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Abstract—Multi-access edge computing (MEC) is a promis-
ing architecture to provide low-latency applications for future
Internet of Things (IoT)-based network systems. Together with
the increasing scholarly attention on task offloading, the problem
of servers’ resource allocation has been widely studied. The lim-
ited computational resources of edge servers (ESs) cannot meet
the different demands of terminal entities (TEs). This makes it
a challenge to efficiently schedule computational tasks on ESs.
In this paper, we consider a MEC resource transaction market
with multiple ESs and multiple TEs, which are interdependent
and mutually influence each other. This paper aims to inves-
tigate the dynamic tasks allocation problem between TEs and
ESs and to meet the optimal benefits for both parties in MEC
system. However, this many-to-many interaction requires resolv-
ing several problems, including task allocation, TEs’ selection on
ESs and conflicting interests of both parties. A bilateral game
framework is applied to tackle the tasks allocation problem by
modeling the problem as two noncooperative games: the sup-
plier and customer side games. The existence and uniqueness of
the Nash equilibrium in the aforementioned games are proved.
A distributed task outsourcing algorithm (DTOA) is designed to
determine the equilibrium. Our simulation results have demon-
strated the superior performance of DTOA in increasing the
ESs’ profit and TEs’ payoffs, as well as flattening the peak and
off-peak loads.

Index Terms—Bidding mechanism, Internet of Things (IoT),
multi-access edge computing (MEC), Nash equilibrium, nonco-
operative game, task outsourcing.
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I. INTRODUCTION

THE INTERNET of Things (IoT) is a system of interre-
lated tens of billions of resource-hungry terminal entities

(TEs), such as, sensors, wearable devices and unmanned aerial
vehicles, which transfer data over a network with little or no
human intervention. With the development of TEs and wire-
less networks, the demand for low-latency computing services
has been growing exponentially. This paves the way for the
development of Multi-access edge computing (MEC).

Multi-access edge computing (MEC) enables a powerful
cloud at the edge of the network. MEC decentralizes networks
and allows any enterprise or mobile operator to place a cloud
at the edge, adjacent to the user. Fig. 1 describes a MEC
communication network in IoT, where edge servers (ESs) are
deployed densely near TEs. In the MEC paradigm, ESs are
placed at the edge of the network so that computing services
can be deployed on them for fast execution [1]. Since with
the limited computation capabilities and battery lives, TEs are
prone to offload computationally intensive tasks (e.g., program
execution) onto ESs (e.g., 4G/5G base stations), even though
TEs will be charged for the computing service. For ESs, they
are expected to provide computing services in parallel, which
would accelerate the speed of task processing and alleviate
offloading delays.

However, to take full advantages of the computational
resources of ESs, the tasks of TEs need to be appropriately
allocated [2]. Task outsourcing has been employed as an effi-
cient paradigm that can accommodate as many on-demand
tasks as possible. Its principle is to offload the TE’s tasks to
the ESs appropriately according to the load of the ES at each
time slot. Specifically, TEs can choose different ESs based
on their real-time and cost requirements. ESs need to accom-
plish more tasks while meeting the TEs’ time requirements.
One of the main challenges of task outsourcing is to con-
sider the interests of both parties, i.e., ESs and TEs. On the
one hand, ESs strive to attract more TEs to use their com-
puting resources and may raise the prices. On the other hand,
a rational TE will figure out an optimal task allocation strat-
egy that can get sufficient computing resources from ESs at
a lower cost. There is a conflict of interest between ESs and
TEs. Therefore, the problem about how to satisfy the interests
of ESs and TEs remains to be solved. Game theory can be
employed as an effective tool to model the interests of two
or more conflicting individuals in a trading market and also
to model load balancing in distributed systems [3], [4]. It is
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Fig. 1. The MEC network scenario in IoT.

proved that the Nash equilibrium solution offers a Quality of
Service guarantee for the TEs [5].

The MEC network is similar to a real competitive market, in
which a wide range of TEs can be grouped into virtual clus-
ters and compete for the ESs’ wireless resources. They are
interdependent and mutually influence each other. The sched-
uler, as a key element of task outsourcing, is the third party in
the model that collects all the information (pricing and demand
profiles) from ESs and TEs. The information is fully integrated
and the ESs and TEs are precisely matched with each other
based on demand, so that the solution of the model can be
globally optimal. The interactions of ESs and TEs are illus-
trated in Fig. 1, below. Several base stations with ESs also
compete with each other to win more TEs. The ESs can com-
municate with the TEs via a scheduler and inform them of
their real-time service prices. Through the scheduler, TEs can
participate in ESs’ selection, and make wise decisions regard-
ing their daily computing resources consumption. In general,
the computational resources of an ES are limited, but are rel-
atively sufficient for the requests of a TE. One ES can serve
a certain number of TEs. Demand submitted by TEs is usu-
ally responded by ESs immediately. Therefore, on this basis,
it is assumed that the computational resources of the ESs are
sufficient for a limited number (less than 2000) of TEs [6], [7].

In dynamic games, there are many different models that seek
Nash equilibrium solutions in different ways. In this paper,
considering the complex resource supply and demand relation-
ships and interaction processes between multi-ES (suppliers)
and multi-TE (customers), we apply a bilateral game frame-
work between ESs and TEs to model the task outsourcing
problem as two non-cooperative games. These two games are
interrelated and play out simultaneously. In the first game, the
supply function bidding mechanism is employed to model the
noncooperative game among ESs. In the proposed scheme,
each ES, with limited or idle resources, submits a bid to
reveal the available capacity “supplied” to the market. Then the
scheduler collects these bids and computes a service price to
clear the market so that the supply of the resource to be traded
equals the demand. In particular, all TEs are charged the same
service price at one time slot. The scheme can maximize the
profits of ESs. In the second game, in order to reduce costs,
TEs determine the amount of assigned tasks for each time slot
based on the price of that time slot. If the price of one time

slot is high, there would be fewer tasks assigned, and if the
price is low, there would be more tasks.

In a specific MEC scenario, the MEC system has limited
resources for computing, thus the computing and communica-
tion load pressure of edge base stations is relatively high. Thus,
effective resource allocation is particularly important. We pro-
pose a new effective scheme to allocate computing resources
which makes the resource utilization improved in the entire
MEC systems. This framework can encourage TEs to assign
fewer tasks during peak times or shift some tasks to off-peak
times, which flattens the demand curve by peak clipping or
valley filling.

In summary, the contributions of this paper are:
• The bilateral game framework is applied to model the

market transactions of computing resources between
multiple TEs and multiple ESs in the MEC system to
maximize the profit of both TEs and ESs in the system.

• It is the first work that applies the supply function bid-
ding mechanism to the MEC application scenario. Each
ES first submits its bid to reveal the available capacity
“supplied” to the market, and then the TEs determine the
optimal demand profile based on the ESs’ bids.

• The existence of Nash equilibrium is proved theoreti-
cally. Then, the distributed task outsourcing algorithm
(DTOA) is proposed to solve the optimal demand and
bidding strategies such that all devices converge to the
Nash equilibrium.

• Simulation results demonstrate the superiority of DTOA
in improving resource utilization. The DTOA not only
achieves the maximization of bilateral interests, but also
reduces peak loads by shifting load demand to off-peak
periods.

The remainder of this paper is organized as follows. In
Section II, the related work about task outsourcing in MEC is
introduced. Section III models the task outsourcing problem in
the ESs’ and TEs’ sides. In Section IV, the DTOA is designed
to compute the Nash equilibrium in both sides. Section V
presents simulations showing the performance of the new
approach using DTOA. Finally, conclusions are presented in
Section VI.

II. RELATED WORK

In recent years, significant attention has been devoted to
task offloading and resource scheduling in MEC networks [8],
[9], [10], [11], [12]. Hu and Li [8] utilized a mixed- inte-
ger nonlinear method to obtain a request strategy of shorter
response delay. To achieve minimal power consumption on
average of time and guarantee stability in request queue in
a multi-tiered fog computing system, Gao et al. [9] modeled
dynamic offloading using a stochastic network optimization
approach. But there were inevitable prediction errors in the
results. To ensure the requirement on task processing delay,
a partially observable offloading approach was proposed by
Xie et al. [10]. This approach meanwhile optimizes energy
overhead for the devices. However, relatively high time com-
plexity exists in this scheme compared to our work, however.
To balance the response latency and energy consumption of
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fog devices running multiple applications, Jiang et al. [11] con-
sidered an end-to-end runtime scheduler. Simulation results of
a real platform demonstrate the effectiveness of the frame-
work. For the problem of resource allocation in vehicular
networks, a new software-defined networking architecture was
proposed by Goudarzi et al. [12]. It obtains elastic process-
ing power for dynamic route calculation and real-time vehicle
monitoring. However, the energy model is weak. The above
proposed approaches do not consider either the simultaneous
optimization of the benefits of TEs and ESs or the matching
problem between TEs and ESs.

In addition to optimization goals such as reducing task
latency and energy consumption similar to the above work,
much of the work was dedicated to optimizing the profitability
of TEs and ESs. Apostolopoulos et al. [13] proposed a novel
method for determining the optimal data offloading amount for
each user in a multiple MEC server environment, considering
risk-seeking and loss-aversion of users. The non-cooperative
game between users formulated by the authors achieves a Nash
equilibrium. When using the blockchain in the MEC system,
to maximize the average profit of all miners, Du et al. [14]
utilized the asynchronous advantage actor-critic deep rein-
forcement learning algorithm for resource allocation. The
proposed algorithm has a low complexity. The paper does not
consider the profitability of the server, which is part of the eco-
nomics. Yuan et al. [15] believed that TEs would leave some
time for local pre-processing before requesting offloading
services. A computational offloading strategy based on a queu-
ing model was proposed to maximize the revenue of the ES.
Experiments demonstrated the superiority of this scheduling
system in reducing latency as well. In a single-ES and multi-
TE MEC scenario, Tao et al. [16] modeled the interaction
process between the two parties as a Stackelberg game. The
utility of both the ES and the TEs is improved. However,
multiple ESs is a more common scenario that is not consid-
ered. Many works have explored the computational offloading
problem in multi-server and multi-user scenarios [17], [18].
In [19], Lee et al. proposed a distributed learning resource
management mechanism for multiple ESs and multiple TEs.
Federated learning was considered to achieve information
security sharing. They employed a Stackelberg game to study
the economic benefits under this mechanism. The benefits of
all ESs and TEs are maximized when the game is balanced.
Most of the above works are direct matching of ESs and TEs.
However, this may only accomplish the local optimum.

Due to the imbalance between the ESs’ computing resources
and the TEs’ demands, it is difficult to schedule appropriate
computing tasks to ESs. Thus, the matching problem between
multiple ESs and multiple TEs becomes a key issue. To solve
the problem of data center work allocation in cloud com-
puting systems, Kishor et al. [20] proposed a game-theoretic
solution that achieves latency and energy efficient load bal-
ancing. Zhang et al. [21] modeled the matching relationship
between ESs and TEs as a commodity trading by apply-
ing a multi-round sealed sequential combinational auction
mechanism. In [22], the authors studied task offloading in
vehicular MEC environments and modeled the interactions
between edges and tasks as a matching game. They further

Fig. 2. Diagram of a resources transaction market.

developed two standalone heuristic algorithms to minimize the
average delay while taking the energy consumption and vehi-
cle mobility constraints into consideration. In the offloading
scenario with multiple users and multiple computing nodes,
Wu et al. [23] proposed a decentralized offloading strategy
based on energy-efficient bilateral matching. This method out-
performs the benchmark scheme in terms of user fairness. A
three-tier IoT fog network was proposed in [24], in which all
fog nodes, data service operators and data service subscribers
are jointly optimized to achieve the optimal resource allocation
in a distributed fashion.

Furthermore, authors in [25], [26] adopted a price-based
mechanism to design efficient resource allocation in a MEC
network. For example, [25] proposed a price-based distributed
method to manage the offloaded tasks from users. Wherein,
edge cloud sets prices to maximize its revenue and each user
makes an optimal decision to minimize the cost. The work
in [26] proposed a price-based resource allocation mechanism
among the MEC server and multiple base stations (BSs). The
MEC server tries to provide prices to BSs so as to maximize
its own revenue while the BSs determine the computing space
to improve the quality of experience.

To summarize the related works above, we observe that the
existing resource allocation and matching problems in MEC
generally involve edge nodes and clients using resources from
an edge node. Against this backdrop, our paper tries to balance
the objectives of both ESs and TEs. In this paper, we also adopt
a price-based supply bidding mechanism to solve the resource
allocation problem.

III. SYSTEM MODEL

A. Interaction Between TEs and ESs

As shown in Fig. 2, we consider a scheduler-based resources
transaction market, which consists of M ESs and N TEs in
a MEC network. ESs act as suppliers who sell computing
resources and TEs act as customers who purchase resources
from ESs. It is assumed that ESs have sufficient computational
resources to handle the TEs’ submission demands. The sched-
uler serves as a third-party agency outsourcing TEs’ tasks to
ESs. For ease of reading, the main symbols used in this paper
are listed in Table II.

TEs submit their demand profiles to the scheduler via a
communication network. Additionally, ESs compete with each
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TABLE I
OVERVIEW OF RECENT RESEARCHES

other for acquiring more TEs, and submit bids based on
strategies of opponents and their own resource capacities.
In fact, information about bids is private. ESs cannot obtain
bids from others. The third-party scheduler needs to collect
the initial bids of all ESs and achieve information sharing.
Then, the scheduler calculates service price and the com-
bined load based on the bids of ESs and the total demand

of TEs. The decision of these two entities has an impact on
each other. After receiving the real-time price signal, TEs
will update their demand profiles. Since the aggregate load
depends on the TEs’ demand profiles, the behavior of TEs
will affect the ESs’ bidding strategies. The aforementioned
process is repeated until both customers and suppliers are
satisfied.
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TABLE II
DEFINITIONS OF MATHEMATICAL NOTATIONS

The time slot granularity is consistent with [27] and [28]
of smart grid. The setting is reasonable since edge comput-
ing has already been more closely integrated with the smart
grid. We divide one day into a set of T (T = 24) time slots,
denoted as T = {1, . . . ,T}. The set of ESs and TEs are rep-
resented as M = {1, . . . ,M } and N = {1, . . . ,N }. How
many resources should ESs provide to the market and how
the ESs’ bids affect the TEs’ demand profiles are worth of
investigating. We next present the model of both sides in the
MEC resources transaction market.

B. Cost and Profit of ES

For ES j ∈ M, let Cj ,t (.) denote the cost function of ES j
at time slot t (t ∈ T ). Let Rj ,t (.) denote the revenue function
of ES j at the tth time slot by providing the computational load.
The profit of ES equals the revenue by providing computing
service minus its cost of system overhead. Therefore, the profit
Pj ,t of ES j at time slot t can expressed as follows:

Pj ,t = Rj ,t (.)− Cj ,t (.). (1)

We consider that each ES is selfish and tries to maximize its
own profit. Thus, the interaction among the profit maximizer
ESs can be modeled as a noncooperative game. The ESs are
the players while the bid profiles are the strategies. The proof
of the truthfulness of bid price is part of auctions. While they
are very important, we assume that the players are truthful.
Such research will be done in future work. Let λj ,t denote
the bid of ES j at time slot t. The target of each ES j is to
find the optimal bid λj ,t to maximize its profit, which can be
defined as:

maximize
λj ,t

Pj ,t j ∈ M, t ∈ T . (2)

By substituting Eq. (1) into Eq. (2), we can get

maximize
λj ,t

Rj ,t (.)− Cj ,t (.) j ∈ M, t ∈ T . (3)

fj ,t is denoted as the task load that ES j is willing to generate
in the time slot t. We assume that the service price of different

ESs in one time slot is the same and denoted as pe(t) at time
slot t. The revenue of each ES is equal to the product of its
load and the service price. Hence, the revenue of ES j at time
slot t can be represented as

Rj ,t = fj ,t · pe(t). (4)

Cj ,t is the generation cost function of the ES j (j ∈ M)
at the time slot t (t ∈ T ). We assume that the cost function
of the edge server is a monotonically increasing convex func-
tion. Initially, as the task load increases, the cost of the edge
server increases at a progressively faster rate due to equip-
ment maintenance. As the task load continues to increase,
the cost increases at a slower rate. The quadratic function
is consistent with the assumptions of this paper. Therefore,
we take the form of the quadratic cost function of the MEC
server in [29]. Polynomial cost functions are utilized to for-
mulate the generation cost which is convex and monotonically
increasing. This type of cost function is in the form of
Cj ,t (x ) = amxm + · · ·+ a0, x = fj ,t , where m is the polyno-
mial function degree, with coefficients am , . . . , a0. Polynomial
cost functions are in computational efficiency, because we can
approximate them by Taylor polynomials or fit polynomials
using regression model [30]. The ES j’s cost function is defined
as a quadratic function:

Cj ,t
(
fj ,t
)
= aj ,2f

2
j ,t + aj ,1fj ,t + aj ,0,

where aj ,2, aj ,1 and aj ,0 are positive coefficients and modeling
the fact that different ESs incur different costs for serving the
tasks. We note that the cost function is increasing and convex.
Substituting Eq. (4) into Eq. (3), the optimization problem can
be further rewritten as

maximize
λj ,t

fj ,t · pe(t)− Cj ,t
(
fj ,t
)

subject to fj ,t ≥ 0, j ∈ M, t ∈ T . (5)

C. Payoff and Payout of TE

The demand of each TE consists of two parts: a base
demand and a shiftable demand. On the one hand, a base
demand is primarily concerned with real-time tasks, which
have high priority. On the other hand, a shiftable demand has
low priority real-time requirements and it can be assigned at
any time slot. The shiftable demand profile of TE i (i ∈ N )
is defined as χ i = (χi ,1, . . . , χi ,T ) and the base demand of
TE i at time slot t is denoted as ri ,t , which is known and
fixed.

The utility of TE i represents the profit that TE i receives
when it completes tasks and is denoted as Ui (.). Exactly, the
utility function of TE i is the utility for the tasks rather than the
service time or applications. Ui (.) is used to show TE i’s satis-
faction from consuming computing resources. When modeling
the utility function of TEs, we consider linear, logarithmic,
exponential and quadratic functions. According to the law of
market economy, the marginal benefit is decreasing, much the
same as the cost function of smart grid. In [31], [32], the
quadratic function, which is often used to model the decreas-
ing utility, is chosen. Without loss of generality, we draw on
the utility functions in these two papers. Quadratic utility is
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used to express the utility of the customer, and the class of
utility functions are as follows.

Ui (x ) =

⎧
⎨

⎩

wi ,tx − αi,t

2 x2, 0 ≤ x ≤ wi,t

αi,t

w2
i,t

2αi,t
, x >

wi,t

αi,t

, (6)

where x = (χi ,t + ri ,t ), wi ,t and αi ,t , i ∈ N are coefficients
that reflect the dynamic changes of TE i’s demand in different
time slots. The levels of satisfaction with the consumption of
computing resources are dramatically different for different
TEs and the same TE in different time slots. Therefore, these
two coefficients can be used to distinguish the TEs’ satisfaction
with the consumption of computing resources.

The payout function quantifies the payout that TE i needs
to pay the ESs for task completion. Without loss of generality,
we define the payout of TE i’ as the product of demand and
the service, i.e.,

Payouti ,t =
(
χi ,t + ri ,t

)
· pe(λt ,Lt ), (7)

where λt represent the bid profiles of all ESs at time slot t
and λt = {λ1,t , . . . ,λM ,t}.

The payoff function quantifies the final benefits of TE i
and represents the satisfaction of using the service. Thus, we
denote the payoff of TE i as its utility minus payout i.e.,

Payoffi = Utilityi − Payouti . (8)

Let ui denote the payoff of TE i. Lt denotes the aggregate
load demand of the ESs at time slot t and Lt =

∑
j∈N (χj ,t +

rj ,t ). By substituting Eq. (6) and Eq. (7) into Eq. (8), we can
obtain

ui
(
χ i ,χ−i

)
=
∑

t∈T

(
Ui
(
χi ,t + ri ,t

)

−
(
χi ,t + ri ,t

)
pe(λt ,Lt )

)
, (9)

where χ−i denotes the vector of the demand profile of other
TEs and χ−i = (χ1, . . . ,χ i−1,χ i+1, . . . ,χN ). In Eq. (9),
the utility is a function related to (χi ,t + ri ,t ).

Each TE tries to maximize its payoff by determining its
shiftable demand profile. Thus, the interaction between TEs
can be modeled as a noncooperative game. The TEs are par-
ticipants while the shiftable demand profiles are the strategies
of the noncooperative game.

Let χ∗
i denote the optimal demand profile of TE i in the

Nash equilibrium and Q total
i denote the total daily shiftable

demand of TE i which is fixed and known. Considering TE i,
the optimization problem can be formulated as follows when
other TEs’ profiles are fixed:

maximize
χ i

ui
(
χ i ,χ−i

)

subject to
∑

t∈T
χi ,t = Qtotal

i ,

χi ,t ≥ 0, ∀i ∈ N . (10)

D. Market Mechanism With Supply Function Bidding

In this section, we employ a supply function bidding mech-
anism to model the relationship between market demand for

Fig. 3. (a) Piece-wise linear. (b) Affine supply functions.

services and its price. We use a class of supply functions with
parameters. The bids submitted by ESs reveal their available
resource capacities “supplied” to the market.

We assume that the supply function fj ,t is chosen from the
family of increasing and convex price-wise linear functions of
pe(t) [33]. Fig. 3(a) shows an increasing and convex piece-
wise linear supply function. The abscissa pe(t) indicates the
price and the ordinate fj ,t denotes the load supplied by the TE
j at time slot t. There exists K break points on the abscissa
of Fig. 3(a). λkj ,t ≥ 0 represents the slope of the function
between the break points pk−1 and pk . Fig. 3(b) shows the
affine supply function.

At time slot t (t ∈ T ), we use the vector λj ,t =
(λ1j ,t , . . . , λ

K
j ,t ) to denote the bid profile of ES j (j ∈ M).

Thus, we obtain

fj ,t (pe(t), λj ,t ) =

{
λ1
j ,tpe(t), 0 ≤ pe(t) ≤ p1

λk
j ,tpe(t) + λk−1

j ,t pk−1, pk−1 < pe(t) ≤ pk
.

(11)

It is assumed that each ES submits λj ,t as a bid profile to the
scheduler at time slot t. For each ES j, the bid profile describes
the number of tasks that it is willing to admit. In response
to ESs, the scheduler sets the price pe(t) to clear market.
In economics, market clearing means the supply of what is
traded equals the demand, so that there is no leftover supply
or demand. In this case, the demands of all TEs are the same as
the load supplied by all ESs. Although the fluctuation in TEs’
demands will drive changes in ESs’ bid profiles, the demands
and supplies remain balanced. The equivalence further builds
up the connection between the supplier game and the customer
game. Hence, it can be expressed as

∑

j∈M
fj ,t
(
pe(t),λj ,t

)
= Lt , t ∈ T . (12)

According to Eq. (11) and Eq. (12), we have

Lt =

⎧⎨
⎩

∑
j∈M

(
λ1
j ,tpe(t)

)
, 0 ≤ pe(t) ≤ p1∑

j∈M
(
λk
j ,tpe(t) + λk−1

j ,t pk−1

)
, pk−1 < pe(t) ≤ pk

. (13)

According to Eq. (13), we can further calculate the service
price function as follows:
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pe(t) =

⎧
⎪⎨

⎪⎩

Lt∑
j∈M λ1

j ,t
, 0 ≤ pe(t) ≤ p1

Lt−
∑

j∈M
(
λk−1
j ,t pk−1

)
∑

j∈M λk
j ,t

, pk−1 < pe(t) ≤ pk .

(14)

At time slot t, the service price of different ESs is the same.
In [34], the affine supply function fj ,t (pe(t),λj ,t ) =

λ1j ,tpe(t) is used as a special case of the aforementioned
piece-wise linear functions. Almost all the results of affine
supply functions can be generalized to the piece-price affine
supply function [35]. As for Eq. (14), it can be concluded
that the affine function is equivalent to the piece-wise lin-
ear supply function between two break points. Each piecewise
function of Fig. 3(a) can be regarded as a linear function in
Fig. 3(b). As a matter of fact, the term λk−1

j ,t pk−1 is fixed
when we are between break points pk−1 and pk . Therefore,
without loss of generality, we generalize the results from the
affine functions to piece-wise linear functions. Therefore, the
computing service price can be given as follows for an affine
supply function:

pe(t) =
Lt∑

j∈M λ1j ,t
, t ∈ T . (15)

For simplicity, we use the notation λj ,t instead of λ1j ,t to
represent the affine supply function of ES j. Meanwhile, we
use λt = (λ1,t , . . . , λM ,t ) to denote the bids profile for all
ESs at time slot t. As Eq. (15) shows, the computing service
price is related to λj ,t (j ∈ M) and Lt . Hence, the price func-
tion can be denoted as pe(λt ,Lt ). As suggested by Eq. (11),
supply function fj ,t for ES j can be expressed as

fj ,t
(
pe(λt ,Lt ), λj ,t

)
=

λj ,tLt∑
r∈M λr ,t

, t ∈ T . (16)

Similar to the computing service, the supply function can
be represented by fj ,t (λt ,Lt ). Let λ−j ,t denote the submitted
bids of other ESs except for ES j. So it can be defined as
λ−j ,t = (λ1,t , . . . , λj−1,t , λj+1,t , . . . , λM ,t ). Hence, accord-
ing to Eq. (5) and Eq. (16), the profit function of ES j is
rewritten as

Pj ,t
(
λj ,t ,λ−j ,t

)
=

λj ,tL
2
t(∑

r∈M λr ,t
)2 − Cj

(
λj ,tLt∑
r∈M λr ,t

)
.

(17)

When other ESs’ bids are fixed, the ES j tries to find
the optimal bid λ∗j ,t by solving the following optimization
problem:

maximize
λj ,t

λj ,tL
2
t(∑

r∈M λr ,t
)2 − Cj

(
λj ,tLt∑
r∈M λr ,t

)

subject to λj ,t ≥ 0, j ∈ M, t ∈ T . (18)

E. Nash Equilibrium Analysis

The following section will explain that the ES’s game
(Eq. (18)) has a unique Nash equilibrium, as shown by the
lemma below.

Lemma 1: Assume that the bids profile in Nash equilibrium
at time slot t is denoted as λ∗t . When the Nash equilibrium is
reached, it will satisfy λ∗j ,t <

∑
r∈M,r �=j λ

∗
r ,t for all ESs.

Proof: The function Πj ,t (λj ,t ,λ−j ,t ) is expressed as fol-
lows:

Πj ,t
(
λj ,t ,λ−j ,t

)
=

λj ,tL
2
t(∑

r∈M λr ,t
)2 . (19)

As the formula above suggests, Πj ,t (λj ,t ,λ−j ,t ) is the first
term in Pj ,t (λj ,t ,λ−j ,t ). From Eq. (19), we can calculate the
first derivative function as follows

dΠj ,t
(
λj ,t ,λ−j ,t

)

dλj ,t

=
L2
t ·
(∑

r∈M λr ,t
)2 − 2λj ,tL

2
t

(∑
r∈M λr ,t

)

(∑
r∈M λr ,t

)4 (20)

Let

dΠj ,t
(
λj ,t ,λ−j ,t

)

dλj ,t
> 0,

we can get
(
∑

r∈M
λr ,t

)2

− 2λj ,t
∑

r∈M
λr ,t > 0. (21)

The Eq. (21) is equivalent to⎛
⎝λj ,t +

∑
r∈M,r �=j

λr,t

⎞
⎠

2

− 2λj ,t

⎛
⎝λj ,t +

∑
r∈M,r �=j

λr,t

⎞
⎠ > 0. (22)

From Eq. (22), we can derive that

0 ≤ λj ,t <
∑

r∈M,r �=j

λr ,t .

In summary, we can conclude that Pj ,t (λj ,t ,λ−j ,t ) is an
increasing function when 0 ≤ λj ,t <

∑
r∈M,r �=j λr ,t . And it

becomes a decreasing function when λj ,t ≥
∑

r∈M,r �=j λr ,t .
Thus, in order to maximize profit, we should meet the con-
straint 0 ≤ λj ,t <

∑
r∈M,r �=j λr ,t . In the Nash equilibrium,

the bid of ES j at time slot t is denoted as λ∗j ,t . Therefore, we
can conclude that λ∗j ,t <

∑
r∈M,r �=j λ

∗
r ,t (j ∈ M).

The proof for Theorem 1 is given as Appendix A.
Theorem 1: The ES’s noncooperative game has a unique

Nash equilibrium. Furthermore, the Nash equilibrium is the
solution of the following convex optimization problem:

maximize
0≤fj ,t<

Lt
2

∑

j∈M
−Ψj

(
fj ,t
)

subject to
∑

j∈M
fj ,t = Lt , (23)

where

Ψj

(
sj ,t

)
=

(
Lt − fj ,t
Lt − 2fj ,t

)
Cj

(
fj ,t

)−
∫ fj ,t

0

LtCj

(
Πj

)

(
Lt − 2Πj

)2 dΠj .

(24)

In Theorem 1, it is proved that the ES’s game has a unique
Nash equilibrium solution, whose strategies are determined
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Fig. 4. Interactions between the ESs, TEs and scheduler.

by the aggregate load Lt . Besides, an ES can scale-up and
scale-down its resource capacity according to different market
demands. Thus, ESs will bid differently for different levels of
load.

We next analyze the existence of Nash equilibrium for the
customer side game, which is proved by the theorem below,
i.e., Theorem 2. The proof of Theorem 2 can be found in
Appendix B.

Theorem 2: The customers’ optimization problem is a con-
vex programming problem. In fact, the customer side game
Eq. (10) is a n-person game. It has a unique pure strategy
Nash equilibrium.

In the Nash equilibrium, for any given ESs’ bid, no TE can
increase its payoff by a unilateral change on its strategy. The
Nash equilibrium can not be broken due to dynamic topology
of TEs because agents are used to deal with the interactions
of the TEs (and the ESs).

In the next section, a task outsourcing algorithm is
developed to determine the point for both ES and TE’s games.

IV. DISTRIBUTED TASK OUTSOURCING ALGORITHM

In this section, we propose a distributed task outsourc-
ing algorithm to demonstrate the interaction among TEs and
ESs. Our method is referred as DTOA. Let g be the iteration
number.

Notations: Let χg
i ,t denote the demand profiles of TE

i in iteration g at time slot t and vector χ
g
i denote the

demand profile of TE i for all time slots. The matrix
χ = (χ1, . . . ,χ t , . . . ,χT )T denotes the demand profiles
of all TEs in iteration g for all time slots. Let matrix λ =
(λ1, . . . ,λt , . . . ,λT )T denote the bids of all ESs for all time
slots. Lg

t denotes the aggregate loads in iteration g at time slot
t. pge (λ

g
t ,L

g
t ) denotes the computing service price in iteration

g at time slot t.
As shown in Fig. 4, the interaction between ESs and TEs

can be modeled as a two-stage game. They interact with each
other to determine optimal bids and demand profiles. The
detailed process is depicted in Algorithms 1 and 2.

• The ESs try to maximize their profits by determining their
own bids according to optimization function Eq. (18).

• The TEs will then adjust their demand profiles following
optimization function Eq. (10).

The DTOA can be described as follows. Firstly, the sched-
uler randomly initializes the TEs’ demand profiles and ESs’
bid profiles. Secondly, the TE i (i ∈ N ) sends the shiftable
demand profile χ

g
i to the broker and receives Lg

t from it. Then,
the ESs will receive a signal to update their bids based on the

Algorithm 1 TE’s Game
1: Initialization: g = 0.
2: Randomly initialize TEs’ demand profiles.
3: repeat
4: for (each time slot t ∈ T ) do
5: Receive L

g
t from the scheduler;

6: Update the bid λ
g
t by Algorithm 2;

7: Receive the updated pge
(
λ
g
t ,L

g
t

)
from the scheduler;

8: for (each TE i ∈ N ) do

9: χ
g+1
i ,t =

[
χ
g
i ,t + η2

∂ui(χ
g
t )

∂χg
i,t

]+
;

10: end for
11: end for
12: g : = g + 1;
13: until

∥
∥χg − χg−1

∥
∥ < ε;

Algorithm 2 ES’s Game
Input: Total load at time slot t: Lt , t ∈ T and t.

Output: Bids of all ESs at time slot t: λt .

1: Initialization: Randomly initialize ESs’ bid profiles for the

first time.

2: Receive Lt from the scheduler.

3: for (each ES j ∈ M) do

4: λg+1
j ,t =

[
λgj ,t + η1

∂Pj ,t(λ
g
t )

∂λg
j ,t

]+
.

5: end for
6: return λt .

following iterative equation:

λ
g+1
j ,t =

[

λ
g
j ,t + η1

∂Pj ,t
(
λ
g
t

)

∂λ
g
j ,t

]+
, ∀t ∈ T . (25)

where η1 is the step size. [·]+ in Eq. (25) is the projection onto
the feasible set defined by the constraints λj ,t ≥ 0. It is noticed
that the ES j (j ∈ M) does not know other ESs’ bids. In this
aspect, the DTOA can also preserve the privacy of participants.
Thirdly, the computing service price p

g
e (λ

g
t ,L

g
t ) is updated

by the scheduler according to Eq. (15). The TEs will further
be informed to update their shiftable demand profiles using a
gradient boosting method:

χg+1
i ,t =

[

χg
i ,t + η2

∂ui
(
χ
g
t

)

∂χg
i ,t

]+
, ∀t ∈ T . (26)

η2 is the step size. [ · ]+ in Eq. (26) is the projection onto
the feasible set defined by the constraints

∑
t∈T χi ,t =

Qtotal
i and χi ,t ≥ 0. It is worth remarking that Eq. (10)

needs the updated price pge (λ
g
t ,L

g
t ) and Lg

t to deter-
mine (∂ui (χ

g
t )/∂χ

g
i ,t ). Besides, since (∂ui (χ

g
t )/∂χ

g
i ,t ) only

depends on its own demand profile and the price and there
is no need to know the demand profile of other TEs. Thus,
this fact protects the privacy of the TEs. Finally, the stopping
criterion of the algorithm is checked by the scheduler. If the
relative change of shiftable demand profiles during two con-
secutive iterations is lower than the value ε, the iterations can
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TABLE III
SYSTEM PARAMETERS

be stopped. Otherwise, the TEs will continue computing their
demand profiles based on the newly updated price and bids.

The optimization problems Eq. (18) and Eq. (10) will con-
verge to the optimal point by the projected gradient method.
In the end, the algorithm will converge. In the equilibrium,
the ESs are playing their equilibrium strategies according to
TEs’ tasks strategies, and the TEs also choose their equilib-
rium strategies based on ESs’ submitted bids. Thus when the
Nash equilibrium is reached, none of the ESs and TEs will
improve their profit.

Next, we perform the complexity analysis of
Algorithms 1 and 2. The lines 1 and 2 in Algorithm 1
are the basic numerical computations, executing the opera-
tions in parallel. line 3 starts the iteration. Lines 4 to 11 are
the first level of loops, which are executed T times. Lines 5 to
7 are mainly simple numerical computations, and the second
layer of iterations begins at line 8, performing N times.
Thus, the time complexity of Algorithm 1 is O(T × N ). In
Algorithm 2, line 1 performs the initialization process and
line 2 is the base value calculation. Lines 3 to 5 perform
iterations to obtain the update strategy of ES. The loop is
executed M times. Thus the time complexity of Algorithm 2
is O(M ). Since T is set as 24, both Algorithms 1 and 2
possess near linear complexity.

V. PERFORMANCE EVALUATION

A. Simulation Experiment

In this section, we present a simulation experiment to vali-
date our theoretical analysis. For the experimental parameters
in this paper, we refer to papers on smart grid for some param-
eters and make some adjustments [31], [33], [37]. We assume
a MEC resource exchange market has 10 ESs and 1000 TEs,
which are willing to participate in the DTOA scheme. There
are 24 time slots. The relevant parameters of the model are
shown in Table III. The base demand ri ,t of each TE at
each time slot is randomly selected from [9660, 37065]. The
shiftable demand refers to real-time and shiftable tasks, which
reflects the changes in the total demand of all TEs at dif-
ferent time slots. Since most loads are running in real-time
pattern, it is plausible to assume relatively low shiftable loads
for TEs. The shiftable demand χi ,t of each TE is assumed to
be chosen randomly from 10% to 12% of its base demand.
And the total demand is the sum of the base demand and
shiftable demand. Considering the generation cost function

Fig. 5. Influence of parameter ωi,t on TEs’ utility.

c(fj ,t ) = aj ,2f
2
j ,t +aj ,1fj ,t +aj ,0 for each ES j (j ∈ M), we

assume that aj ,2 is generated in the interval [4.76e-6, 4.76e-5],
aj ,1 = 0.001 and aj ,0 = 0.001. The initial values of η1
and η2 are set as 0.05 and 0.01 respectively. In order to find
the optimal solution, the step size of next iteration will be
a little less than the previous one, namely η1=η1*0.985 and
η2=η2*0.98. The initial bids λj ,t of ESs are all set as 20000.
The αi ,t is set as 0.5 and ωi ,t is randomly selected from
interval [0.8, 1.0]. Also, the ε is set equal to 0.3.

Next, the effect of the parameter ωi ,t on the utility of TEs
and the choice of its value are discussed. The shiftable demand
term χi ,t of each TE is chosen from the interval [10%, 12%].
As seen from Fig. 5, as the value of the horizontal coordinate
base demand ri ,t increases, when the range of ωi ,t is from
0.4 to 0.8, the utility function of the TE converges quickly,
but the utility value is low. The utility is higher than those of
ωi ,t intervals [0.4, 0.6] and [0.6, 0.8], as the range of ωi ,t is
from 0.8 to 1.0. The corresponding curve can also converge
at a fast rate. When the range of ωi ,t is from 1.0 to 1.2, the
function converges slow, and the utility value of TEs is much
higher than those of the ωi ,t intervals [0.4, 0.6], [0.6, 0.8]
and [0.8, 1.0]. This interval or a larger interval can be chosen
when the utility for TEs is better. Therefore, by combining
the convergence speed and the payoff of TEs, we chose the
parameter ωi ,t from the interval [0.8,1.0] for the experiments.

B. Algorithm Convergence

The performance of our proposed DTOA is evaluated in
terms of its convergence. Fig. 6 and Fig. 7 show the conver-
gence of ESs’ bids and TEs’ shiftable loads at time slot 5.
From Fig. 7, these ten TEs (TEs 21-30) are randomly selected
from 1000 TEs. The speed of convergence to the equilibrium
point depends on the step sizes and the stopping criterion ε. As
the number of iterations increases, the bids and the shiftable
load demands start from the initial values and they gradually
converge to stable values. In our experiment, the algorithm
converges after around 248 iterations. Hence, the proposed
DTOA is efficient and verifies the theoretical proof presented
above.

To demonstrate the computational complexity of the algo-
rithm, we evaluate the running time of the algorithm for
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Fig. 6. Convergence of ES 1-10’s bids at time slot 5.

Fig. 7. Convergence of shiftable loads for TE 21-30 at time slot 5.

Fig. 8. Running time of algorithm for different number of TEs and ESs.

different number of TEs and ESs. As shown in Fig. 8, the run-
ning time of the algorithm increases linearly with the number
of TEs N and it is almost independent of M. This is because
that by increasing the number of TEs and ESs, the number of
updates for TEs and ESs will increase proportional to N and
M, respectively. The update process for TEs takes more time
comparing with the updates for ESs since the TEs need to
consider load shifting during T time slots (the projected gra-
dient), which make the update process more complex. From
Fig. 8, the running time of the algorithm is acceptable even for

Fig. 9. Daily total payout for TE 1 to TE 30.

Fig. 10. Daily total payoff for TE 1 to TE 30.

large number of TEs. So it can be concluded that the algo-
rithm is efficient and can be implemented in scenarios with
large number of TEs.

C. Economic Effects of Algorithm

By participating in the DTOA scheme, the payout (see
Eq. (7)) represents TE’s expenditure on purchasing comput-
ing resources. For simulations, the original effects of TE’s
payoff, TE’s expense, ES’s profit, etc. in the initial state are
represented by the yellow line of “before algorithm”. The
experimental effects after the intervention of the proposed
DTOA are represented by the “after algorithm”. In order to
enhance the feasibility, we averaged all the data in multiple
groups to make the results generalizable. Fig. 9 shows the
daily total payout for TE 1 to TE 30 before algorithm and after
algorithm. Compared with before algorithm, the total payout
of each TE after algorithm is reduced. We can see that TEs
can save around 5% of they payout by participating in DTOA
scheme. The vertical axis of Fig. 9 shows the payouts of TEs
are so huge, and even a 5% savings reduces a large expendi-
ture. Furthermore, as shown in Fig. 10, the daily total payoff
of each TE after using the algorithm has increased than before
algorithm. The payoff (see Eq. (9)) is the utility of the calcu-
lation tasks minus the payout. Although the yellow line is only
a little more than the green one, the improvement of the effect
is also obvious due to its magnitude is large and arrives 109.

Fig. 11 displays the total profit of ESs 1-10 before and after
algorithm. The total profit of ES is the sum of the profit of
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Fig. 11. Daily total profit for ES 1 to ES 10.

Fig. 12. Base and total demand before and after the algorithm. The peak
shaving is achieved by using DTOA (the dashed circle).

all time slots. From Fig. 11, we can see that the total profit of
each ES increases after applying DTOA because the aggregate
load profile becomes smoother; and hence, the ESs’ generation
cost decreases. Besides, the suppliers aim to submit optimal
bids that maximize their profits in each time slot. The results
of the algorithm are in line with expectations, which shows the
supplier side’s individual rationality of our proposed method.

D. Peak-Reducing Effect of Algorithm

For simulations, the initial state of TEs’ demand is assumed
to be load profile before algorithm. As shown in Fig. 12, the
aggregate load profile becomes smoother after the DTOA. The
dashed circle shows the fluctuation of the demand includ-
ing valley filling and peak clipping. Normally, the peak load
demand is 26200, while the peak load demand decreases to
23800 in the case of the DTOA. The peak load demands are
shifted from peak to off-peak time slots. This is because cost is
a quadratic function of the demand. Even in the low-price of
ESs, a small increasing in demand will result in high cost.
Therefore, instead of only exploring the process ability of
the low-price ESs, DTOA not only considers the diversity of
the hourly task prices, but also tries to balance the peak and
off-peak loads. Furthermore, the load demand for each TE is
shifted to time slots with higher wj ,t , which brings a higher

Fig. 13. Peak-to-average ratio with and without task scheduling.

Fig. 14. The influence of the parameter ε on iteration numbers.

payoff to the TEs. This demonstrates that the proposed DTOA
performs satisfactorily in reducing the peak load demand.

Fig. 13 shows the PAR (peak-to-average ratio) index with
and without task scheduling in 24 time slots and for different
number of TEs. Before algorithm, since there are high peak
load and low average load, PAR index is high. By applying
DTOA, the peak clipping and valley filling are achieved and
the PAR index is low even for high number of TEs. This
demonstrates that the proposed task scheduling method can
shift the shiftable loads from peak periods to off-peak periods
effectively.

E. Influence of Parameters on Iteration Numbers

In this section, we discuss the influence of some parameters
on the convergence speed of the algorithm. The convergence
speed of the algorithm is reflected in the round of algorithm
updates (iteration numbers). The smaller the iteration numbers,
the faster the algorithm converges. The bigger the iteration
numbers, the slower the algorithm converges.

Fig. 14 shows the influence of the parameter ε on iteration
numbers. ε is the stopping criterion of the algorithm. As can
be seen, the smaller the parameter ε, the more iterations and
the slower the algorithm convergence. This fact shows that the
stricter of the stopping criterion, the more times the algorithm
needs to be updated.
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Fig. 15. The influence of the parameter η2 on iteration numbers.

In Fig. 15, the influence of the parameter η2 on iteration
numbers is shown. Since the parameter η2 will change in
every round, as shown in Table III, we set different initial
value of parameter η2 to show its impact on iteration num-
bers. As can be seen, when other parameters are fixed, with
the initial value of parameter η2 becomes larger, the num-
ber of iterations also increases. In summary, the speed of
the algorithm convergence is related to the setting of some
parameters.

VI. CONCLUSION

In this paper, we analyze a practical resources transaction
market in a MEC network, where multiple different ESs offer-
ing the optional computing service to TEs. Since the resources
of each ES are limited, the dynamic demand of its TEs may not
be met during spikes in demands. To overcome the bottleneck
of resource limitation, task outsourcing has been regarded as
an effective paradigm by accommodating as many on-demand
tasks as possible. We focus on the task outsourcing problem
among multiple ESs and multiple TEs. A bidding mecha-
nism is utilized to describe the serving relationship between
ESs and TEs, where the two parties are assigned as sellers
and buyers. The computing resources of ESs are regarded as
commodities.

Simulations results demonstrate that the algorithm increases
the ESs’ profit and reduces the peak load by shifting the
load demand to off-peak periods. Meanwhile, the TEs’ pay-
off are also increased by participating in game process. In
future research, we will focus on the computing offloading
of ESs in a three-tier IoT MEC networks. Furthermore, as
the development of 5G technology, communication resources
are becoming more abundant, which poses a challenge to
the computational capacity of ESs. We will consider the
problem of limited computational resources and design rea-
sonable offloading algorithms to allocate tasks to the avail-
able computational resources and dynamically adjust task
allocation to accommodate real-time changes in the com-
putational resources by predicting and monitoring resources
on ESs.

APPENDIX A
PROOF OF THEORY 1

Proof: According to lemma 1, we can infer that the load
supplied by each ES at time slot t does not exceed Lt/2 at the
Nash equilibrium. The Lagrange function of the optimization
problem in Eq. (23) is denoted as F. Thus, we have

F =
∑

j∈M
−Ψj

(
fj ,t
)
+ φ

⎛

⎝
∑

j∈M
fj ,t − Lt

⎞

⎠, (27)

where φ denotes the Lagrange multiplier. We can obtain
the following expression through the first-order optimality
function.

(
∂F

∂f ∗j ,t

)
(
fj ,t − f ∗j ,t

)
≤ 0, ∀j ∈ M, (28)

where f ∗j ,t is defined as the supply function in equilibrium,
while φ∗ is the Lagrange multiplier in equilibrium.

From Eq. (24), (∂F/∂f ∗j ,t ) can be expressed as follows:

∂F

∂f ∗j ,t
= φ∗ −

(
Lt − f ∗j ,t
Lt − 2f ∗j ,t

)

C ′
j

(
f ∗j ,t
)
. (29)

We assume the first-order optimality condition for the
optimization problem in Eq. (18). Thus, we obtain

(
∂Pj ,t

∂λj ,t

)(
λj ,t − λ∗j ,t

)
≤ 0, ∀j ∈ M. (30)

From Eq. (17), ∂Pj ,t/∂λj ,t is calculated as follows:

∂Pj ,t

∂λj ,t
= pe(λt ,Lt )−

Lt − f ∗j ,t
Lt − 2f ∗j ,t

C ′
j

(
f ∗j ,t
)
. (31)

By substituting Eq. (31) into Eq. (30), we can write the
optimality condition for Nash equilibrium as follows
(

pe(λt ,Lt )−
Lt − f ∗j ,t
Lt − 2f ∗j ,t

C ′
j

(
f ∗j ,t
)
)
(
λj ,t − λ∗j ,t

)
≤ 0. (32)

From Eq. (28) and Eq. (32), we can see that the Lagrange
multiplier is actually the price pe(λt ,Lt ) of the computing
service. In addition, the optimality condition Eq. (28) is equiv-
alent to Eq.32. Therefore, the existence and uniqueness of the
Nash equilibrium is equivalent to proving the existence and
uniqueness of the optimal point of problem Eq. (23).

APPENDIX B
PROOF OF THEORY 2

Proof: From the above discussion it follows that the objec-
tive function in Eq. (10) is equal to
∑

t∈T
Ui

(
χi,t + ri,t

)

−
∑

t∈T

((
χi,t + ri,t

)2
+

∑
j∈N ,j �=i

(
χj ,t + rj ,t

)

∑
r∈M λr ,t

)

. (33)

Let k = 1/(
∑

r∈M λr ,t ), k > 0. For simplicity, we denote
the right part of Eq. (33) as follows:

hi
(
χ i ,χ−i

)
=
∑

t∈T
k

(
(
χi,t + ri,t

)2
+

∑

j∈N ,j �=i

(
χj ,t + rj ,t

))
.
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We have

∇χ i
hi
(
χ i ,χ−i

)
=

[
∂hi
(
χ i ,χ−i

)

∂χi ,t

]T

t=1

=

(
∂hi
(
χ i ,χ−i

)

∂χi ,1
, . . . ,

∂hi
(
χ i ,χ−i

)

∂χi ,T

)

= 2k

⎡

⎣
(
χi ,t + ri ,t

)
+

∑

j∈N ,j �=i

(
χj ,t + rj ,t

)
⎤

⎦

T

t=1
(34)

and the Hessian matrix is as follows:

∇2
χ i
hi
(
χ i ,χ−i

)
=

⎛

⎜
⎜
⎜
⎝

2k 2k · · · 2k
2k 2k · · · 2k
...

...
. . .

...
2k 2k · · · 2k

⎞

⎟
⎟
⎟
⎠

N×T

. (35)

This further leads to

XT∇2
χ i
hi
(
χ i ,χ−i

)
X = 2k(X1 + X2 + · · ·+ XN×T )

2 ≥ 0,

∀X = (X1,X2, . . . ,XN×T )
T
.

Therefore, the Hessian matrix of hi (χ i ,χ−i ) is positive
semi-definite and hi (χ i ,χ−i ) is convex. Moreover, since the
utility function Ui (.) is continuous and strictly concave in
the strategy space, the payoff function Eq. (9) of each TE
i (∀i ∈ N ) is strictly concave. So the objective function in
Eq. (33) is concave. Hence, Eq. (10) is a convex optimization
problem. Meanwhile, since the constraints of Eq. (10) are
inequalities or linear equations, the feasible domain is convex.
Thus, the TEs’ optimization problem is a convex programming
problem. Hence, the TE’s game is a strictly concave N-person
game. Since the demand profile sets are closed, bounded and
convex, the existence of Nash equilibrium can be proved based
on [38, Th. 1]. Analogously to [38, Th. 3], for a concave
N-person game, there exists a unique equilibrium solution.
Therefore, the theorem is proved.
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