Future Generation Computer Systems 160 (2024) 92-108

Contents lists available at ScienceDirect L =
FiGIciS!
Future Generation Computer Systems
journal homepage: www.elsevier.com/locate/fgcs =
)
Equilibrium in the Computing Continuum through Active Inference At

Boris Sedlak *, Victor Casamayor Pujol, Praveen Kumar Donta, Schahram Dustdar
Distributed Systems Group, TU Wien, 1040 Vienna, Austria

ARTICLE INFO ABSTRACT

Keywords:

Active Inference
Computing Continuum
Scalability

Edge intelligence
Transfer learning
Equilibrium

Computing Continuum (CC) systems are challenged to ensure the intricate requirements of each computational
tier. Given the system’s scale, the Service Level Objectives (SLOs), which are expressed as these requirements,
must be disaggregated into smaller parts that can be decentralized. We present our framework for collaborative
edge intelligence, enabling individual edge devices to (1) develop a causal understanding of how to enforce
their SLOs and (2) transfer knowledge to speed up the onboarding of heterogeneous devices. Through
collaboration, they (3) increase the scope of SLO fulfillment. We implemented the framework and evaluated a
use case in which a CC system is responsible for ensuring Quality of Service (QoS) and Quality of Experience
(QoE) during video streaming. Our results showed that edge devices required only ten training rounds to ensure
four SLOs; furthermore, the underlying causal structures were also rationally explainable. The addition of new
types of devices can be done a posteriori; the framework allowed them to reuse existing models, even though
the device type had been unknown. Finally, rebalancing the load within a device cluster allowed individual

edge devices to recover their SLO compliance after a network failure from 22% to 89%.

1. Introduction

Computing Continuum (CC) systems, as envisioned in [1-3], are
large-scale distributed systems composed of multiple computational
tiers. Each tier serves a unique purpose, e.g., providing latency-sensitive
services (i.e., Edge), or an abundance of virtual, scalable resources
(i.e., Cloud). However, the requirements that each tier must fulfill
are equally diverse, as they span a wide variety of edge devices and
fog nodes. Assume that requirements would be ensured in the cloud,
e.g., by analyzing metrics and reconfiguring individual devices, massive
amounts of data would have to be transferred. Also, if edge devices fail
to provide their service to a satisfying degree, the latency for detecting
and resolving this would be high.

Given the scale of the CC, requirements must be decentralized; this
means that the logic to evaluate requirements must be transferred to the
component that they concern. Cloud-level requirements, i.e., Service
Level Objectives (SLOs), may thus be disaggregated into smaller parts
that are ensured by the respective components. To contribute to high-
level goals, each device optimizes its service according to its scope.
This allows SLOs to span the entire CC, also called Deep SLOs [4].
While it is one challenge to segregate and disseminate SLOs, ensuring
them is another. Requirements are versatile and may change over time,
every component must itself discover how its SLOs are related to its
actions. For this to happen, the device could use Machine Learning
(ML) techniques to discover causal relations between its environment

* Corresponding author.

and SLO fulfillment [5]. This promotes the usage of Active Inference
(AIF) [6], an emerging concept from neuroscience that describes how
the brain continuously predicts and evaluates sensory information to
model real-world processes. By extending individual CC components
with AIF, they could develop a causal understanding of how to adjust
their environment to ensure preferences (i.e., SLOs).

Ensuring SLOs autonomously (i.e., evaluating the environment to
infer adaptations) makes components intelligent [7]; any system com-
posed entirely of such intelligent, self-contained components becomes
more resilient and reliable. No central logic must be employed to ensure
SLOs; thus, higher-level components can rely on the SLO fulfillment
of underlying components. Ascending from intelligent edge devices,
the next level would be intelligent fog nodes; those we see in the
ideal position to orchestrate the service of edge devices. Thereby, edge
devices in proximity are bundled into a device cluster, administered
by a fog node; whenever the Edge is scaled up with new devices
(or device types), existing SLO-compliance models can be exchanged
within the cluster. While each tier has its own SLOs, their tools for
adaptation can have a different scale, e.g., fog nodes would be able
to shift computations within clusters from devices that fail their SLOs.
Such operations can consider environmental impacts (e.g., network
issues) as well as heterogeneous device characteristics. The Cloud, as
the next layer, would even have sweeping tools to ensure global SLOs.

E-mail addresses: boris.sedlak@dsg.tuwien.ac.at (B. Sedlak), v.casamayor@dsg.tuwien.ac.at (V.C. Pujol), pdonta@dsg.tuwien.ac.at (P.K. Donta),

dustdar@dsg.tuwien.ac.at (S. Dustdar).

https://doi.org/10.1016/j.future.2024.05.056

Received 28 November 2023; Received in revised form 23 May 2024; Accepted 28 May 2024

Available online 30 May 2024

0167-739X/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
mailto:boris.sedlak@dsg.tuwien.ac.at
mailto:v.casamayor@dsg.tuwien.ac.at
mailto:pdonta@dsg.tuwien.ac.at
mailto:dustdar@dsg.tuwien.ac.at
https://doi.org/10.1016/j.future.2024.05.056
https://doi.org/10.1016/j.future.2024.05.056
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2024.05.056&domain=pdf
http://creativecommons.org/licenses/by/4.0/

B. Sedlak et al.

To realize this vision, we present our framework for collaborative
edge intelligence. Guided by AIF, individual edge devices gradually
develop a causal understanding of how to ensure their SLO. This knowl-
edge is federated through a device cluster; edge devices of arbitrary
types reuse existing models to ensure their SLOs. Thus, the entire Edge
becomes spanned with SLO-compliant devices, which allows other CC
tiers (i.e., up to the Cloud) to construct their service on top of that. By
the same method, cluster leaders infer how to adjust their environment;
thus, each tier may achieve an equilibrium for the compound service
offered. Hence, the contributions of this paper are:

» An AlF-based ML technique that allows CC components to gradu-
ally identify causal relations between environmental metrics and
SLO fulfillment. Components can thus evaluate SLOs decentral-
ized and update their beliefs according to new observations.

» The transfer and combination of ML models between hetero-
geneous devices to accelerate their convergence towards SLO-
fulfilling configurations. This simplifies the onboarding of new
device types (i.e., horizontal scaling) on the Edge.

» An offloading mechanism that redistributes load in an edge—
fog cluster according to devices’ capabilities to fulfill high-level
SLOs. Thus, it counters environmental factors and improves the
cluster-wide level of QoS and QoE.

The remainder of this paper is organized as follows: Section 2 in-
troduces background knowledge and related work as a prerequisite for
presented concepts. Section 3 presents our framework for collaborative
edge intelligence. Section 4 contains the prototypical implementation
of the framework and the evaluation methodology; the respective re-
sults are presented in Section 5. Finally, we summarize our paper in
Section 6.

2. Preliminaries
2.1. Background

The framework presented in this paper builds heavily on two ex-
isting concepts that we adapt for our usage, namely causality and AIF.
Although these topics might be known to some readers, we provide this
section to ensure a solid understanding of their core aspects and termi-
nology. Furthermore, since both concepts are not native to computer
science (or distributed systems), we highlight existing intersections as
far as possible.

2.1.1. Causality and causal network graphs

Causality allows modeling causal relations between events or vari-
ables. While spurious correlations are misleading and hide the true
causes, causality answers why an event happened. However, to iden-
tify causal relations, specific experiments and consideration of ex-
pert knowledge are required. To define a general theory of causality,
Pearl [8] proposed Structural Causal Models (SCMs). Such a mathemat-
ical model can be expressed through causal graphs, e.g., as Directed
Acyclic Graph (DAG). Thus, variables can be arranged from cause to
consequence.

Causality is a hot topic in research because of its ability to provide
explanations for phenomena through interpretable graphical models.
This is why many works link causality and machine learning; see [9]
for a comprehensive review. Thereby, causality can also be embedded
into distributed systems, e.g., for root cause detection [10]. As another
instance, Lin et al. [11] use causal graphs in Cloud computing to detect
dependencies within a microservices-based architecture. For such use
cases, DAGs are an ideal modeling tool. Interestingly, they monitor
SLOs to trigger causal inference over their causal graphs, being able
to detect the source of the SLO violation.

Another crucial concept for our work - or generally for scalability in
the CC - is the Markov Blanket (MB). Consider a Bayesian network (BN)
represented as a DAG (e.g., Fig. 3): a random variable is conditionally

93

Future Generation Computer Systems 160 (2024) 92-108

independent of all other variables, given its MB. In other words, the
MB of a variable shields it from external variables. In a DAG, the MB of
a variable consists of its parents, children, and co-parents. Discovering
the structure of BNs and extracting MBs through data is not a simple
task, and many works are devoted to that; see [12] or [13] for specific
techniques, and [14] for a thorough survey. Regardless of the system
size, MBs can achieve modularity; thus, the system can be managed and
controlled on a convenient scale.

Graph-based causal models promise to make systems explainable.
Inspired by that, our work stems from [2,15] to build MBs around SLO-
governed components. Thus, it becomes possible to isolate the system
variables that affect SLO fulfillment. On the one hand, this drastically
reduces the number of variables required for analysis thanks to condi-
tional independence; the system can thus be managed at scale. On the
other hand, it is possible to leverage the BN to explain causal effects
between variables in the MB and the SLOs’ behavior (e.g., failure).

2.1.2. Active inference

In this work, we use AIF to extend devices with causal knowledge
on how to fulfill their SLOs. However, we consider AIF an unknown
concept for most readers outside of neuroscience; therefore, we use
this section to summarize core concepts of AIF according to Friston
et al [16-21].

Core concepts. To interpret observable processes, agents generate mod-
els that resemble these processes, e.g., humans reason that it rains
due to water drops falling from the sky. However, if this generative
model and the real-world process diverge, the agent will eventually
be “surprised”, e.g., because water drops were actually caused by a
neighbor watering her plants. The discrepancy (or uncertainty) be-
tween the agent’s understanding of the process and the reality is called
Free Energy (FE). In simple terms: the lower the FE, the higher the
prediction accuracy.

Internally, agents organize generative models in hierarchical struc-
tures; each level interprets lower-level causes and, based on that,
provides predictions to higher levels. For example, suppose (1) it
rains with a certain probability, (2) I bring an umbrella. This is com-
monly known as Bayesian inference and allows agents to use priors
(i.e., existing beliefs) to calculate the probability of related events.
Thus, decision processes can be segregated into self-contained causal
structures (i.e., MBs) that share only a limited number of interface
variables. For example, only the weather state (rainy or sunny) is
considered for picking the umbrella; any lower-level observations that
determined the agent’s perception of the weather (e.g., humidity or
illumination) are disregarded.

To decrease FE, AIF agents repeatedly engage in action-perception
cycles by (1) predicting outcomes, (2) awaiting (or seeking) the out-
come, and (3) updating beliefs. This phase is known as predictive
coding. Afterward, they can actively adjust the environment to their
beliefs. As generative models become more accurate, causal relations
between their preferences (e.g., SLOs) and the environment are re-
vealed. However, the ability of agents to discover causal relationships
is highly dependent on the number and accuracy of observations [22].
Fortunately, the CC provides large amounts of operational metrics.

Some aspects of AIF, in particular decision-making, intersect with
reinforcement learning. Notably, the two approaches are not mutually
exclusive, on the contrary, they are complementary as shown by exist-
ing works [18,23,24]. Important differences of AIF are that agents are
biased when they try to adapt the exterior towards their beliefs and that
they are specialized in minimizing surprise for an empirically verifiable
model.

B. Sedlak et al.

Intersection with distributed systems. Considering presented works, most
research on AIF has not been embedded and evaluated in operative
distributed systems (e.g., [19,25]). To the best of our knowledge, our
latest research [26] is thus among the few works that embedded AIF
into distributed systems; another work that we want to highlight is
Levchuk et al. [27], which created a decentralized mechanism for team
adaptation. For the remaining paper, our work in [26] serves as a
reference on how AIF agents can infer SLO-compliant device config-
urations: agents operate parallel to continuous processing and adapt
their generative models according to prediction errors. We call such
a model - at its core a BN — an Equilibrium-Oriented SLO-Compliance
(EOSC) model. In this paper, we will extend the EOSC model to achieve
equilibrium in the CC.

2.2. Related work

This section provides recently published related works that discuss
(1) the training and application of causal ML models on the Edge,
(2) transfer learning approaches in the CC, and (3) methods of load
balancing and computation offloading that are popular across the CC.
Following that, we highlight for each of these fields the research gap
that our work aims to fill.

2.2.1. Causal ML training on the edge

Sudharsan et al. [28] developed an Edge2Train model to analyze
real-time data on the fly. With Edge2Train, Support Vector Machine
(SVM) models are trained offline at edge nodes using real-time IoT.
Chen et al. [10] use causal inference (CauseInfer) mechanisms to
pinpoint the root causes within the system; for this, Causelnfer ex-
plicitly determines fault propagation paths. A similar approach (called
Nazar) is designed by Hao et al. in [29], which applies mobile devices
to find root causes in distributed systems. Through experiments, Nazar
confirmed that models can be improved due to cause-specific adapta-
tion while monitoring large numbers of devices. Zhang et al. presented
Octopus [30], which ensures SLO fulfillment during a CV task; for this,
they used deep RL to provide the optimal device configuration for three
parameters.

There evidently exists work that identifies and applies causal under-
standing to ensure system requirements; however, with the exception
of Nazar [29], they treat model training as a one-time process. Hence,
drifts (or shifts) in the variable distribution stay undetected. Further,
it is impractical to assume that initial training data suffices to create
causal understanding; this is also a shortcoming of Nazar. Contrarily,
our approach uses AIF to gradually create causal models over multiple
iterations and continuously ensures model accuracy by updating beliefs
according to prediction errors. Unlike presented work (e.g., Octopus),
AIF intrinsically seeks to ensure both an accurate device model, as
well as fulfill agents’ objectives (e.g., high SLO fulfillment). Although
RL could rebuild this behavior through multiple values functions, this
presents a challenge in itself, which can serve as a comparison for the
results of this paper.

2.2.2. Transfer learning in the CC

Goyal et al. present MyML [31], a hardware-friendly model trans-
fer for edge nodes. MyML uses transfer learning to create small,
lightweight, custom ML models based on user preferences. Wu et al.
present a novel approach to online transfer learning for both hetero-
geneous and homogeneous labels of multi-source domains [32]. This
approach is very efficient in online classification, and the weights
are dynamically adjusted depending on the source domain. Hsu et al.
provide a clustering mechanism that considers the similarity of domains
and tasks for transfer learning [33]. They provided a function based on
domain similarities used for cross-task transfer learning.

Transferring ML models is an important measure for relieving
resource-restricted devices from training; this can consider recipients’
context to provide a tailored model. However, the presented works did

94

Future Generation Computer Systems 160 (2024) 92-108

Fig. 1. High-level overview of the collaborative edge intelligence framework that
continuously improves model evidence, shares this knowledge between edge devices,
and optimizes SLO fulfillment within this cluster.

not consider low-level hardware characteristics to identify potential
teachers among nearby devices. To that extent, our framework uses
hardware classification to find adequate models within a device cluster
and creates a tailored model by merging conditional probabilities of
BNs.

2.2.3. SLO-induced load balancing and offloading

Elasticity is one of the most effective ways to ensure the require-
ments of dynamic workloads by automatically provisioning or de-
provisioning resources based on demand [34]. SLOC is a novel elastic
framework developed by Nastic et al. in [35], that allows users to
provide and consume cloud resources in an SLO-native manner while
guaranteeing performance. Further, Furst et al. bring elastic service
principles from the cloud to edge computing [36]. They evaluated
elastic and non-elastic services at the edge while processing images to
latency SLOs, and noticed improved service provisioning through elas-
ticity. In [37], Menino proposed efficient failure detection mechanisms
for unstructured overlay networks. This approach aims to identify effi-
cient neighborhood overlays, which dynamically identify and maintain
each node in P2P networks.

SLOs are an efficient way for modeling and enforcing requirements
at the respective component. Nevertheless, the remaining question is
whether components have the required scope to recover SLO failures
(e.g., by offloading computation), but it is impractical to evaluate
SLOs in the cloud (e.g., MHP2P). Ad-hoc hierarchical structures could
provide a remedy, which Menino [37] are the only ones to use among
the related work. However, they all assume prior knowledge of which
variables impact SLO fulfillment. Contrarily, our approach (1) gradually
increases the SLO scope by forming device clusters that span the entire
CC, and (2) evaluates causal relations among environmental variables
to shift the load from impacted devices.

3. Collaborative edge intelligence

To ensure SLOs throughout computational tiers, we propose our
framework for collaborative edge intelligence that encompasses three
main contributions: (1) The continuous model optimization based on
AIF, which ensures SLOs (locally) on a device basis; (2) the federation
and combination of EOSC model between edge devices, which de-
creases the overhead of training models for different device types from
scratch; and (3) the evaluation of SLOs on a cluster-level, which can
rebalance load within the cluster according to environmental factors.

These three contributions are described in the respective Section 3.1
to 3.3; Fig. 1 contains a high-level overview of the framework’s capabil-
ities. On the left, it is depicted how SLOs are evaluated to continuously
train an ML model and adapt the service accordingly; this model is then
federated and combined at a fog node, which provides the model to
an unknown device type (marked as red). The fog node analyzes the
overall SLO fulfillment in the cluster; if it appears beneficial to offload
computation from one device to another one (e.g., from the blue to

B. Sedlak et al.

Workload C/ Service Level Objectives
= Ener
Al | & | #2 Extract MB
@ I Delay |
=
Metric [] /.
CPU utilization

~

Markov blanket

Processing delay

Requests / Sec.

Bayesian network

Ideal configuration
- Probability of SLO violations
-

#3 Infer knowledge

Fig. 2. Training a Bayesian Network from processing metrics (#1); this is used to
extract the minimum number of variables related to SLO fulfillment (#2) and a
configuration that satisfies them (#3).

the red one), this is orchestrated by the fog node. Logically, the model
transfer and load balancing rely on the SLO fulfillment in the Edge; this
is why all three contributions are required to ensure SLOs on multiple
tiers (or the entire CC).

3.1. Continuous model optimization

An accurate generative model allows to explain a system’s behavior
(e.g., why SLOs were violated), infer how to adapt the system to ensure
SLOs, and predict how changes will affect this. Further, prediction
errors are propagated back to the agent so that the model can be
improved according to the experienced deviations. In the following, we
will first present the representation of the EOSC model and the applied
training method. Afterward, this process is integrated into an AIF agent,
which uses this process to continuously improve the model accuracy.

3.1.1. Static model training and inference

Within previous work [5], we presented the idea of obtaining a
generative model from processing metrics and inferring system config-
urations that fulfill SLOs. However, it lacked a formal implementation;
this will be the content of this section. Fig. 2 summarizes our method to
train the BN, which is required as a causal structure for our framework:

To report their current state, edge devices produce metrics through-
out processing; this data can be used to create a generative model
through Bayesian Network Learning (BNL) (#1). This reveals (ideally)
causal dependencies between variables, including the impact of en-
vironmental changes (e.g., increased incoming requests). To decrease
the model complexity, we identify the minimum number of variables
relevant to fulfill system requirements (i.e., SLOs); this subset is the
MB of the BN (#2). Given the MB, we estimate the probability of
SLO violations for different hypothetical scenarios and (#3) infer the
device configuration with the highest statistical compliance level. In
the following, we elaborate on these substeps further.

Bayesian network learning. BNL is an efficient way to generate the most
accurate structure from given data; its two main parts are STRL —
structural learning of causal dependencies (i.e., DAG), and PARL -
parameter learning as quantification of variable dependencies.

While there exist numerous BNL techniques [38], we focus on
Hill-Climb Search (HCS) for structure learning and Maximum Like-
lihood Estimation (MLE) for parameter learning due to their rapid
convergence, low complexity, and efficiency when considering limited
attributes. For a data set with 5 columns, the resulting DAG could
look like Fig. 3(a). The AIF agent uses these methods for constructing
(and later updating) the EOSC model: STRL trains a DAG through
HCS; PARL evaluates the conditional variable dependencies through
MLE. Together, they can be used to create a BN model from data D
as model = PARL(STRL(D), D).

95

Future Generation Computer Systems 160 (2024) 92-108

/ *\‘ ,//'/ T ‘\\‘ y,//'/ \
[network j«—————— streams | network €«———— | streams |

| consump |

| bitrate —————»{ CPU

{ consump

| bitrate

\ / N J/ \.

(a) Entire DAG (b) MB for network

Fig. 3. Causal variable relations in the DAG of a trained BN.

Markov blanket selection. A BN contains by design directed relations
and conditional dependencies of random variables; however, to deter-
mine the state of an individual node x, only a share of the BN nodes
are influential. This promotes the application of MB [2,39,40], which
shield a variable from all nodes that are conditionally independent
of it. Suppose we specify an SLO according to device capabilities
(e.g., network throughput < ¢) and evaluate it using a single variable
(e.g., network), we want to identify metrics related to SLO fulfillment.
Namely, these are all variables contained in the MB of network; the
function MB(model, network) thus returns all blue nodes in Fig. 3(b).

In this context, we distinguish between metrics that statically reflect
the system state (e.g., CPU), and those that represent a parameterizable
variable (e.g., bitrate). However, we summarize both using the term
“metrics” from a BNL perspective. While static metrics are essential to
explain why an SLO is in its current state, only parameterizable ones
can be dynamically reconfigured, i.e., they are the possible action states
of the AIF agent. Overall, the sum of metrics in the MB provides a clear
understanding of why an SLO is in its current state.

Knowledge extraction. There exist two main categories of algorithms
for extracting knowledge from BNs, namely Approximate Inference
(AxI) and Exact Inference (EI). Given a BN and system requirements
(i.e., SLOs), we seek to extract probabilities of SLO violations un-
der different environmental states. This mechanism works equally for
different CC tiers; an edge device, for example, could use its BN to
answer P(network > t), with ¢ being a custom threshold. For dynamic
reconfiguration, we require inference to be (1) accurate, (2) converge
reliably, and (3) fast for large networks. We argue that EI and, in
particular, Variable Elimination (VE) [41] fulfill these constraints:

Consider the DAGs from Fig. 3: We construct a QoS SLO that is
fulfilled if network is below ¢ and infer the probability of SLO violations
for different variable assignments. VE accepts a list of target variables
(T), variable assignments (A), and an elimination order (O). VE iterates
over O and eliminates model variables while updating the beliefs of
remaining nodes; the graph thus eventually contains only T. To de-
crease the complexity of V E, we execute it on mb = MB(model, network),
the node list thus equals {network, streams, bitrate}. Later, we call VE
through INFERENCE(m,,T, A), where m, can be any subset of the BN.
If we execute INFERENCE with mb, T = {network}, A = [(streams :
2), (bitrate : 720)], and arbitrary O, the result contains all conditional
probabilities of nerwork given the variable assignment; from this we can
extract P(network > t).

This is our central mechanism for identifying probabilities of SLO
violations given a system state. If an SLO is violated due to an environ-
mental change, e.g., higher streams and thus network exceeds ¢, we can
compare possible configurations and provide the one with the highest
probability of fulfilling the SLO. In the given example, only bitrate
can be parameterized (i.e., configured); to fulfill the nerwork SLO, the
corresponding measure could thus be to decrease bitrate. This matches
our envisioned level of intelligence, i.e., “understanding a situation and
reacting according to needs”, and neatly fits the principles of elastic
computing [34].

B. Sedlak et al.

Predict Sensory Input r

Compare to Event

Update Beliefs

Suggest Changes
Process Data

= W1

Provide Metrics <>

S

Energy @
| I
Del
had Stream Data
Causal Graph || Conditional Probabilities Service Level Objectives
Fig. 4. Overview of the active inference cycle — learning how to fulfill SLOs by

adapting the generative process.

3.1.2. Active inference cycle

The tools presented in the last section created a BN from processing
metrics, extracted an MB, and inferred system configurations that fulfill
given SLOs. Supposed there is sufficient data available, BNL can be
a one-time process; however, there are two fundamental issues: (1)
data shifts, which likely occur after some time, will inevitably distort
the accuracy of the ML model, and (2) it is impractical to empirically
evaluate how an exponential number of system configuration impacts
SLO fulfillment. Large and complex systems, such as the CC, require
a different approach: creating and updating a model incrementally
according to new observations while drawing conclusions for unknown
parameter combinations from existing data.

To evaluate this parameter space of configurations, we extend the
AIF agents from [5] to interpolate between empirically evaluated com-
binations; to maintain the model’s FE low, agents continuously update
conditional probabilities of variable relation according to new obser-
vations. By design, our AIF agents can be employed at any CC tier;
nevertheless, the running example in this paper is focused on intelligent
edge devices, which collaborate under the supervision of a fog node.
Thus, we raise the granularity of intelligence from the Edge to the Fog.
In the following, we present the different tasks executed by an AIF
agent; this includes training and updating the BN, as well as evaluating
its scope of actions according to a set of behavioral factors. Based on
that, agents decide how to modify the system; each of these changes is
again reflected by system metrics.

Agent and operation. The AIF agent operates parallel to regular device
tasks, e.g., serving clients. Although regular operation, model training,
and inference are logically separated, they take place on the same
physical device; Fig. 4 contains a visual representation: assume an
edge device that continuously performs a workload, e.g., processing
client data. The agent observes the device state and the environment
through metrics; thus, it can evaluate whether processing complies
with SLOs, e.g., if a request was finished with delay < t. From that
data, the agent creates a BN, where conditional probabilities reflect the
SLO fulfillment under a discrete environmental state. Then, the agent
starts with predictive coding, i.e., forecasting whether future events will
fulfill SLOs, comparing the expectation with actual observations, and
updating the BN accordingly.

After each iteration, the agent infers how to modify the system con-
figuration to optimize local SLO fulfillment. Following that approach,
the AIF agent can create a generative model from scratch or update
a BN according to new observations by following its sensing-acting
loop. Thus, it is possible to cancel out data shifts, e.g., the result of a
model transfer from one edge device type to another. AIF can therefore
perform the fine-tuning that is required after such an operation.

Free energy minimization. To create an accurate model, the AIF agent
operates in cycles; each cycle processes a batch of observations that
reflects the environmental state, including the latest system configu-
ration. The agent continuously evaluates the batch, updates its model,
and chooses which system configuration (c,,,,) to choose for the next
iteration. Throughout these cycles, the AIF agent has one central goal:
decreasing the FE, or in other words, minimizing surprise of predic-
tions. Therefore, we will first present how we calculate surprise and
then embed it into the high-level loop executed by the agent.

96

Future Generation Computer Systems 160 (2024) 92-108

Algorithm 1 SURPRISE for model and batch

Require: model, batch, Vg
Ensure: S // surprise over all observations
1: §«0
2: mb < MB(model, Vg)
3: for each var in Vg, , do
4: log_likelihood < O
5. ev « MB(model, var)
6: for each row in batch do
7: evidence « row N ev
8
9

p < INFERENCE(mb, var, evidence)
log_likelihood « log_likelihood + log(p)

end for
11: c¢pt « CPT(model, var)
12: k < |cpt| // number of states in the CPT
13: n <« |batch|
14: bic « (=2) X log_likelihood + k X log(n)
15: S + bic
16: end for

17: return §

For calculating the surprise for batch and model we present Al-
gorithm 1. To decrease the complexity, we limit the calculation to
variables that directly reflect SLO fulfillment (V,), and execute IN-
FERENCE only on the MB of V;, (Line 2). This node set is further
filtered (Line 5) to contain only the evidence variables (ev) that impact
the outcome of var; afterward, in Line 7, each row in the batch is
filtered to contain only these variables. In Lines 8 & 9, the probability
of observing wvar, i.e., the state of the SLO, given the environment
(evidence) is first inferred and then appended as log_likelihood. For each
var, the cpt from model is considered, from which k — the number of
states — can be extracted as a representation of model complexity. CPT
is as a helper function to get the CPT for a var in model. Together with
n — the number of observations — the BIC is calculated (Line 14). After
calculating the surprise for each var X row, this overall sum is returned.

The surprise has a special role within our AIF cycle, as it determines
when and how BNL takes place; consider therefore Algorithm 2, which
shows the high-level loop executed by the AIF agent. At the beginning
of each iteration, the agent ensures that there exists a model, otherwise,
it creates an initial structure from batch (Lines 1 & 2). Notice, that
STRL and PARL accept now another parameter — model — which allows
to update the DAG and CPTs of model according to batch. Whether
STRL or PARL is executed (Lines 7-11) is determined by the surprise
magnitude (s). If s exceeds the median surprise of the last 10 rounds
(m,) by a custom factor 4, STRL is applied; otherwise, if s exceeds mj,,
PARL is applied. This distinction is necessary because STRL and PARL
have quite different runtimes, as we will reveal in Section 5. Finally, in
Lines 12 & 13, the agent evaluates possible system configurations and
determines which one it will use for the following iteration. We will
explain these two functions in the next two paragraphs.

Behavioral factors. The behavior of the AIF agent, i.e., how it selects
between possible system configurations, is determined by three major
factors: The pragmatic value (pv) defines how well the device fulfilled
client expectations, e.g., if a streamed video’s resolution is satisfactory.
The risk assigned (ra) determines how likely the system will fail its
service, e.g., if the stream packets are delivered on time. Lastly, the
information gain (ig) represents the agent’s expectation of how much it
can improve model accuracy. The ig is directly related to surprise mini-
mization, whereas pv and ra reflect the agent’s capability to fulfill SLOs.
To separate concerns, we divide SLOs according to their characteristics:
pu represents QoE requirements, while ra contains QoS requirements.
Combined, these three factors determine the behavior of the agent; in
the following, we will calculate each of them.

B. Sedlak et al.

Algorithm 2 An Iteration in the AIF Cycle

Require: model, batch, 3, h, Vg0
Ensure: c,., // Next configuration
1: if model = @ then
2: model — PARL(STRL(@, batch), batch)
3: end if
4: s « SURPRISE(model, batch, Vg)
5 8 « SU{s}
6: my, < median(S,) // over the last 10 values
7: if s > (m;y X h) then
8: model «— STRL(model, batch)
9: else if s > m;, then
model «— PARL(model, batch)
end if
K < CALCULATE_FACTORS(model)
Cpext < BEST_CONFIGURATION(K)
return c,

10:
11:
12:
13:
14:

next

To infer the optimal device configuration (i.e., the one with the
highest SLO fulfillment), the agent limits itself to finding the Bayes-
optimal configuration [42], i.e., the optimal under current knowledge.
Therefore, the AIF agent first infers the assignment for known pa-
rameter combinations (¢,) that were empirically evaluated and then
interpolates between these values to span the entire parameter space.
Calculating pv and ra is similar to Algorithm 1 (Lines 5-8): It requires
a subset V, C Vg, — either QoS or QoE SLOs — which is used as
ev < MB(model, V). For each row in ¢, evidence is constructed equally,
so that INFERENCE(mb, V5, evidence) provides the joint probability of all
QoS or QoE violations.

iglc)=e+ (SC> x 100 (@D)]

S
In accordance with [26], high surprise indicates high information
insight and, hence, possible improvement of the model precision. How-
ever, from an agent’s perspective, is it worth abandoning a supposedly
satisfactory configuration (in terms of pv and ra) to search for a global
optimal one? This presents a tradeoff between exploration of unknown
areas and the tendency to stick to exploited areas; multi-agent systems
commonly model this through hyperparameters (e.g., [27]). In our
case, we calculate the ig of a configuration ¢ € ¢, as presented in
Eq. (1) [26]: it compares the median surprise (S,) for ¢ with the overall
mean surprise (J). Configurations with high &, will thus be preferred
by the AIF agent.

Parameter space. The AIF agent calculates the behavioral factors for
all entries in ¢, and summarizes them as K (Line 12 of Algorithm 2).
For the next step, imagine two configuration parameters { fps, pixel}
with their combinations arranged in a 2D [fps X pixel] matrix. After
calculating K, the blank spaces in the parameter matrix are filled
by performing linear interpolation'. As a potential result, consider
the matrix depicted in Fig. 5(a). Later, in Section 4.2, the agent will
interpolate in a 3D parameter space.

Contrarily to pv and ra, the agent does not apply interpolation to
estimate the ig of an unknown parameter configuration. Instead, in the
absence of observations for ¢, it assumes that ig(c) = max(S). Further,
it remains to introduce a hyperparameter from Eq. (1), namely e. To
improve the interpolation of pv and ra, the agent initially focuses on
key positions of the possible configurations. Fig. 5(b) illustrates that
tendency; the visually highlighted blocks are increased by e = 0.3.
When calculating the behavioral factors, the AIF agent thus initially

1 In fact, this is done using Python scypy, which triangulates data through
a convex hull to perform linear barycentric interpolation on each triangle.

97

Future Generation Computer Systems 160 (2024) 92-108

1.0 0.30

12
120

0.25

180

0.20

240

0.15
0.10

—~ 0.05

420 360 300 240
o
]

420 360 300

2 26 30

- 000
14 18 2 26 30 14 18

(a) Interpolation for pv (b) ig after 1 round

Fig. 5. Matrices of behavioral factors used by the AIF agent.

focuses on these cornerstones to set up the interpolation; after visiting
¢, it subtracts e from ig(c).

To summarize possible risks but also benefits that emerge from a
configuration ¢, we combine the three factors under a common one ()
that we calculate as u, = pv.+ra,+ig.. The AIF agent compares common
factors of all possible configurations and selects the highest-scoring
(Line 13 of Algorithm 2). By repeating this cycle, the agent gradually
develops an understanding of which areas in the parameter space are
more likely to fulfill SLOs, e.g., the left-bottom area in Fig. 5(a).

This concludes the agent’s continuous model optimization, which
maintains an up-to-date model of a processing task (i.e., the generative
process). The high accuracy in the EOSC model allows the AIF agent
to infer (Bayes-)optimal device configurations, which ensures QoS and
QoE of ongoing operation. In the following, we will now focus on the
collaboration between the Edge-based agents.

3.2. Knowledge transfer within the cluster

By now, we presented AIF agents that can create generative mod-
els from scratch or update a model according to new observations.
However, if we assume a cluster of nearby devices that process similar
workloads, training EOSC models for every device seems redundant.
Also, if we aim to extend the cluster with more devices (i.e., scaling
up horizontally), model training delays the time until devices oper-
ate according to requirements. Instead, we envision the federation of
knowledge between edge devices by exchanging EOSC models within
the device cluster. Such a transfer learning approach appears to be
a straightforward process if the models were trained in the exact
same environment [32]. However, the Edge is composed of multiple
heterogeneous device types; the resulting models thus reflect the char-
acteristics of the device it was trained on, i.e., its capability to cope
with SLOs depends on the processing hardware. For example, a multi-
core device is certainly capable of processing multiple video streams,
while a single-core one is not. Furthermore, the behavior of AIF agents
(i.e., which action it takes) and environmental dynamics (e.g., demand)
determine which parameter combinations get more or less exploited.

Whenever a new device (type) joins a cluster, the question is
whether there exists a device within the cluster whose environment
and characteristics match the newly-joint device’s. Meanwhile, devices
present in the cluster share their EOSC models and device character-
istics (e.g., hardware specs or environmental factors) with the cluster
leader (i.e., standing hierarchically above the device cluster). As a
new device joins the cluster, its characteristics are compared with the
present ones to select a fitting model. In cases where the characteristics
of multiple devices are similar, their models are merged and provided
to the newly-joint device. Thus, the newly-joint device builds its EOSC
model on top of existing knowledge in the federation.

In the following, we dive deeper into this transfer-learning process
by answering (1) how models are federated between devices, (2) how
hardware characteristics are compared to select a model, and (3) how
models are combined to fit a target device.

https://scipy.org/

B. Sedlak et al.

3.2.1. Cluster-wide model exchange

The EOSC model exchange knows two roles: (1) consumer — when
joining a device cluster it might be preferable to adopt an existing
model rather than training one, and (2) provider — any device might
itself share its model with devices that join the cluster. The selection
of a fitting model, however, can happen on any trusted device; we
assume for this task either a cluster leader (i.e., an outstanding device
elected due to its capabilities) or a powerful fog node. To provide
an estimation, these models are supposedly smaller than 2 MB, as
measured in [5,26].

When making the architectural decision (i.e., cluster leader or fog
node), various factors can be considered, among them: network scale,
cost, geographic location, and availability. In cases where the cluster
would be small (e.g., 10 devices), an edge device (e.g., from Table 3)
could cope with collecting and preparing EOSC models; however, for
larger clusters (e.g., 1000 devices), regular edge devices might fail to
do so. In any case, a strong factor for using fog nodes is their high
availability — fog nodes can reliably cache a high number of models
from various devices. Either choice, they assume equal responsibilities,
thus we call them simply leader node. This leader node periodically
collects EOSC models of devices registered in the cluster, as well as
their hardware characteristics. Based on this information, models will
be provided for new device types.

3.2.2. Model comparison and selection

Transferring a EOSC model to a newly-joint device raises two ques-
tions: First, is the transfer of an existing model more efficient than
learning the model from scratch? And second, how to choose the most
convenient model for the new device? Of course, the second question
assumes that the device type is unknown and the cluster does not
contain the respective trained models so far. The first question will be
answered and discussed as a result of this article; the second question,
however, requires building a hypothesis around how to choose a model.

The dynamism within the training environment has a decisive im-
pact on the resulting model: applications with a stable number of
user requests do not suffer many dynamics, while applications that
are linked to specific events (i.e., disaster management) can experience
extremely different requirements. However, we assume that environ-
mental factors are out of our hands — we are unaware of the dynamics
of the environment in which the device is set. Due to that, we focus
on the device characteristics when transferring models between edge
devices. To that extent, we get inspiration from the work of Casamayor
et al. [43], which allows classification of heterogeneous characteristics
of the devices found in a cluster, namely their CPU and GPU capacity.
This means that we relatively classify the CPU capacity (p) of the
devices in the cluster in a range [p,,i,» Pax)> and their GPU capacity (g)
from [g,in> 8max]- Given that there are numerous edge devices without
GPU, it is possible to set g,;,, = 0. To make this more tangible,
in Section 4.2, we present a list of edge devices whose hardware is
classified accordingly. Finally, we define each device’s capacities as
dc = p+ g. To estimate the similarity of device characteristics and to
identify a device with a matching model, the leader node selects the
device(s) with the closest integer dc.

3.2.3. Combination and preparation of models

Heterogeneous edge devices differ in terms of hardware character-
istics. Using the presented mechanism, there would frequently occur
situations in which there is not exactly one device that trumps all
others. For example, consider a device with type 7, that joins a device
cluster; there are already numerous device types present, among them
t, and t,. The leader node classifies their capabilities as dc, = 3,dc;, =
5, and dc, = 4. Which model should now be provided to 7, the one
trained on 7, or on 7,? And in case dc, =2 and dc;, = 7; is choosing dc,
really the smartest choice?

What we envision for both cases is merging the models from 7, and
t,, thus creating a new model m,, that presents the intersection. In the

98

Future Generation Computer Systems 160 (2024) 92-108

Redistribution | > H Optimize Assignment | > }i Redistribution | > } --------- N
= Analyze Performance ()
é@v

1L ¢)

Stream Data — 3
Offloading Stream ~ |> R !
Reconfigure

Fig. 6. Evaluating SLOs within a device cluster and reassigning tasks.

SLO Fulfiment () SLO Fulfiiment ()

second case, where dc, does not fall exactly between dc, and dc,, this is
done proportionately. Therefore, we require a mechanism to combine
EOSC models — still BNs at their cores. To date, merging BNs is an
ongoing research field that still presents various limitations [44,45];
in most cases, it is coupled to conditions that models must fulfill. Due
to this, we limit our work to merging CPTs. As long as two models
m, and m, contain the same structure (i.e., their DAGs are identical)
and their CPTs have the same cardinality (i.e., variable states), this is
done as follows: For a random variable r and its CPT(m, r), each table
cell’s expected value (P) is calculated as shown in Eq. (2); P, and P,
represent probabilities of m, and m,, the coefficients w, and w, reflect
the distribution of dc, between dc, and dc,. For example, if dc, is
aligned centrally between them, they take the value w, = w;, = 0.5;
otherwise, it is shifted proportionally, but w, + w;, = 1 must remain
true.

P, = (w, X P) + (w, X Py) (2)

If m, and m, do not fulfill these requirements, they would have to un-
dergo a transformation process. Nevertheless, in Section 4.2.2, we apply
a workaround to merge BNs whose CPTs have different cardinalities.
After merging the EOSC models, the leader node provides m,, to the
newly-joint device; once received, transfer learning is completed. Thus,
it decreases the time for model training or even skips it entirely.

3.3. Stream offloading in the edge—fog cluster

Regardless of whether trained by an AIF agent or transferred from
another device, a EOSC model is a decisive step towards SLO fulfill-
ment. Thus, edge devices are continuously reconfigured to achieve
maximum SLO compliance. However, despite our efforts, edge devices
are still vulnerable to environmental factors that cannot be controlled,
e.g., irregular peaks in client traffic. While a EOSC model can have
a hard time finding an SLO-compromising device configuration, idle
edge devices in close proximity might be available for offloading com-
putation. Again, to match our desired level of intelligence, this can
be achieved through collaboration between the agents. Given that the
struggling edge device is part of a device cluster, it is possible to
(1) compare the device’s capabilities to fulfill their SLOs within their
environment, and (2) balance the load accordingly. Notice, that shifting
the load within the cluster is a (local) reconfiguration that follows the
same rules as in Section 3.1; this time, however, on a higher level.

In the following, we describe how to evaluate, analyze, and optimize
the cluster-wide SLO compliance; the overall process is visible in Fig. 6:
The edge devices in the cluster (red & blue) serve their respective
clients, e.g., by processing data, which is subject to dynamic reconfigu-
ration according to the EOSC model. Throughout processing, the edge
devices supply their SLO fulfillment to the leader node. Among that,
they provide other factors (i.e., as metrics) that potentially impact the
fulfillment. Environmental factors (e.g., insufficient hardware, power
shortage, or client demand) can thus be contrasted with the devices’
capacity to fulfill SLOs. Based on that analysis, the leader reconfigures
the cluster (e.g., by redistributing the load) so that QoS and QoE SLOs
are optimized within the cluster.

B. Sedlak et al.

3.3.1. Cluster-wide evaluation of SLOs

To analyze SLO fulfillment on a cluster level, the leader node does
not reevaluate lower-level SLOs — this was already covered within the
Edge. Instead, the leader node merely collects SLO compliance rates per
device as a combined factor f = pv X ra. These metrics are collected at
the leader; depending on the desired amount of historical data, the high
availability of the Fog would again be beneficial for collecting data. The
question is now how to transfer metrics: Considering the potential size
of a device cluster, we opt for a push-based approach, where devices
periodically supply their data to the leader.

Apart from the SLO fulfillment, edge devices provide metrics that
reflect their current environmental state. This includes any factors that
the leader node should consider. If a battery-equipped device suffers
occasional power shortages, it can report this conditional to the leader
node, which adapts the network, e.g., by offloading computations to
other devices to decrease its power drain. However, in the event of
an entire network outage, devices can be incapable of reporting their
state, and another node (e.g., leader) would have to detect this. Other
frequent conditions can be general network congestion, including poor
latency, jitter, or packet loss, but also devices’ geographic location,
user density, and peak usage times. Given their impact on the devices’
capacity to fulfill SLOs, the leader node will rebalance the environment.

3.3.2. Analysis & optimization per device

Optimizing the devices’ environments requires methods to draw
conclusions between discrete environmental states and their conse-
quential SLO fulfillment. To that extent, we aim — again — to identify
causal relations between metrics; however, this time on a cluster level.
Given a metric set (i.e., reflecting the environmental state) and the
respective SLO rates per device, the leader node can construct a BN
and infer how environmental changes impact the SLO fulfillment. To
accelerate the construction of such a model, the leader node can
combine metrics from devices of the same type, or even those that
have comparable hardware characteristics (as done in Section 3.2.2).
Although we ascended from an Edge to a cluster level, we still use the
same tool for analyzing and adapting the environment — the EOSC
model. However, to make a distinction, we call this new instance a
EOSC-F (Fog) model.

Given a trained EOSC-F model (or rather, its BN), it is evident which
environmental factors (o,,,) have a causal impact on SLO fulfillment.
This can also help to improve the QoS in the long run, e.g., by pinpoint-
ing issues within the infrastructure. However, we aim to ensure SLO
fulfillment the moment the QoS or QoE drops; the EOSC-F model can
therefore consider the devices’ environment and redistribute client load
to ensure maximum SLO fulfillment within the cluster. To that extent,
we present Algorithm 3, which distributes a number of streams (n,;;,,,)
between the devices (A) in the cluster. Inference is again executed
only on the variables that relate to SLO fulfillment, i.e., MB(model, f),
by filtering the model (Line 2 & 10). In Lines 6-18, the agent then iter-
atively assigns clients to the device, whose SLO fulfillment is the least
impacted by receiving another stream (ass[A] + 1). This assumes, that
both ass and ¢,,,, are part of e, i.e., have an impact on SLO fulfillment.
To that extent, o,,,[4] can contain factors like device characteristics.
After assigning all streams within the cluster, the assignment can be
orchestrated to the clients.

3.3.3. Orchestration and redistribution

As a last step, the new cluster configuration must be enforced; in this
case, by informing the pertinent devices of the new assignment. The
leader node pushes this information to all edge devices that must alter
their configuration. In accordance with Fig. 6, this includes all devices
that offload or receive clients (red & blue); thus, the red device redirects
clients to the blue device. To improve the SLO fulfillment rate within
the cluster, the assignment considered each device’s environment to
provide an adequate configuration on a cluster level. Regardless of

99

Future Generation Computer Systems 160 (2024) 92-108

Algorithm 3 Client reassignment algorithm

Require: model, n o, opy
Ensure: ass // assignment according to env. state

1: i< 0
2: ev <« MB(model, f)
3: for each 1 € A do
4: ass[A]=0
5: end for
6: while i < n_;,,;; do
7: 5best = -
8: for each 1€ A do
9: evidence < ev N (6,,,[A] U ass[4] + 1)
10: 6 « INFERENCE(ev, f, evidence)
11: if 5 > 6;,,, then
12: Opost = A
13: end if
14: end for
150 ass[Opeg] < ass[Opeg] +1
16: i<i+1
17: end while
18: return ass

whether the QoS was impacted by poor network conditions or by
poor hardware, if these conditions are packed as stateful information,
the leader node can optimize the cluster accordingly. Thus, it covers
heterogeneities between edge devices, which themselves might fail to
scale their service given the stress introduced by the environment.
This concluded the client load redistribution, which optimized over-
all SLO fulfillment in the cluster according to the EOSC-F model. To
transfer intelligence to the network edge, or even to the level of cluster
or fog nodes, this section provided various concepts that all had the
same goal: ensure SLOs in the respective system. It remains to provide
a prototypical implementation of presented ideas, evaluate it according
to key aspects, and argue to what extent it is ready for wider adoption.

4, Evaluation

In the following, we describe a CC scenario that requires edge
devices to continuously transform video streams; this use case poses
various requirements that must be ensured throughout processing.
Afterward, we outline our prototype that ensures SLOs through collab-
orative edge intelligence. Essentially, this is the implementation of the
presented framework. Lastly, we explain the methodology according
to which the prototype will be evaluated. Section 5 will contain the
respective results.

4.1. Use case description

The CC as a distributed system provides unprecedented opportu-
nities for service providers and clients, e.g., in terms of processing
or requirements assurance. As an example, consider a region with
frequent natural disasters where the humanitarian situation should
be documented. Therefore, reporters provide video streams in which
vulnerable groups, e.g., minors of age, are detected. In the same step,
individuals can be counted or visually highlighted; their identities,
however, must be preserved. The region suffers from occasional net-
work breakdowns (i.e., this affects access to global resources like the
cloud but not internal connectivity); the reporting team thus provides
ad hoc networking infrastructure in the form of edge devices, which are
installed in close proximity to the operation area. Reporters equipped
with IoT cameras are now capturing their surroundings; the video
streams are transformed on edge devices, where they can be cached as
long as global internet services are unavailable. Once resumed, videos
are streamed to a cloud platform that provides the content to worldwide
consumers.

B. Sedlak et al.

Envisioned solution. Due to the nature of how disasters happen, it is
impossible to fine-tune the complete streaming architecture before-
hand. Therefore, the system is unaware of how to ensure its service
(i.e., characterized by a set of SLOs) within this highly dynamic envi-
ronment. To that extent, we advertise our framework for collaborative
edge intelligence as the missing piece: Edge devices are supervised by
AIF agents, which ensure QoS and QoE through their EOSC model.
Whenever the computing architecture is extended with new devices
(i.e., scaled horizontally), existing models can be transferred to this new
device, regardless of whether its device type is known. Apart from that,
the leader node continuously analyzes edge devices’ capacity to comply
with SLOs; in case some devices are excessively loaded or suffer from
short-term network issues, the assignment between IoT cameras and
edge devices is adapted to optimize the cluster-wide SLO fulfillment.

4.2. Implementation

While the last part of the use case outlined the envisioned solution,
not all of these aspects are implemented and evaluated; in this regard,
we focus on the ideas presented in this paper. This especially concerns
the three contributions of the presented framework, i.e., the AIF-based
model training, knowledge transfer between heterogeneous devices,
and rebalancing of load according to environmental factors. Aspects
such as bootstrapping of IoT and edge devices and leader node election
(e.g., fog or edge) were already covered, e.g., by Murturi et al. [46,47].
The same applies to cloud-based distribution of video streams. An
exception, however, are privacy-preserving stream transformations; for
this, we make use of previously evaluated work [48]. To give our
evaluation more rigor, we chose this over simulating a workload and
its impact on SLOs.

4.2.1. Prototype

We provide the Python-based prototype of our framework in a
GitHub repository?; it contains all source code we used to implement
the three contributions, as well as the EOSC models for each device
type. The core logic is separated into two classes: Agent and FogN-
ode. These are the high-level loops executed in the main thread; all
other processes (e.g., AIF or VideoProcessor) run in detached
threads. The central library that is applied for training and updating
BNs, as well as running inference queries, is pgmpy [49]. pgmpy offers
ample support of BNL techniques; however our choice is also moti-
vated by personal preference — the framework’s performance must be
analyzed under different libraries (e.g., as done by [50]). To improve
the portability of our framework and simplify distribution, we provide
a docker image® that can be executed platform independently.® The
image exposes multiple env variables for configuring the solution,
e.g., forcing the Agent to create a EOSC model from scratch or
disabling ATF entirely.

The source code also contains the framework for privacy-preserving
stream transformation and the ML models for face [51] and age de-
tection [52]. To improve the reproducibility of results, we cancel out
irregularities in the video streams by processing prerecorded videos;
these are contained in the same repository. To simulate redirecting
IoT devices within the cluster, it thus suffices to open/close processing
threads on the edge devices; this simplifies networking. The Agent
can thus reconfigure the stream assignment immediately, at the end of
every ATF iteration. Because the use case is focused on video streaming
and the number of frames per second (fps) that are transferred, each
iteration lasts up to 1000 ms.

2 https://github.com/borissedlak/workload/tree/main/FGCS

3 https://hub.docker.com/repository/docker/basta55/workload/

4 In fact the docker image is restricted to daemons with a linux/armé64
architecture. This is the case for all device in Table 3, except for Laptop
(x86_64).

100

Future Generation Computer Systems 160 (2024) 92-108

Table 1

Device metrics captured, which are turned into model variables by AIF.
Name Origin Unit Description Param
pixel IoT num Number of pixels contained in a frame Edge
fps IoT num Number of frames received per second Edge
bitrate IoT num Number of pixels transferred per second No
cpu Edge % Utilization of the device CPU No
memory Edge % Utilization of the system memory No
streams Edge num Number of IoT devices providing data Fog
consumption Edge w Energy pulled by the device No
network Edge num Network throughput per application No
delay App. ms Processing time per video frame No
success App. T/F If a pattern (i.e., face) was detected No
distance App. num Relative object movement between frames No
slo_rate Edge % Combined SLO Fulfillment rate (pv X ra) No
device_type Edge enum Physical device type No
congestion Edge num Network congestion that increases latency No

4.2.2. Practical limitations

Merging BN, as presented in Section 3.2.3, is only possible under
the specified conditions, which are not always given during the AIF
process. The number of states in a CPT, for example, is highly dynamic
and extended as new batches of data are received. To merge the EOSC
models under such circumstances, we provided a workaround: Instead
of merging two BNs (m, and m,), we extend one of them (e.g., m,).
The device that trained m, maintains a backup of the training data
(dy); this we use to update the CPTs of m, through PARL i.e., m,, =
PARL(m,,d,). Notice, that this merges the conditional probabilities of
the models, but not the structure; this remains an open question. While
the resulting models are valid, we cannot assume that the original
training data is always maintained.

Another limitation is that the DAG of the model cannot be updated
frivolously through STRL; this triggers numerous updates within the
CPTs of the BN, which are not supported by default in pgmpy. Although
bnlearn [53] promises these features, we require a package that can be
embedded into our Python environment. Therefore, we make use of
the following workaround: Instead of updating the DAG of model m,
according to new observations batch, we train a new BN with data =
batch U d,, where d, reflects again the backup data. So internally, the
AIF agent executes STRL(model, batch) as PARL(STRL(d ata), data), which
likewise updates the CPTs with every execution. Solving this limitation
will be a far-reaching achievement that requires dedicated future work.

4.2.3. Variables and SLOs

For the given use case, the agents consider device and application
(i.e., video processing) metrics to construct EOSC models. Internally,
BNL transforms metrics into model variables, which are used to eval-
uate conditional probabilities. Table 1 contains an overview of all
captured metrics; each row contains a description, measuring unit, and
if it can be set as parameter. Notice, that only parameterizable variables
can be adjusted by AIF agents to optimize SLO fulfillment. For example,
pixel and fps are video stream properties of the IoT device, which are
reconfigured by edge devices according to agents’ behavior. The leader
node, on the other hand, can adjust the number of streams per device,
which is out of scope for individual devices.

The EOSC (or EOSC-F) models can be applied in different computa-
tional tiers to ensure each tier’s unique requirements; thus, their model
variables might not overlap. The edge-based EOSC model contains the
upper part of the variables, i.e., from pixel to success, whereas the
cluster-based EOSC-F model treats the lower part. Notice that the met-
ric’s origin, i.e., if it was measured from system stats or the application,

5 This functionality is natively offered by pgmpy; by default, the models are
merged proportionally to the number of samples that m, and d, contain. This
can be fine-tuned by adjusting the n_prev samples parameter; we use this to
prioritize new observations batch over existing conditional probabilities.

https://github.com/borissedlak/workload/tree/main/FGCS
https://hub.docker.com/repository/docker/basta55/workload/

B. Sedlak et al.

Table 2

Extracted SLOs and their classification.
SLO Condition Tier Type
network throughput < 1.6 MB/s Edge QoS
in_time delay < 1/fps Edge QoS
success success = True Edge QoE
distance distance < 50 Edge QoE
slo_rate max(slo_rate) Fog Both

does not determine where it is used as a variable. From these variables,
we construct SLOs that reflect the system state in terms of QoS and QoE.
The AIF agent considers this classification when calculating pv and ra
(recall). In Table 2, we present four SLOs that must be ensured during
edge-based processing and one that is ensured by the cluster’s leader
node. To simplify the EOSC models, we include the SLO into BNL and
remove the source variable, i.e., distance instead of distance.

We consider the presented SLOs relevant because (1) network
ensures that the actual throughput does not exceed the bandwidth
allocated to this application, (2) in_time makes sure that frames are
computed within the available time frame, (3) success guarantees
maximal privacy preservation, and (4) distance ascertains a smooth
trajectory for tracked objects. The slo_rate reflects the cluster-wide SLO
fulfillment. Notice that in the supplied video stream, there was always
a face present, which means success can be compared against a ground
truth.

4.2.4. Device classification

Video processing is very dependent on the availability of GPU ac-
celeration [48]; therefore, we apply multiple edge devices — with and
without GPUs. All devices applied for this work are listed in Table 3;
in the following, we call them by their ID. The other columns contain
hardware characteristics and — complementarily — the original price of
the device. A special instance is Xavier p;;: while its physical hardware
is equal to Xavierp, we disabled the GPU acceleration (i.e., NVIDIA
CUDA) to create another device type. Overall, our devices differ greatly
in terms of computing capabilities (e.g., missing GPU support or a
highly superior CPU with 16 cores); nevertheless, as a whole, these
devices compose the heterogeneous edge layer of the CC architecture.

As a prerequisite for transfer learning, we classify devices in a clus-
ter according to their hardware characteristics. Although this process is
dynamic, i.e., done repeatedly as devices join or leave the cluster, we
focus our evaluation on a scenario where the cluster contains all devices
from Table 3, excluding Xavier p; the latter will be the device joining
the cluster. As discussed in Section 3.2.2, we classify these devices
relative to each other according to their CPU and GPU capabilities;
the results are contained in Table 3. To achieve the desired distance
between the scalars, the CPU is aligned between [1 < p < 4] and the
GPU between [0 < g < 2].

4.3. Evaluation methodology

The implementation of the use case is thus set up for evaluation. To
ensure a solid foundation for our framework, we will target each of the
three pillars (i.e., the contributions) individually. The order in which
they are evaluated resembles the one used throughout the paper; this
makes sense also from a logical point of view because transfer learning
and stream offloading rely on the underlying AIF mechanism. In the
three paragraphs below, we outline the evaluated aspects and motivate
each question. Combined, this represents our evaluation methodology.

Active inference. Our main interest includes the executability of the
AIF agent on edge devices and the extent to which the EOSC model
improves the SLO fulfillment within the Edge. Because structure and
parameter learning are recurrent factors in the evaluation, we will put
emphasis on when they happen. Namely, our questions include:

101

Future Generation Computer Systems 160 (2024) 92-108

A-1: Do MBs reduce the complexity of inference?

Increasingly large BNs require mechanisms to limit the complexity of a
system; otherwise, resource-restricted edge devices may fail to execute
the AIF cycle within an induced time frame. The MB, as a potential
remedy, could achieve this.

A-2: What is AIF’s operational overhead?

Training and updating EOSC models directly on edge devices allows
them to adapt quickly to system dynamics. However, any overhead
introduced by AIF must not disrupt regular device operation, e.g., data
processing.

A-3: How long require AIF agents to ensure SLOs?

To optimize SLO fulfillment, the agent must be able to infer adequate
system configuration. However, there is no guarantee after how many
AIF iterations the model will converge to the desired accuracy. Hence,
we must provide an estimate for this.

A-4: Are the produced Bayesian networks interpretable?

Large-scale distributed systems, e.g., the CC, require trusted and reliable
components as a solid foundation. Given that AIF can provide structures
that are empirically verifiable, this promises to increase trust.

A-5: What is the operational impact of including BNL in the AIF cycle?
BNL was identified as the dominant factor for the complexity of the AIF
cycle; therefore, we must ascertain whether edge devices can perform
BNL without limitations. Depending on the results, the two processes
could be broken up into a federated learning approach, e.g., to execute
sub-steps in the Fog.

A-6: Can changes in variable distribution be handled?

Real-world generative processes are not guaranteed to stay stable, small
environmental changes (e.g., a new client) might suffice to change the
SLO result. Nevertheless, these changes should be detected and resolved
through AIF-based model training.

A-7: Can SLOs be modified during runtime?

In the CC, devices can be administered by entities that stand hierar-
chically above them; these can change their role in the architecture, or
more simply, their SLOs. If a device could not adapt its existing EOSC
model, it would have to train from scratch.

Knowledge transfer. After focusing on the training of EOSC models,
we are mainly interested in how well the created models can be
exchanged with other edge devices, and if this promises to improve the
training time. Ideally, we would thus reuse existing knowledge instead
of “rediscovering” it.

K-1: What is the SLO fulfillment rate of transferred models?

Transfer learning can provide ML models (i.e., specific for one device)
to other devices. However, it is not guaranteed that a transferred
model performs equally to a model specifically trained for a device. For
example, the transferred model might be more likely to violate SLOs.
K-2: Can knowledge transfer achieve any speedup?

Transferring a trained model removes computational overhead (A-2)
from the recipient; thus, it could decrease the overall energy dedicated
to model training, most beneficial for resource-restricted edge devices.
Furthermore, this could decrease the time required to ensure SLOs
(A-3).

K-3: Can merged models decrease the FE compared to choosing a single one?
Models with low FE can infer SLO-fulfilling system configurations with
higher accuracy. Exchanging knowledge within the cluster can include
the combination of multiple eligible models. However, can such com-
bined models interpret observations with less surprise compared to a
single transferred model?

Stream offloading. To optimize their SLO fulfillment, intelligent edge
device continuously adapt their environment. However, for environ-
mental factors that are out of their scope (e.g., network failures or
hardware limitations), the device cluster can be the remedy to com-
pensate for these issues. In this context, we want to determine whether
the SLO fulfillment of individual devices can be recovered through
collaboration.

B. Sedlak et al.

Table 3
List of devices used for implementing and evaluating the presented methodology.

Future Generation Computer Systems 160 (2024) 92-108

Full device name ID Price? CPU

GPU p [1,4] g [0,2]

ThinkPad X1 Gen 10
Jetson Orin Nano

1800 €
500 €
150 €
300 €

Laptop Intel i7-1260P (16 core)
Orin
Nvidia Jetson Nano Nano

Jetson Xavier NX Xaviercpy

ARM Cortex A78 (6 core)
ARM Cortex A57 (4 core)
ARM Carmel v8.2 (6 core)

32 GB
8 GB
4 GB
8 GB

Incompatible
Volta (383 core)
Incompatible
Disabled

Very high (4)
High (3)
Low (1)
Medium (2)

None (0)
High (2)
None (0)
None (0)

Jetson Xavier NX Xavier;py 300 €

ARM Carmel v8.2 (6 core)

Wl e o sy

8 GB Amp (1024 core) Medium (2) Low (1)

2 Price as of October 11th 2023 from https://sparkfun.com/.

S-1: How is load distributed among resource-constrained devices?

The Edge, as one CC tier, allows clients to request services from nearby
edge devices; however, this fosters situations where load is highly
unbalanced within the system. This might cause resource-restricted
devices to fail their service; once this is detected, the load must be
rebalanced within the system.

S-2: Can the CC hierarchy optimize local SLO fulfillment?

Depending on the scale of SLO failure, individual devices may be
incapable of recovering their service through local reconfiguration.
Nevertheless, higher entities in the CC (e.g., cluster) can evaluate and
resolve this by employing their own SLOs.

5. Results and discussion

In the following, we evaluate the prototype according to the pre-
sented methodology. We structure our results according to the three
contributions and the evaluation order in Section 4.3; based on the
results, we pose derivative questions for future work. At the end of this
section, we take a bird’s-eye view to look at the results as one coherent
framework and discuss the applicability of our approach.

5.1. Active inference

A-1: Do MB:s reduce the complexity of inference? To show whether an MB
can decrease the AIF cycle duration, we focus on one of its subparts
— the inference. We modify the implementation of Algorithm 1 (Lines
2 & 8) to execute INFERENCE either (1) on the entire BN including
all 4 SLOs, (2) the MB including 4 SLOs, (3) the MB with 2 SLOs,
or (4) the MB with 1 SLO. Then, we execute the AIF cycle on Laptop
and capture the running time of each configuration over a duration
of 10 min; this produces 600 observations for each experiment. Fig. 7
visualizes the time that Laptop requires for performing INFERENCE,
given the different MB sizes.

We observe: (1) applying an MB reduces the median execution type
significantly, i.e., from 191 ms (gray) to 159 ms (blue) for 4 SLOs, and
(2) decreasing the number of SLOs gradually reduces the execution time
further. We thus conclude that MBs reduce the complexity of VE (A-1).

A-2: What is AIF’s operational overhead? To evaluate AIF’s overhead,
we use pre-trained models for Xavier-py and Xaviergpy;. Each device
processes 6 video streams. We measure the CPU load (%) of the two
devices with one of these two configurations: (1) AIF enabled, and
(2) AIF disabled. We capture the load over 10 min; this produces 600
observations for each experiment. In Fig. 8, we show the CPU load of
Xavier -py and Xavier ;py;. The left bar of each device shows the load
when operating with AIF and the right one without AIF.

We observe: (1) the CPU load is clearly decreased by videos process-
ing on GPU, Xavier;p, with AIF enabled presented a 24% lower load
than Xavier - py, and (2) the AIF background process introduced a com-
putational overhead of 3% for both devices (left vs. right bar). Overall,
this provides an estimate of the general overhead (A-2); however,
whether this is acceptable depends on the use case.

A-3: How long require AIF agents to ensure SLOs? To evaluate the time
to train a EOSC model, we count (1) the number of AIF iterations that
the agent requires to arrive at a (nearly) optimal device configuration,

102

350 A

300 A

250 1

200 A

150 ~

AIF Cycle Execution (ms)

100

No MB

4 SLOs 2 SLOs 1SLO
Fig. 7. Duration of AIF cycle depending on the application of an MB and the number

of SLOs (A-1).

80 [Xaviercpy
I Xaviergpy
_ 701
X
~ 60 A
5 8
© 50 A o
N
5 40 1
2
S 301
20 A
10 L T T T T
AIF NO AIF AIF NO AIF
Fig. 8. Overhead introduced by AIF when operating on Xavier .,y or Xavier;p, (A-2).
1.0 A
o 0.9 1
:
=208 180p 22f
9]
E
£ 0.7 1
=
[
9
o 0.6 1 420p 14f — PV SLOs
20p 30f — RA SLOs
0.5 4 ® Conf Change
0 4 8 12 16 20

AIF Cycle Iteration

Fig. 9. SLO fulfillment rate (pv & ra) when operating on a blank Laptop client over
20 AIF cycles (A-3).

https://sparkfun.com/

. Sedlak et al.

(a) DAG after 1 round (b) DAG after 3 round (c) DAG after 10 rounds

Fig. 10. Progress of the DAG after {1,3,10} rounds of parameter training when creating
a model with AIF on Laptop (A-4).

and (2) how often the agent changes the configuration. The model
is trained from scratch; therefore, the AIF agent (i.e., executed on
Laptop) trains the model over 20 cycles and reports after each cycle
(3) the SLO fulfillment according to the selected device configuration.
We present the results in Fig. 9: The green and red lines represent the
SLO fulfillment (pv & ra); whenever the agent reconfigures the edge
device, we print a blue dot for both lines in the graph.

We observe: (1) the agent requires roughly 7 cycles to converge
to a configuration that satisfied SLOs with more than 90%, which is
maintained in later rounds; (2) this state is reached after 3 reconfigu-
rations; and (3) pv and ra showed similar trends in this example. Thus,
we answered how long an AIF agent requires to provide an acceptable
configuration (A-3), both in terms of AIF cycles and the number of
reconfigurations.

A-4: Are the produced causal graphs interpretable? To discuss the inter-
pretability of created causal structures, we compare the DAGs produced
by STRL and highlight at which stage the graph can be empirically
explained. We will not consider specific metrics here but interpret the
DAGs according to our expert knowledge. On Laptop, we train a EOSC
model from scratch and extract the DAGs after {1,3,5,10} rounds of
BNL. Thus, we want to show how the AIF agent discovers (ideally)
causal relations between model variables. The results are visible in
Fig. 10: SLO variables (see Table 2) are colored in green; regular
variables in blue.

We observe: (1) all SLO variables are influenced by variables that
the AIF agent can control, and (2) memory was the only variable that
could not be related to others. After studying the graphs carefully, we
could not detect any edge that appears counterintuitive to us; however,
this does not prove that they are indeed causal. In total, we claim that
the created graph is coherent and the links are understandable (A-4),
but it requires sophisticated experiments to prove causality for each
edge.

A-5: What is the operational impact of including BNL in the AIF cycle?
To answer whether BNL can be applied on regular edge devices, we
train a EOSC model on Xavierg;p; and measure the execution time of
STRL and PARL, i.e., the BNL sub-steps from Algorithm 2. In Fig. 12 we
visualize the execution time of STRL and PARL over 100 AIF iterations,
respectively 1.5 min of operation. We observe: (1) PARL requires a
stable runtime of around 250 ms, (2) the runtime of STRL increases as
more training data becomes available, and (3) running STRL after 100
AIF iterations took more than 20 s. We conclude that PARL might be
run on the employed edge device because it can be completed within
less than 1000 ms (i.e., the time frame for concluding the AIF cycle
from Section 4.2.1). However, the runtime of STRL presents an obstacle
because the AIF agent might thus have to skip iterations until the
ongoing execution of STRL finishes. Hence, it would be advisable to
perform STRL on another device (A-5) or find a way to decrease the
runtime, e.g., by updating the DAG regardless of existing CPTs.

A-6: Can changes in variable distribution be handled? Variable distribu-
tions can change due to various external factors; to evaluate how well
the system can handle this, we either (1) simulate a peek usage time

103

Future Generation Computer Systems 160 (2024) 92-108

1.0 4
2 0.8
©
o
S 0.6 -
£
z
2 0.41
9 —— PV SLOs —— PV SLOs
P24 —— RASLOs | —— RASLOs
® Config Change @ Config Change
00 # Clients Change Video Change

20 0 S 10 15
ACI Cycle Iteration

5 10 15
AIF Cycle Iteration

(=

20

(a) Stream changes (b) Video changes

Fig. 11. Changes in the variable distribution caused (a) by higher number of video
streams or (b) lower video quality (A-6).

by increasing the number of processed video streams from 1 to 6,
or (2) distort the video content with a Gaussian blur of 5px, which
could resemble a foggy video setting. We measure the impact on the
SLO fulfillment (pv & ra) over 20 AIF cycles and visualize to what
extent the EOSC model is capable of restoring satisfactory (i.e., close to
original) SLO rates. Fig. 11 shows in both subfigures the SLO fulfillment
rate of Laptop, when the disruptive factor was introduced (i.e., after 3
iterations), and at which points the AIF agent reconfigured the system
(blue dots).

We observe: (1) after the stream change, Laptop took 11 AIF cycles
(incl. 4 reconfigurations) to recover the SLO fulfillment, and (2) the
information loss introduced by the video manipulation could not be
recovered, although SLO fulfillment was improved as far as possible.
Hence, we conclude that the system was able to adapt to changes in
the variable distribution (A-6); however, only as long as the device
can compensate for this factor. In fact, the success SLO could not be
fulfilled after the video change took place because the agent could not
increase the resolution sufficiently to recognize the faces.

A-7: Can SLOs be modified during runtime? To simulate changing require-
ments, we modify the distance SLO from 50 to 20 (i.e., clearly stricter)
and measure the SLO fulfillment rate before and after the modification.
Additionally, we capture the surprise (Algorithm 1) to show if SLO
outcomes reflected the expectations of the agent. Fig. 13 shows in the
upper part the SLO fulfillment rate over 40 AIF cycles; the SLO changes
after 3 iterations. The lower part shows the agent’s surprise at each
round and when STRL or PARL happen.

We observe: (1) after the SLO change, the agent experienced 9
rounds of high surprise, i.e., > 35, (2) after 2 reconfigurations, the
state prior to the SLO change was recovered, although final SLO rates
(mean 0.91) are slightly below previous (mean 0.94), (3) to satisfy
lower distance, the answer was to increase fps, and (4) the magnitude
of the surprise was decisive for the decision between STRL and PARL
(as envisioned in Algorithm 2). However, as known from Fig. 12, STRL
can exceed the AIF time frame multiple times; hence, the AIF agent is
forced to wait for this process to finish. This could be solved, e.g., by
offloading STRL. Hence, we conclude that the system was able to
handle SLO changes during runtime (A-7).

5.2. Knowledge transfer

K-1: What is the SLO fulfillment rate of transferred models? Transfer
learning promises to accelerate model training, but we must ascertain
that transferred models perform equally to trained ones. For this, we
assume that Xavier;p; wants to join the device cluster. According to
Table 3, Laptop and Xavierpy are eligible for providing their model,
i.e., their de (2 & 4) are the closest to Xaviergp;, (3). Hence, we
merge their EOSC models and transfer the result to Xaviergp;. Next,

B. Sedlak et al.

||I|||‘HH||

0.30 A

= = N
o (9} o
L L L

STRL time (s)

w
1

0.15 1

PARL time (s)

0.00 -7 T
0 20

40 60 80
AIF Cycle Iteration

100

Fig. 12. Duration of structure and parameter learning on Xavier;,, when training a
BN from scratch (A-5)

8
©
o
€
(]
£ 0.6 — PVSLOs
E- —— RASLOs
; 0.4 1 ® ConfChange
A SLO Change
0 4 8 12 16 20 24 28 32 36 40
AIF Cycle Iteration
1
00 A Structure Retrain
2 75 Parameter Retrain
&
a 50
[®]
[an]

25

0

4 8 12 16 20 24 28 32 36 40

AIF Cycle Iteration

Fig. 13. Impact of changing the distance SLO during runtime, combined with the
surprise measured (A-7).

we compare the SLO fulfillment of the merged model with a separate
run, where a model is trained from scratch. We place both runs into
Fig. 14; the blue line represents the combined model, and the gray
one was trained from scratch. Additionally, we indicate each time the
agents changed the configuration.

We observe: (1) the merged model does not face any substantial im-
provements of its initially high SLO fulfillment; (2) the agent required
14 rounds to arrive at a comparable SLO rate — this also matches
our experience from Fig. 9, where Laptop required 7 to 16 AIF rounds
for training; and (3) the final rates are within the range [0.85,0.95].
From that, we conclude that the results produced by the trained model
were comparable to the merged model (K-1), and that KT could achieve
a speedup of 14 rounds (K-2), assuming that the transferred model
was ready for usage. Nevertheless, this is only valid for the given
setup (i.e., these two devices); it is not possible yet to derive general
implications of our approach.

K-3: Can merged models decrease the FE compared to choosing a single one?
As discussed in Section 2.1.2, it is hard to estimate the FE of a model,
but we consider the fact that surprise is bounded by FE. Although low

104

Future Generation Computer Systems 160 (2024) 92-108

1.0 A
0.8 A
S
< 0.6 -
Q
£
S 0.41
o
9 —— Combined
V0.2 4 —— Scratch
® Config Change
0.0 - ® Config Change
0 5 10 15 20 25 30

AIF Cycle Iteration

Fig. 14. Difference in SLO fulfillment between an agent using a transferred model or
training from scratch (K-1 & K-2).

surprise does not imply low FE, we use it as an indicator: We transfer a
model to Xavier p;; (merged from Laptop and Xavier.py as above) and
calculate the surprise throughout multiple AIF cycles. This we compare
against alternative runs, in which Xavier;p; uses one of the EOSC
models of the other devices (from Table Table 3). Furthermore, we
count the usage of PARL. The results are presented in Fig. 15; each of
the colored lines represents one of the respective models, which were
copied to Xaviergpy. The blue line, however, describes the combined
model. The lower figure shows for each run when PARL was executed.
We observe: (1) the models trained on Orin and Nano produced
initially very high surprise (>>50), indicating that these models fit
Xavier;py the least; (2) nevertheless, the agent was able to improve
these models and converge to an area where all 5 models provide
similar surprise after 25 iterations; (3) the combined model provided
initially the best values and only performed PARL twice; and (4) inter-
estingly, although close to each other, the combined model produces
after 25 rounds the highest surprise (33), while Xavier-p, reached 17.
This shows, that the frequent retraining performed by the other devices
(colored triangles in the lower graph) allowed the other models to
surpass Xaviergpy. This raises the question if it would be advisable to
always run PARL, regardless of the surprise magnitude Combined, we
can answer that the merged model had initially less surprising values
(K-3); however, frequent retraining may achieve even better results.

5.3. Stream offloading

S-1: How is the load distributed among resource-constrained devices? To
offload computations within the cluster, we aim to show how low-
resource devices are relieved from excessive load. For this, we assume
25 IoT devices that are either assigned Equal to the edge devices or
Random. As an indicator for maximum SLO fulfillment, we added Single,
where each device processes one stream; Table 4 shows an overview of
each scenario’s assignment. After operating with Equal or Random, the
leader node starts to optimize the environment, i.e., using the EOSC-F
model to distribute the 25 streams depending on the device capabilities
(Infer). This new assignment is then provided to the edge devices. We
thus simulated an offloading or load rebalancing, e.g., Nano dropped
from 5 (or 3) to 1 stream. In Fig. 17, we show each device’s SLO
fulfillment rate per scenario. The left bars of Fig. 17(b) show the cluster-
wide average of the SLO fulfillment and the right bar the weighted
average according to the number of streams (s/o_rate X stream). To get
a feeling of the heterogeneous device capabilities, Fig. 16 provides a
regression function that shows how the SLO fulfillment per device is
impacted by the number of streams. We observe: (1) the average SLO
fulfillment clearly improved by using Infer (0.81) instead of Random
(0.64) or Equal (0.60); (2) this is also reflected by the weighted average

B. Sedlak et al.

1201 ——— Model of Nano
—— Model of Orin
100 - —— Model of Laptop
o Model Xaviercpy
2 —— Combined Model
a 80
=]
(7]
Q
o 60
40 1 : — A v‘\; :
0 5 10 15 20 25
% IVVYVVVVVVVVY vV VVVVY
b= FfVYY VVVYVY V v
2 yr vvy v v \AAJ
E frv Vv VvV VVVY VY |
o 4 v
0 5 10 15 20 25

ACI Cycle Iteration

Fig. 15. Surprise per batch when operating on Xavier;,, with a combined or existing
model. Paired with the frequency of PARL (K-3).

Table 4
Streams for scenarios.
Device ID Single Equal Rand Infer
Laptop 1 5 4 9
Xavier ;py 1 5 8 5
Xavier . py 1 5 5 1
Orin 1 5 4 9
Nano 1 5 3 1
Sum X 5 25 25 25
1.01 —— Laptop
Xaviercpy
E 0.8 —— Xaviergpy
< —— Orin
i 0.6 1 —— Nano
e
L
©]
£ 0.4
k7!
w
0.2 1
0.0 T T T T T T
1 4 7 10 13 16 19 22

Number of Streams Processed

Fig. 16. Regression between streams assigned to edge devices and respective SLO
fulfillment rate (pv X ra).

(right bars of Fig. 17(b)), which puts Laptop and Orin in focus that
processed 9 streams each; (3) the weighted average of Infer comes close
to Single (0.89), even though the cluster processed 25 instead of only
5 streams. From that, we conclude that the intelligent cluster was able
to incorporate restricted edge devices (e.g., Nano) into the architecture
(S-1), and that the overall SLO compliance improved by following our
approach.

S-2: Can the CC hierarchy optimize local SLO fulfillment? To improve the
SLO fulfillment whenever individual devices lack the required scope,
we will resolve such SLO failures within the cluster. Therefore, we
consider a condensed device cluster consisting of Laptop and Orin. S-
1 showed that they have comparable processing capabilities; therefore,
it is fair to split 10 streams equally between them. Fig. 18(b) provides
the DAG internal to the EOSC-F model: Blue nodes are environmental
factors, from which only stream can be configured (recall Section 4.2.3);

105

Future Generation Computer Systems 160 (2024) 92-108

- 1.0
C
9]
oot VM
S 0.6- Bl Laptop
9 Xaviercey
0.4 mmm Xaviergey
g 0.2 1 B Orin
5 B Nano

0.0 -

Single Infer Rand Equal
(a) SLO fulfillment per device

= 1.0
9]
£ 0.8
2 0.6-
o
)
° 0.4) I I I
[
(]
© 0.2
< 0.0-

Single Infer Rand Equal

(b) Average and weighted average per batch

Fig. 17. SLO fulfillment within the edge—fog cluster when distributing load according
to Infer, Random, or Equal. Single is an upper bar for this device constellation (S-1)

slo_rate represents the common factor f = pv X ra. We simulate network
congestion® for Orin — which the leader node can evaluate through
congestion — and redistribute the load according to the EOSC-F model,
i.e., Orin = 8, Laptop = 2. Then, we compare the overall SLO fulfillment
before and after offloading; the results are shown in Fig. 18(a). The
two lines show the SLO fulfillment (f) of Laptop (red) and Orin (blue)
over 50 AIF iterations; after 10 rounds, the network gets congested.
In round 30, the cluster leader rebalanced the load according to its
EOSC-F model; although it is possible to rebalance earlier, we decided
to observe the system behavior until manually rebalancing in round 30.

We observe: (1) the network issue crushed the SLO fulfillment of
Laptop from around 0.9 to a minimum of 0.2 at round 15; (2) the
edge device was able to improve the rate in the following 20 iterations
by reconfiguration, until reaching a local optimum at 0.43. Further,
(3) the cluster-wide SLO compliance was clearly improved through
rebalancing, i.e., at round 15 the sum of f;,,,, + fo., was 1.03, at
round 30 it was 1.33, while at round 45 it rose to 1.54. We conclude
that the intelligent cluster was able to resolve the introduced network
issue (S-2) by redistributing the load according to the EOSC-F model.
However, to draw general conclusions, we aim to consider a larger
range of potential issues.

5.4. Summary and implications

As a summary, we can report that (1) edge devices were gradually
able to ensure local SLO compliance without prior knowledge; it took
them 16 rounds to identify factors that impact SLO fulfillment and
adapt the environment accordingly; the resulting SLO fulfillment aligns
close to existing work [30], (2) the underlying causal structures and the
transitions between device configuration were empirically explainable;
this increases traceability and trust of ML models, and (3) shifted
variable distributions were canceled out through continuous model
retraining; edge devices took 9 rounds to interpret an unprecedented
increase in demand, while SLO failures introduced by poor video
quality could not be fully recovered. Further, (4) the causality filter

6 Internally, we increase the processing delay according to congestion; this
increases the overall latency and causes in_time to fail more likely. The
EOSC-F model considers congestion as environmental factor for Algorithm 3.

B. Sedlak et al.

TN
device \

\ type
N J/

N

| streams | lcongestion|

—— Lapt
aptop slo_rate

—— Orin
Net. Issue
m Rebalance

SLO fulfillment rate
o
o

0 10 20 30

AIF Cycle Iteration

40 50

(a) Impact of rebalancing (b) Internal variable relations

Fig. 18. Recovering network congestion by rebalancing the load within the device
cluster according to the EOSC-F model; both devices initially processed 5 streams, 3
are offloaded to Orin (S-2)

based on MBs decreased the complexity of inference and sped up SLO
evaluation by 17%, and (5) our framework introduced a negligible CPU
overhead of 3%, which makes it a suitable choice for resource-restricted
devices.

It turned out that (6) BNL, or in particular structure learning,
surpassed the given time frame for continuous model adaptation; never-
theless, parameter learning took only less than 250 ms and the overall
training time appears promising compared to [54]. Thus, (7) models
transferred between nearby devices could be continuously improved,
even in cases where they fit poorly; this improves the reusability of
models in the heterogeneous Edge, (8) the SLO fulfillment of devices
with transferred models equaled the one of self-trained models; this
accelerated the distribution of SLO-compliance models within one com-
putational tier by up to 16 rounds, (9) rebalancing the load after a
network error increased the overall SLO fulfillment from 1.03 to 1.54;
this showed that collaboration within this tier increased the scope
of SLO failures that could be covered. A closing observation is that
(10) variable shifts showed the same effects on SLO fulfillment as low
accuracy after transferring a model to an unknown device type. To our
framework, they did not provide any fundamental differences, which is
why they could both be resolved through continuous model training.

6. Conclusion and future work

This paper presented a novel framework for collaborative and dis-
tributed edge intelligence that ensures decentralized SLO fulfillment. It
allows CC systems to disaggregate high-level requirements and enforce
them at the component they concern; thereby, we create self-adaptive
devices that themselves ensure dynamic requirements. For each com-
ponent, the framework is able to develop causal reasoning between
environmental factors and SLO fulfillment. Resource-restricted devices
that cannot create this knowledge were able to exchange and com-
bine causal models according to their hardware characteristics. This
accelerates the onboarding of unknown device types and simplifies
horizontal scaling within the Edge. Contrarily, any attempt to achieve
this centrally would struggle with heterogeneous device characteristics,
the induced network latency, and the communication overhead. To
increase SLO coverage and the action scope, devices collaborated as
clusters under the supervision of a Fog node; this forms higher-level
components that can again supervise their own set of SLOs. Conse-
quentially, the cluster was able to use its extended environment to
resolve SLO violations, e.g., by offloading computation among pertinent
devices. Erecting these hierarchical structures provides an accurate
representation of observable processes and infers how to fulfill the
intricate requirements of multiple computational tiers.

We provided a prototype of the framework for a distributed video
transformation use case and evaluated it according to 12 aspects;
the results showed the potential of our approach for ensuring SLOs
throughout CC tiers. For future work, we aim to dynamically update
the structure of presented models and evaluate limitations regarding

106

Future Generation Computer Systems 160 (2024) 92-108

the number of SLOs and devices. Further, this work builds heav-
ily on (causal) relations between SLO fulfillment and environmental
factors; however, to prove causality, dedicated experiments must be
integrated into the framework. Once this is established, the framework
will provide necessary causal links to tame requirements in the CC.

CRediT authorship contribution statement

Boris Sedlak: Writing — original draft, Visualization, Software,
Methodology, Data curation, Conceptualization. Victor Casamayor
Pujol: Writing — review & editing, Validation, Investigation. Praveen
Kumar Donta: Formal analysis. Schahram Dustdar: Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

We provide all the data used for this paper, as cited within the
article.

Acknowledgments

Funded by European Union (TEADAL, 101070186). Views and opin-
ions expressed are those of the authors and do not necessarily reflect
those of the European Union. Neither the European Union nor the
granting authority can be held responsible.

References
[1] P. Beckman, et al., Harnessing the computing continuum for programming our
world, in: Fog Computing, John Wiley & Sons, Ltd, 2020.
S. Dustdar, V.C. Pujol, P.K. Donta, On distributed computing continuum systems,
IEEE Trans. Knowl. Data Eng. 35 (4) (2023) 4092-4105, http://dx.doi.org/10.
1109/TKDE.2022.3142856.
W. Térneberg, et al., The 6G Computing Continuum (6GCC): Meeting the 6G
computing challenges, in: International Conference on 6G Networking, 2022.
V. Casamayor-Pujol, A. Morichetta, I. Murturi, P.K. Donta, S. Dustdar, Fundamen-
tal research challenges for distributed computing continuum systems, Information
14 (2023) 198, http://dx.doi.org/10.3390/info14030198.
B. Sedlak, V.C. Pujol, P.K. Donta, S. Dustdar, Designing reconfigurable intelligent
systems with Markov blankets, in: Service-Oriented Computing, 2023, pp. 42-50,
http://dx.doi.org/10.1007/978-3-031-48421-6_4.
K. Friston, L. Da Costa, N. Sajid, C. Heins, K. Ueltzhoffer, G.A. Pavliotis, T.
Parr, The free energy principle made simpler but not too simple, 2023, http:
//dx.doi.org/10.48550/arXiv.2201.06387.
H. Kokkonen, L. Lovén, N.H. Motlagh, A. Kumar, J. Partala, T. Nguyen, V.C.
Pujol, P. Kostakos, T. Leppédnen, A. Gonzalez-Gil, E. Sola, I. Angulo, M. Liyanage,
M. Bennis, S. Tarkoma, S. Dustdar, S. Pirttikangas, J. Riekki, Autonomy and intel-
ligence in the computing continuum: Challenges, enablers, and future directions
for orchestration, 2023, http://dx.doi.org/10.48550/arXiv.2205.01423.
J. Pearl, Causal inference in statistics: An overview, Stat. Surv. 3 (none) (2009)
96-146, http://dx.doi.org/10.1214/09-SS057.
N. Ganguly, D. Fazlija, M. Badar, M. Fisichella, S. Sikdar, J. Schrader, J. Wallat,
K. Rudra, M. Koubarakis, G.K. Patro, W.Z.E. Amri, W. Nejdl, A review of the
role of causality in developing trustworthy Al systems, 2023, http://dx.doi.org/
10.48550/arXiv.2302.06975.
P. Chen, Y. Qi, D. Hou, Causelnfer: Automated end-to-end performance diagnosis
with hierarchical causality graph in cloud environment, IEEE Trans. Serv.
Comput. (2019).
J. Lin, P. Chen, Z. Zheng, Microscope: Pinpoint performance issues with causal
graphs in micro-service environments, in: C. Pahl, M. Vukovic, J. Yin, Q. Yu
(Eds.), Service-Oriented Computing, in: Lecture Notes in Computer Science,
Springer International Publishing, Cham, 2018, pp. 3-20.
I. Tsamardinos, C.F. Aliferis, A. Statnikov, Time and Sample Efficient Discovery
of Markov Blankets and Direct Causal Relations, Association for Computing
Machinery, New York, USA, 2003.
A. Niculescu-Mizil, R. Caruana, Inductive transfer for Bayesian network structure
learning, in: Proceedings of the Eleventh International Conference on Artificial
Intelligence and Statistics, PMLR, 2007, pp. 339-346.

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91]

[10]

[11]

[12]

[13]

http://refhub.elsevier.com/S0167-739X(24)00288-7/sb1
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb1
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb1
http://dx.doi.org/10.1109/TKDE.2022.3142856
http://dx.doi.org/10.1109/TKDE.2022.3142856
http://dx.doi.org/10.1109/TKDE.2022.3142856
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb3
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb3
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb3
http://dx.doi.org/10.3390/info14030198
http://dx.doi.org/10.1007/978-3-031-48421-6_4
http://dx.doi.org/10.48550/arXiv.2201.06387
http://dx.doi.org/10.48550/arXiv.2201.06387
http://dx.doi.org/10.48550/arXiv.2201.06387
http://dx.doi.org/10.48550/arXiv.2205.01423
http://dx.doi.org/10.1214/09-SS057
http://dx.doi.org/10.48550/arXiv.2302.06975
http://dx.doi.org/10.48550/arXiv.2302.06975
http://dx.doi.org/10.48550/arXiv.2302.06975
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb10
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb10
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb10
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb10
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb10
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb11
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb11
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb11
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb11
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb11
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb11
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb11
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb12
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb12
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb12
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb12
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb12
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb13
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb13
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb13
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb13
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb13

B. Sedlak et al.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

M.J. Vowels, N.C. Camgoz, R. Bowden, D’ya like DAGs? A survey on structure
learning and causal discovery, 2021.

V.C. Pujol, P. Raith, S. Dustdar, Towards a new paradigm for managing
computing continuum applications, in: 2021 IEEE Third International Conference
on Cognitive Machine Intelligence, CogMI, 2021.

K. Friston, Life as we know it, J. R. Soc. Interface 10 (86) (2013) 20130475,
http://dx.doi.org/10.1098/rsif.2013.0475.

M. Kirchhoff, T. Parr, E. Palacios, K. Friston, J. Kiverstein, The Markov blankets
of life: autonomy, active inference and the free energy principle, J. R. Soc.
Interface (2018).

K.J. Friston, J. Daunizeau, S.J. Kiebel, Reinforcement learning or active
inference? PLOS ONE 4 (7) (2009) e6421.

R. Smith, K.J. Friston, C.J. Whyte, A step-by-step tutorial on active inference
and its application to empirical data, J. Math. Psych. 107 (2022) 102632,
http://dx.doi.org/10.1016/j.jmp.2021.102632.

N. Sajid, P.J. Ball, T. Parr, K.J. Friston, Active inference: demystified and
compared, Neural Comput. 33 (3) (2021) 674-712.

T. Parr, G. Pezzulo, K.J. Friston, Active Inference: The Free Energy Principle in
Mind, Brain, and Behavior, The MIT Press, 2022.

G. Camps-Valls, A. Gerhardus, U. Ninad, G. Varando, G. Martius, E. Balaguer-
Ballester, R. Vinuesa, E. Diaz, L. Zanna, J. Runge, Discovering causal relations
and equations from data, Phys. Rep. 1044 (2023) 1-68, http://dx.doi.org/10.
1016/j.physrep.2023.10.005.

E.C. Martinez, J.W. Kim, T. Barz, M. Cruz, Probabilistic modeling for optimiza-
tion of bioreactors using reinforcement learning with active inference, Comput.
Aided Chem. Eng. (2021).

A. Tschantz, B. Millidge, A.K. Seth, C.L. Buckley, Reinforcement learning through
active inference, 2020.

C. Heins, B. Millidge, D. Demekas, B. Klein, K. Friston, I. Couzin, A. Tschantz,
pymdp: A Python library for active inference in discrete state spaces, J. Open
Source Softw. (2022).

B. Sedlak, V.C. Pujol, P.K. Donta, S. Dustdar, Active inference on the edge:
A design study, in: 2024 IEEE PerCom Workshops, 2024, pp. 550-555, http:
//dx.doi.org/10.1109/PerComWorkshops59983.2024.10502828.

G. Levchuk, K. Pattipati, D. Serfaty, A. Fouse, R. McCormack, Active inference
in multiagent systems: Context-driven collaboration and decentralized purpose-
driven team adaptation, in: Artificial Intelligence for the Internet of Everything,
Academic Press, 2019.

B. Sudharsan, J.G. Breslin, M.I. Ali, Edge2Train: a framework to train machine
learning models (SVMs) on resource-constrained IoT edge devices, in: Proceed-
ings of the 10th International Conference on the Internet of Things, IoT 20,
Association for Computing Machinery, New York, NY, USA, 2020, pp. 1-8,
http://dx.doi.org/10.1145/3410992.3411014.

W. Hao, Z. Wang, L. Hong, L. Li, N. Karayanni, C. Mao, J. Yang, A. Cidon,
Monitoring and adapting ML models on mobile devices, 2023, http://dx.doi.
org/10.48550/arXiv.2305.07772.

Z. Zhang, Y. Zhao, J. Liu, Octopus: SLO-aware progressive inference serving via
deep reinforcement learning in multi-tenant edge cluster, in: Service-Oriented
Computing, Cham, 2023, http://dx.doi.org/10.1007/978-3-031-48424-7_18.

V. Goyal, R. Das, V. Bertacco, Hardware-friendly user-specific machine learning
for edge devices, ACM Trans. Embed. Comput. Syst. 21 (5) (2022) 62:1-62:29,
http://dx.doi.org/10.1145/3524125.

Q. Wu, H. Wu, X. Zhou, M. Tan, Y. Xu, Y. Yan, T. Hao, Online transfer learning
with multiple homogeneous or heterogeneous sources, IEEE Trans. Knowl. Data
Eng. 29 (7) (2017) 1494-1507, http://dx.doi.org/10.1109/TKDE.2017.2685597.
Y.-C. Hsu, Z. Lv, Z. Kira, Learning to cluster in order to transfer across domains
and tasks, in: Sixth International Conference on Learning Representations, ICLR
2018, 2018, http://dx.doi.org/10.48550/arXiv.1711.10125.

S. Dustdar, Y. Guo, B. Satzger, H.-L. Truong, Principles of elastic processes, IEEE
Internet Comput. 15 (2011) 66-71.

S. Nastic, A. Morichetta, T. Pusztai, S. Dustdar, X. Ding, D. Vij, Y. Xiong,
SLOC: Service level objectives for next generation cloud computing, IEEE Internet
Comput. 24 (3) (2020).

J. Fiirst, M. Fadel Argerich, B. Cheng, A. Papageorgiou, Elastic services for
edge computing, in: 2018 14th International Conference on Network and Service
Management, CNSM, 2018, pp. 358-362.

V.H. Menino, A Novel Approach to Load Balancing in P2P Overlay Networks for
Edge Systems, 2021.

M. Scanagatta, A. Salmerén, F. Stella, A survey on Bayesian network structure
learning from data, Prog. Artif. Intell. 8 (2019).

C. Aliferis, et al., Local causal and Markov blanket induction for causal discovery
and feature selection part I: Algorithms and empirical evaluation, J. Mach. Learn.
Res. 11 (2010).

V. Casamayor Pujol, P. Raith, S. Dustdar, Towards a new paradigm for managing
computing continuum applications, in: IEEE 3rd International Conference on
Cognitive Machine Intelligence, CogMI 2021, 2021.

N. Zhang, D. Poole, A simple approach to Bayesian network computations, in:
Engineering-Economic Systems, Stanford, 1994.

D. Ghio, A.L.M. Aragon, 1. Biazzo, L. Zdeborové, Bayes-optimal inference for
spreading processes on random networks, Phys. Rev. E 108 (4) (2023) 044308,
http://dx.doi.org/10.1103/PhysRevE.108.044308.

107

[43]

[44]

[45]

[46]

[47]

[48]

[49]
[50]

[51]

[52]

[53]

[54]

Future Generation Computer Systems 160 (2024) 92-108

V.C. Pujol, A. Morichetta, S. Nastic, Intelligent sampling: A novel approach to op-
timize workload scheduling in large-scale heterogeneous computing continuum,
in: 2023 IEEE International Conference on Service-Oriented System Engineering,
SOSE, 2023.

M. Vagnoli, R. Remenyte-Prescott, Updating conditional probabilities of Bayesian
belief networks by merging expert knowledge and system monitoring data,
Autom. Constr. 140 (2022) 104366.

M. Vanis, Z. Lokaj, M. Sroty¥, A novel algorithm for merging Bayesian networks,
Symmetry 15 (7) (2023) 1461, http://dx.doi.org/10.3390/sym15071461.

I. Murturi, S. Dustdar, A decentralized approach for resource discovery using
metadata replication in edge networks, IEEE Trans. Serv. Comput. 15 (5) (2022)
2526-2537.

S. Dustdar, I. Murturi, Towards distributed edge-based systems, in: 2020 IEEE
Second International Conference on Cognitive Machine Intelligence, CogMI, IEEE,
Atlanta, GA, USA, 2020, pp. 1-9.

B. Sedlak, I. Murturi, P.K. Donta, S. Dustdar, A privacy enforcing framework for
transforming data streams on the edge, IEEE Trans. Emerg. Top. Comput. (2023)
http://dx.doi.org/10.1109/TETC.2023.3315131.

A. Ankan, J. Textor, pgmpy: A Python toolkit for Bayesian networks, 2023.

Q. Zhang, X. Che, Y. Chen, X. Ma, M. Xu, S. Dustdar, X. Liu, S. Wang, A
comprehensive deep learning library benchmark and optimal library selection,
IEEE Trans. Mob. Comput. (2023) 1-14.

Linzaer, Ultra fast face-detector, 2022, https://github.com/Linzaer/Ultra-Light-
Fast-Generic-Face-Detector- 1MB.

R. Rothe, R. Timofte, L.V. Gool, DEX: Deep expectation of apparent age from
a single image, in: 2015 IEEE International Conference on Computer Vision
Workshop, ICCVW, IEEE, Santiago, Chile, 2015, pp. 252-257, http://dx.doi.org/
10.1109/ICCVW.2015.41.

M. Scutari, Learning Bayesian networks with the bnlearn R package, J. Stat.
Softw. 35 (2010) 1-22.

R. Kolcun, D.A. Popescu, V. Safronov, P. Yadav, A.M. Mandalari, Y. Xie, R.
Mortier, H. Haddadi, The case for retraining of ML models for IoT device
identification at the edge, 2020, http://dx.doi.org/10.48550/arXiv.2011.08605.

Boris Sedlak is currently working as a Ph.D. student at the
Distributed Systems Group at TU Wien, Austria. He received
his B.Sc. in Media Informatics at the University of Applied
Sciences in St. Polten, and his M.Sc. in Software Engineering
& Internet Computing at the TU Wien. He worked for four
years in the field of software engineering before focusing
on his doctoral studies; his research interests include edge
intelligence, causal methods for the computing continuum,
and service oriented computing.

Victor Casamayor Pujol is a project assistant in the
Distributed Systems Group at Technische Universitidt (TU)
Wien, 1040, Vienna, Austria. His research interests revolve
around self-adaptive methodologies for computing contin-
uum systems, including SLO-based definitions, causal and
machine learning inference, and robotics. Casamayor Pujol
received his Ph.D. degree in information and communication
technologies from Universitat Pompeu Fabra, Barcelona,
Spain in 2020. He is a Member of IEEE.

Praveen Kumar Donta currently working as a Postdoctoral
researcher at Distributed Systems Group, TU Wien, Austria.
He received his Ph.D. at the Indian Institute of Technology
(Indian School of Mines), Dhanbad from the Department
of Computer Science and Engineering in May 2021. From
July 2019 to Jan 2020, he is a visiting Ph.D. fellow at
Mobile & Cloud Lab, Institute of Computer Science, Faculty
of Science and Technology, University of Tartu, Estonia,
under the Dora plus grant provided by the Archimedes
Foundation, Estonia. He received his Master’s in Technol-
ogy and Bachelor’s in Technology from the Department of
Computer Science and Engineering at JNTUA, Ananthapur,
with Distinctions in 2014 and 2012. He is serving as
an Editorial Board member for Computer Communications,
Measurement, Measurement: Sensors from Elsevier, PLOS
ONE, Wireless Communications and Mobile Computing, and
Hindawi, and ETT Wiley journals. His current research in-
cludes the Learning algorithms for Sensor Networks, Internet
of Things, Computing Continuum.

http://refhub.elsevier.com/S0167-739X(24)00288-7/sb14
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb14
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb14
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb15
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb15
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb15
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb15
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb15
http://dx.doi.org/10.1098/rsif.2013.0475
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb17
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb17
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb17
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb17
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb17
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb18
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb18
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb18
http://dx.doi.org/10.1016/j.jmp.2021.102632
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb20
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb20
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb20
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb21
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb21
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb21
http://dx.doi.org/10.1016/j.physrep.2023.10.005
http://dx.doi.org/10.1016/j.physrep.2023.10.005
http://dx.doi.org/10.1016/j.physrep.2023.10.005
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb23
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb23
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb23
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb23
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb23
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb24
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb24
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb24
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb25
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb25
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb25
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb25
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb25
http://dx.doi.org/10.1109/PerComWorkshops59983.2024.10502828
http://dx.doi.org/10.1109/PerComWorkshops59983.2024.10502828
http://dx.doi.org/10.1109/PerComWorkshops59983.2024.10502828
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb27
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb27
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb27
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb27
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb27
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb27
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb27
http://dx.doi.org/10.1145/3410992.3411014
http://dx.doi.org/10.48550/arXiv.2305.07772
http://dx.doi.org/10.48550/arXiv.2305.07772
http://dx.doi.org/10.48550/arXiv.2305.07772
http://dx.doi.org/10.1007/978-3-031-48424-7_18
http://dx.doi.org/10.1145/3524125
http://dx.doi.org/10.1109/TKDE.2017.2685597
http://dx.doi.org/10.48550/arXiv.1711.10125
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb34
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb34
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb34
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb35
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb35
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb35
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb35
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb35
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb36
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb36
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb36
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb36
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb36
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb37
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb37
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb37
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb38
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb38
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb38
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb39
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb39
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb39
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb39
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb39
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb40
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb40
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb40
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb40
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb40
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb41
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb41
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb41
http://dx.doi.org/10.1103/PhysRevE.108.044308
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb43
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb43
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb43
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb43
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb43
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb43
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb43
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb44
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb44
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb44
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb44
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb44
http://dx.doi.org/10.3390/sym15071461
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb46
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb46
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb46
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb46
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb46
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb47
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb47
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb47
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb47
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb47
http://dx.doi.org/10.1109/TETC.2023.3315131
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb49
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb50
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb50
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb50
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb50
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb50
https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB
https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB
https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB
http://dx.doi.org/10.1109/ICCVW.2015.41
http://dx.doi.org/10.1109/ICCVW.2015.41
http://dx.doi.org/10.1109/ICCVW.2015.41
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb53
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb53
http://refhub.elsevier.com/S0167-739X(24)00288-7/sb53
http://dx.doi.org/10.48550/arXiv.2011.08605

B. Sedlak et al.

Schahram Dustdar is Full Professor of Computer science
heading the Research Division of Distributed Systems at the
TU Wien, Austria. He was founding Co-Editor-in-Chief of
ACM Transactions on Internet of Things (ACM TIoT) and is
Editor-in-Chief of Computing (Springer). He is an Associate
Editor of IEEE Transactions on Services Computing, IEEE
Transactions on Cloud Computing, ACM Transactions on
the Web, and ACM Transactions on Internet Technology, as
well as on the editorial board of IEEE Internet Computing

108

Future Generation Computer Systems 160 (2024) 92-108

and IEEE Computer. Dustdar is Recipient of the ACM Dis-
tinguished Scientist Award (2009), the ACM Distinguished
Speaker award (2021), the IBM Faculty Award (2012), an
Elected Member of the Academia Europaea: The Academy of
Europe, where he served as Chairman of the Informatics Sec-
tion, as well as an IEEE Fellow. In 2021 Dustdar was elected
President for Asia-Pacific Artificial Intelligence Association
(AAIA).

	Equilibrium in the Computing Continuum through Active Inference
	Introduction
	Preliminaries
	Background
	Causality and Causal Network Graphs
	Active Inference

	Related Work
	Causal ML Training on the Edge
	Transfer Learning in the CC
	SLO-Induced Load Balancing and Offloading

	Collaborative Edge Intelligence
	Continuous Model Optimization
	Static Model Training and Inference
	Active Inference Cycle

	Knowledge Transfer within the Cluster
	Cluster-wide Model Exchange
	Model Comparison and Selection
	Combination and Preparation of Models

	Stream Offloading in the Edge–Fog Cluster
	Cluster-wide Evaluation of SLOs
	Analysis & Optimization per Device
	Orchestration and Redistribution

	Evaluation
	Use Case Description
	Implementation
	Prototype
	Practical Limitations
	Variables and SLOs
	Device Classification

	Evaluation Methodology

	Results and Discussion
	Active Inference
	Knowledge Transfer
	Stream Offloading
	Summary and Implications

	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

