possess several desirable characteristics,
including scalability, flexibility, low cost, simple deploy-
ment, and security. The load balancer allows the system to
adapt to dynamic workloads by scaling in or out as needed.
It should work seamlessly with various operating systems,

Fig. 9. Classification of service migration.

cloud environments, and VMs and can be easily deployed.
In addition, the load balancer should provide a secure
environment for the system and its users. Some popular
load balancing solutions include Nginx [212], a widely
deployed reverse proxy server, and HAProxy [213], a fast
and efficient reverse proxy software. Recent advancements
in load-balancing technology include Maglev [214], which
is able to balance sudden spikes in network traffic based on
ECMP rules. Maglev is Google’s production load balancer,
which fully utilizes multiple networking techniques to
achieve flexible and scalable load balancing. Specifically,
Maglev utilizes Google’s global backbone to announce IP
prefixes at the same cost so that BGP routers can provide
the first layer of load balancing. Then, IP packets are evenly
distributed among service endpoints, providing another
layer of load balancing. Since Maglev is entirely software-
based, adding more load-balancing capability is simple
as long as the backbone or service endpoints are not
saturated. CHEETAH [215] is another load balancer that
supports uniform load distribution with per-connection
consistency.

B. Service Migration

Service migration refers to moving the service applica-
tion from the original clouds or machines to the destina-
tion. The host transfers all system states, including the
memory, file system, and network connectivity profiles, to
the destination host, keeping conditions without changes.

1) Algorithm Design and Analysis: Service migration is a
critical aspect of cloud-native environments, encompass-
ing live migration, VM-based migration, and container-
based migration. Live migration offers minimal impact on
running services and preserves memory data. VM-based
migration focuses on optimizing the process through mod-
eling, prediction, and analysis. Container-based migration
benefits from efficient migration techniques and tools,
enabling seamless migration of container-based services.
Evaluating migration performance under various condi-
tions is essential. Service migration enhances the flexibility,
efficiency, and reliability of cloud-native systems. We intro-
duce service migration in the following aspects, as shown
in Fig. 9.

a) Live versus nonlive service migration: The main dif-
ference between live and nonlive migration is given as
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follows: nonlive migration requires the system to be shut
down during the migration process, while live migration
involves migrating running systems. Nonlive migration is
a simpler approach but does not support the preservation
of memory data, leading to memory data loss. On the
other hand, live migration offers the advantage of minimal
impact on running services, with low interruption time and
the ability to preserve data in memory. In addition, applica-
tions running in the system remain unaware of the migra-
tion. However, live migration can be a complex operation,
and the migration process may encounter interruptions.
Despite the challenges associated with live migration, it
is widely used in cloud-native environments due to the
flexibility it provides through its techniques [216].

Live migration predominantly employs two methods:
precopy and postcopy [187]. The precopy migration algo-
rithm involves iterative copy operations, which can some-
times result in the migration process failing to converge,
leading to prolonged overall migration time. On the other
hand, the postcopy migration algorithm offers a shorter
overall migration time. However, this approach can cause
page faults during the migration process, resulting in
degraded performance and reduced stability of the VM
[217]. To address the challenges of postcopy migration,
fault tolerance becomes necessary after a failure during
the recovery of a VM. One method, called PostCopyFT,
tackles this issue by utilizing an efficient reverse incre-
mental checkpoint mechanism. This approach resolves the
problem without increasing the total migration time [188].
In addition, an optimized postcopy mechanism based on
fabric-attached memories (FAMs) has been proposed. This
mechanism, which is FAM-aware and employs system-
level checkpointing, reduces both the migration time and
the system’s busy time [189]. These advancements in
live migration techniques aim to improve the efficiency,
reliability, and performance of the migration process. The
choice between precopy and postcopy methods depends
on factors such as migration time, system stability, fault
tolerance requirements, and the impact on the VM’s per-
formance.

b) VM-based versus container-based service migration:
Existing works have optimized the VM-based migration
process from various perspectives, including modeling
[190], [191], prediction [190], [192], latency [193],
[194], energy consumption [195], and so on. The dynam-
ics of workloads make live migration modeling challeng-
ing. Jo et al. [190] propose a machine learning-based
model to enhance the prediction accuracy, considering
critical characteristics of live migration. Khai et al. [191]
develop a two-phase migration optimization model aimed
at optimizing VM movement. The first phase computes an
optimal embedding strategy to reduce demands on other
virtual networks, while the second phase executes the
migration using this strategy [191]. Maintaining uninter-
rupted uptime is crucial for live migration, particularly in
large-scale systems with frequent infrastructure changes.
Ruprecht et al. [192] propose a live VM migration scheme

that minimizes the impact on users while addressing
version updates and security concerns. Bandwidth-aware
compression (BAC) focuses on the tradeoff between VM
compression and transmission during migration [193]. The
utilization of multipage compression techniques enables
an efficient migration scheme, reducing total migration
latency while maintaining performance comparable to
benchmarks. To enhance performance during live migra-
tion, Le and Nahum [194] propose a new multiPath TCP
method over WAN, which significantly decreases round-
trip latency and improves responsiveness and user engage-
ment. For energy consumption reduction and resource
allocation in cloud-native environments, Basu et al. [195]
adopt a reinforcement learning algorithm to make optimal
decisions regarding VM migration. These research efforts
aim to address various challenges and optimize live migra-
tion processes in terms of prediction accuracy, network
optimization, uninterrupted uptime, bandwidth manage-
ment, performance improvement, and resource allocation.

Container-based migration has gained popularity in
cloud-native environments compared to VM-based migra-
tion [196], [197], [198], [199], [218]. Cloud-native plat-
forms such as K8s and Docker Swarm offer efficient
handoff capabilities during container migration. To reduce
handoff latency during migration, Ma et al. [218] pro-
pose a framework that enables mobile users to offload
their tasks to edge servers through seamless migration of
container-based services. In order to provide users with
the freedom to choose cloud-native platforms, Benjapon-
pitak et al. [196] introduce a tool called CloudHopper that
facilitates the movement of containers between different
platforms. Live migration is widely utilized in cloud-native
platforms, but the cost of copying numerous memory pages
from a source to a destination server can be high. To
tackle this challenge, Sinha et al. [197] present mWarp,
a live container migration tool that efficiently remaps the
physical memory of containers. Xu et al. [198] propose an
efficient live migration system called Sledge, which inte-
grates images and management context to reduce migra-
tion overhead and improve QoS with minimal downtime.
The system employs a dynamic context-loading mecha-
nism to minimize downtime during migration. Although
containers boot faster than VMs, their behavior during
live migration under nonideal conditions remains a ques-
tion. Torre et al. [199] develop a testbed to evaluate
latency and downtime during live container migration
in adjusted conditions. They find that network overload
significantly impacts migration performance while stress-
ing a container within a host has minimal effect [199].
These advancements in container-based migration address
various challenges and offer solutions for efficient handoff,
provider flexibility, memory optimization, migration over-
head reduction, and evaluation of migration performance
in different conditions.

2) Tools and Systems: Service migration aims to solve
problems such as upgrade during service operations,
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Fig. 10. Techniques for resource autoscaling.

load balancing between clusters, and service deployment
between cloud vendors. The most popular hypervisors used
for migration in cloud-native are given as follows.

1) KVM is a module in the Linux kernel used to visualize
physical machines. It enables the host machine to turn
into a hypervisor running multiple isolated virtual
environments. KVM was first announced in 2006 and
merged into Linux kernel releases a year later [27].

2) Xen focuses on the virtualization technology that sup-
ports multiple cloud platforms. The most significant
feature of Xen is that it can support multiple guest
operating systems, for instance, Linux, Windows,
NetBSD, FreeBSD, and so on. It allows live migration
between multiple hosts seamlessly [219].

3) OpenVZ is a virtualization technology for Linux based
on an operating system level. It can support multiple
operating systems and allow live container migration
using checkpointing features with little delay [220].

4) Checkpoint/restore in userspace (CRIU) is a software
tool for Linux to freeze the system states by a check-
point technology. With CRIU, we can operate live
migration in user space, which is mainly distinctive
to other migration tools. During live migration, CRIU
can convert the frozen running applications into a
collection of files and then restore them in the check-
point frozen [221].

C. Resource Autoscaling

With the pay-as-you-go principle, a cloud vendor allows
applications to dynamically acquire or release their
resources on their demands. Thus, the application provider
can leverage the autoscaling method to efficiently utilize
the elastic feature of resources according to its budget
and profit. This section introduces autoscaling in three
categories, i.e., vertical scaling, horizontal scaling, and
hybrid autoscaling in Section VI-C1. Tools and systems are
presented in Section VI-C2.

1) Algorithm Design and Analysis: According to different
policies adopted by autoscaling, we summarize autoscaling
into three categories, as shown in Fig. 10.

a) Horizontal: Horizontal scaling is a widely adopted
approach for autoscaling in cloud-native environments,
enabling applications to dynamically adjust the number of

VMs to scale resources. Researchers have explored cost-
efficient methods [200], [201] and fast scaling approaches
[202], [222] in this domain. Cost-effectiveness is a cru-
cial consideration in implementing horizontal scaling
in cloud-native systems. Romero et al. [200] introduce
INFaaS that optimizes resource cost efficiency for machine
learning inference applications with evolving dynamic
requirements. Zhang et al. [201] propose a solution
for autoscaling in ML-as-a-Service using an LSTM net-
work for workload prediction and a heuristic method
for optimal instance provisioning decisions. The ability
to respond quickly with guaranteed response times is a
key requirement in cloud-native platforms. Somma et al.
[222] present a fast resource provisioning method con-
sisting of deploying containers responsible for applica-
tion services and autoscaling resource allocations among
containers. Shillaker and Pietzuch [202] design Faaslets,
a lightweight horizontal-scaling approach for containers
in clusters. In the context of virtualized network func-
tions (VNFs) in cloud-native systems, autoscaling tech-
niques have a significant impact on on-the-fly provisioned
infrastructure performance. Salhab et al. [223] propose
a framework to address resource provisioning on-demand
for the 5G core network through autoscaling of constrained
resources. Akhtar et al. [203] design a horizontal scaling
manager on virtualized infrastructure to balance traffic
workload for security network functions. These research
efforts contribute to addressing the challenges of cost-
effectiveness, fast scaling, and resource provisioning in
horizontal scaling for cloud-native environments, benefit-
ing applications with improved efficiency, responsiveness,
and performance.

b) Vertical: Vertical scaling, which involves adjusting
resources within an individual VM such as CPU, RAM,
and storage, allows applications to modify their service-
ability. Recent studies have focused on optimizing the
cost and efficiency of vertical scaling in cloud-native envi-
ronments [204], [205], [206], [207]. To achieve cost-
effective resource allocation in vertical scaling, Russo et al.
[204] propose MEAD that utilizes a prediction algorithm
based on Markovian arrival processes to handle bursty
workloads, along with an autoscaling module for resource
allocation. Lakew et al. [205] address the resource alloca-
tion problem by employing a fine-grained vertical scaling
technique that adapts to varying workloads in cloud-native
systems. Efficiency improvement in vertical scaling has also
been a focus of research. Sfakianakis et al. [206] introduce
LatEst, a vertical scaling strategy that predicts bursts in
serverless cloud systems and allocates resources efficiently
within minimal time. Tesfatsion et al. [207] aim to increase
resource usage and reduce energy consumption through
long-term optimization using vertical scaling techniques.
In the context of avoiding overloaded VNFs, Fei et al. [208]
propose an approximation algorithm that minimizes the
prediction error caused by VNF workload, followed by the
implementation of a vertical scaling technique to achieve
load balancing for VNFs. These studies contribute to the
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optimization of cost, efficiency, and workload management
in vertical scaling, enabling applications to adapt their
resource allocation dynamically within individual VMs in
cloud-native environments.

c) Hybrid: Hybrid scaling is a method commonly
used in cloud-native networks that combine horizontal and
vertical scaling mechanisms simultaneously. This approach
leverages the advantages of both horizontal scaling and
vertical scaling, making it more flexible and robust in man-
aging resource provisioning. To achieve efficient resource
provisioning in hybrid scaling, Shahidinejad et al. [224]
utilize the imperialist competition algorithm (ICA) and
K-means methods to evaluate the workload from users.
Based on these evaluations, they make optimal decisions
using a combination of horizontal and vertical scaling
techniques. Avgeris et al. [209] employ a control-theoretic
approach to establish a hybrid scaling method that maxi-
mizes the number of offloading requests in a cloud-native
edge network, aiming for efficient resource allocation.
In terms of minimizing resource costs, Mahmud et al.
[210] propose a framework that integrates a latency-
aware and deadline-satisfied strategy in a hybrid scal-
ing approach. This framework optimizes the number of
edge nodes required to meet application requirements
while minimizing resource expenses [210]. Schuler et al.
[211] introduce a reinforcement learning-based algorithm
to minimize resource provisioning in serverless environ-
ments. By adopting a hybrid scaling method, they dynam-
ically adjust resources to meet the dynamic demands of
users while optimizing resource allocation [211]. These
studies demonstrate the benefits of hybrid scaling in cloud-
native networks, allowing for efficient and cost-effective
resource provisioning by combining horizontal and vertical
scaling techniques.

2) Tools and Systems: The typical tools, plugins, and
systems that are used for autoscaling are listed as follows.

1) HPA [225] is a fundamental horizontal-scaling strat-
egy in the k8s framework, with the target of reallocat-
ing resources for the dynamic workload to satisfy its
demand. HPA can respond to the increasing workload
by running more Pods to support overloaded traffic.
On the contrary, due to the decreasing workload, HPA
releases its Pods to the configured minimum.

2) AWS Lambda function scaling [226] supports a com-
mercial scaling method in the service of serverless
function. Lambda can invoke a scaling strategy to
avoid an overloaded service supply when the incom-
ing traffic increases.

3) Knative Pod Autoscaler (KPA) [227] is an autoscaling
method supported in the recently popular framework
Knative. KPA offers the automated scaling of applica-
tions to fit incoming demand, even for the clusters.

D. Challenges and Research Opportunities

In cloud-native environments, load balancing, service
migration, and autoscaling are essential. Load balancing

optimizes resource utilization, prevents congestion, and
manages workloads efficiently by considering factors such
as resource allocation granularity, migration time, work-
load detection, and algorithm efficiency. Service migra-
tion in edge-cloud environments focuses on improving
QoS, ensuring network connection continuity, and overall
efficiency. Autoscaling in cloud-native platforms involves
determining the optimal monitoring interval, selecting
appropriate metrics for scaling decisions, and making accu-
rate and efficient decisions based on system states and
workload predictions. We summarize the main challenges
in these three key problems as follows.

1) Heterogeneous workloads: Different workloads have
different resource demands for computing and band-
width. The resource allocation granularity is a key
for the performance of load balancing. Allocating too
many resources leads to waste while allocating too
few resources causes congestion.

2) Congestion detection: Developing efficacious algo-
rithms to predict the unknown workload is a vital
issue in cloud-native. Efficient load detection can
avoid network resource congestion, especially in a
resource-constraint environment.

3) Configuration management: Migrating services often
involves configuring multiple components (e.g.,
databases and web servers) to work together seam-
lessly. Keeping track of configurations and ensuring
that they are properly migrated can be challenging.

VII. S E R V I C E M A I N T E N A N C E
Service maintenance collects and analyzes service and
system indicators, adjusts and develops strategies, and
performs fault recovery. K8s provides several techniques
to monitor its components and collect log information.
K8s monitors clusters through a built-in tool, heapster,21

which can deal with the metric collecting problem caused
by Pod migration effectively. Besides, there are also several
tools to collect log information, such as Logstash22 and
Filebeat.23 Though they all can effectively collect logs,
Filebeat consumes much less memory than Logstash. This
section is organized, as shown in Fig. 11. After introducing
the data collection, we describe the research status of data
analysis of the cloud and the evolution based on data
analysis. We summarize and classify the representative
works based on their main purpose, as shown in Table 5.

A. Data Collection

Data collection aims to collect metrics of cloud service
and physical infrastructure to guide strategy development.
There are mainly two aspects to collect and analyze the
performance of cloud service: first, monitor the whole
physical infrastructure of the cloud environment; second,
monitor the performance of each service. For the former,

21https://github.com/kubernetes-retired/heapster
22https://github.com/elastic/logstash
23https://github.com/elastic/beats
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Table 5 Representative Works in Service Maintenance

the healthy state of disks, the usage of memory, processors,
and network bandwidth are usually focused on. There
are lots of mature tools to detect the metrics of cloud
infrastructures, such as DX [248] and CA [249]. When
analyzing the performance of cloud services, there are
mainly two kinds of contexts: the temporal context and the
operation context [233]. The operation context means the
metrics directly related to the service at each level, from
software to the kernel, for example, the cache, processors,
and memory usage directly caused by the monitoring ser-
vice. Besides, the temporal context is also important. The
temporal context is the behavior of the services that have
a resource competition relationship with the monitoring
service. The challenge for collecting the operation context
is that it is difficult to trace the operation from layer
to layer (i.e., from service layer to kernel layer). DTrace
can solve this problem by instrumenting all code [250].
Besides, Ardelean et al. [233] propagate the operation by
system call getid. getid will ignore all the arguments passed
to it, but the kernel trace will record the arguments. Thus,
they use the arguments to inject operation information. As
for temporal context, Magpie [251] collects all the requests
across multiple nodes. However, it is not suitable for the
cloud environment with billions of users. To reduce the

Fig. 11. Organization of service maintenance.

overhead of Magpie, a common way is to use bursty tracing
[252], which just samples partial temporal context.

B. Data Analysis

Data analysis at the service maintenance state is to mine
the property and regular patterns of running jobs from
monitoring indexes and guide job allocation and scaling.
Generally, there are three main research directions for
data analysis: analyze and summarize the characteristics
of running jobs and anomalous events to provide a better
understanding of cloud services, predict the future state
of the cloud services, detect cloud service anomalies, and
find root causes automatically. We organize this section
as follows. In Section VII-B1, we try to answer the two
questions: what kinds of data are worth and suitable to
analyze and what kinds of analysis are useful for cloud
providers? In Section VII-B2, we introduce the research
status of system state prediction, which includes the pre-
diction of workload, prediction of the healthy state of the
disk, and prediction of service failures. In Section VII-B3,
we introduce the main challenges of anomaly detection for
cloud services and the research states for each challenge.

1) Summarize Cloud Services Characteristic: It is impor-
tant to summarize the characteristics of cloud systems and
the running cloud jobs, as it provides valuable insight to
improve the utilization of servers and QoSs. There are
two important questions to summarize the characteristics.
First, what kind of data would contain valuable informa-
tion and be suitable to be analyzed? Second, researchers
and cloud service providers are interested in what kind
of characteristics? For the first question, Hauswirth et al.
[253] claimed that the virtualization introduced by the
cloud-native environment provides a significant challenge
to understanding complete system performance, not found
in traditionally compiled languages. Thus, they propose
vertical profiling to provide profiling of all levels of the exe-
cution stack. Vertical profiling can just apply to Java-based
applications. To make it more general, Ardelean et al.
[233] extend it to applications based on any language.
Besides, code snippets [254], functional-level variance
[255], and control flow [256] are also suitable data. For
the second question, characteristic summarizations usually
concentrate on reducing the cost of providers and improv-
ing the QoSs and the healthy state of cloud systems. We
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list some of the most popular topics in the following: the
different and similar impacts of different failures [228],
the causes of failures [229], [230], the causes of low
utilizations [231], pricing strategy analysis [232], and the
analysis of time-varying mixture load [233].

2) Future State Prediction: The cloud system and ser-
vice future state prediction on the one hand can alarm
forthcoming failures and risks, so as to prevent them.
On the other hand, it can provide basic information for
task scheduling, autoscaling, service migration, and so on
to improve the utilization of cloud infrastructures. The
prediction of future system state focuses on three aspects:
the workload, the healthy state of cloud servers, and the
forthcoming service failures.

a) Workload prediction: Workload prediction focuses
on predicting future processor usage, memory usage, and
bandwidth usage, which can help to improve the QoS
and improve the utilization of cloud servers. There are
mainly two kinds of workload prediction methods: sta-
tistical methods and neural-network-based methods. For
statistical methods, AR [257], MA [257], ARIMA [258],
and Bayesian models [259] are used to predict the future
workloads. Among them, ARIMA is one of the most popu-
lar and classical methods, which assumes that the value at
present is affected by the trend information, the history
values, and some noises. One of the problems of using
ARIMA is that the workload of different jobs can have
different regular patterns, and it will lead to low accuracy
in predicting the workload by a single model. Thus, an
adaptive statistic model [260] is proposed to solve this
problem, which combines linear regression, ARIMA, and
support vector regression.

Recently, it has been reported that these statistic meth-
ods rely on strong mathematical assumptions (e.g., ARIMA
is based on the assumption that the time series should
be stationary after difference) and predict inaccurately
when the workload is highly variable [235]. Thus, many
researchers turn to neural-network-based methods, such
as RNN [261] and LSTM [262]. LSTM is one of the
classical time series prediction methods, which can cap-
ture both the long-term dependent information and the
short-term dependent information. However, these recur-
rent network-based methods give the same weights to
the workload in the observing window, while the his-
tory workload has a different impact on predicting work-
load. Thus, a method that combines LSTM and attention
mechanism is proposed to put different weight on his-
tory workload [234]. Besides, another problem of using
recurrent network-based methods is the forgetting effect
[263] when extracting long-term dependent information.
Thus, a method [235] combines top-sparse autoencoder,
and GRU is proposed to effectively extract the essen-
tial representations of workloads from the original high-
dimensional workload data and predict highly variable
workloads accurately.

b) Healthy state of cloud servers’ prediction:
Researchers in this domain mainly focus on disk drives’
failure prediction, as it can dramatically reduce data restor-
ing time to predict disk failures in advance. Disk drives’
failure prediction plays a very important and crucial role in
reducing data center downtime and significantly improv-
ing service reliability [59], as it alarms forthcoming disk
drives’ failure and the system can overlap the time of
regular data operation and the time of data restoring. At
the beginning, the task of disk drives’ failure prediction
is regarded as a binary classification problem, and lots
of classification models are used to predict the disk fail-
ure, such as Bayesian models [264], Wilcoxon rank-sum
test [265], support vector machines (SVMs) [266], and
ANN [267].

However, these methods have reported poor perfor-
mance in real-world environments. First, the status of disk
drives corrupt gradually and is not only either good or bad
[59] [236]. Thus, De Santo et al. [59] propose a method
that first divides the healthy status of disk drives into seven
levels by regression tree and then uses LSTM to predict
the disk healthy status in the future. The fine-grained disk
drivers’ healthy status supports a more flexible data-restore
mechanism, which can plan data restoring in advance
according to the different predictions of fine-grained disk
drivers’ healthy status. However, LSTM used in this work is
recurrent networks, and it is reported to be vulnerable to
the highly variant interval between triggering events and
hardware failures [237]. Thus, Sun et al. [237] use the
temporal convolutional neural network (CNN) to leverage
CNN’s characteristic of translation invariance, which can
make the CNN insensitive to various delays between trig-
gering and failure events in the time dimension. Second,
the data imbalance between disk failure data and normal
data hinders the models from predicting accurately. Thus,
Sun et al. [237] also designed a new loss function to
prevent the gradient from vanishing in front of the huge
data imbalance. Moreover, the above methods are based on
offline training and cannot adapt to the continuous update
systems [238]. Thus, Xiao et al. [238] propose a method
based on an online random forest algorithm to maintain
stable predicting accuracy for long-term usage.

c) Service failure prediction: Different from the above
sections, service failure prediction focuses on service QoS
and predicts the failure from the level of service. The
service failure can lead to penalty payments, profit margin
reduction, reputation degradation, customer churn, and
service interruptions [239]. Thus, it is worthwhile to know
the possible failure in advance. By doing so, the cloud
systems can take steps to prevent predicting failures.

Generally, service failure prediction can be divided into
three categories: rule-based methods, statistic methods,
and deep learning methods. Rule-based methods rely on
manually defined rules to predict failures, which are
limited to the human experience and its adaptability is
poor. The other two methods are data-driven methods;
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compared with rule-based methods, they are more flexible
and convenient.

The rule-based methods require experts to define spe-
cific rules in advance. For example, PerfAugur [268] is
designed to predict failures by specified features. Gen-
erally, these methods are accurate but only suitable for
specific scenarios.

The statistic methods include ARMA [269], ARIMA
[270], SVM [271], hidden semi-Markov model [272], and
so on. Among the classical statistic methods, Cavallo et al.
[273] have claimed that ARIMA forecasting has the best
compromise in ensuring a good prediction error, being sen-
sible to outliers, and being able to predict likely violations
of QoS constraints [274]. However, Amin et al. [274] point
out that the traditional ARIMA model cannot deal with the
high volatility of QoS properly. Thus, they propose a model
that integrates GARCH and ARIMA to solve this problem.

However, statistic methods rely on some mathematics
assumptions and cannot work well on high-dimensional
features and dependent sequence data. Thus, many
researchers apply deep learning models to service failure
prediction. Chen et al. [275] propose a deep learning
method-based RNN to predict task-level failures. However,
the drawback of RNN is that it will definitely forget the
information at long distances, which will degrade the
predicting accuracy. Although some modified RNNs, such
as LSTM [276], can mitigate this effect, the weights put
on each value in the observing window are unequal and
degrade as the distance goes farther. Thus, Gao et al. [277]
propose a method based on bidirection LSTM to further
improve the accuracy.

3) Anomaly Detection: In the cloud-native scene,
researchers detect anomalies from different aspects: com-
ponents’ anomalous usage (e.g., anomalous processor and
memory usage, network attacks, and disk drives’ failures)
and service anomalous QoS (e.g., high latency and low
throughput). It is worth noticing that though anomaly
detection and system state prediction both study different
component usages and QoS, the prediction is to infer the
forthcoming system states, while anomaly detection is to
discover the anomaly already happening. The organization
of this section is illustrated in Fig. 12. There are three
main challenges when detecting anomaly: labeled data
obtaining issues, high variance of cloud environment, and
alert storm. The labeled data obtaining issues are caused
by the requirements of expertise and experience and lots
of efforts to label the anomalous data. The high variance of
the cloud environment suggests that the detecting patterns
that the models learned from history data may become
outdated frequently. Besides, there are lots of APIs and
components in the cloud environment. Lots of them are
relevant to each other. When an anomaly occurs in one
part, the related parts will also be abnormal. Thus, when
an anomaly occurs, the system always suffers from an
alerting storm. This phenomenon suggests the necessity of
root cause finding.

Fig. 12. Organization of anomaly detection.

a) Data labeling issue: The anomalous data labeling
in the cloud is different from labeling tasks in many other
domains (e.g., image recognition), as it requires expertise
and experience to label the anomaly, which makes the
labeled data rarer. There are mainly four kinds of methods
to solve it: semisupervised learning [278], [279], [280],
[281], unsupervised learning [282], [283], transfer learn-
ing [240], [284], [285], and active learning [240], [241].
Semisupervised learning is suitable for datasets with a
small amount of labeled data. It first uses the labeled data
to train a primary model. After that, it uses the primary
model to assign pseudolabel to the remaining unlabeled
data. Then, it uses the data with pseudolabel and data with
labels to retrain the primary model. If we not only have a
dataset with a small amount of labeled data but also have
experts to label some data in the process of model training,
we can use active learning to further improve the detecting
accuracy. Active learning first uses the labeled data to train
a primary model. After that, it uses the primary model to
pick a small part of unlabeled data that need label most
and label the remaining data with pseudolabels. Then,
experts label the data picked by the primary model. Then,
it retrains the primary model with newly labeled data,
labeled data, and pseudolabeled data. However, if we have
no labeled data at all, we can use transfer learning or
unsupervised learning. Both of them rely on assumptions:
transfer learning assumes that there are some similarities
between the source dataset and target dataset, and unsu-
pervised learning assumes that the normal state has some
unified and invariant latent regularity that can be learned
by models. Autoencoder [286] is one of the most classical
unsupervised learning models in anomaly detection. It first
compresses the features into a smaller latent variable. After
that, it reconstructs the features from the latent variable.
In the training process, it makes the reconstructed features
as similar as possible to the original features. It assumes
that in the training process, the autoencoder can learn
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the reconstructing patterns of normal data, and when
the autoencoder meets anomalous data in the inferring
process, it will fail to reconstruct. By then, the autoencoder
can detect anomalies. As each feature in cloud anomaly
detection is time-dependent, recently, some researchers
combine the RNN with the autoencoder to capture the
correlation between features and the time dependence
[287], [288].

Generally speaking, the detecting accuracy of active
learning, semisupervised learning, unsupervised learning,
and transfer learning decreases one by one, as well as
the inputting of human efforts. Therefore, the choice of
model depends on the constraints and main objectives in
the practical environment.

b) Cloud environment high variance issue: The cloud
environment is highly variable. For example, Google and
Baidu reported that thousands of software changes are
deployed every day [242]. These changes will continu-
ously degrade the predicting accuracy of anomaly detec-
tion models trained by outdated data. Frequent model
retraining is costly and impractical. This problem calls for
lightweight and self-evolving algorithms. The data-driven
anomaly detection methods on the cloud scene can be
roughly divided into two streams: one is based on time-
dependent information and the other is based on the corre-
lation between different metrics. The former is to capture
the time-dependent normal pattern from time series and
compare the tested data with the normal pattern, while
the latter is to capture the normal correlation of different
metrics and compare the correlation of tested metrics with
the normal correlation. For the former anomaly detection
methods, Xu et al. [244] propose a method based on
online machine learning to mitigate the negative effect of
cloud environment variance. Besides, they also propose
a reduction method to further reduce the overhead of
retraining and inferring. For the latter anomaly detection
methods, Peng et al. [243] propose a method that uses
a cuboid structure to store the relationship of different
metrics, which significantly reduces the storing overhead.
Besides, they also propose an incremental learning method
suitable for cuboid structures, which significantly reduces
the retraining overhead. However, it is reported the incre-
mental retraining methods need lots of data points to
converge [289] and still need more data to reach a steady
state [290], which requires the cloud system to collect
enough data points before retraining the models. The data
collecting time is long (generally tens of days), and there
will be a period called initial time [242] when the accuracy
of the old model is low and there is no enough data to
apply the incremental learning. To reduce the initial time,
Ma et al. [242] propose a quick start method that can
work well without relying on a big amount of data as
incremental learning and report high accuracy.

c) Alert storm issue: The cloud system consists of
thousands of components with extraordinarily complex
dependencies [245]. Besides, business transactions in a
cloud-native system usually have a much longer calling

path with dozens of distributed microservices partici-
pating [246]. Thus, an anomaly in one part will trig-
ger lots of anomaly alerts in related components and
tasks calling the anomalous task, which is called Alert
storm [246]. This problem calls for root cause-finding
techniques. There are mainly three kinds of root cause-
finding techniques: manual-rule-based methods, causal
inference-based methods, and reconstruction-based meth-
ods. Manual-rule-based methods are based on expertise
and experience, which is accurate though human-work
costly and easily outdated. For example, Demirbaga et al.
[247] defined three kinds of anomaly causes: data locality
(i.e., data needed are not at the same server as a task),
resource heterogeneity (i.e., jobs are scheduled to machine
remaining few computing resources), and network failure
(i.e., network disconnection). They detect these anoma-
lies by defining the threshold of several metrics; when
the defined combined metrics exceed the thresholds, the
corresponding anomaly is detected. Due to the limita-
tions of manual-rule-based methods, researchers also pay
attention to data-driven methods. Some of them are just
suitable for specific anomaly detection methods, such as
reconstruction-based methods [282]. They can just apply
to the anomaly-detecting method-based feature recon-
struction. This root cause-finding method works by com-
puting the distances between every pair of reconstructed
features and original features. The greater the distance
is, the more the feature contributes to the anomaly. More
generally, causal inference-based methods can apply to
more kinds of anomaly detection methods though they
are more computationally expensive. CloudRanger [246]
uses conditional dependence to establish the topology of
cause and effect relationship among tasks and use the
topology to find the root cause. Sipple [291] uses an
integrated gradient method to compute the contribution
of each feature and find the root cause.

C. Failure Recovery

One of the main advantages of cloud-native solutions
lies in the possibility of automatically detecting and over-
coming failures. Failure recovery is made possible by mul-
tiple technologies leveraged in building a cloud-native
application. First, containerization technologies such as
Docker introduce almost zero overhead when launching a
container, making it possible to respawn a failed container
within seconds. Second, modern metric collection and
processing systems such as Prometheus [292] allow high
integration into cloud-native systems, further enabling
well-informed decisions. Third, with the fast development
of machine learning techniques, automatically made deci-
sions are becoming more efficient and effective. In this
section, we will study three main topics to recover from
an error: redundancy, failover, and repair.

1) Redundancy: Redundancy refers to deploying multi-
ple replicas of one resource (microservice, computation,
storage, and so on), preferably in multiple locations, in
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order to minimize disruption even if one or several of
them go down. This method has already been in use before
the container-based cloud-native era [293]. In addition to
improved reliability, distributing data from multiple loca-
tions can lead to reduced latency for end users. Kang et al.
[294] design and implement a custom controller in K8s
to select and use multiple replicas of VNFs, so high
processing ability can be achieved. However, making N

redundant copies means N -time of resource consumption,
which could be costly. Uluyol et al. [295] propose a novel
encoding mechanism to save encode data before saving
to multiple locations, instead of simply creating replicas.
Furthermore, the authors mitigated the increase in latency
introduced by distributed storage by rethinking how con-
sensus can be reached to offer near-optimal latency versus
cost tradeoffs.

2) Failover: Failover is the process of switching to a
backup server or other types of resource when disrup-
tion is detected. This process is based on the redundant
deployment discussed in Section VII-C1. By having proper
algorithms configured, the cloud orchestrator is able to
make efficient use of replicas to switch to other healthy
replicas. There are multiple optimization targets in the
context of failover. Aldwyan and Sinnott [296] identify
that failover between distributed data centers can lead to
degraded performance due to added network latencies and
propose a latency-aware failover strategy leveraging GAs
to take latencies into consideration when making a failover
decision. Jin et al. [297] build an SDN failover mechanism,
FAVE, which is aware of physical link failure, to be used in
virtualized SDN environments. Landa et al. [298] utilize
TCP retransmission metrics to declare network failure in
CDN networks and quickly reroute traffic through redun-
dant links to keep high availability.

3) Repair: Repair tries to fix the error instead of redi-
recting traffic to other service instances. Considering the
nature of today’s container-based cloud-native solutions,
repairing a failed service is likely to be more efficient
compared to failover into backup. Giannakopoulos et al.
[299] consider the complexity in modern cloud deploy-
ments and identify that such complexity could lead to
failure in deployments. They build AURA that transforms a
deployment into a directed acyclic graph, so whenever an
error occurs, it is possible to respawn only a small portion
of the entire deployment, thus keeping the repair process
efficient.

D. Challenges and Research Opportunities

Commonality and Special Individuality of Data Distri-
bution: In data-driven models; training, either for future
state prediction or for anomaly detection, there is a main
concern about whether to train only one model for all the
servers or train a single model for each server. On the one
hand, it is cost to train a model for each server. On the
other hand, it predicts inaccurately when training only a

model for all the servers, as every server has its own data
distribution. Thus, there is a tradeoff between efficiency
and accuracy.

Dynamic Evolution of Cloud Environment: The cloud
environment is dynamic. New missions arrive and old mis-
sions end at every moment. The models generally become
outdated and need retraining frequently. Designing a
lightweight retraining method can bring huge benefits.

VIII. O P E N I S S U E S A N D F U T U R E
D I R E C T I O N S
Cloud-native computing has been gaining a lot of attention
in recent years due to its ability to enable agile, scalable,
and resilient software systems. However, there are still
some open issues and future directions that need to be
addressed. In the following, we list some primary open
issues as follows.

1) Hybrid multicloud integration: As the popularity of
cloud-native computing continues to grow, many
organizations are using multiple cloud providers or
leveraging both public and private clouds. Besides,
the services and applications are deployed across the
continuum of cloud-edge-device. It is important to
develop better tools and techniques with interoper-
ability capabilities for integrating these environments,
including standardization of APIs and data exchange
while retaining control over sensitive private data
across multiple clouds.

2) User-friendly service shapes (forms): As cloud-native
is the foundation of today’s most web applications,
more user-friendly service shapes to erase the heavy
burden of application deployment for hybrid edge-
clouds are urgently needed. Serverless computing is
a good practice. It allows developers to focus on
their business logic without worrying about infras-
tructure management. However, serverless computing
is criticized for its long cold time, inefficient state
management, and other related issues. Better service
shapes and forms for wider application scenarios are
required.

3) Advanced automation and resource utilization:
Automation is crucial to realizing the full benefits of
cloud-native architectures. However, there is still a
lot of room for improvement in terms of automating
deployment, scaling, and maintenance activities,
especially for the distributed training of the heavy
big models. Another key benefit of cloud-native
computing is the ability to dynamically allocate
resources based on demand. However, this can also
lead to inefficiencies if not properly managed. There
is a need for improved tools and algorithms that can
optimize resource allocation and reduce waste.

4) Enhanced cross-platform observability and security:
Cloud-native architectures tend to be highly dis-
tributed and dynamic, which can make it difficult
to observe and troubleshoot issues. There is a need
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for better observability and monitoring tools to help
developers and operations teams quickly identify
and resolve problems. Security-related concerns are
becoming more critical, especially for hybrid mul-
ticloud scenarios. There is a string need for bet-
ter security mechanisms that can effectively protect
against cyber threats, especially as attacks become
more sophisticated.

In response to the above challenges, there are some
future research directions that can be investigated.

1) Cross-cloud federation and interoperability: To provide
interoperability and data portability across service
providers in a hybrid multicloud environment, future
research could investigate methods to enhance cross-
cloud federation, enabling seamless communication
and data exchange between applications deployed
in geographically distributed servers. Particularly, it
is encouraged to study the seamless integration of
edge computing and cloud-native architectures. This
includes optimizing communication between edge
devices and the cloud, developing edge-native appli-
cations, and addressing latency and reliability chal-
lenges in edge environments.

2) Autonomous cloud-native systems: To provide
advanced automation in cloud-native architectures,
future research is encouraged to explore the concept
of autonomous cloud-native systems that can self-
manage, self-heal, and optimize resource usage
based on dynamic workloads. This involves research
in autonomic computing, machine learning, and
AI-driven automation.

3) Resilience engineering for cloud-native systems: To
enhance observability and security, deeper knowl-
edge of resilience engineering adapted to cloud-native
computing is urgently needed. This might include
research in chaos engineering, fault tolerance mecha-
nisms, and disaster recovery strategies in the face of
failures, attacks, and unpredictable conditions.

4) Green computing in cloud-native architectures: Further
development of environmentally sustainable practices
in cloud-native computing is of great importance for
improving resource utilization and reducing energy
consumption. This includes optimizing energy con-
sumption, reducing carbon footprint, and developing

green computing metrics for evaluating the environ-
mental impact of cloud-native applications.

5) Multimodal fusion in cloud-native LLMs: Large lan-
guage models (LLMs) have demonstrated substantial
commercial value across diverse industries, showcas-
ing their transformative impact on various applica-
tions. It is promising to design and develop techniques
for efficient fusion of multimodal information (text,
image, and audio) within LLMs deployed in cloud-
native architectures, considering data storage, pro-
cessing, and feature representation challenges.

6) Quantum-based cloud-native computing: Although still
in its early stage, quantum computing has demon-
strated great commercial value in many cross-
disciplinary scenarios. Future research could inves-
tigate the implications of quantum computing on
cloud-native architectures. It is promising to focus
on adapting applications and algorithms for quan-
tum computing, addressing security challenges, and
exploring the integration of quantum resources in
cloud-native setups.

In summary, while cloud-native computing has come a
long way, there are still many open issues and future direc-
tions that need to be addressed to fully realize its potential.
By continuing to innovate and address these challenges,
we can create more efficient, secure, and scalable software
systems for the future.

IX. C O N C L U S I O N
Cloud-native, as the most influential principle for web
applications, has attracted more and more researchers and
companies to get involved in studying and using it. This
survey attempts to provide possible research opportunities
through a succinct and effective classification. We present
the research roadmap of cloud-native from the perspective
of services computing. Specifically, we divide the develop-
ment of cloud-native applications into four states: build-
ing, orchestration, operation, and maintenance. State-of-
the-art research works and industrial applications are
provided. We attempted to provide some enlightening
thoughts on the research of cloud-native computing and
services computing. We hope that this article can stimulate
fruitful discussions on potential future research directions
on this topic.
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