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PERSPECTIVES

Distributed AI in  
Zero-Touch Provisioning 
for Edge Networks: 
Challenges and 
Research Directions

The Internet of Things (IoT) 
has witnessed a rapid 
rise in recent years. 
Connected devices have 

integrated with various areas of our 
societies, such as electric grids, 
transportation, and industries.1 
This paradigm change leads to 
rethinking the processes related 
to IoT systems. Indeed, IoT sys-
tems that deal with people, con-
nected devices, and data produced 
in their respective environments 
have to guarantee the seamless 
management and integration of 
all these actors.

INTRODUCTION
The primary driving force in fostering this digital trans-
formation is, thus, the integration of multiple functional 
systems to provide faster, steadier, more cost-effective, 

and overall better services. In particular, there’s a need for 
automating resource provisioning in complex and broad 
scenarios like the device-edge-cloud computing contin-
uum. Currently, most technologies, especially cloud-based 
services, focus on centralized strategies.2 However, cen-
tralized approaches cannot work in these broad scenarios. 
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In this regard, zero-touch provisioning 
(ZTP) represents an appealing direction. 
This class of approaches aims at provid-
ing methods to seamlessly and automat-
ically manage the devices in a network, 

adapting to changes without requir-
ing direct human intervention.2 Such 
approaches are primarily implemented 
with machine learning (ML) methods.

The challenge is how to let artificial 
intelligence (AI) approaches govern 

such complex systems.3 Research on 
Distributed AI (DAI) goes in this direc-
tion. DAI has seen waves of popularity 
over the decades.4 With AI research 
focus recently shifting toward decen-

tralized and widespread systems, DAI 
is now studied with renewed interest. 
In particular, when managing net-
works with limited or no human con-
tact, it is essential to separate knowl-
edge and learning mechanisms over 

the infrastructure. This separation 
optimizes the system, makes it work 
at scale, and preserves privacy. DAI 
methods can be crucial in providing 
this separation, ensuring that indi-
vidual nodes in the network can com-
pute with local data only.5 Moreover, 
DAI methods can allow more accu-
rate and robust prediction models by 
combining knowledge from many 
data sources separated by computa-
tional limits, administrative bound-
aries, or privacy restrictions. Further-
more, distributing AI minimizes the 
resources or costs needed for moving 
the information.

Still, there are open issues in letting 
multiple distributed computing agents 
communicate and produce effective 
solutions in real, complex, and hetero-
geneous scenarios such as ZTP.6 The 
limited computational capabilities of 
devices in edge networks need novel 
methods to learn where to compute, 
how and when to distribute the data, 
how to guarantee optimal model man-
agement to keep the performance ade-
quate, and how to be security aware.

The integration of DAI for ZTP at 
edge networks has intriguing impli-
cations, especially considering the 
advances proposed by 5G and 6G tech-
nologies.7 In more detail, ZTP can 
foster several relevant advantages,8 
as highlighted in Figure 1. In sum-
mary, automating the logical setup 
of the network reduces the effort that 
IT teams have to put into the config-
uration phase. Most of the remaining 
work involves cabling and booting 
devices. Furthermore, when dealing 
with large and widely distributed net-
works, the autonomy provided by ZTP 
reduces the time needed to operation-
alize the networks. Moreover, ZTP 
leads to less complex and more effec-
tive management at runtime, reducing 
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FIGURE 1. The benefits of ZTP in the computing continuum. 

THE INTEGRATION OF DAI FOR ZTP AT 
EDGE NETWORKS HAS INTRIGUING 

IMPLICATIONS, ESPECIALLY CONSIDERING 
THE ADVANCES PROPOSED BY 5G AND 

6G TECHNOLOGIES.
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the probability of human error and 
enabling faster updates. Overall, it 
provides the ability to exploit large-
scale computation and efficiently uti-
lize spatially distributed computing 
resources in a decentralized manner 
with low operating costs, low latency, 
faster model convergence, and decen-
tralized control.9 

On the other hand, software- defined 
management is not risk free. Miscon-
figurations caused by automated pro-
cesses may be challenging to detect, 
leading to complex error detection. 
Furthermore, managing a network 
on a high abstraction level means 
exchanging data and potentially sen-
sitive information, introducing secu-
rity threats. Consequently, the ML 
methods must emphasize distributed 
and privacy-preserving intelligence.10 
Finally, harmonically managing inde-
pendent or partially correlated agents 
that make decisions in complex het-
erogeneous systems requires studying 
new ways of coordination.

To the best of our knowledge, this 
article is the first work targeting DAI 
in ZTP for the computing continuum. 
The key objective is to introduce a 
novel edge computing architecture 
that combines DAI and ZTP into one 
platform and offers better services to 
the users. The major contributions of 
this article are as follows:

 › We design a ZTP-enabled edge 
computing architecture to 
support intelligent service 
provisioning while enhancing 
computation, communication, 
and storage functionalities to 
the users.

 › We aim to highlight the chal-
lenges that come with DAI, ZTP, 
and their combination in the 
context of edge networks.

 › We also discuss the network and 
service management challenges 
while offering computation and 
resource management solutions 
with ZTP in edge networks.

 › Finally, we introduce poten-
tial research directions that 
can foster novel studies in this 
field and overcome the current 
limitations.

The remaining sections are struc-
tured as follows. The “DAI in ZTP for 
Edge Networks” section discusses the 
advantages of DAI in ZTP-enabled edge 
networks, where we introduce a novel 
edge computing architecture in the 
computing continuum. The “Potential 
Challenges and Future Directions” sec-
tion highlights several potential chal-
lenges that still need to be addressed 
for the proper deployment of ZTP in 
edge networks. Finally, we conclude 
our discussion.

DAI IN ZTP FOR EDGE 
NETWORKS
Traditional edge computing brings cloud 
services to the network’s edge. However, 
edge computing, while offering com-
putation, communication, storage, and 
resource solutions, has several evolv-
ing challenges related to end-to-end 
service and network management. To 
address such ripening challenges, we 
propose a new collaborative service 

management model, combining DAI, 
edge resource federation, and ZTP con-
cepts. The edge-enabled ZTP frame-
work is a trusted collection of services 
and related resources that intelligently 
integrates the infrastructures of dis-
tributed computing continuum service 
providers and ultrareliable commu-
nication technologies to achieve low 
latency, scalability, and cost-efficient 

edge data transmission and process-
ing, as shown in Figure 2. This frame-
work consists of the following two 
major units:

 › Edge intelligence for zero-touch 
networks: Edge intelligence plays 
a crucial role in realizing the 
concept of zero-touch networks. 
Fundamentally, this technology 
facilitates data processing at a 
local level, granting edge devices 
the ability to independently 
assess and respond to data with-
out relying on centralized deci-
sion making. The use of distrib-
uted decision-making processes 
reduces latency, optimizes 
network resources, and guaran-
tees real-time responsiveness, 
as illustrated in Figure 2. Edge 
intelligence enables the deploy-
ment of ML models at the edge, 
facilitating the implementa-
tion of predictive maintenance, 

ZTP LEADS TO LESS COMPLEX AND  
MORE EFFECTIVE MANAGEMENT AT 

RUNTIME, REDUCING THE PROBABILITY 
OF HUMAN ERROR AND ENABLING 

FASTER UPDATES.
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anomaly detection, and dynamic 
load balancing. These features enable 
networks to function effectively, 
reduce the need for human involve-
ment, and smoothly adjust to dynamic 
circumstances.

›  DAI for edge networks: DAI facilitates 
the deployment of AI capabilities to 
the periphery of network infrastruc-
tures. Edge devices equipped with AI 
models can make real-time decisions, 
process data locally, and function 
independently. Recent advances in DAI 
exhibit high scalability, making it well 
suited to networks that experience an 
increasing quantity of devices and ser-
vices. AI models have the capability to 
be tailored to fulfill specified criteria, 
hence guaranteeing self-governance 
and the protection of edge operations. 
AI deployment at the edge of networks 
has several advantages, including 
improved efficiency, decreased reli-
ance on centralized control, and the 
fulfillment of zero-touch network and 
service management objectives.

In summary, edge computing and ZTP 
technology can present new business oppor-
tunities to network operators, heterogeneous 
IoT users, and cloud service providers. Fur-
ther combining DAI and edge resource fed-
eration in the ZTP networks, customers can 
experience rapid data accessibility, seamless 
network coverage, interoperable data migra-
tion, and innovative services, which will 
eventually help to enhance user happiness.11 
The key techniques of edge-enabled ZTP net-
works are discussed next.

Edge resource federation
Standard edge computing and cloud com-
puting models, delivering services to end 
users, suffer from inflated resource mis-
management. There is a need for a unique 
and collective service provisioning strategy, 
where overcrowded edge devices interoperably 

.

.

.

D
is

tr
ib

ut
ed

 In
te

lli
ge

nc
e

D
is

tr
ib

ut
ed

 In
te

lli
ge

nc
e

N
et

w
or

k
S

ec
ur

ity

S
el

f-
H

ea
lin

g
O

pt
im

iz
at

io
n

D
ec

is
io

n 
an

d
C

on
tr

ol
H

um
an

 M
ac

hi
ne

C
oo

rd
in

at
io

n

U
se

rs
S

at
is

fa
ct

io
n

In
cr

ea
se

E
ffi

ci
en

cy

Z
T

P

E
dg

e 
#2

E
dg

e 
#1

E
dg

e 
#3

E
dg

e 
#5

E
dg

e 
#4

E
dg

e 
#6

C
am

er
a

N
et

w
or

k

In
te

rn
et

 o
f T

hi
ng

s

In
du

st
ry

 4
.0

N
et

w
or

ks

M
IM

O

m
m

W
av

eS
to

ra
ge

 S
er

vi
ce

S
en

si
tiv

e
A

pp
lic

at
io

ns

H
ea

lth
-C

ar
e

N
et

w
or

ks

P
re

di
ct

iv
e 

 
A

na
ly

tic
s

P
ee

r-
to

-P
ee

r 
N

et
w

or
ks

E
dg

e 
R

es
ou

rc
e

 F
ed

er
at

io
n

U
se

r 
A

pp
lic

at
io

ns

Edge Intelligence
for Zero Touch Networks

Distributed AI
for Edge Networks

F
un

ct
io

na
lit

y

C
on

ne
ct

iv
ity

5G
/6

G

F
ea

tu
re

s

FI
G

U
RE

 2
. A

 z
er

o-
to

uc
h 

ne
tw

or
k 

in
 th

e 
co

m
pu

tin
g 

co
nt

in
uu

m
. M

IM
O

: m
ul

tip
le

-i
np

ut
, m

ul
tip

le
-o

ut
pu

t. 

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 20,2024 at 07:53:30 UTC from IEEE Xplore.  Restrictions apply. 



 M A R C H  2 0 2 4   73

communicate with nearby underloaded 
edge devices or cloud servers and share 
the excessive workload.

Edge federation, also known as 
edge resource federation, is a combined 
resource provisioning strategy for 
edge networks. Edge federation man-
ages the resources of the different edge 
devices offered by service providers 
and brings the edge resources into one 
platform.12 In essence, edge federation 
aims for low latency, scalability, and 
cost-effectiveness by seamlessly inte-
grating edge-to-edge and edge-to-cloud 
resources into one platform. Network 
function virtualization, software-de-
fined networking, and containeriza-
tion and container orchestration as 
well as multiaccess edge computing are 
anticipated as critical enablers for auto-
mated edge resource federation.

The edge federation model has two 
key advantages. First, it has the capa-
bility to gather edge services under one 
platform and handle dynamic service 
requests coming from different users 
while optimizing network resources 
and service delay. Second, edge feder-
ation combines different edge infra-
structures and resources offered by 
different service providers by opti-
mizing service deployment costs. As 
expected, combining DAI and edge fed-
eration techniques can introduce new 
responsive service assistance models, 
which could be a win-win solution for 
edge infrastructure providers, edge 
service providers, and end users. Over-
all, we can summarize some of the ben-
efits as follows:

 › reliable interconnection 
between edge and cloud

 › moving computing resources to 
the network edge

 › consistent user satisfaction ratio
 › building an edge hierarchy model.

 › easy knowledge sharing among 
user devices.

Distributed intelligence
In contrast to cloud AI, centralized 
edge AI trains ML models in nearby 
suitable computing devices and then 
deploys the models across distributed 
end devices, endowing the devices 
with local decision-making strate-
gies.13 However, centralized edge AI 
faces a number of challenges,  including 

a lack of coordination among edge 
devices, a lack of global knowledge, and 
limited scope for edge federation. The 
present edge networks must be updated 
to use distributed intelligence, where 
edge devices can communicate and 
share end-device data models.14

DAI can solve complex understand-
ing, learning, and decision-making prob-
lems by modeling them as multiagent 
systems. The agents, or edge nodes in 
the DAI network, can operate inde-
pendently and communicate asynchro-
nously to combine partial solutions. 
Owing to the large data scale, DAI sys-
tems are resilient, flexible, and by defi-
nition, loosely connected. In contrast 
to monolithic or centralized AI sys-
tems, which have tightly connected 
and geographically close processing 
nodes, DAI systems do not require all 
relevant data to be gathered in a single 
location. Instead, many DAI systems 

work with small subsets of data, mak-
ing them easy to employ. In Table 1, we 
have briefly presented the advantages 
of incorporating DAI in edge networks 
compared to traditional AI.

One of the most critical challenges 
in distributed edge computing is data 
gravity. Data gravity refers to the capa-
bility of a rich source of data to attract 
applications and services. Edge net-
works can be considered as such rich 
data sources, with ZTP attracting users 

for edge services and applications 
while ensuring high throughput and 
optimized latency.

Data gravity poses two fundamen-
tal issues. First, end users place tre-
mendous strain on the edge servers 
to manage all the generated and pro-
cessed data, resulting in high pro-
cessing costs for data analysis and 
training. Data gravity is solved by not 
collecting all the data from the end 
devices. Instead, only the essential 
training data should be collected with-
out noise in the data.

Another issue is the heterogeneity 
of edge devices. Edge devices are gen-
erally made by various infrastructure 
providers, and services have varying 
requirements. As a result, a model 
trained on an edge server will likely 
not fit all the other edge devices, mak-
ing it always challenging for distrib-
uted edge networks. Therefore, the ZTP 

THE KEY OBJECTIVE IS TO INTRODUCE 
A NOVEL EDGE COMPUTING 

ARCHITECTURE THAT COMBINES DAI AND 
ZTP INTO ONE PLATFORM AND OFFERS 

BETTER SERVICES TO THE USERS.
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considers all such complex network- 
and system-based challenges into one 
frame and solves them using the DAI. 
Further, this framework has the capa-
bilities to bring DAI to innumerable 
edge devices and allow it to scale across 
a wide variety of applications. Overall, 
we can summarize some of the key 
benefits as follows:

 › improve the decision-making 
capabilities of local devices

 › increase user data security and 
privacy

 › reduce data transmission costs 
to remote servers

 › continuously update model and 
knowledge

 › allow training with small and 
heterogeneous user data.

In the context of Industry 4.0, imple-
menting a smart factory highlights the 
benefits of utilizing DAI for ZTP. Within 
this particular environment, the edge 
devices situated within the factory 
exhibit AI capabilities that enable 
them to process sensor data in real 
time.15 For example, when a machine 
sensor detects a possible issue, edge 
AI promptly recognizes it, implements 
corrective measures, and reduces the 
delay in critical decision making. On 
the other hand, a centralized or cloud-
based AI system necessitates data 
transmission to a distant location for 
analysis, potentially causing unfavor-
able delays and operational hazards. 
This example demonstrates the con-
siderable enhancement of ZTP through 
the implementation of DAI at the edge, 

with a special focus on its impact in the 
context of Industry 4.0. This approach 
effectively improves production effi-
ciency and reduces downtime by 
facilitating real-time, localized, and 
informed decision making.

ZTP
There is a trend toward ever more on- 
demand offering of storage and resource 
management capabilities. With the 
increasing number of resources being 
managed, delivering and managing 
dynamic user service requests becomes 
ever more complex. To overcome this 
complexity, the European Telecommu-
nications Standards Institute (ETSI) 
offers the idea of zero-touch network 
provisioning as a new breed of network 
management functionality, seeking to 
integrate network functionality and 
cutting-edge communication technol-
ogies (enhanced mobile broadband, 
ultrareliable and low-latency commu-
nications, and massive machine-type 
communications) as well as automat-
ically carrying out edge computing 
processes.

DAI is expected to be a key facilita-
tor of self-learning capabilities, lead-
ing to lower operating costs, quicker 
time-to-value processes, and a smaller 
chance of human errors. Although 
there is a rising desire to use DAI 
in a ZTP network, there may also 
be limitations and risks associated 
with doing so. The abilities of ZTP 
networks are specified on fully com-
bined self-3s lifecycle functions (that 
is, self-fulfilling, self-serving, and 
self-assuring) to automatically satisfy 
and respond to customer resource 
demands. However, to implement 
this in real time, we need to take 
advantage of network controllers and 
advanced communication technolo-
gies such as 5G or 6G.

TABLE 1. The differences between centralized 
edge AI and distributed edge AI.

Parameters Centralized edge intelligence ZTP-enabled distributed edge AI 

Model Traditional supervised learning Unsupervised and policy-based 
reinforcement learning

Privacy No privacy for handling users’ data Supports privacy and security in  
data handling

Training time Training on large data exponentially 
increases the time

Training on local edge devices  
helps to optimize time

Heterogeneity Low High

Scalability Not scalable Highly scalable

Applications Traffic monitoring, data storage,  
and analysis

Keystroke prediction, smart cities,  
and autonomous vehicles

Computation cost Incurs high costs over the edge 
network

As the model shares only learnable 
parameters, cost decreases.

Performance Due to centralized architecture,  
edge AI suffers from low accuracy.

As the model shares knowledge,  
the performance of the network 
increases gradually.

Automation Medium High
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Inspired by existing cloud ser-
vice models, such as security as a ser-
vice, database as a service, etc., ZTP 
can also be provided to end users as a 
service model. Under this umbrella, 
computation, communication, and 
ephemeral storage can be provided to 
the end user or other IoT vendors. ZTP 
providers should be able to personal-
ize the resources the customers would 
like to avail themselves of based on 
their needs. For instance, customers 
could manage the entire lifecycles of 
edge applications on their IoT devices, 
including application deployment, con-
figuration, starting, and stopping. This 
requires managing the computational 
and storage resources on each device as 
well as the communication resources 
for message exchange and data flow 
among edge application components.

In addition, multiple vendors could 
install specific IoT devices (with 
additional computation and storage 
resources) using ZTP technology. This 
transformation enables computation 
execution near the data sources, as pre-
sented in Figure 3.a In such a multiven-
dor edge infrastructure, idle resources 
on individual edge devices can be 
rented out to other vendors as a service. 
Overall, we can summarize some of the 
benefits as follows:

 › the 100% full automation of net-
work devices

 › shorter time for execution on 
remote servers

 › reducing the chances of human 
errors

 › easy-to-fix and auto-upgrade 
technical programs

 › easy upgrade of hardware 
equipment.

POTENTIAL CHALLENGES 
AND FUTURE DIRECTIONS
This section provides a list of chal-
lenges and possible future research 
directions for implementing ZTP and 
the usability of DAI in edge networks.

Challenges
The ultimate goal of ZTP is to add con-
venience to edge network manage-
ment, limiting human intervention. 
However, using ZTP in edge networks 
does entail challenges.

 › Cascading failures: With cas-
cading failures, a low-level 
failure may also lead to fail-
ures on higher levels. ZTP has 
no mechanism to control such 
cascades. Instead, ZTP may 
report a single problem as mul-
tiple, making failure analysis 
more difficult.

 › Anomaly detection: The ZTP 
model does not support, main-
tain, or automate service life-
cycles in the entire computing 
continuum. Moreover, while 
monitoring services, ZTP has no 

mechanisms for causing alarms 
on individual anomalous activ-
ities (for example, faulty nodes) 
and few for responding to them.

 › Data heterogeneity: The con-
cept of distributed computing 
continuum data heterogeneity 
spans a wide range of data types, 
sources, and spatiotemporal 
properties. The significance of 
this lies in its ability to offer 
extensive perspectives and 
tailor-made solutions and to 
facilitate data integration for a 
more nuanced understanding.15 
Nevertheless, certain issues 
need to be addressed in distrib-
uted networks. These challenges 
encompass data integration, 
quality, and scalability com-
plications in broad and diverse 
environments.

 › Limiting orchestration: ZTP can 
automate small tasks and ini-
tial setups such as activating 
licenses, running containerized 
apps, bootstrapping virtual 
machines, and even updating 
device firmware. However, 

{---Edge---} {---ZTP Edge--} {---Datacenter---}{---IoT---}
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FIGURE 3. The computation strategy in zero-touch edge networks. 
aInspired by “Distributed Artificial Intelligence at 
the Edge and Beyond,” https://engineering.cmu.edu/
accelerator/news/2021/03/03-ai-fusion.html.
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current ZTP implementations 
lack mechanisms for automat-
ing processes and workloads. We 
consider it a challenge because 
manual work degrades the value 
of zero touch.

 › Security: There are a vast number 
of connected devices with con-
tinuous services in the comput-
ing continuum. Maintaining 

security on autonomous systems 
running on those devices with 
no human intervention is more 
challenging. DAI may help to 
design efficient and dynamic 
mechanisms across the con-
tinuum to detect unforeseen 
threats or vulnerabilities.

Research directions
This section fills this gap by providing 
possible open challenges for further 
research.

 › Lightweight AI/ML: 
Resource-constrained end 
devices and edge nodes need 
low latency. Lightweight AI/
ML algorithms minimize both 
resource usage as well as the 
time spent computing without 
affecting the prediction accu-
racy. ML model compression, 
which reduces the amount of 

redundant data in the models, is 
one way of achieving lightweight 
ML models. However, novel 
methods for lightweight AI/ML 
algorithms in ZTP are needed to 
further increase energy effi-
ciency in edge networks.

 › Semantic interoperability: The 
computing continuum inter-
connects a set of devices that are 

heterogeneous in terms of, for 
example, technologies, device 
standards, data formats, etc. This 
lack of interoperability limits the 
utility of ZTP in the computing 
continuum. It is thus necessary 
to bridge the gap between the 
ZTP and the computing contin-
uum by developing intelligent 
interoperable protocols.

 › Privacy: The IoT, cloud, data cen-
ters, gateways, etc., are all gen-
erating and exchanging massive 
volumes of sensitive data. The 
privacy of these data must be 
ensured while designing the 
ZTP for the computing contin-
uum as ZTP precludes human 
intervention.

 › Low latency: A number of 
time-critical use case scenar-
ios such as medical, indus-
try, smart city, etc., require 
rapid decisions. Designing 

low-latency mechanisms in 
ZTP is thus essential for the 
computing continuum. Future 
research can focus on develop-
ing techniques through intelli-
gent agents that can prioritize 
time-critical requests and pro-
cess them autonomously.

 › ZTP for intelligent protocols: 
There is an ever-growing num-
ber of computing devices in the 
computing continuum and a 
vast number of data transmis-
sions between them, so devel-
oping adaptive and intelligent 
data protocols is challenging. 
In this context, ZTP can help 
fault diagnosis and autono-
mous decision-making mech-
anisms in these protocols. 
In particular, broker-based 
publish/subscribe communi-
cation patterns may benefit 
more from ZTP and DAI, which 
may increase their adaptability 
and efficiency. There is a huge 
scope for research into making 
existing data protocols intelli-
gent with the help of ZTP.

 › Explainability: ZTP will auton-
omously select configuration 
states for large distributed 
systems, which will determine 
their behavior. In that regard, it 
is crucial to develop sidecar tools 
able to explain why that specific 
configuration was selected. To 
do that, causality is emerging as 
a candidate technology to pro-
vide explainability for self-adap-
tive systems.

 › Generative AI for ZTP: In gen-
eral, AI or ML techniques can 
predict issues by analyzing data. 
However, all these predictions 
are likely to be expected. In view 
of the computing continuum’s 

IN PARTICULAR, BROKER-BASED 
PUBLISH/SUBSCRIBE COMMUNICATION 

PATTERNS MAY BENEFIT MORE FROM ZTP 
AND DAI, WHICH MAY INCREASE THEIR 

ADAPTABILITY AND EFFICIENCY.
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complexity constraints, there is 
a possibility for unpredictable 
issues in the future. It is possible 
to identify or solve unpredictable 
issues within the systems using 
recent advances in large lan-
guage models and generative AI 
technology. It remains challeng-
ing to identify potential comput-
ing nodes to perform generative 
AI in the computing continuum. 
Also, tracing the accuracy of 
generative AI decisions on the 
fly is another challenge. Further 
research on the use of generative 
AI for ZTP must provide addi-
tional benefits to the computing 
continuum as a whole.

I n this article, we showed the bene-
fits of combining DAI and ZTP in the 
device-edge-cloud computing con-

tinuum. We discussed the pivotal role 
that DAI approaches maintain in cre-
ating ZTP. Moreover, we emphasized 
the constraints and challenges that 
may impede the integration of DAI in 
edge-enabled ZTP networks. We also 
shed light on several potential research 
solutions for establishing an intelli-
gent and autonomous edge environ-
ment in light of the specified research 
challenges. 
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