
10770 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

FrankenSplit: Efficient Neural Feature Compression
With Shallow Variational Bottleneck Injection

for Mobile Edge Computing
Alireza Furutanpey , Graduate Student Member, IEEE, Philipp Raith , Graduate Student Member, IEEE,

and Schahram Dustdar , Fellow, IEEE

Abstract—The rise of mobile AI accelerators allows latency-
sensitive applications to execute lightweight Deep Neural Networks
(DNNs) on the client side. However, critical applications require
powerful models that edge devices cannot host and must therefore
offload requests, where the high-dimensional data will compete
for limited bandwidth. Split Computing (SC) alleviates resource
inefficiency by partitioning DNN layers across devices, but current
methods are overly specific and only marginally reduce bandwidth
consumption. This work proposes shifting away from focusing on
executing shallow layers of partitioned DNNs. Instead, it advocates
concentrating the local resources on variational compression op-
timized for machine interpretability. We introduce a novel frame-
work for resource-conscious compression models and extensively
evaluate our method in an environment reflecting the asymmet-
ric resource distribution between edge devices and servers. Our
method achieves 60% lower bitrate than a state-of-the-art SC
method without decreasing accuracy and is up to 16x faster than
offloading with existing codec standards.

Index Terms—Split computing, distributed inference, edge
computing, edge intelligence, learned image compression, data
compression, neural data compression, feature compression,
knowledge distillation.

I. INTRODUCTION

D EEP Learning (DL) has demonstrated that it can solve real-
world problems in challenging areas ranging from Com-

puter Vision (CV) [1] to Natural language Processing (NLP) [2].
Complementary with the advancements in mobile edge comput-
ing (MEC) [3] and energy-efficient AI accelerators, visions of
intelligent city-scale platforms for critical applications, such as
mobile augmented reality (MAR) [4], disaster warning [5], or
facilities management [6], seem progressively feasible. Never-
theless, the accelerating pervasiveness of mobile clients gave
unprecedented growth in Machine-to-Machine (M2M) commu-
nication [7], leading to an insurmountable amount of network
traffic. A root cause is the intrinsic limitation of mobile devices
that allows them to realistically host a single lightweight Deep
Neural Network (DNN) in memory at a time. Local resources

Manuscript received 3 July 2023; revised 2 February 2024; accepted 22
March 2024. Date of publication 26 March 2024; date of current version 5
November 2024. Recommended for acceptance by X. Yuan. (Corresponding
author: Alireza Furutanpey.)

The authors are with TU Vienna, Distributed Systems Group, Vienna 1040,
Austria (e-mail: a.furutanpey@dsg.tuwien.ac.at).

Digital Object Identifier 10.1109/TMC.2024.3381952

cannot meet the demanding requirements of applications that
rely on multiple highly accurate DNNs [8], [9]. Hence, clients
must frequently offload inference requests [10].

The downside to offloading is that by constantly streaming
high-dimensional visual data, the limited bandwidth will in-
evitably lead to network congestion, resulting in erratic response
delays, and it leaves valuable client-side resources idle.

Split Computing (SC) emerged as an alternative to allevi-
ate inefficient resource utilization and to facilitate low-latency
and performance-critical mobile inference. The basic idea is to
partition a DNN to process the shallow layers with the client
and send a processed representation to the remaining deeper
layers deployed on a server. The SC paradigm can potentially
draw resources from the entire edge-cloud compute continuum.
However, current SC methods are only conditionally applicable
(e.g., in highly bandwidth-constrained networks) or tailored
toward specific neural network architectures. Methods that claim
to generalize towards a broader range of architectures do not
consider that mobile clients can typically only load a single
model into memory. Consequently, SC methods are impractical
for applications with complex requirements relying on infer-
ence from multiple models concurrently (e.g., MAR). Mobile
clients reloading weights from its storage into memory and
sending multiple intermediate representations for each pruned
model would incur more overhead than directly transmitting
image data with fast lossless codecs. Moreover, due to the
conditional applicability of SC, practical methods rely on a
decision mechanism that periodically probes external conditions
(e.g., available bandwidth), resulting in further deployment and
runtime complexity [11].

This work shows that we can address the increasing need to re-
duce bandwidth consumption while simultaneously generalizing
the objective of SC methods to provide mobile clients access to
low-latency inference from remote off-the-shelf discriminative
models even in constrained networks.

We draw from recent advancements in lossy learned im-
age compression (LIC) and the Information Bottleneck (IB)
principle [12]. Despite outperforming handcrafted codecs [13],
such as PNG, or WebP [14], LIC is unsuitable for real-time
inference in MEC since they consist of large models and other
complex mechanisms that are demanding even for server-grade
hardware. Further, research in compression primarily focuses

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-5621-7899
https://orcid.org/0000-0003-3293-9437
https://orcid.org/0000-0001-6872-8821
mailto:a.furutanpey@dsg.tuwien.ac.at

FURUTANPEY et al.: FRANKENSPLIT: EFFICIENT NEURAL FEATURE COMPRESSION WITH SHALLOW VARIATIONAL BOTTLENECK INJECTION 10771

on reconstruction for human perception containing information
superfluous for M2M communication. In comparison, the deep
variational information bottleneck (DVIB) provides an objec-
tive for learned feature compression with DNNs, prioritizing
information valuable for machine interpretability.

With DVIB, we can conceive generalizable methods that
are applicable to off-the-shelf architectures. However, current
DVIB approaches typically place the bottleneck at the penul-
timate layer. Thus, they are unsuitable for most common set-
tings that assume an asymmetric resource allocation between
the client and the server. In other words, the objectives of
DVIB and MEC contradict each other, i.e., for the latter,
we require shifting the bottleneck’s location to the shallow
layers.

We accommodate the restrictions of mobile clients by in-
troducing a method that moves the bottleneck to the shal-
low layers and retains generalizability to arbitrary archi-
tectures. While shifting the bottleneck does not formally
change the objective, we will demonstrate that existing meth-
ods for mutual information estimation lead to unsatisfactory
results.

To this end, we introduce FrankenSplit: A novel training
and design heuristic for variational feature compression models
embeddable in arbitrary DNN architectures with pre-trained
weights for high-level vision tasks. FrankenSplit is refreshingly
simple to implement and deploy without additional decision
mechanisms that rely on runtime components for probing exter-
nal conditions. Additionally, by deploying a single lightweight
encoder, the client can access state-of-the-art accuracy from
multiple large server-grade models without reloading weights
from memory for each task. Lastly, the approach does not require
modifying discriminative models (e.g., by finetuning weights).
Therefore, we can directly utilize foundational off-the-shelf
models and seamlessly integrate FrankenSplit into existing sys-
tems.

We open-source our repository1 as an addition to the commu-
nity for researchers to reproduce and extend our experiments. In
summary, our contributions are:
� Thoroughly exploring how shallow and deep bottleneck

injection differ for feature compression.
� Introducing a novel saliency-guided training method to

overcome the challenges of training a lightweight encoder
with limited capacity to compress features usable for sev-
eral downstream tasks.

� Introducing a generalizable design heuristic for embed-
ding a variational feature compression model into arbitrary
DNN architectures.

Section II discusses relevant work on SC and LIC.
Section III discusses the limitations of SC methods and moti-
vates neural feature compression. Section IV describes the prob-
lem domain. Section V progressively introduces the solution ap-
proach. Section VI extensively justifies relevant performance in-
dicators and evaluates several implementations of FrankenSplit
against various baselines to assess our method’s efficacy. Lastly,

1https://github.com/rezafuru/FrankenSplit

Section VII summarizes this work and highlights limitations to
motivate follow-up work.

II. RELATED WORK

A. Neural Data Compression

1) Learned Image Compression: The goal of (lossy) image
compression is minimizing bitrates while preserving informa-
tion critical for human perception. Transform coding is a basic
framework of lossy compression, which divides the compression
task into decorrelation and quantization [15]. Decorrelation
reduces the statistical dependencies of the pixels, allowing for
more effective entropy coding, while quantization represents the
values as a finite set of integers. The core difference between
handcrafted and learned methods is that the former relies on
linear transformations based on expert knowledge. Contrarily,
the latter is data-driven with non-linear transformations learned
by neural networks [16].

Ballé et al. introduced the Factorized Prior (FP) entropy model
and formulated the neural compression problem by finding a
representation with minimal entropy [17]. An encoder network
transforms the original input to a latent variable, capturing the in-
put’s statistical dependencies. In follow-up work, Ballé et al. [18]
and Minnen et al. [19] extend the FP entropy model by including
a hyperprior as side information for the prior. Minnen et al. [19]
introduce the joint hierarchical priors and autoregressive entropy
model (JHAP), which adds a context model to the existing scale
hyperprior latent variable models. Typically, context models are
lightweight, i.e., they add a negligible number of parameters,
but their sequential processing increases the end-to-end latency
by orders of magnitude.

2) Feature Compression: Singh et al. demonstrate a practical
method for the Information Bottleneck principle in a compres-
sion framework by introducing the bottleneck in the penultimate
layer and replacing the distortion loss with the cross-entropy
for image classification [20]. Dubois et al. generalized the VIB
for multiple downstream tasks and were the first to describe
the feature compression task formally [21]. However, their
encoder-only CLIP compressor has over 87 million parameters.
Both Dubois and Singh et al. consider feature compression for
mass storage, i.e., they assume the data is already present at the
target server. In contrast, we consider how resource-constrained
clients must first compress the high-dimensional visual data
before sending it over a network.

Closest to our work is the Entropic Student (ES) proposed
by Matsubara et al. [22], [23], as we follow the same objective
of real-time inference with feature compression. Nevertheless,
they simply apply the learning objective and a scaled-down
version of autoencoder from [17], [18]. Contrastingly, we care-
fully examine the problem domain of resource-conscious feature
compression to identify underlying issues with current methods,
allowing us to conceive novel solutions with significantly better
rate-distortion performance.

B. Split Computing

We distinguish between two orthogonal approaches to SC.

https://github.com/rezafuru/FrankenSplit

10772 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

1) Split Runtimes: Split runtime systems are characterized
by performing no or minimal modifications on off-the-shelf
DNNs. The objective is to dynamically determine split points
according to the available resources, network conditions, and
intrinsic model properties. Hence, split runtimes primarily focus
on profilers and adaptive schedulers. Kang et al. performed
extensive compute cost and feature size analysis on the layer-
level characterizations of DNNs and introduced the first split
runtime system [24]. Their study has shown that split runtimes
are only sensible for DNNs with an early natural bottleneck, i.e.,
models performing aggressive dimensionality reduction within
the shallow layers. However, most modern DNNs increase fea-
ture dimensions until the last layers for better representation.
Consequently, follow-up work focuses on feature tensor ma-
nipulation [25], [26], [27]. We argue against split runtimes since
they introduce considerable complexity. Worse, the system must
be tuned toward external conditions, with extensive profiling
and careful calibration. Additionally, runtimes raise overhead
and another point of failure by hosting a network-spanning
system. Notably, even the most sophisticated methods still rely
on a natural bottleneck, evidenced by how state-of-the-art split
runtimes still report results on superseded DNNs with an early
bottleneck [28], [29].

2) Artificial Bottleneck Injection: By shifting the effort to-
wards modifying and re-training an existing base model (back-
bone) to replace the shallow layers with an artificial bottle-
neck, bottleneck injection retains the simplicity of offloading.
Eshratifar et al. replace the shallow layers of ResNet-50 with a
deterministic autoencoder network [30]. A follow-up work by
Jiawei Shao and Jun Zhang further considers noisy communi-
cation channels [31]. Matsubara et al. [32], and Sbai et al. [33]
propose a more general network agnostic knowledge distillation
(KD) method for embedding autoencoders, where the output of
the split point from the unmodified backbone serves as a teacher.
Lastly, we consider the work in [22] as the state-of-the-art for
bottleneck injection.

Although bottleneck injection is promising, there are two
problems with current methods. They rely on deterministic
autoencoders for a crude approximation to compression or are
intended for a specific class of neural network architecture.

This work addresses both limitations of such bottleneck in-
jection methods.

III. THE CASE FOR NEURAL DATA COMPRESSION

We assume an asymmetric resource allocation between the
client and the server, i.e., the latter has considerably higher com-
putational capacity. Additionally, we consider large models for
state-of-the-art performance of non-trivial discriminative tasks
unsuitable for mobile clients. Progress in energy-efficient ASICs
and embedded AI with model compression with quantization,
channel pruning, etc., permit constrained clients to execute
lightweight DNNs. Nevertheless, they are bound to reduced
predictive strength relative to their contemporary unconstrained
counterparts [34]. This assumption is sensible considering the
trend for DNNs towards pre-trained foundational models with

Fig. 1. Prediction with on/offloading and split runtimes.

rising computational requirements due to increasing model
sizes [35] and costly operations [36].

Lastly, mobile devices cannot realistically load weights for
multiple models simultaneously [9], and it is unreasonable to
expect that a single compressed model is sufficient for appli-
cations with complex requirements that rely on various models
concurrently or in quick succession.

Conclusively, despite the wide availability of onboard ac-
celerators, the demand for large models to solve intelligent
tasks will further increase, transmitting large volumes of high-
dimensional data. The claim is consistent with CISCO’s report
that emphasizes the accelerating bandwidth consumption by
M2M communication [7].

A. Limitations of Split Computing

Still, it would be valuable to leverage advancements in energy-
efficient mobile chips beyond applications where local inference
is sufficient. In particular, SC can potentially draw resources
from an entire edge-cloud compute continuum while binary on-
or offloading decision mechanisms will leave valuable client or
server-side resources idle. Fig. 1 illustrates generic on/offloading
and split runtimes. The caveat is that both SC approaches
discussed in Section II-B are only conditionally applicable. In
particular, split runtimes reduce server-side computation for
inference tasks with off-the-shelf models by onloading and
executing shallow layers at the client. This approach introduces
two major limitations.

First, when the latency is crucial, this is only sensible if the
time for client-slide execution, transferring the features, and
remotely executing the remaining layers is less than the time
of directly offloading the task. More recent work [27], [28], [29]
relies on carefully calibrated dynamic decision mechanisms. A
runtime component periodically measures (e.g., network band-
width) and internal conditions (e.g., client load) to measure ideal
split points or whether direct offloading is preferable.

FURUTANPEY et al.: FRANKENSPLIT: EFFICIENT NEURAL FEATURE COMPRESSION WITH SHALLOW VARIATIONAL BOTTLENECK INJECTION 10773

TABLE I
EXECUTION TIMES OF SPLIT MODELS

Second, since the shallow layers must match the deeper layers,
split runtimes cannot accommodate applications with complex
requirements, which is a common justification for MEC (e.g.,
MAR). Constrained clients would need to swap weights from
the storage in memory each time the prediction model changes.
Worse, the layers must match even for models predicting the
same classes with closely related architectures.

Hence, it is particularly challenging to integrate split runtimes
into systems that can increase the resource efficiency of servers
by adapting to shifting and fluctuating environments [37], [38].
For example, when a client specifies a target accuracy and a
tolerable lower bound, the system could select a ResNet-101
that can hit the target accuracy but may temporarily fall back to
a ResNet-50 to ease the load when necessary.

B. Execution Times With Resource Asymmetry

Table I summarizes the results of a simple experiment to
demonstrate limitations incurred by resource asymmetry. The
client is an Nvidia Jetson NX2 equipped with an AI accelerator,
and the server hosts an RTX 3090 (see Section VI for details
on hardware configurations). We measure the execution times
of ResNet variants, classifying a single 3 × 224 × 224 tensor at
two split points.

Similar to other widespread architectural families, ResNets
organize their layers into four top-level layers, and the top-
grained ones recursively consist of finer-grained ones. While the
terminology differs for architectures, we will uniformly refer to
top-level layers as stages and the coarse-grained layers as blocks.

Split point stem assigns the first preliminary block as the head
model. It consists of a convolutional layer with batch normal-
ization [39] and ReLU activation, followed by max pooling.
Split point Stage 1 additionally assigns the first stage to the
head. Notice how the shallow layers barely constitute the overall
computation, even when the client takes more time to execute
the head than the server for the entire model. Further, compare
the percentage of total computation time and relate them to the
number of parameters. At best, the client contributes to 0.02%
of the model execution when taking 9% of the total computation
time and may only contribute 0.9% when taking 67% off the
computation time.

Despite a powerful AI accelerator, it is evident that utilizing
client-side resources to aid a server is inefficient. Consequently,
SC methods commonly include some form of quantization and
data size reduction to offset resource asymmetry. In the follow-
ing, we conceive a hypothetical SC method to provide intuition
behind the importance of reducing transfer costs.

Fig. 2. Output dimensionality distribution for ResNet.

Fig. 3. Inference latency for SC and offloading.

C. Feature Tensor Dimensionality and Quantization

Typically, most work starts with some statistical analysis of
the output layer dimensions, as illustrated in Fig. 2. Excluding
repeating blocks, the feature dimensionality is identical for
ResNet-50, −101, and −152. The red line marks the cutoff
where the size of the intermediate feature tensor is less than the
original input. ResNets (including more modern variants [40]),
among numerous recent architectures [35], [36], do not have an
early natural bottleneck and will only drop below the cutoff from
the first block of the second stage (S3RB1-2). Since executing
until S3RB1-2 is only about 0.06% Modern methods reduce
the number of layers a client must execute with feature tensor
quantization and other clever (typically statistical) methods
that statically or dynamically prune channels [11]. For our
hypothetical method, we use the execution times from Table I.
We generously assume that the method applies feature tensor
quantization and channel pruning to reduce the expected data
size without a loss in accuracy for the ImageNet classification
task [41] and with no computational costs. Further, we reward
the client for executing deeper layers to reflect deterministic
bottleneck injection methods, such that the output size of the
stem and stage one are 802816 and 428168 bits, respectively.
Note that, for stage one, this is roughly a 92% reduction relative
to its original FP32 output size. Yet, the plots in Fig. 3 show that
offloading with PNG, let alone more modern lossless codecs
(e.g., WebP), will beat SC in total request time, except when the
data rate is severely constrained. Evidently, using reasonably
powerful AI accelerators to execute the shallow layers of a target
model is not an efficient use of client-side resources.

10774 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

Fig. 4. Prediction with variational bottleneck injection.

D. The Advantage of Learned Methods

In a narrow sense, more modern work on SC considers
minimizing transmitting data with feature tensor quantization
and other clever (typically statistical) methods that statically
or dynamically prune channels. While dimensionality reduction
can be seen as a crude approximation to compression, it is not
equivalent to it [19]. Compression aims to reduce the entropy
of the latent under a prior shared between the sender and
the receiver [16]. Dimensionality reduction (especially channel
pruning) may seem effective for simple tasks (e.g., CIFAR-
10 [42]). However, this is more due to the overparameterization
of large DNNs. Precisely, for a simple task, we can prune
most channels or inject a small autoencoder at the shallow
layers that may appear to achieve unprecedented compression
rates relative to the unmodified head’s feature tensor size. In
Section VI-C9, we will show that methods working reasonably
well on a simple dataset can ultimately falter on more challeng-
ing datasets.

From an information-theoretic point of view [43], tensor
dimensionality is not an adequate measure (i.e., C ×H ×W ×
Precision) to determine transfer costs. Instead, we should con-
sider the entropy of the feature tensor [43]. Then, we can
optimize a model to reduce uncertainty and compress an input
according to its information content.

To summarize, the potential of SC is inhibited by primarily
focusing on shifting parts of the model execution from the server
to the client. SC’s viability is not determined by how well they
can partially compute a split network but by how well they can
reduce the input size. Therefore, we pose the following question:
Is it more efficient to focus the local resources exclusively on
compressing the data rather than executing shallow layers of a
network that would constitute a negligible amount of the total
computation cost on the server?

In Fig. 4, we sketch predictions with our proposed approach.
There are two underlying distinctions to common SC methods.

First, the model is not split between the client and the server.
Instead, it deploys a lightweight encoder, and a decoder replaces
the shallow layers of a backbone, i.e., the backbone is split
within the server. A single decoder architecture corresponds
to backbones with related architectures. Notably, a decoder
restores and transforms the compressed signals to a backbone
that may accommodate multiple tasks. The encoder is decoupled
from a particular task and the decoder-backbone pair. Sec-
tion V-C elaborates how separating the concerns permits one

Fig. 5. Utilizing client resources with (learned) codecs.

encoder instance to accommodate multiple decoder-backbone
pairs.

Second, compared to split runtimes, the decision to apply the
compression model may only depend on internal conditions.
It can decouple the client from any external component (e.g.,
server, router). Ideally, applying the encoder should always be
preferable if a mobile device has the minimal required resources.
Since our method does not alter the backbones, we do not need to
maintain additional models to accommodate clients who cannot
apply the encoder. Instead, we can simply route the image tensor
to the input layer of the (unmodified) model.

The following describes the limitations of existing work for
constrained devices to conceive a method with the abovemen-
tioned description.

IV. PROBLEM FORMULATION

The goal is for constrained clients to request real-time pre-
dictions from a large DNN while maximizing resource effi-
ciency and minimizing bandwidth consumption with compres-
sion methods. Fig. 5 illustrates the possible approaches when
dedicating client resources exclusively for compression. Strat-
egy a) corresponds to offloading strategies with CPU-bound
handcrafted codecs. Strategy b) represents recent LIC mod-
els. Learned methods can achieve considerably lower bitrates
with comparable distortion than commonly used handcrafted
codecs [16]. Nevertheless, we must consider that the overhead
of executing large DNNs may dominate the reduced transfer
time. Strategy c) is our advocated method with an embeddable
variational feature compression that draws from the same un-
derlying Nonlinear Transform Coding (NTC) framework as b).
The challenge is to reduce overhead to make variational com-
pression models suitable for real-time prediction with limited
client resources.

To overcome the limitations of existing methods, we require
(i) a resource-conscious encoder design. The encoder should
minimize the transfer cost without increasing the predictive
loss. Additionally, (ii) the decoder should exploit the available
server-side resources without incurring significant overhead.
Lastly, (iii) a compression model should fit for different down-
stream tasks and architectural families (e.g., CNNs or Vision
Transformers).

FURUTANPEY et al.: FRANKENSPLIT: EFFICIENT NEURAL FEATURE COMPRESSION WITH SHALLOW VARIATIONAL BOTTLENECK INJECTION 10775

Before we can conceive an adequate method, we must for-
malize the properties of a suitable objective and elaborate on
the limitations of existing methods when applied to shallow
bottlenecks.

A. Rate-Distortion Theory for Model Prediction

By Shannon’s rate-distortion (r-d) theory [44], we seek a
mapping bound by a distortion constraint from a random variable
(r.v.) X to an r.v. U , minimizing the bitrate of the outcomes of
X . More formally, given a distortion measure D and a distortion
constraint Dc, the minimal bitrate is

min
PU |X

I(X;U) s.t. D(X,U) ≤ Dc, (1)

where I(X;U) is the mutual information and is defined as

I(X;U) =

∫ ∫
p(x, u) log

(
p(x, u)

p(x)p(u)

)
dxdu. (2)

In lossy image compression, U is typically the reconstruction of
X̃ of the original input, and the distortion measure is some sum
of squared errors d(x, x̃). Since the r-d theory does not restrict us
to image reconstruction [45], we can apply distortion measures
relevant to M2M communication. Notably, when our objective
is to minimize predictive loss rather than reconstructing the
input, we keep information that may be excessive for model
predictions.

To elaborate on the potential of discarding information for
discriminative tasks, consider the Data Processing Inequality
(DPI). For any 3 r.v.s X,Y, Z that form a Markov chain X ↔
Y ↔ Z where the following holds:

I(X;Y) ≥ I(X;Z). (3)

Then, describe the information flow in an n-layered sequential
DNN, layer with the information path by viewing layered neural
networks as a Markov chain of successive representations [46]

I(X;Y) ≥ I(R1;Y) ≥ I(R2;Y) ≥ . . . I(Rn;Y) ≥ I(Ỹ ;Y).
(4)

In other words, the final representation before a prediction Rn

cannot have more mutual information with the target than the
inputX and typically has less. In particular, for high-level vision
tasks that map a high dimensional input vector with strong pixel
dependencies to a small set of labels, we can expect I(X;Y) �
I(R̃n, Y).

B. From Deep to Shallow Bottlenecks

When the task is to predict the ground-truth labels Y from a
joint distribution PX,Y , the r-d objective is essentially given by
the information bottleneck principle [12]. By relaxing the (1)
with a lagrangian multiplier, the objective is to maximize

I(Z;Y)− βI(Z;X). (5)

Specifically, an encoding Z should be a minimal sufficient
statistic of X respective Y , i.e., we want Z to contain relevant
information regardingY while discarding irrelevant information
from X . Practical implementations differ by the target task and
how they approximate (5). For example, an approximation of

I(Z;Y) for an arbitrary classification task the conditional cross
entropy (CE) [13]

D = H(PY , PỸ |Z). (6)

Using (6) for estimating I(Z;Y) to end-to-end optimize a neural
compression model is not a novel idea (Section II-A2). However,
a common assumption in such work is that the latent variable is
the final representation Rn of a large backbone, which we refer
to as Deep Variational Information Bottleneck Injection (DVBI).
Conversely, we work with resource-constrained clients, i.e., to
conceive lightweight encoders, we must shift the bottleneck to
the shallow layers, which we refer to as Shallow Variational
Bottleneck Injection (SVBI). Intuitively, the existing methods for
DVBI should generalize to SVBI, e.g., estimate the distortion
term with (6) as in [20].

While shifting the bottleneck to the shallow layers results in
an encoder with less capacity, the objective still approximates
to (1). Yet, as we will show in Section VI-C9, applying the
objective from [20] will result in incomparably worse results
when moving the bottleneck to the shallow bottlenecks.

A more promising method to estimate I(Z;Y) is Head Dis-
tillation (HD) [32], [33] since it naturally aligns with shallow
bottlenecks. As we will show in Section VI-C, HD yields sig-
nificantly better results than applying (6). Surprisingly, despite
showing promising results, HD is a suboptimal estimation for
I(Z;X) to approximate (1).

The following elaborates on SVBI and formulates the VIB
objective for HD.

C. Head Distilled Deep Variational IB

Ideally, the bottleneck is embeddable in an existing predictor
PT without decreasing the performance. Therefore, it is not the
hard labels Y that define the task but the soft labels YT . For
simplicity, we handle the case for one task and defer discussion
on multiple downstream tasks and DNNs to Section V-C.

To perform SVBI, take a copy of PT . Then, mark the location
of the bottleneck by separating the copy into a head Ph and
a tail Pt. Importantly, both parts are deterministic, i.e., for
every realization of r.v. X there is a representation Ph(x) = h
such that PT (x) = Ph(Pt(x)). Lastly, replace the head with an
autoencoder and a parametric entropy model.

The encoder is deployed at the sender, the decoder at the re-
ceiver, and the entropy model is shared. We distinguish between
two optimization strategies to train the bottleneck’s compression
model. First, is direct optimization corresponding to the DVIB
objective in (5), except we replace the CE with the standard KD
loss [47] to estimate I(Z;Y). The second is indirect optimiza-
tion and describes HD with the objective

I(Z;H)− β I(Z;X). (7)

Unlike the former, the latter does not directly correspond to (1)
for a representation Z that is a minimal sufficient statistic of X
respective YT . Instead, it replaces Y with a proxy task for the
compression model to replicate the output of the replaced head,
i.e., training methods approximating (7) optimize for a Z that is
a minimal sufficient statistic of X respective H .

10776 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

Fig. 6. Left: Head distillation. Right: Direct optimization.

Fig. 6 illustrates the difference between estimating the objec-
tives (5) and (7).

With faithful replication of H , the partially modified DNN
has an information path equivalent to its unmodified version. A
sufficient statistic retains the information necessary to replicate
the input for a deterministic tail, i.e., the final prediction does
not change. The problem of (7) is that it is a suboptimal approx-
imation of (1). Although sufficiency still holds, it optimizes Z
respective H and not YT to be minimal.

Based on the above formulations, the following proposes a
practical method to train stochastic feature compression models.
Additionally, it addresses the limitations of HD and includes
architectural considerations.

V. SOLUTION APPROACH

Our solution focuses on two distinct but intertwined aspects.
First is an appropriate training objective. The second concerns a
practical implementation by introducing an architectural design
heuristic to accommodate backbones with various architectures
with a single encoder architecture.

A. Loss Function for End-to-End Optimization

We follow NTC [16] to implement a neural compression
algorithm. Specifically, we embed a stochastic compression
model that we jointly optimize with an entropy model.

Our objective resembles variational image compression opti-
mization, as introduced in [17], [18]. For an image vector x, we
have a parametric analysis transform ga(x;φg) that maps x to a
latent vector z. Then, a quantizerQdiscretizes z to z̄, such that an
entropy coder can use the entropy model to losslessly compress z̄
to a sequence of bits. In learned image compression, a parametric
synthesis transforms gs(z̄; θg) maps z̄ to a reconstruction of the
input x̃.

However, we favor HD over direct optimization as a distortion
measure since the former yields considerably better results even
with a suboptimal loss function (Section VI-C9). Therefore,
we require a gs(z̄; θg) that maps z̄ to an approximation of a
representation h̃ (i.e., the output of shallow layers of an arbitrary
backbone).

Analogous to variational inference, we approximate the in-
tractable posterior p(z̃|x) with a parametric variational density

q(z̃|x) as follows (excluding constants):

Ex∼px
DKL

[
q‖pz̃|x

]
=Ex∼px

Ez̃∼q

⎡
⎢⎣−log p(x|z̃)︸ ︷︷ ︸

distortion

−
weighted rate︷ ︸︸ ︷
log p(z̃)

⎤
⎥⎦.
(8)

By assuming a Gaussian distribution such that the likelihood of
the distortion term is given by

Px|z̃(x | z̃, θg) = N (x | gs(z̃; θg), 1), (9)

we can use the square sum of differences between h and h̃ as
our distortion loss.

The rate term describes the cost of compressing z̃. Analogous
to the LIC methods discussed in Section II-A, we apply uniform
quantization z̄ = �z̃	. Since discretization leads to problems
with the gradient flow, we apply a continuous relaxation by
adding uniform noise η ∼ U(− 1

2 ,
1
2). Combining the rate and

distortion term, we derive the loss function for estimating ob-
jective (7) as

L=‖Ph(x) - (gs(ga(x;φg)+η; θg)‖22+β log(ga(x; θg) + η).
(10)

As described in Section IV-C, by using HD for the distortion
term, we rely on H as a proxy target, i.e., the loss in (10) is a
suboptimal approximation of (1).

The suboptimality stems from treating every pixel in H
equally important. The implication here is that the MSE in (10)
overly strictly penalizes pixels at spatial locations that contain
redundant information that later layers can safely discard. Con-
trarily, the loss may not penalize the salient pixels enough when
h̃ is numerically close to h.

Hence, we can improve the loss in (10) by introducing ad-
ditional signals that regularize the suboptimal distortion term.
The challenge is finding a tractable method that emphasizes
the salient pixels necessary for multiple instances of a high-
level vision task (e.g., classification of various datasets and
labels). Moreover, the method should exclusively concern the
loss function, i.e., it should not introduce any additional model
components or operations during inference.

B. Saliency Guided Distortion

We consider HD an extreme form of Hint Training (HT) [48],
[49] where the hint becomes the primary objective rather than an
auxiliary regularization term. Sbai et al. perform deterministic
bottleneck injection with HD using the suboptimal distortion
term [33]. Nevertheless, their method only considers dimen-
sionality reduction without a parametric entropy model as an
approximation to compression, i.e., it is generalized by the loss
in (1)(β = 0). Matsubara et al. add further hints from the deeper
layers by extending the distortion term with the sum of squared
between the deeper layers [23], [32]. This approach has several
downsides besides prolonged train time. The distortion term may
now dominate the rate term, i.e., without exhaustively tuning
the hyperparameters for each distortion term, the optimization
algorithm should favor converging towards local optima. More-
over, we show Section VI-C2 that pure HD can significantly

FURUTANPEY et al.: FRANKENSPLIT: EFFICIENT NEURAL FEATURE COMPRESSION WITH SHALLOW VARIATIONAL BOTTLENECK INJECTION 10777

Fig. 7. Training setup.

outperform this method using the loss in (1) without the hints
from the deeper layers.

In principle, we could improve the performance by extracting
signals from deeper layers and directly transferring them to the
bottleneck. The caveat is that the effectiveness of knowledge
distillation decreases for teachers when the student has con-
siderably less capacity than the teacher [48]. Hence, instead of
directly introducing hints at the encoder, we propose regularizing
the distortion term with saliency maps.

For each sample, we require a vector S , where each si ∈ S is
a weight term for a spatial location salient about the conditional
probability distributions of the remaining tail layers. Then, we
should be able to improve the r-d performance by regularizing
the distortion term in (10) with

Ldistortion = γ1 · L1 + γ2 · si ·
1

N

∑
i

(hi − h̃i)
2. (11)

Where L1 is the distortiont term from (10), and γ1, γ2 are non-
negative real numbers summing to 1. We default to γ1 = γ2 = 1

2
in our experiments. Fig. 7 describes our final training setup. Note
that we only require computing the saliency maps once, and they
are architecturally agnostic towards the encoder.

We derive the saliency maps using class activation mapping
(CAM) [50]. Although CAMs are typically used to improve the
explainability of DNNs, they suit our purposes by allowing us to
summarize salient pixel locations. Specifically, we use a variant
of Grad-CAM [51] to measure a spatial location’s importance
at any stage. Fig. 8 illustrates some examples of saliency maps
when averaged over the deeper backbone stages. In this work,
we favor Grad-CAM over (more intricate) methods due to
its architecture-agnostic nature and computational efficiency.
For example, mixing with guided backpropagation [52] could
refine the resulting saliency maps with finer-grained feature
importance scaling. However, guided backpropagation relies
on specific properties of the activation function and requires
adjustments for each architectural family.

Fig. 8. Extracted saliency maps using Grad-CAM.

Fig. 9. Simple taxonomy with minimal example.

C. Network Architecture

The beginning of this section broke down our aim into three
problems. We addressed the first with SVBI and proposed a
novel training method for low-capacity compression models.
A generalizable resource-asymmetry-aware autoencoder design
remains. Additionally, the encoder should be reusable for several
backbones. To not inflate the significance of our contribution,
we refrain from including components based on existing work
in efficient neural network design.

1) Model Taxonomy: We introduce a minimal taxonomy de-
scribed in Fig. 9 for our approach. The top-level, Archtype,
reflects the primary inductive bias of the model. Architectural
families describe variants (e.g., ResNets such as ResNet [53],
Wide ResNet [54], ResNeXt [40], etc.). Directly related refers
to the same architecture of different sizes (e.g., Swin-T, Swin-S,
Swin-B, etc.). The challenge is to conceive a design heuristic that
can exploit the available server resources to aid the lightweight
encoder with minimal overhead on the prediction task. First,
we concretize shallow features by describing how to locate the
layers for bottleneck placement. Then, we derive the heuristic
to conceive decoder models for arbitrary architectural families
and how to account for client-server resource asymmetry.

Lastly, we describe how to share trained compressor compo-
nents among directly related architectures.

2) Bottleneck Location by Stage Depth: Consider how most
modern DNNs consist of an initial embedding followed by a
few stages (Described in Section III-A). Within directly related
architectures, the individual components are identical. The dif-
ference between variants is primarily the embed dimensions or
the block ratio of the deepest stage. For example, the block ratio
of ResNet-50 is 3:4:6:3, while the block ratio of ResNet-101 is
3:4:23:3. Consequently, the stage-wise organization of models

10778 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

Fig. 10. Reference implementation of FrankenSplit.

defines a natural interface for SVBI. For the remainder of this
work, we refer to the shallow layers as the layers before the
deepest stage (i.e., the initial embedding and the first two stages).

3) Decoder Blueprints: A key characteristic distinguishing
archetypes is the inductive bias introduced by basic building
blocks (e.g., convolutions versus attention layers). To consider
the varying representations among non-related architectures,
we should not disregard architecture-induced bias by directly
repurposing neural compression models for SC. For example, a
scaled-down version of Ballé et al.’s [17] convolutional neural
compression model can yield strong r-d performance for bottle-
necks reconstructing a convolutional layer [22]. However, we
will show that this does not generalize to other architectural
families, such as hierarchical vision transformers [55].

One potential solution is to use identical components for the
compression model from a target network. While this may be
inconsequential for server-side decoders, it is inadequate for
encoders due to the heterogeneity of edge devices. Vendors have
varying support for the basic building blocks of a DNN, and par-
ticular operations may be prohibitively expensive for the client.
Hence, in FrankenSplit, the encoder is fixed, but the decoder is
adaptable. Regardless of the decoder architecture, we account
for the heterogeneity with a uniform encoder architecture com-
posed of three downsampling residual blocks of two stacked
3 × 3 convolutions with ReLU non-linearity, totaling around
140,000 parameters. We handle the varying representations by
introducing decoder blueprints tailored towards an architectural
family, i.e., one blueprint corresponds to all directly related
architectures.

Fig. 10 illustrates a reference implementation of FrankenSplit
post-training with two blueprints applied to two variants. Creat-
ing blueprints is required only once for an architectural family.
Boxes within the gray areas are separate instances (i.e., only one
encoder), and boxes with the same name share an architecture.
The rounded boxes outside organize layer views from coarse
to fine-grained. We elaborate on how a single encoder can
accommodate multiple decoder-backbone pairs in Section V-C4.

Fig. 11. Routing head outputs to different tails.

The numbers in the parentheses refer to stage depth. Since the
backbones are foundational models extensively trained on large
datasets, we can naturally accommodate several downstream
tasks by attaching separately trained predictors.

Blueprint instances replace a backbone’s first two stages (i.e.,
the shallow layers) with two blueprint stages, taking a com-
pressed representation as input instead of the original sample.
The work by Liang et al. [56] inspires our approach to treat
decoding as a restoration problem. Each stage comprises a
restoration block and several blueprint (transformation) blocks,
followed by a residual connection. The idea is to separate restora-
tion (i.e., upsampling, “smoothing” quantized features) from
transformation (i.e., matching the target representation regard-
less of encoder architecture). The restoration block is agnostic
regarding the target architecture and optionally upsamples. The
blueprint blocks induce the same bias as the target architectural
family.

Two distinctions exist between the original blocks and their
corresponding blueprint (transformation). First, the latter mod-
ifies operations not to reduce the latent spatial dimensions.
Second, the embedding layer dimensions and stage depths may
differ to reflect the resource asymmetry commonly found in
MEC.

Although we should consider the resource asymmetry be-
tween the client and the server (i.e., by allocating more param-
eters to the decoder), there are limitations. Learning a function
that can accurately retain necessary information is limited by the
encoder’s capacity (Section IV-A). Still, when end-to-end opti-
mizing the compression model, it can benefit from increasing
the decoder’s capacity for restoration with diminishing returns.

Intuitively, we implement blueprints that result in decoder
instances with, at most, the same execution time as the head
of a target backbone. As a reminder, unlike most work in SC,
we advocate keeping the execution time roughly equal on the
server rather than reducing it. The encoder’s responsibility is
not to minimize the server load by executing shallow backbone
layers. FrankenSplit treats the encoder entirely separate from
the backbone. Besides dedicating the encoder exclusively to
reducing transfer size, this separation of concern is necessary to
accommodate several backbones with a single encoder instance.

4) Encoder Re-Usability: We argue that the representation of
shallow layers generalizes well enough that it is possible to reuse
compressor components. Consider the experiment illustrated in
Fig. 11, where we split several backbones into head and tail
models. The backbones are off-the-shelf models from torch
image models (timm) [57] and pre-trained on the ImageNet [41]
dataset. The head models consist of the initial embedding and
shallow layers, i.e., the first two stages. The remaining layers

FURUTANPEY et al.: FRANKENSPLIT: EFFICIENT NEURAL FEATURE COMPRESSION WITH SHALLOW VARIATIONAL BOTTLENECK INJECTION 10779

Fig. 12. Recovering Top-1 accuracy of rerouted heads.

comprise the substantially larger tails (roughly 2–5% of total
model parameters).

Then, we freeze the tail parameters and route the head output
to all non-corresponding tails (e.g., ConvNeXt-T to Swin-T/S/B)
and measure the accuracy every few iterations with a batch size
of 128 as we finetune the head parameters using cross entropy
loss. Each head-tail pair is a separate model built by attaching
a copy of the head from one architecture to the tail of another.
Where dimensions between head and tail pairs do not match, we
add a single 1 × 1 convolutional layer.

Fig. 12 shows how rerouting the input between head models
first (0 iterations) results in near 0% accuracy across all head-tail
pairs. However, the concatenated models quickly converge near
their original accuracy (roughly 80− 83%) within just a few
iterations (10,100 iterations with 128 samples corresponding
to one epoch on the ImagNet dataset). Notice that this holds
regardless of whether the head-tail pairs are directly related to
the modified network. Therefore, if a compressor can sufficiently
approximate the representation of just one head (i.e., the shallow
layers of a network), it should be possible to accommodate
arbitrary tails (i.e., the deeper layers of a network).

Crucially, applying the distortion measure in (10) or (11) does
not result in an inherently different encoder behavior. Like train-
ing the compression model with a distortion measure from LIC,
the purpose of the encoder is reducing uncertainty by decorrelat-
ing the data and discarding information. The distortion measure
only controls what information an encoder should prioritize.
Regardless of the target backbone’s architecture, the encoder
should decorrelate the input to reduce uncertainty. Conversely,
the decoder seeks a mapping to the backbone’s representation.

In other words, if we can map the latent to one representation,
we can map it to any other with comparable information content.
We can freeze the encoder and train various decoders to support
arbitrary architectures once we train one compression model
with a particular teacher as described in Fig. 7. The blueprints
facilitate an efficient transformation from the encoder’s com-
pressed representation to an input suitable for a particular back-
bone.

Notice that this method keeps the encoder parameters frozen,
permitting us to deploy a single set of weights across all clients.
Moreover, it does not modify the backbones at any step. After
deployment, splitting is replaced with rerouting the input to a

layer index (Section V-C2). Then, we can serve clients with the
same models regardless of whether they applied the compressor.

VI. EVALUATION

A. Training & Implementation Details

We optimize our compression models initially on the 1.28
million ImageNet [41] training samples for 15 epochs, as de-
scribed in Sections V-A and V-B, with some slight practical
modifications for stable training. We aim to minimize bitrate
without sacrificing predictive strength. Hence, we first seek the
lowest β resulting in lossless prediction.

We use Adam optimization [58] with a batch size of 16 and
start with an initial learning rate of 1 · 10−3, then gradually lower
it to 1 · 10−6 with an exponential scheduler.

To implement our method, we use PyTorch [59], Compres-
sAI [60] for entropy estimation and entropy coding, and pre-
trained backbones from timm [57]. All baseline implementations
and weights were either taken from CompressAI or the official
repository of a baseline. To compute the saliency maps, we use
a modified XGradCAM method from the library in [61] and
include necessary patches in our repository. Lastly, to ensure
reproducibility, we use torchdistill [62].

B. Experiment Setting

The experiments reflect the deployment strategies illustrated
in Figs. 5 and 4. Ultimately, we must evaluate whether Franken-
Split enables latency-sensitive and performance-critical appli-
cations. Regardless of the particular task, a mobile edge client
requires access to a DNN with high predictive strength on a
server. Therefore, we must show whether FrankenSplit ade-
quately solves two problems associated with offloading high-
dimensional image data for real-time discriminative tasks. First,
whether it considerably reduces the bandwidth consumption
compared to existing methods without sacrificing predictive
strength. Second, whether it improves inference times over var-
ious communication channels, i.e., it must remain competitive
even when stronger connections are available.

Lastly, the evaluation should assess whether our method gen-
eralizes to arbitrary backbones. However, since it is infeasible to
perform exhaustive experiments on all existing visual models,
we focus on three well-known representatives and a subset of
their variants instead. Namely, (i) ResNet [53] for classic resid-
ual CNNs. (ii) Swin Transformer [55] for hierarchical vision
transformers, which are receiving increasing adaptation for a
wide variety of vision tasks. (iii) ConvNeXt [63] for modernized
state-of-the-art CNNs. Table II summarizes the relevant charac-
teristics of the unmodified backbones subject to our experiments.

1) Baselines: Since our work aligns closest to learned image
compression, we extensively compare FrankenSplit with learned
and handcrafted codecs applied to the input images, i.e., the input
to the backbone is the distorted output. Comparing task-specific
methods to general-purpose image compression methods may
seem unfair. However, FrankenSplit’s universal encoder has up
to 260x less trainable parameters and further reduces overhead
by not including side information or a sequential context model.

10780 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

TABLE II
OVERVIEW OF BACKBONE PERFORMANCE ON SERVER

The naming convention for the learned baselines is the first
author’s name, followed by the entropy model. Specifically, we
choose the work by Ballé et al. [17], [18] and Minnen et al. [19]
for LIC methods since they represent foundational milestones.
Complementary, we include the work by Cheng et al. [64] to
demonstrate improvements with architectural enhancement.

As the representative for disregarding autoencoder size to
achieve state-of-the-art r-d performance in LIC, we chose the
work by Chen et al. [65] Their method differs from other
LIC baselines by using a partially parallelizable context model,
which trades off compression rate with execution time according
to the configurable block size. We refer to such context models as
Blocked Joint Hierarchical Priors and Autoregressive (BJHAP).
Due to the large autoencoder, we found evaluating the inference
time on constrained devices impractical when the context model
is purely sequential and set the block size to 64 × 64. Addition-
ally, we include the work by Lu et al. [66] as a milestone of
the recent effort on efficient LIC with reduced autoencoders but
only for latency-related experiments since we do not have access
to the trained weights.

As a baseline for the state-of-the-art SC, we include the
Entropic Student (ES) [22], [23]. The ES demonstrates the
performance of directly applying a minimally adjusted LIC
method for feature compression. One caveat is that we intend to
show how FrankenSplit generalizes beyond CNN backbones,
despite the encoder’s simplistic CNN architecture. Although
Matsubara et al. evaluate the ES on a wide range of backbones,
most have no lossless configurations. Nevertheless, comparing
bottleneck injection methods using different backbones is fair,
as we found that the choice does not significantly impact the
r-d performance (Section VI-C5). Therefore, for an intuitive
comparison, we choose ES with ResNet-50 using the same
factorized prior entropy model as FrankenSplit.

We separate the experiments into two categories to assess
whether our proposed method addresses the abovementioned
problems.

2) Criteria Rate-Distortion Performance: We measure the
bitrate in bits per pixel (bpp) because it permits directly com-
paring models with different input sizes. Choosing a distortion
measure to draw meaningful and honest comparisons is chal-
lenging for feature compression.

TABLE III
CLIENTS AND SERVER HARDWARE CONFIGURATION

Unlike evaluating reconstruction fidelity for image compres-
sion, PSNR or MS-SSIM does not provide intuitive results re-
garding predictive strength. Similarly, reporting absolute values
(e.g., top-1 accuracy) gives an unfair advantage to experiments
conducted on higher capacity backbones and veils the efficacy
of a proposed method.

Hence, for a transparent evaluation, we determine the ad-
versarial effects of codecs with image classification since it
provides an unambiguous performance metric with established
benchmark datasets. Specifically, we evaluate the distortion
with the relative measure predictive loss, i.e., the drop in top-1
accuracy incurred by codecs. In particular, for SVBI methods,
(near) lossless prediction implies that the reconstruction is a
sufficient approximation for shallow features of an arbitrary
feature extractor.

To ensure a fair comparison, we give the LIC and handcrafted
baselines a grace threshold of 1.0% top-1 accuracy, to account
for mitigating predictive loss incurred by codec artifacts [67].
For FrankenSplit, we set the threshold at 0.4%, reflecting the
configuration with the lowest predictive loss of the ES. Note
that, unlike the ES, FrankenSplit does not rely on finetuning the
tail parameters of a backbone to improve r-d performance.

3) Measuring Latency and Overhead: To account for the
resource asymmetry in MEC, we use NVIDIA Jetson boards2 for
representing capable but resource-constrained mobile clients.
Contrastingly, the server hosts a powerful GPU. Table III sum-
marizes the hardware we use in our experiments.

C. Rate-Distortion Performance

We measure the predictive loss by the drop in top-1 accu-
racy from Table II using the ImageNet validation set for the
standard classification task with 1,000 categories. Analogously,
we measure filesizes of the entropy-coded binaries to calculate
the average bpp. To demonstrate that we can accommodate a
non-CNN backbone with a CNN encoder, we start with a Swin-
B implementation of FrankenSplit. Fig. 13 shows r-d curves
with the Swin-B backbone. The architecture of FrankenSplit-FP
(FS-FP) and FrankenSplit-SGFP (FS-SGFP) are identical. We
train both models with the loss functions derived in Section V-A.
The difference is that FS-SGFP is saliency-guided, i.e., FS-FP
represents the pure HD training method and is an ablation to the
saliency-guided distortion.

1) Effect of Saliency Guidance: Although FS-FP performs
better than almost all other models, it is trained with the
suboptimal objective discussed in Section IV-C. We identified
the issue as overly skewing the objective needlessly towards
the distortion term. Consequently, we proposed regularizing

2nvidia.com/en-gb/autonomous-machines/embedded-systems/

FURUTANPEY et al.: FRANKENSPLIT: EFFICIENT NEURAL FEATURE COMPRESSION WITH SHALLOW VARIATIONAL BOTTLENECK INJECTION 10781

Fig. 13. Rate-distortion curve for ImageNet.

the distortion term by applying extracted saliency maps in
Section V-B to improve the r-d performance. We favor Grad-
CAM to compute the saliency maps over comparable methods
for two reasons. First, it is generically applicable to arbitrary
vision models. Second, it does not introduce additional tunable
hyperparameters. The suboptimality of the unregularized objec-
tive is demonstrated by FS-SGFP outperforming FS-FP. By sim-
ply guiding the distortion loss with saliency maps, we achieve
a 25% lower bitrate without impacting predictive strength or
additional runtime overhead.

2) Comparison to the ES: Even without saliency guidance,
FS-FP consistently outperforms ES by a large margin. Specifi-
cally, FS-FP and FS-SGFP achieve 32% and 63% lower bitrates
for the lossless configuration.

We ensured that our bottleneck injection incurs comparable
overhead for a direct comparison to the ES. Moreover, the ES
has an advantage due to finetuning tail parameters in an auxiliary
training stage. Therefore, we attribute the performance gain to
the more sophisticated architectural design decisions described
in Section V-C.

3) Comparison to Image Codecs: For almost all lossy codec
baselines, Fig. 13 illustrates that FS-(SG)FP has a significantly
better r-d performance. Comparing FS-FP to Ballé-FP demon-
strates the r-d gain of task-specific compression over general-
purpose image compression. Although the encoder of Franken-
Split has 25x fewer parameters, both codecs use an FP entropy
model with encoders consisting of convolutional layers. Yet, the
average file size of FS-FP with a predictive loss of around 5%
is 7x less than the average file size of Ballé-FP with comparable
predictive loss.

FrankenSplit also beats modern general-purpose LIC without
including any of their heavy-weight components. The only base-
line FrankenSplit does not convincingly outperform is Chen-
BJHAP. Nevertheless, in Section III-D, we demonstrate that the
incurred overhead offsets the compression gain disproportion-
ately.

4) Image Codec Incurred Predictive Loss: For clarity, we
separately evaluate r-d performance on the other backbones
listed in Table II for FrankenSplit and baseline codecs.

Fig. 14. Predictive Loss of baselines on multiple Backbones.

Earlier, we argued that measuring PSNR is unsuitable to
assess effects on downstream prediction. Since the image codecs
are entirely decoupled from the predictive task, the bitrate
is identical regardless of the backbone. We use this opportu-
nity to plot PSNR instead of bpp against predictive loss in
Fig. 14.

Considering that compression models aggressively discard
information, it is intuitive that the predictive loss is comparable
across backbones. While some models handle distorted samples
better, the difference in predictive loss is at most 3-5%. Still,
the discrepancy demonstrates that PSNR is not a suitable mea-
sure for downstream tasks even within the same codec. More
importantly, the discrepancy across baselines is considerably
wider. For example, it is around 10% between Minnen-MSHP
and Chen-BJHAP for lower PSNR levels.

5) Blueprints Generalization to Arbitrary Backbones: We
now evaluate the r-d performance of other implementations of
FrankenSplit to determine whether the blueprint heuristics gen-
eralize to arbitrary architectures. We create a decoder blueprint
(Section V-C3) for each of the three architectural families (Swin,
ResNet, and ConvNeXt). Then, we perform bottleneck injection
at the layers before the deepest stage (Section V-C2), Fig. 15
plots r-d performance of directly related architectures sharing
the corresponding blueprint but with separately trained com-
pressors. All models are trained as described in Fig. 7. Across
all architectural families, we observe similar r-d performance.
The (near) lossless configurations of the largest backbones
(Swin-B, ConvNeXt-B, ResNet-152) require around the same
bpp, whereas smaller models tend to require 3-4% more bpp for
comparable predictive loss.

Next, we conduct experiments to determine the importance
of finding an adequate blueprint but assigning mismatching

10782 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

Fig. 15. Rate-distortion curve for various backbones.

TABLE IV
EFFECT OF MISMATCHING BLUEPRINTS

instances to a backbone. Table IV summarizes the results for
the largest backbones with varying decoder sizes. The Swin
blueprint for the Swin-B decoder results in the FrankenSplit
implementation from FS-FP from Fig. 13. With 1% overhead
in parameters, the compressor achieves 5.08 kB for 0.40% pre-
dictive loss. However, once we train compressors with ResNet
or ConvNeXt restoration blocks, the r-d performance for the
Swin-B is significantly worse when overhead is roughly equal.
A blueprint that performs well for its intended target architecture
results in substantially worse r-d performance for other architec-
ture. Only increasing the decoder size brings the r-d performance
closer to configurations that apply the appropriate blueprint.

From our findings, we can draw several conclusions. The r-d
performance regarding the backbone network is near-agnostic.
The implication is that the information content of the teachers
(i.e., shallow layers) of varying architectures is comparable. We
explain this by considering that we select the shallow layers as
all layers preceding the deepest stage, which have comparable
parameters across varying architectures.

Additionally, choosing a decoder architecture with the cor-
rect inductive bias (i.e., a blueprint) can transform compressed
features significantly more efficiently.

6) Single Encoder With Multiple Backbones: We conduct
a similar experiment as head rerouting from Section V-C4.
However, we finetune the decoders instead of the head models.

We first select the compressors with (a near) lossless pre-
diction from Fig. 15 for each architectural family. Then, we
choose the encoder from one of the compressors corresponding

Fig. 16. Iterations to recover accuracy with decoder.

to the largest variants. Finally, we attach the decoders from
the other compressors and finetune their parameters. We use
unweighted head distillation and cross entropy (between the
backbone classifier outputs and the hard labels) as the loss
function. Analogous to the experiment in Section V-C4, we
set the batch size as 128 and use PyTorch’s Adam optimizer
with a learning rate of 7 · 10−5. To demonstrate the limited
importance of the initial teacher, we repeat this process for each
of the three encoders separately and summarize the results in
Fig. 16. Note that the bitrate does not change due to freezing the
encoder parameters. Hence, we report iterations until accuracy is
restored to exemplify the similarity to the rerouting experiment
in Section V-C4. We consider an accuracy restored if it is within
0.25 ± 0.25% of its original accuracy.

Besides requiring more iterations for convergence, the results
are unsurprisingly similar to the head routing experiment out-
lined in Fig. 12. Since we can infer from the earlier results
that decoders can sufficiently approximate the head output,
finetuning the decoder is near-equivalent to finetuning a head.

7) Generalization to Multiple Downstream Tasks: Arguably,
SVBI naturally generalizes to multiple downstream tasks due to
approximating shallow features. We provide empirical evidence
by evaluating the r-d performance of the compressors from
Fig. 13 without retraining the weights on different datasets.

Specifically, attach separate classifiers to the Swin-B back-
bone (as illustrated in Fig. 10). Using PyTorch’s Adam opti-
mizer, we train each classifier for five epochs with no augmen-
tation, a learning rate of 5 · 10−5. A classifier refers to the last
layers of a network.

For FrankenSplit-(SG)FP, we applied none or only rudimen-
tary augmentation to evaluate how our method handles a type
of noise it did not encounter during training. Hence, we include
the Food-101 [68] dataset since it contains noise in high pixel
intensities. Additionally, we include CIFAR-100 [42]. Lastly, we
include Flower-102 [69] datasets to contrast more challenging
tasks. The classifiers achieve an 87.73%, 88.01%, and 89.00%
top-1 accuracy, respectively. Fig. 17 summarizes the r-d curves
for each task. Our method still demonstrates clear r-d perfor-
mance gains over the baselines. More importantly, notice how
FS-SGFP outperforms FS-FP on the r-d curve for the Food-101
dataset, with a comparable margin to the ImageNet dataset.
Contrarily, on the Flower-102 datasets, there is less performance
difference. Presumably, on simple datasets, the suboptimality of

FURUTANPEY et al.: FRANKENSPLIT: EFFICIENT NEURAL FEATURE COMPRESSION WITH SHALLOW VARIATIONAL BOTTLENECK INJECTION 10783

Fig. 17. Rate-distortion curve for multiple downstream tasks.

Fig. 18. Comparing effects on sizes.

HD is less significant. Considering how easier tasks require less
model capacity, the diminishing efficacy saliency guidance is
consistent with our claims from Section IV.

8) Effect of Tensor Dimensionality on R-D Performance:
Section III-C argues that measuring tensor dimensionality is
inadequate to assess whether partial execution on the client
is worthwhile. To verify, we implement and train additional
instances of FrankenSplit with the Swin-B backbone and show
results in Fig. 18 FS-SGFP(S) is the model with a small
encoder (∼ 140′000 parameters) we have used for our previous
results. FS-SGFP(M) and FS-SGFP(L) are medium and large
models where we increased the (output) channels C = 48 to
96 and 128, respectively. Besides the number of channels,
we’ve trained the medium and large models using the same
configurations. On the left, we plot the r-d curves showing that
increasing encode capacity naturally results in lower bitrates
without additional predictive loss. For the plot on the right, we
train further models with C = {48, 64, 96, 108, 120, 128} using
the configuration resulting in lossless prediction. Notice how in-
creasing output channels will result in higher dimensional latent
tensors C × 28× 28 but inversely correlates to compressed file
size. Arguably, increasing the encoder capacity will yield more
powerful transforms to decorrelate the input.

9) The Limitations of Direct Optimization for SVBI: Sec-
tion V-A mentioned that direct optimization does not work for
SVBI as it does for DVBI, where the bottleneck is at the penul-
timate layer. Specifically, it performs incomparably worse than
HD despite the latter’s inherent suboptimality. We demonstrate

Fig. 19. Contrasting the r-d performance.

this by applying the SVBI-CE and SVBI-KD objective on the
CIFAR-10 [42] and ImageNet dataset. All models are identical
and trained with the setup in Section VI-A, except we train for
more epochs to account for slower convergence.

Fig. 19 summarizes the results the results. On CIFAR-10,
SVBI-CE and SVBI-KD yield moderate performance gain over
JPEG. Yet, they perform substantially worse on ImageNet.

Sufficiency as a necessary precondition may explain why the
objective in (5) does not yield good results when the bottleneck
is at a shallow layer, as the mutual information I(Y ; Ỹ) is not
adequately high. Since the representation of the last hidden and
shallow layer are so far apart in the information path, there is
insufficient information to minimize D(H; H̃). The compres-
sion model approximates the intermediate representation for a
simple classification task to minimize predictive loss by incur-
ring higher bitrates. Consequently, for the challenging ImageNet
classification task, the same method incurs significant predictive
loss even when skewing the r-d objective heavily towards high
bitrates.

D. Prediction Latency and Overhead

We exclude entropy coding from our measurement, since not
all baselines use the same entropy coder. For brevity, the results
implicitly assume the Swin-B backbone for the remainder of this
section. Inference times with other backbones for FrankenSplit
can be derived from Table V. Analogously, the inference times of
applying LIC models for different unmodified backbones can be
derived using Table II. Notably, the relative overhead decreases

10784 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

TABLE V
EXECUTION TIMES OF FS (S) WITH VARIOUS BACKBONES

TABLE VI
INFERENCE PIPELINE COMPONENTS EXECUTION TIMES

the larger the tail is, which is favorable since we target inference
from more accurate predictors.

1) Computational Overhead: We first disregard network
conditions to get an overview of the computational overhead
of applying compression models. Table VI summarizes the
execution times of the prediction pipeline’s components. Enc.
NX/TX2 refers to the encoding time on the respective client de-
vice. Analogously, dec. refers to the decoding time at the server.
Lastly, Full NX/TX2 is the total execution time of encoding
at the respective client plus decoding and the prediction task
at the server. Lu-JHAP demonstrates how LIC models without
a sequential context component are noticeably faster but are
still 9.3x-9.6x slower than FrankenSplit despite a considerably
worse r-d performance. Notice that the computational load of
FrankenSplit is near evenly distributed between the client and
the server. The significance of considering resource asymmetry
is emphasized by how the partially parallelized context model of
Chen-BJHAP leads to faster decoding on the server. Neverthe-
less, it is slower than other JHAP baselines due to the overhead
of the increased encoder size outweighing the performance gain
of the blocked context model on constrained hardware.

2) Competing Against Offloading: The average compressed
filesize gives the transfer size from the ImageNet validation set.

Using the transfer size, we evaluate transfer time on a broad
range of standards. Since we did not include the execution
time of entropy coding for learned methods, the encoding and
decoding time for the handcrafted codecs is set to 0. The setting
favors the baselines because both rely on sequential CPU-bound
transforms. Table VII summarizes how our method performs in
various standards. Due to space constraints, we only include

TABLE VII
TOTAL LATENCY WITH VARIOUS WIRELESS STANDARDS

Fig. 20. Comparing effects on sizes.

LIC models with the lowest request latency (Minnen-MSHP)
or the lowest compression rate (Chen-BJHAP). Still, with
Table VI and the previous results, we can infer that the LIC
baselines have considerably higher latency than FrankenSplit.

Generally, the more constrained the network is the more
we can benefit from reducing the transfer size. In particular,
FrankenSplit is up to 16x faster in highly constrained networks,
such as BLE. Conversely, offloading with fast handcrafted
codecs may be preferable in high-bandwidth environments. Yet,
FrankenSplit is significantly better than offloading with PNG,
even for 5 G. Fig. 20 plots the inference latencies against hand-
crafted codecs using the NX client. For stronger connections,
such as 4 G LTE, it is still 3.3x faster than using PNG. Nev-
ertheless, compared to WebP, offloading seems more favorable
when bandwidth is high. Still, this assumes that the rates do
not fluctuate and that the network can seamlessly scale for an

FURUTANPEY et al.: FRANKENSPLIT: EFFICIENT NEURAL FEATURE COMPRESSION WITH SHALLOW VARIATIONAL BOTTLENECK INJECTION 10785

arbitrary number of client connections. Moreover, we did not
apply any optimizations to the encoder.

VII. CONCLUSION

This work introduced a novel lightweight compression frame-
work to facilitate critical MEC applications relying on large
DNNs. We showed that a minimalistic implementation of our
design heuristic is sufficient to outperform numerous base-
lines. However, there are several limitations. We emphasize
that the primary insight of the reported results is the potential
of adequate distortion measures and regularization methods
for neural feature compression. Despite significantly improving
rate-distortion performance, better methods may exist to extract
saliency maps. Moreover, the Factorized Prior entropy model
does not discriminate between inputs. Although side information
with hypernetworks taken from LIC trivially improves rate-
distortion performance, our results show that it may not be a
productive approach to repurpose existing image compression
methods directly. Hence, conceiving an efficient way to include
task-dependent side information is a promising direction.

REFERENCES

[1] A. Voulodimos et al., “Deep learning for computer vision: A brief review,”
Comput. Intell. Neurosci., vol. 2018, 2018.

[2] D. W. Otter, J. R. Medina, and J. K. Kalita, “A survey of the usages of
deep learning for natural language processing,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 32, no. 2, pp. 604–624, Feb. 2021.

[3] C. Feng, P. Han, X. Zhang, B. Yang, Y. Liu, and L. Guo, “Computation of-
floading in mobile edge computing networks: A survey,” J. Netw. Comput.
Appl., vol. 202, 2022, Art. no. 103366.

[4] T. Rausch et al., “Towards a platform for smart city-scale cognitive
assistance applications,” in Proc. IEEE Conf. Virtual Reality 3D User
Interfaces Abstr. Workshops, 2021, pp. 330–335.

[5] R. R. Arinta and E. Andi W.R., “Natural disaster application on Big Data
and machine learning: A review,” in Proc. 4th Int. Conf. Inf. Technol. Inf.
Syst. Electr. Eng., 2019, pp. 249–254.

[6] Q. Xin, M. Alazab, V. G. Díaz, C. E. Montenegro-Marin, and R. G. Crespo,
“A deep learning architecture for power management in smart cities,”
Energy Rep., vol. 8, pp. 1568–1577, 2022.

[7] U. Cisco, “Cisco annual internet report (2018–2023) white paper,” Cisco:
San Jose, CA, USA, vol. 10, no. 1, pp. 1–35, 2020.

[8] Q. Zhang et al., “A comprehensive benchmark of deep learn-
ing libraries on mobile devices,” in Proc. ACM Web Conf., 2022,
pp. 3298–3307.

[9] Q. Zhang et al., “A comprehensive deep learning library benchmark and
optimal library selection,” IEEE Trans. Mobile Comput., early access, Aug.
04, 2023, doi: 10.1109/TMC.2023.3301973.

[10] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis, “INFaaS: Auto-
mated model-less inference serving,” in Proc. USENIX Annu. Tech. Conf.,
USENIX Association, 2021, pp. 397–411.

[11] Y. Matsubara, M. Levorato, and F. Restuccia, “Split computing and early
exiting for deep learning applications: Survey and research challenges,”
ACM Comput. Surv., vol. 55, no. 5, pp. 1–30, 2022.

[12] N. Tishby, F. C. N. Pereira, and W. Bialek, “The information bottleneck
method,” CoRR, vol. physics/0004057, 2000.

[13] Y. Yang et al., “An introduction to neural data compression,” Foundations
Trends® Comput. Graph. Vis., vol. 15, no. 2, pp. 113–200, 2023.

[14] An Image Format for the Web, “WebP Image Format.” 2023. Accessed:
Feb. 18, 2023. [Online]. Available: https://developers.google.com/speed/
webp

[15] V. Goyal, “Theoretical foundations of transform coding,” IEEE Signal
Process. Mag., vol. 18, no. 5, pp. 9–21, Sep. 2001.

[16] J. Ballé et al., “Nonlinear transform coding,” 2020, arXiv: 2007.03034.
[17] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized image

compression,” in Proc. 5th Int. Conf. Learn. Representations, Toulon,
France, 2017.

[18] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, “Variational
image compression with a scale hyperprior,” 2018, arXiv: 1802.01436.

[19] D. Minnen, J. Ballé, and G. Toderici, “Joint autoregressive and hierarchical
priors for learned image compression,” in Proc. 32nd Int. Conf. Neural Inf.
Process. Syst., 2018, pp. 10794–10803.

[20] S. Singh, S. Abu-El-Haija, N. Johnston, J. Ballé, A. Shrivastava, and
G. Toderici, “End-to-end learning of compressible features,” 2020,
arXiv: 2007.11797.

[21] Y. Dubois, B. Bloem-Reddy, K. Ullrich, and C. J. Maddison, “Lossy
compression for lossless prediction,” in Proc. Adv. Neural Inf. Process.
Syst., 2021, pp. 14014–14028.

[22] Y. Matsubara, R. Yang, M. Levorato, and S. Mandt, “SC2 bench-
mark: Supervised compression for split computing,” Trans. Mach.
Learn. Res., 2023. [Online]. Available: https://openreview.net/forum?id=
p28wv4G65d

[23] Y. Matsubara, R. Yang, M. Levorato, and S. Mandt, “Supervised com-
pression for resource-constrained edge computing systems,” in Proc.
IEEE/CVF Winter Conf. Appl. Comput. Vis., 2022, pp. 2685–2695.

[24] Y. Kang et al., “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” ACM SIGARCH Comput. Archit. News, vol. 45,
no. 1, pp. 615–629, 2017.

[25] H. Li, C. Hu, J. Jiang, Z. Wang, Y. Wen, and W. Zhu, “JALAD: Joint
accuracy-and latency-aware deep structure decoupling for edge-cloud
execution,” in Proc. IEEE 24th Int. Conf. Parallel Distrib. Syst., 2018,
pp. 671–678.

[26] S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, and N. D. Lane,
“SPINN: Synergistic progressive inference of neural networks over device
and cloud,” in Proc. 26th Annu. Int. Conf. Mobile Comput. Netw., 2020,
pp. 1–15.

[27] M. Almeida, S. Laskaridis, S. I. Venieris, I. Leontiadis, and N. D. Lane,
“DynO: Dynamic onloading of deep neural networks from cloud to de-
vice,” ACM Trans. Embedded Comput. Syst., vol. 21, no. 6, pp. 1–24,
2022.

[28] H. Liu, W. Zheng, L. Li, and M. Guo, “LoADPart: Load-aware dynamic
partition of deep neural networks for edge offloading,” in Proc. IEEE 42nd
Int. Conf. Distrib. Comput. Syst., 2022, pp. 481–491.

[29] A. Bakhtiarnia, N. Milošević, Q. Zhang, D. Bajović, and A. Iosifidis,
“Dynamic split computing for efficient deep edge intelligence,” in Proc.
IEEE Int. Conf. Acoust. Speech Signal Process., 2023, pp. 1–5.

[30] A. E. Eshratifar, A. Esmaili, and M. Pedram, “BottleNet: A deep learning
architecture for intelligent mobile cloud computing services,” in Proc.
IEEE/ACM Int. Symp. Low Power Electron. Des., 2019, pp. 1–6.

[31] J. Shao and J. Zhang, “BottleNet: An end-to-end approach for feature
compression in device-edge co-inference systems,” in Proc. IEEE Int.
Conf. Commun. Workshops, 2020, pp. 1–6.

[32] Y. Matsubara, S. Baidya, D. Callegaro, M. Levorato, and S. Singh, “Dis-
tilled split deep neural networks for edge-assisted real-time systems,” in
Proc. Workshop Hot Topics Video Analytics Intell. Edges, New York, NY,
USA, 2019, pp. 21–26.

[33] M. Sbai, M. R. U. Saputra, N. Trigoni, and A. Markham, “Cut, distil and
encode (CDE): Split cloud-edge deep inference,” in Proc. 18th Annu. IEEE
Int. Conf. Sens. Commun. Netw., 2021, pp. 1–9.

[34] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression and
hardware acceleration for neural networks: A comprehensive survey,”
Proc. IEEE, vol. 108, no. 4, pp. 485–532, Apr. 2020.

[35] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolutional
neural networks: Analysis, applications, and prospects,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 33, no. 12, pp. 6999–7019, Dec. 2022.

[36] K. Han et al., “A survey on vision transformer,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 45, no. 1, pp. 87–110, Jan. 2023.

[37] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis, “InFaaS: Automated
model-less inference serving,” in Proc. USENIX Annu. Tech. Conf., 2021,
pp. 397–411.

[38] K. Zhao et al., “EdgeAdaptor: Online configuration adaption, model
selection and resource provisioning for edge DNN inference serving at
scale,” IEEE Trans. Mobile Comput., vol. 22, no. 10, pp. 5870–5886,
Oct. 2023.

[39] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proc. Int. Conf. Mach.
Learn., PMLR, 2015, pp. 448–456.

[40] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2017, pp. 1492–1500.

[41] O. Russakovsky et al., “ImageNet large scale visual recognition challenge,”
Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015.

https://dx.doi.org/10.1109/TMC.2023.3301973
https://developers.google.com/speed/webp
https://developers.google.com/speed/webp
https://openreview.net/forum{?}id$=$p28wv4G65d
https://openreview.net/forum{?}id$=$p28wv4G65d

10786 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

[42] A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” 2009.

[43] R. Shwartz-Ziv and N. Tishby, “Opening the black box of deep neural
networks via information,” 2017, arXiv: 1703.00810.

[44] C. E. Shannon, “Coding theorems for a discrete source with a fidelity
criterion,” IRE Nat. Conv. Rec., vol. 4, pp. 142–163, 1959.

[45] T. Berger, “Rate distortion theory for sources with abstract alphabets and
memory,” Inf. Control, vol. 13, no. 3, pp. 254–273, 1968.

[46] N. Tishby and N. Zaslavsky, “Deep learning and the information bottleneck
principle,” in Proc. IEEE Inf. Theory Workshop, 2015, pp. 1–5.

[47] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” 2015, arXiv: 1503.02531.

[48] L. Wang and K.-J. Yoon, “Knowledge distillation and student-teacher
learning for visual intelligence: A review and new outlooks,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 44, no. 6, pp. 3048–3068,
Jun. 2022.

[49] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio,
“FitNets: Hints for thin deep nets,” 2014, arXiv: 1412.6550.

[50] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning
deep features for discriminative localization,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2016, pp. 2921–2929.

[51] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D.
Batra, “Grad-CAM: Visual explanations from deep networks via gradient-
based localization,” Int. J. Comput. Vis., vol. 128, pp. 336–359, Oct. 2019.

[52] J. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving
for simplicity: The all convolutional net,” in Proc. Int. Conf. Learn.
Representations, 2015.

[53] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learniserverng for
image recognition,” 2015, arXiv: 1512.03385.

[54] S. Zagoruyko and N. Komodakis, “Wide residual networks,” 2016,
arXiv: 1605.07146.

[55] Z. Liu et al., “Swin transformer: Hierarchical vision transformer using
shifted windows,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021,
pp. 10012–10022.

[56] J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, and R. Timofte, “SwinIR:
Image restoration using swin transformer,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis., 2021, pp. 1833–1844.

[57] R. Wightman, “PyTorch image models,” 2019. [Online]. Available: https:
//github.com/rwightman/pytorch-image-models

[58] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv: 1412.6980.

[59] A. Paszke et al., “Automatic differentiation in pytorch,” 2017.
[60] J. Bégaint, F. Racapé, S. Feltman, and A. Pushparaja, “CompressAI:

A pytorch library and evaluation platform for end-to-end compression
research,” 2020, arXiv: 2011.03029.

[61] J. Gildenblat and contributors, “PyTorch library for cam methods,” 2021.
[Online]. Available: https://github.com/jacobgil/pytorch-grad-cam

[62] Y. Matsubara, “torchdistill: A modular, configuration-driven framework
for knowledge distillation,” in Proc. Int. Workshop Reproducible Res.
Pattern Recognit., Springer, 2021, pp. 24–44.

[63] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A
ConvNet for the 2020s,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2022, pp. 11976–11986.

[64] Z. Cheng, H. Sun, M. Takeuchi, and J. Katto, “Learned image compres-
sion with discretized gaussian mixture likelihoods and attention mod-
ules,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020,
pp. 7936–7945.

[65] T. Chen, H. Liu, Z. Ma, Q. Shen, X. Cao, and Y. Wang, “End-to-end learnt
image compression via non-local attention optimization and improved
context modeling,” IEEE Trans. Image Process., vol. 30, pp. 3179–3191,
2021.

[66] M. Lu, P. Guo, H. Shi, C. Cao, and Z. Ma, “Transformer-based image
compression,” in Proc. Data Compression Conf., 2022, pp. 469–469.

[67] X. Luo, H. Talebi, F. Yang, M. Elad, and P. Milanfar, “The rate-distortion-
accuracy tradeoff: JPEG case study,” 2020, arXiv: 2008.00605.

[68] L. Bossard, M. Guillaumin, and L. Van Gool, “Food-101–mining discrimi-
native components with random forests,” in Proc. 13th Eur. Conf. Comput.
Vis., Zurich, Switzerland, Springer, 2014, pp. 446–461.

[69] M.-E. Nilsback and A. Zisserman, “Automated flower classification over
a large number of classes,” in Proc. 6th Indian Conf. Comput. Vis. Graph.
Image Process., 2008, pp. 722–729.

Alireza Furutanpey (Graduate Student Member,
IEEE) received the MSc degree from the Technical
University of Vienna, Austria, in 2022, with distinc-
tion in the field of computer science. He is now
working toward the PhD degree with the Distributed
Systems Group in the field of edge computing. His
research interests include mobile edge computing,
edge intelligence and machine learning.

Philipp Raith (Graduate Student Member, IEEE) re-
ceived the MSc degree from the Technical University
of Vienna, Austria, in 2021, with distinction in the
field of computer science. He is now working toward
the PhD degree with the Distributed Systems Group
in the field of edge computing. His research interests
include serverless edge computing, edge intelligence
and operations for AI.

Schahram Dustdar (Fellow, IEEE) is a full professor
of computer science and heads TU Wien’s Distributed
Systems Group. His research interests include dis-
tributed systems, edge intelligence, complex and au-
tonomic software systems. He’s the editor in chief of
Computing, associate editor of ACM Transactions on
the Web, ACM Transactions on Internet Technology,
IEEE Transactions on Cloud Computing, and IEEE
Transactions on Services Computing. He’s also on
the editorial boards of IEEE Internet Computing and
IEEE Computer. He has received the ACM Distin-

guished Scientist award and Distinguished Speaker Award and the IBM Faculty
Award. He is an elected member of Academia Europaea, where he’s was
Informatics Section chairman from 2015 to 2022. He is an AAIA fellow where
he is the current president.

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://github.com/jacobgil/pytorch-grad-cam

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

