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Abstract—Fog computing enables the execution of IoTapplications on compute nodes which reside both in the cloud and at the edge

of the network. To achieve this, most fog computing systems route the IoT data on a path which starts at the data source, and goes

through various edge and cloud nodes. Each node on this path may accept the data if there are available resources to process this data

locally. Otherwise, the data is forwarded to the next node on path. Notably, when the data is forwarded (rather than accepted), the

communication latency increases by the delay to reach the next node. To avoid this, we propose a routing mechanism which maintains

a history of all nodes that have accepted data of each context in the past. By processing this history, our mechanism sends the data

directly to the closest node that tends to accept data of the same context. This lowers the forwarding by nodes on path, and can reduce

the communication latency. We evaluate this approach using both prototype- and simulation-based experiments which show reduced

communication latency (by up to 23 percent) and lower number of hops traveled (by up to 73 percent), compared to a state-of-the-art

method.

Index Terms—Fog computing, edge computing, Internet of Things, context-aware, IoTapplications

Ç

1 INTRODUCTION

THE proliferation of the Internet of Things (IoT) has
increased significantly the number of Internet-connected

devices, and consequently the amount of data that travels
through the Internet [1], [2]. This data can overwhelm the
network in the centralized cloud paradigm, potentially
causing latency- and bandwidth-related issues [3]. To cope
with such issues, fog computing proposes the utilization of
both cloud and edge compute nodes [4], [5]. This may hin-
der the accumulation of data in one central location, reduce
the communication latency, and improve bandwidth utili-
zation because the computations of the IoT data can also be
performed close to the data sources [6].

To achieve such benefits, many fog computing systems
route the IoT data on a path which starts at the data source,
and goes through various edge and cloud compute nodes
until the data is accepted for processing [7], [8], [9]. The
compute nodes on this path are usually assumed to be
ordered based on their proximity to the data source. Thus,
the first compute nodes are able to process the IoT data with
low communication latency, but this latency increases when
nodes farther along the path are utilized for the process-
ing [10]. This way, the compute node closest to the data
source with adequate available computational resources, is

utilized for processing the IoT data with low latency. Typi-
cally, the compute nodes at the edge of the network inte-
grate limited computational resources [11], [12]. As a result,
only a fraction of the IoT data is accepted by nearby com-
pute nodes (i.e., the first nodes on path), while the rest of
the data is more likely to be processed in a remote cloud
node [13].

In such systems, every time a compute node forwards the
IoT data, the communication latency is increased by both
the time required by a compute node to decide whether to
accept the data or not, and the time needed to reach the next
node. Therefore, this latency accumulates while the IoT
data is forwarded by nodes on path. Furthermore, routing
the data through intermediate nodes (rather than directly)
to the compute node that accepts it, may increase the num-
ber of network hops traveled, and potentially the utilization
of network bandwidth [14].

To counter these problems, we propose a mechanism for
context-aware routing in fog computing systems. Instead of
routing the IoT data along the path of compute nodes until a
node with adequate resources is found, our mechanism aims
at sending the data directly to that node. This eliminates the
overhead of sending the data through intermediate nodes,
and consequently lowers the communication latency of per-
forming IoT computations. Since the target node is not
known a priori, our mechanism relies on the context of the
data, and on information from previous transmissions.
Based on these, the proposed mechanism first examines
which compute node has accepted data of the same context
in the past. Then, the IoT data is routed on a path that starts
from that node, thereby bypassing other compute nodes that
typically forward such data due to not having enough avail-
able computational resources to process it.

Our contributions include a system model for executing
IoT applications in fog computing systems, and a mecha-
nism for realizing the proposed context-aware routing. In
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addition, we implement and evaluate concrete strategies
that can be used in our mechanism for selecting nodes with
available resources, in particular, based on predictive meth-
ods such as Reinforcement Learning (RL). To show the ben-
efits of our approach, we build a fog computing system
using real-world geographically distributed compute
nodes, and we perform an extensive prototype- and simula-
tion-based evaluation considering a smart energy applica-
tion. According to our results, context-aware routing lowers
the communication latency of sending IoT data by up to 23
percent, and reduces the hop count by up to 73 percent,
compared to a state-of-the-art method.

The rest of this paper is organized as follows: In Section 2
we discuss related work. Afterwards, in Section 3 we pres-
ent a system model for executing IoT applications in fog
computing systems, and in Section 4 we propose a novel
mechanism for context-aware routing in such systems. Sub-
sequently, Section 5 presents an evaluation of the proposed
mechanism by comparing it to a baseline method, and Sec-
tion 6 concludes this paper and proposes promising
research directions for future work.

2 RELATED WORK

There are various approaches in the literature that propose
mechanisms for enabling compute nodes of fog computing
systems to either accept IoT data and process it, or to for-
ward the data to other compute nodes. For instance, Tong
et al. [8] propose a mechanism for forwarding peak work-
loads from mobile devices to compute nodes towards the
cloud in order to increase the computation capacity of a sys-
tem which includes various edge and cloud nodes. Che-
kired et al. [15] present a mechanism for processing
industrial IoT data based on priorities such that high prior-
ity data is processed on compute nodes close to the edge,
and low priority data is forwarded towards the cloud. Asci-
gil et al. [7] propose a system with various compute nodes
on the path from the edge to the cloud, and design a mecha-
nism based on deadlines, to either accept or forward a
workload. Mortazavi et al. [9] design a platform which
assumes that network devices between the edge and the
cloud act as compute nodes, and are able to process the data
on a path towards the cloud.

Notably, the aforementioned approaches assume that the
data is routed on a path from the edge towards the cloud,
and propose mechanisms to enable the compute nodes on
path to either accept or forward this data. However, none of
these approaches considers bypassing compute nodes on
path to avoid the extra overhead. For this reason, the work
at hand presents a mechanism that takes into account the
context of the IoT data for avoiding busy compute nodes on
path in order to process the data with reduced communica-
tion latency, as discussed in Section 1. Other approaches
from the literature which leverage the context of the IoT
data in order to perform IoT computations efficiently, are
discussed below.

Mahmud et al. [16] propose an application placement
policy for fog computing systems which aim at facilitating
industrial applications. This policy considers the context of
the IoT data for coordinating the workload of the IoT devi-
ces with the compute capacities of the nodes in order to

minimize the service delivery time. However, the authors
do not take into account that the context of the IoT data can
be further leveraged for routing the data to compute nodes
with available computational resources, which is the scope
of our work.

Mononen et al. [17] discuss a system for executing appli-
cations on distributed compute nodes. In this system, the
compute nodes utilize a mechanism that leverages the con-
text of the data to avoid sending unnecessary information to
the cloud in order to reduce the network traffic. In our
work, we also allow sending data only to nearby compute
nodes. However, in addition to that, we enable the IoT data
to bypass nearby nodes, in case these nodes are not able to
execute the required computations. This may lower the
overhead of forwarding IoT data through the various com-
pute nodes of a fog computing system, as discussed in
Section 1.

Roy et al. [18] present an approach for storing only the
context of the IoT data in nearby compute nodes, i.e., not
the actual values of the data. This context is then shared
among all the nearby compute nodes periodically, in order
to facilitate unified IoT applications. However, the authors
do not consider using the context for sending the IoT data
directly to compute nodes with available computational
resources, which is the scope of our work.

Akbar et al. [19] present an architecture for stream proc-
essing in the IoT. The authors propose a mechanism that uti-
lizes the context of the IoT data, which is acquired from
previous transmissions, in order to define threshold values
needed by complex event processing engines. In our work,
we also use previous transmissions for defining the context
of the data. However, in contrast to the work by Akbar et al.,
we use the context to change the routing paths of the data,
and to improve the efficiency of the system.

Wiener et al. [20] describe a conceptual architecture for
context-aware stream processing in fog computing systems.
In this work, the authors propose relocating the applications
according to the changes in the context of the IoT data. In
our work, instead of relocating the applications, we use the
context of the data to change the routing paths, and to send
the data directly to compute nodes that can perform the
required computations.

To summarize the discussion, there are various approaches
in the literaturewhich leverage the context of the data in order
to improve performing computations in the IoT. However, to
the best of our knowledge, none of these approaches considers
a context-aware routing mechanism for fog computing sys-
tems. In the work at hand, we design and implement a con-
text-aware routing mechanism that provides reduced
communication latency and improved bandwidth utilization
compared to a state-of-the-art method which is based on pre-
viously discussed approaches (such as [9] and [7]).

Finally, there is related work from the field of cloud com-
puting, which considers a centralized scheduler that main-
tains a global view of the system, i.e., the addresses of all
the candidate compute nodes are known a priori [21]. Such
a scheduler is able to perform application placement, usu-
ally based on optimization logic, so that each application is
instantiated on a specific compute node, and the data is sent
to that node directly (i.e., without traveling on a path of
multiple nodes). Notably, such approaches have also been
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applied to computing systems that include both cloud and
edge compute nodes [22]. In such systems however, main-
taining a global view may become infeasible or prohibi-
tively costly, e.g., due to their scale (which may be too large
to be centrally coordinated) [23], or their dynamicity (which
results in nodes joining/leaving concurrently) [24], [25],
[26]. To avoid such issues, many approaches consider that
fog computing systems are not centrally orchestrated, and
no node maintains a global view of the system [8], [9].
Instead, each node maintains only few neighbors, i.e., a lim-
ited view of the system, and the data is propagated in the
system on a path through these neighbors [27]. For such sys-
tems, we design a mechanism that enables the IoT data to be
sent directly to appropriate compute nodes even without a
central scheduler component. To achieve that, we leverage
the context of the IoT data, and a history of previous trans-
missions that stores which context is typically accepted by
each node.

3 SYSTEM MODEL

In this section, we present a system model for executing IoT
applications in nearby and remote compute nodes based on
fog computing principles. This system model includes the
arrangement of the compute nodes, the flow of the data
with regard to the execution of the applications, and the
type of IoT applications that we consider. Specifically, our
model is based on the fog computing model provided by
the OpenFog Reference Architecture [28], which has been
adopted in the IEEE 1934-2018 standard. We base our sys-
tem model on this architecture due to the wide variety of
applicable use cases which may target smart cities and
smart grids, intelligent hospitals and healthcare, intelligent
factories and logistics optimization, among others [28], [29].

In our system model, there can be various compute
nodes which span from the edge of the network where the
IoT devices reside, until the cloud. We refer to the entirety
of the participating compute nodes and devices as a fog
computing system [27]. An example of a fog computing sys-
tem is depicted in Fig. 1.

As shown in this figure, a fog computing system can
include multiple compute nodes which reside either in the
cloud or at the edge of the network [30]. The cloud compute
nodes are nodes in data centers that may be located far
away from the IoT devices. The edge compute nodes repre-
sent available computational resources at the network edge,
e.g., access points, base stations, or specialized edge nodes
offered by cloud providers (such as the edge zones by
Microsoft [31]). Commonly, all of these compute nodes com-
municate with each other by forming hierarchies over the
Internet [27], [30], as shown in Fig. 1.

The IoT devices are located at the bottom of the hierar-
chy, and physically close to the edge compute nodes[32].
These devices integrate sensors and/or actuators in order to
sense and/or interact with the surrounding environment [5].
The IoT devices are usually resource-constrained, and may
not integrate enough computational resources to implement
the necessary communication protocols for interacting with
the compute nodes directly (e.g., using an application layer
protocol such as HTTP) [33]. For this reason, a gateway is
used [28]. This gateway provides two interfaces: One

interface is for the communication with the IoT devices
(commonly using low-power wireless protocols such as Zig-
bee or Bluetooth [34]). The other interface is used for the
communication with compute nodes over the Internet [35].
The gateway may also be able to act as a compute node, in
which case the second interface might not be used if only
the local computational resources are utilized for executing
the required computations.

A fog computing system may consist of multiple com-
pute nodes, gateways, and IoT devices. Notably, Fig. 1
depicts the communication between IoT devices and one
gateway, and also the gateway and compute nodes. This is
done for simplicity because other devices and nodes form
similar hierarchical paths towards the cloud. Each layer of
the hierarchy provides additional computational resour-
ces [28]. Typically, the compute nodes close to the IoT devi-
ces provide limited computational resources with low
communication latency [28]. The compute nodes which are
farther along the path, on the other hand, are able to provide
more or even (virtually) unlimited computational resources.
Nevertheless, the communication latency to reach these
compute nodes also increases due to the longer network
paths [36]. Because of the virtually unlimited resources of
remote cloud nodes, we assume that the last compute node
on path is always a cloud compute node which is able to
accept any application request [14].

3.1 IoT Data Flow

The flow of the data in this system model starts at the IoT
devices which generate the IoT data using sensors [37], [38].
The IoT data is then sent to the gateway which encapsulates
this data into an application request. An application request
consists of the necessary information to request the execu-
tion of a computation from a compute node [39]. This

Fig. 1. A fog computing system with edge and cloud compute nodes.
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includes an application identifier indicating the specific
application to be instantiated, and the IoT data to be used as
input for this application. The application identifier is
selected based on the identifier of the sensor that generated
the data. The association between sensors and applications
is configured in the gateway when deploying the IoT devi-
ces. This configuration can be altered when new IoT devices
and/or new applications are deployed. Thus, the gateway
receives the IoT data, creates an application request by add-
ing an application identifier, and sends this request to a
compute node in proximity.

Each compute node in a fog computing system is able to
receive application requests through an interface. Upon the
arrival of such a request, the node examines the utilization
of its local computational resources. Based on this, the node
decides whether to instantiate an application (e.g., using
software containers or virtual machines) and process the
data, or to forward the application request to the next com-
pute node upwards the hierarchy (in a depth-first man-
ner [8]). Thus, similar to related work (e.g., [7], [8], [27]), we
assume that each compute node (and also the gateway) is
able to communicate with a node in the higher hierarchical
layer.

When a compute node accepts an application request
and the required files to instantiate the application are not
available locally, the node downloads these files (which are
located using the application identifier) from a repository
which contains all the applications (e.g., Docker hub). We
assume that every node needs to download the files only
once at the beginning of each application [40]. For this rea-
son, we consider that the download overhead is negligible.

If a node cannot download the requested application
(e.g., due to limited permissions), the application request is
forwarded to the next node. For example, applications
related to monitoring and storing, may be eligible for execu-
tion only in the cloud, because the cloud can act as a point
for central monitoring [41]. The application which handles
the final processing of the data, sends the final output to the
gateway (for actuating commands) and/or to the cloud (for
monitoring and storing purposes).

The output of executing an application request can be:
raw information to be stored in the cloud (e.g., for monitor-
ing), an actuation command to be sent to an IoT device, or a
new application request. This depends on the logic and
function of each application [27]. In case the output is an
application request, this request is first examined locally,
and if there are not enough available computational resour-
ces, it is forwarded to the next node upwards the hierarchy.
The reason that the request is forwarded upwards (i.e.,
towards the cloud) is that since a compute node has
received an application request, it is expected that the com-
pute nodes lower in the hierarchy are less likely to accept
the new request (e.g., due to being busy) than the compute
nodes upwards.

3.2 Application Model

The core of the previously discussed system model (i.e.,
with compute nodes that form paths of edge and cloud
compute nodes) has been deemed suitable for addressing
various use cases such as: IoT analytics, wearable cognitive

assistance, augmented reality, image processing, intelligent
transportation systems, interactive networked gaming, and
industrial manufacturing [7], [8], [9], [15]. To represent such
use cases, we consider an application model that consists of
multiple applications which can be executed in a distributed
manner, and work towards a common goal [36], as shown
in Fig. 2. Initially, a sensor, e.g., a gas meter in case of an IoT
smart energy application, generates measurements. These
measurements are then processed by various applications
which may be related to anomaly detection, cost optimiza-
tion, etc. The output of these applications can be a command
such as: to store information in the cloud, to turn on/off the
heating, to send a smartphone notification (e.g., regarding
leaks), etc. In our system model, the measurements are sent
to the gateway which sends this data on a path towards the
cloud. When an actuation command is generated (by an
application), it is sent back to the gateway and subse-
quently, to the target IoT device. In this manner, a wide
range of use cases that involve input from sensors, process-
ing from different applications, and output related to com-
mands (e.g., send notification, store, or actuate), can be
represented by our application model.

Notably, in this system model the application provider is
responsible for providing, maintaining, and configuring the
IoT devices, the gateway, and the compute nodes. The same
model can also be applicable to a system which uses only a
remote cloud compute node, i.e., by following the central-
ized cloud computing paradigm. Nevertheless, there are
various aspects of this model which favor a system that uti-
lizes distributed nearby and remote compute nodes. For
example: the way that application execution is requested
(i.e., using the input data along with an application identi-
fier), the use of multiple applications which can be executed
on different compute nodes, the permissions of the compute
nodes to download and execute different applications, the
use of a repository which hosts all the files of the applica-
tions, and is accessible from the compute nodes. Thus,
when using such a system model, an application provider is
expected to be owning/leasing/renting and employing var-
ious distributed compute nodes.

4 A ROUTING MECHANISM FOR FOG COMPUTING

Based on the system model discussed in Section 3, in the
following we present a novel mechanism which considers
the context of the IoT data in order to route application
requests to the compute nodes of a fog computing system.
To this end, first we discuss the conceptual foundation of
the proposed mechanism in Section 4.1, and after that in
Section 4.2, we describe how the proposed mechanism can
be implemented. Finally, Section 4.3 discusses a concrete
predictive method that can be used within our mechanism
in order to select the closest compute with available
resources.

Fig. 2. Example of the application model.
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4.1 Conceptual Foundation

Unlike alternative approaches from the literature (discussed
in Section 2), which route the IoT data on a path from the
edge towards the cloud as shown in Fig. 3a, our approach
aims at sending the IoT data directly to the closest compute
node with available computational resources. To achieve
that, we design a routing mechanism for the gateway.
According to this mechanism, the gateway determines which
compute node is more likely to accept an application request.
Then, based on this information, the gateway sends the
application request to that compute node directly. Thus, as
shown in Fig. 3b, the gateway of the proposed approach is
able to send data directly to each compute node of the sys-
tem. In case the selected node cannot accept the application
request (e.g., due to dynamic factors such as the availability
of computational resources), the proposed mechanism falls
back to the traditional routing approach (as shown in
Fig. 3a). This means that after the initial transmission of an
application request, i.e., from the gateway to a selected com-
pute node, this compute node either accepts the request, or
forwards to the next node upwards the hierarchy, as dis-
cussed in Section 3.

The aim of this logic aligns with two prime goals of
fog computing [6], [25]: i) To reduce the latency of send-
ing IoT data. ii) To improve the utilization of the avail-
able network bandwidth. Considering these two goals,
we make the following key observations regarding tradi-
tional routing (i.e., when routing the data on a path
towards the cloud):

� When the IoT data is sent towards the cloud, it is
expected that a compute node close to the gateway
accepts and processes the data. However, consider-
ing that the compute nodes at the edge of the net-
work have limited computational resources [42], and
that the amount of data and computations from the
IoT keeps increasing significantly [1], it is likely that
only a fraction of the IoT data is actually processed
at the edge of the network. The rest of the data, try-
ing to find the closest compute node with available
computational resources, is forwarded closer to the
cloud. Thus, in traditional routing, a big part of the
IoT data is processed by compute nodes with com-
munication latency that has been increased by all the
previous nodes that examined and forwarded the
application requests due to not having available
computational resources.

� When an application request is sent, e.g., from a
gateway A to a compute node D, this request is sent
based on a routing algorithm, e.g., using the border
gateway protocol that finds the best routing path
from A to D [43]. However, when a request is routed
through other nodes, e.g., from A to B to C to D,
even though each transmission (e.g., A to B, B to C,
and C to D) is routed through the best path, the
transmission to the final node (i.e., from A to D) may
include detours in case B and C do not exist within
the best path from A to D. Thus, if the utilized net-
work path to a compute node that accepts an appli-
cation request includes detours, it is likely that both
the communication latency and the bandwidth

utilization are increased because the best path has
not been followed.

Our approach aims at enabling the gateway to send each
application request directly to the closest compute node
with available computational resources. This may help: i) to
limit the communication latency due to avoiding the for-
warding by nodes on path, and ii) to improve bandwidth
utilization by avoiding network detours.

4.2 Context-Aware Routing

4.2.1 Prerequisites

To design a routing mechanism for fog computing accord-
ing to the logic presented in Section 4.1, we leverage the
context of the IoT data. To define context, we build upon
the literature of context-aware computing, in which the
applications are able to use information gleaned from differ-
ent parts of the system in order to adapt their behavior [44].
Thus, by leveraging such information for routing, which is
the goal of our work, we aim at adapting the routing paths
of the data, in order to improve the network performance of
fog computing systems [44].

In context-aware computing systems, it is usually the
sensors that provide information which is considered as
context [45]. Despite that, it has been observed that the
notion of context in a system, may be consisting of different
information that is correlated and interdependent. There-
fore, in some cases (such as for learning and predicting pur-
poses, or for decision making) the context should consider
information from different parts of the system [46]. In our
system, the context should represent the amount of compu-
tational resources which are needed for accepting an

Fig. 3. Routing approaches in fog computing systems: (a) shows a gate-
way which sends data through compute nodes, whereas (b) shows a
gateway which is able to send data directly to each compute node.
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application request. This way, there can be a relation
between the context of an application request, and the com-
pute node that typically accepts it, i.e., the node that usually
has enough available resources to accept it.

For this reason, in this work we define as context the
combination of the sensor identifier (of the sensor that gen-
erated the data), and the application identifier (of the appli-
cation that is needed for processing the data). These are
both common parameters in IoT systems [47]. We define the
context in this manner because the sensor data alone may
not hold enough information to indicate the required
resources, since this also depends on the tasks of the appli-
cation (e.g., for the same input data, an application that
applies a filter may need less resources than an application
that trains an artificial neural network). Similarly, an appli-
cation identifier alone may also not be enough to indicate
the required resources, because this also depends on the
input data. The amount of input data used in each applica-
tion request, is assumed to be consistent for each applica-
tion, e.g., an application that applies a filter on an image, is
expected to always receive the same number of images per
application request. We make this assumption so that the
amount of data per application request, does not affect (sig-
nificantly) the required resources to accept this request.

This way, by combining the sensor and application iden-
tifiers, we consider that the context can be representative of
the amount of computational resources required for execut-
ing an application request. According to this context defini-
tion, we design a mechanism for the gateway, which keeps
a history of the compute nodes that accept application
requests, along with the context that each compute node
accepts. This way, every time the gateway is about to send a
new application request, the history is examined in order to
find the compute node that usually accepts requests of the
same context, i.e., the compute node that usually has suffi-
cient available computational resources for executing an
application request of the same context.

Presumably, our work relies on the assumption that a
compute node which accepts data of a particular context, is
likely to accept such data again in the future. We claim that
this a reasonable assumption in fog computing systems
because the farther along the path the IoT data travels, com-
pute nodes with additional computational resources are
found [28]. Therefore, the probability that an application
request is accepted, increases while the data is forwarded
along the path. Notably, this probability depends also on the
current load of each compute node, and the amount of
computational resources needed for accepting an application
request. Since the load of the compute nodes is not known at
the gateway, we rely on the latter. Thus, we leverage the con-
text of the IoT data, because it is considered representative of
the computational resources needed for accepting an applica-
tion request. This is discussed further in Section 5.2.2 with
results which support that in a path with an increasing prob-
ability of accepting the data, it is the same compute nodes
that tend to accept application requests of the same context.

4.2.2 Proposed Approach

Fig. 4 shows the high-level architecture of the components
that we place in the gateway in order to implement the

proposed mechanism. The application identifiers compo-
nent stores the identifiers of the applications that are
needed for processing the data from each sensor. This
component is assumed to be preconfigured, as discussed
in Section 3. The compute nodes component stores the
addresses of compute nodes along with the context of
the application requests that each compute node has
accepted in the past. Initially, this component is assumed
to have the address of a compute node in proximity, as
discussed in Section 3.

The functionality of the proposed mechanism is trig-
gered by sending a set of data that requires processing,
along with the sensor identifier, to the application request
creator, as shown in Fig. 4. It is also possible that the set
of data consists of subsets of data that have been gener-
ated by more than one sensor. In this case, each subset
is accompanied by a sensor identifier. The application
request creator compares the sensor identifier(s) of the
received data with the sensor identifiers of the applica-
tion identifiers component, and creates an application
request with the match (by adding the application identi-
fier, as discussed in Section 3). The application request is
then sent to the data analysis component. At the same
time, the context of this request (i.e., sensor and applica-
tion identifiers) is sent to the compute nodes component.
If an application request of the same context has not
been transmitted before, the data analysis component
pulls the address of a node in proximity from the com-
pute nodes component, and sends the application
request to that node.

Then, the application request travels through the com-
pute nodes of the system until a node with available compu-
tational resources accepts it. Upon acceptance, the compute
node instantiates an application as discussed in Section 3,
and responds with its address (i.e., the address of the node
that accepted the request) which we refer to as the applica-
tion response. Subsequently, the application response is
sent back to the gateway, as shown in Fig. 4. The gateway
stores the application response in the compute nodes com-
ponent, as the address of the compute node that accepted
the context that was stored in the compute nodes compo-
nent when the application request was created. Thus, the
gateway stores the context of each application request
before sending it, and adds the address of the compute

Fig. 4. The high-level architecture of the proposed mechanism.
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node that accepts it, as soon as this node sends back the
application response.

In case an application request of a specific context has
been transmitted before, the data analysis component sends
the request to one of the compute nodes that have accepted
requests of the same context in the past. The decision on
which one of these nodes should be selected, can be made
based on various strategies such as: most recently used,
most frequently used, or using predictive methods. Nota-
bly, current machine learning approaches from the litera-
ture which aim at selecting appropriate compute nodes for
deploying applications, may also make suitable strate-
gies [48]. In particular, we consider RL to be an intuitive
choice for the logic of the data analysis component, because
the application response contains the node that accepted
each application request. This information can then be used
for determining the reward/penalty in a RL-based
model [49]. We elaborate further on this strategy in Sec-
tion 4.3, which provides the concrete logic of an RL-based
data analysis component for our mechanism.

Interestingly, our mechanism stores the minimum
amount for information needed to be able to send applica-
tion requests to compute nodes based on context. This infor-
mation includes only the address of candidate compute
nodes, and the context of the application requests. While
alternative approaches (discussed in Section 2) may also use
additional properties such as the location of the nodes, or
their resource capacities [8], [15], we store less information
in order to make our mechanism more practical for gate-
ways which do not have ample memory resources. How-
ever, such properties are in fact considered implicitly in our
mechanism. For example, the locations of nodes are taken
into account by using latency as a proximity measure, and
by preferring nodes which respond with less latency (i.e.,
nearby nodes). Also, the resource capacities of the nodes are
considered because only the nodes with sufficient resources
are stored in the gateway.

In our approach, the data analysis component may also
cross the information of different contexts. For instance,
when there are many candidate nodes which grade equally
for a specific context, the ones that have been used recently
for other contexts may be excluded to avoid potentially
busy nodes. In case the selected node is unresponsive (e.g.,
due to temporary/permanent disconnection or failure),
another node can be selected based on the same strategy as
long as one exists. Otherwise, the proposed mechanism falls
back to the traditional approach, and sends the application
request to the compute node in proximity.

Since fog computing systems can be volatile, and com-
pute nodes may be added/removed temporarily or perma-
nently at any time [25], we use a system parameter to reset
the compute nodes component to its initial state periodi-
cally (e.g., based on time, or number of transmissions). This
ensures that even though the compute nodes in proximity
may be bypassed because they are likely to be busy, their
availability is examined frequently. The exact value of this
parameter depends on the reliability and volatility of the
system, i.e., fog computing systems that are expected to
change frequently, should perform a reset more often than
stable systems. This parameter may also be adaptive, and
change dynamically based on the performance of the

system. For example, if it is observed that when resetting
the compute nodes component, a compute node in closer
proximity is found, it may be beneficial to start resetting
more regularly. On the other hand, if resetting the compute
nodes component results in selecting the same node as
before, then resetting should be performed less frequently.
This way, the frequency of the reset can converge towards a
suitable value.

Finally, we note the applicability of our approach for fog
computing systems with multiple IoT devices, gateways,
and compute nodes. As discussed in Section 3, in this paper
we focus on the communication of one gateway (with multi-
ple IoT devices and compute nodes), because other gate-
ways of the system form similar paths to the cloud.
Nevertheless, our system model and the proposed mecha-
nism apply to systems with many gateways as well. Since
each gateway of the system stores only few compute nodes
and selects the most suitable among these nodes (rather
than selecting one among all the nodes of the system), our
mechanism follows a decentralized approach. In contrast to
centralized approaches in which global view of the system
is assumed for selecting the most suitable node, decentral-
ized approaches tend to scale better while causing less over-
head [50], [51].

4.3 Reinforcement Learning for the Data Analysis
Component

In this section, we propose a concrete strategy for the data
analysis component, which is based on RL [52]. Specifically,
in Section 4.3.1 we adapt the RL model to the proposed con-
text-aware mechanism, and in Section 4.3.2 we present the
learning algorithm.

4.3.1 Reinforcement Learning Model

RL relies on agents that interact with their environment and
receive feedback for their actions in the form of reward or
penalty. Based on this feedback, the aim of the agents is to
learn a policy in terms of selecting actions given the per-
ceived state of the environment, so that the expected cumu-
lative reward is maximized. In our case, the agent is
installed at the gateway and at each time step, i.e., upon the
arrival of an application request, selects the appropriate
compute node to forward the request to, based on the envi-
ronment’s current state. Then, the agent inspects the latency
experienced to handle this request, which constitutes the
reward signal. This signal is considered as the feedback
which is used in a process towards learning to select appro-
priate actions.

The agent has a set A of available admissible actions,
with At denoting the action of the agent at time t. In our
case, the actions available to the agent are the different com-
pute nodes that can receive an application request from the
gateway. Therefore, At ¼ i represents the action to forward
the application request to node i at time t. Each action
brings the environment to a potentially different state, out
of a (finite and discrete, in our case) state space S: When at
state St ¼ s, selecting action At ¼ a will lead to state Stþ1 ¼
s0 with a specific transition probability pðs0js; aÞ, which is
however unknown to the agent. Finally, the immediate
reward the agent receives when performing action a and
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the system is at state s at time step t, is given by a reward
function Rtðs; aÞ. Since our agent can only directly observe
the latency experienced for each request, we use its normal-
ized value as the reward, i.e., Rtðs; aÞ ¼ 1� ltðs;aÞ

lmax
, where

ltðs; aÞ is the latency measured by the gateway for the tth

application request when from state s compute node a was
selected, and lmax is a reasonably large maximum latency
value.

In RL, the environment is typically modeled as a Markov
Decision Process (MDP), defined as the 4-tuple ðS;A;
p; RÞ [52]. The key characteristic of an MDP is the Markov
property, namely that the probability to transit to a state
depends only on the current state and the action taken. Oth-
erwise put, a state should encode all the information neces-
sary to drive an agent’s decision, and the reward received
should only depend on this state-action pair.

However, this assumption may not hold in some practi-
cal use cases for our system model. Importantly, the actual
state of the environment might not be able to be fully
observed. In our case, for example, the state in terms of the
current load of each compute node, its reliability, and in
general its probability to accept an application request,
which, intuitively, are critical to drive the agent’s decisions,
are not visible by the agent. Instead, the agent is only aware
of some environment observations, such as the actual node
that responded to a request. We are therefore forced to oper-
ate only with an approximate view of the state of the environ-
ment. The agent however, can record a history of
observations as a response of the environment to the agent’s
actions. Following the terminology and approach of Sutton
and Barto [52, Section 17.3], what we need is a compact
representation of a state as a summary of the history of
observations and actions that have led the environment to a
given state. The state thus becomes a function of history, i.e.,
st ¼ fðHtÞ, where Ht is the sequence of observations and
actions up to time step t.

In our model, a state represents the history of how the k
most recent requests were handled by the system. This is in
line with what Sutton and Barto term as the kth order his-
tory. In particular, St ¼ fnt�k; nt�k�1; . . . ; nt�1g, where ni is
the address of a compute node that processed a request;
namely, the state of the system is maintained as an ordered
list of the last k compute nodes that processed the respective
application requests. In order to control the number of
states, k is set to a small constant and can be configured
based on the amount of memory available to the agent. Fur-
thermore, this representation of state as a function of history
only includes observations and not the actions that led to
them. This is a simplification that was also driven by the
need to keep the state space low.

Importantly, such a state representation is not guaran-
teed to come with the Markov property. For example, this
may be the case if the probability of a node to accept a
request depends on whether the node has recently been
used for a prior request, as is the case for the compute node
model that we assume in our evaluation (in Section 5.3). In
this work, the agent is considered to be agnostic of the
actual behavior of the compute nodes, and is forced to oper-
ate on minimal observed information regarding their status,
namely the address of the compute node that accepted an
application request, and the respective latency. The system

in question may not be able to be represented as an MDP,
due to how nodes operate, and because of the inability of an
agent to fully observe the state of the environment. We
apply Q-learning [53], which is a generic model-free RL
mechanism, to derive the agent’s policy (in Section 4.3.2).
However, due to the above-mentioned fact, convergence
guarantees cannot be provided for general settings. Interest-
ingly, there are families of decision processes beyond MDPs
for which Q-learning has been shown to come with conver-
gence guarantees [54].

As a final note, we treat each context individually.
Namely, there is a dedicated agent for each context which
acts upon this particular context’s application requests, and
which maintains its own state of the environment (that is
not shared across agents). This decision is motivated by the
following observations:

� Whether a request for a specific application is served
by a node is considered to be unaffected by whether
this node would accept requests for other applica-
tions. For example, a node might have enough
resources to serve a specific application request, but
not enough for another.

� By assuming a different decision process (and, thus,
a dedicated agent), per context, and given our state
model, we limit the number of states handled by
each agent to Nk, where N is the number of compute
nodes and k is a small constant (representing the his-
tory). The total number of states of all M agents is
then MNk. Had we opted for factoring the applica-
tion context in a single global state representation for
all applications, e.g., where the elements of a state
would be application instance-node address pairs,
we would have come up with a single agent with
ðMNÞk states, that is considerably larger.

4.3.2 Q-Learning Algorithm

We apply Q-learning [53] to learn an appropriate action
selection policy in our system. A Q-learning algorithm aims
at deriving a value function Q : S � A ! R, which repre-
sents the expected cumulative discounted future reward if
the agent selects action a at state s, and continues by follow-
ing the optimal policy. Q can be represented as a table,
which is updated each time an agent takes an action, using
the following rule:

Qtþ1ðSt; AtÞ ¼ ð1� atðSt; AtÞÞQtðSt; AtÞ þ atðSt; AtÞ
� ðRtðSt; AtÞ þ gmaxaQtþ1ðStþ1; aÞÞ;

where atðs; aÞ 2 ½0; 1� is the learning rate at time step t and
g 2 ½0; 1� is a factor that is used to discount future rewards.
The higher the value of g, the higher the importance of
future rewards compared with immediate ones.

As it is used at runtime and starts with an unknown Q
function, the Q-learning algorithm needs to make decisions
while learning. Therefore, the agent alternates between explo-
ration and exploitation steps. There are variousmechanisms to
perform this. Awidely usedmechanism is the "-greedy strat-
egy, where the agent chooses a random action (thus explor-
ing the environment) with probability ", while with
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probability 1� " it follows the action with the highest Q
value (thus exploiting the acquired knowledge of the envi-
ronment). In order to favor exploration at the beginning, we
start with " ¼ 1 and gradually reduce it as rounds progress.
The learning rate for each state-action pair is initially set to 1
and also decays themore the pair is visited [55].

A point that requires further attention is that an implicit
assumption is made that the state and action spaces are
static, as is the case for the data structure which stores the Q
values. However, according to the proposed mechanism
described in Section 4.2, the compute nodes component
which stores compute node addresses (these correspond to
actions, while histories composed of these addresses corre-
spond to states), starts with only the address of a single
node in proximity. When the addresses of the compute
nodes on path are not known in advance, potential methods
to get around this can be applied. Such methods can be:

1) To start with a discovery phase whereby traditional
routing is executed for a sufficient number of rounds
until the nodes on path are discovered [56], and then
to switch to Q-learning. The duration of the discov-
ery phase depends on the load of application
requests, and the number of nodes that accept these
requests. For example, when application requests
are sent sparsely, the discovery phase may take lon-
ger than if application requests are sent frequently.
Also, the fewer the compute nodes which accept the
requests, the faster the discovery phase finishes. For
these reasons, this method is preferred when the
gateway produces a high load of application
requests and/or the number of nodes that accept
these requests is bound.

2) To build the Q table incrementally. This means add-
ing new states and admissible actions as new nodes
are being discovered, each time maintaining the
existing Q values for the already known state-action
pairs and learning the values of new ones by appro-
priately adjusting the exploration and learning rate
parameters. Thus, this method requires additional
updating of the Q table every time a new node is dis-
covered. When using this method, the acquired
knowledge is utilized from the beginning because
there is no discovery phase (in contrast to the former
method). Nevertheless, the additional updating of
the Q table might introduce extra overhead. Hence,
this method is preferred when new nodes are
expected to be discovered sparingly.

Since these methods are executed until sufficient knowl-
edge is acquired (i.e., not constantly), in our evaluation in
Section 5, we assume that the compute nodes on path are
known (e.g., due to a discovery phase).

It is worth noting that the proposed mechanism operates
on minimal context and feedback: i) the latency observed
per request, and ii) the compute nodes that accepted the
request. For this reason, our mechanism does not utilize an
excessive amount of resources (this is also discussed in Sec-
tion 5.3.3). Each time a request is handled, the overhead of
selecting the best action and updating the Q table depends
on the number of possible actions. The actions correspond
to the stored compute nodes, i.e., the nodes that accept

application requests, which are only a subset of the compute
nodes of the system. Thus, by storing only a subset of the
compute nodes of the system, the number of actions
remains low which limits the computational overhead (and
latency) of handling each request. Our model and mecha-
nism are also agnostic to the behavior and actual state of the
compute nodes on path. If we assume further knowledge
about the environment (e.g., information about the runtime
of each compute node such as: the current load, device
capabilities, probability to accept new application requests,
etc.), a more accurate view of the state can be acquired, and
more efficient mechanisms may be possible. However, this
could potentially increase the utilization of computational
resources. We defer such mechanisms, as well as other
approaches for dealing with an uncertain environment, to
future work.

5 EVALUATION

In this section, we present an implementation of the pro-
posed context-aware routing mechanism. Furthermore, we
conduct a series of experiments, and we compare the pro-
posed context-aware routing to a state-of-the-art routing
approach which we use as baseline. This baseline is based
on [7] and [9], which propose that each compute node on
path examines an application request and either accepts it
or forwards it to the next node. Hereinafter, we refer to this
approach, which is also shown in Fig. 3a, as traditional
routing.

In order to show the differences compared to traditional
routing, we evaluate the proposed mechanism in the follow-
ing manner: First, we establish the potential benefits of per-
forming context-aware routing on a real-world setup with
nearby and remote compute nodes, and we show that even
a simplistic strategy for the data analysis component has
the potential to outperform the traditional routing
approach. Then, we turn our attention to the performance
of the RL-based strategy, and we conduct extensive simula-
tions that show benefits in various scenarios.

The required files to reproduce our experiments includ-
ing source code and executable files, as well as the produced
numerical results of our evaluation, are available in the
online repository [57].

5.1 Evaluation Environment and Prototype

To create an evaluation environment, we implement a pro-
totype of a compute node which either accepts an applica-
tion request or forwards it to the next node on path, as
discussed in Section 3. Moreover, we implement a proto-
type of a gateway which integrates the proposed mecha-
nism for context-aware routing, as discussed in Section 4.2.
Both prototypes are developed in Java 11 using the Spring
Framework, and implement the required functionality to
perform experiments and take measurements related to the
communication latency and hop count of the utilized net-
work paths.

To emulate a fog computing system, we assume the fol-
lowing scenario. An IoT application provider based in Los
Angeles has successfully commercialized smart energy solu-
tions (e.g., for detecting gas leaks, reducing cost, etc.). This
provider uses cloud computing resources stationed in a data
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center at Los Angeles, but due to the popularity of the pro-
vided IoT applications, the provider decided to expand this
business to the rest of the US and to Europe. Since such IoT
applications can be related to safety (e.g., due to detecting
gas leaks), and may require low latency that the centralized
cloudmight not be able to support [58], the provider decided
to follow the fog computing paradigm. Thus, the provider
acquired access to various geographically distributed com-
pute nodes in the cloud (offered by cloud provider such as
Google or Microsoft), and at the edge of the network (e.g.,
using the edge zones offered byMicrosoft [31]).

For this evaluation, we examine the case of a client in
central Europe (i.e., in Vienna, Austria), and we consider
that various compute nodes exist on the path towards the
cloud in Los Angeles, as shown in Fig. 5. Notably, we do
not distinguish between edge and cloud compute nodes
because: i) Both cloud and edge nodes are able to provide
the same services [31], and can therefore be considered simi-
lar. ii) In this setup, we use nearby and remote compute
nodes using cloud services because even though edge nodes
have been announced by cloud providers [31], their avail-
ability is still limited. Thus, similar to Fig. 1 which shows
our system model, we examine a fog computing system
with a gateway which sends application requests that are
forwarded by various compute nodes towards the cloud.
The specific compute nodes we use (as shown in Fig. 5), are
provisioned using the Google Cloud Platform. The type of
the compute nodes is e2-standard-2, i.e., standard general-
purpose compute nodes with 2 vCPU and 8 Gigabytes of
RAM (although the resource capacities of the compute
nodes do not affect the presented results significantly
because this evaluation focuses on network-related metrics).
Hence, for this evaluation we create an actual computing
system with nearby and remote compute nodes that span a
large geographical area. Interestingly, the remote compute
nodes in the US can provide insights on the communication
over high-latency network links. This is useful because
high-latency links represent cases when remote compute
nodes are employed due to the nearby nodes being busy. In
addition, high-latency links may be considered representa-
tive of scenarios that include network links which induce
high latency for other reasons, e.g., due to congestion.

In this system, the gateway receives gas volume meas-
urements from a smart meter. Then, the gateway creates
the application request of an application that detects gas
leaks. In the event that a gas leak is detected, the applica-
tion sends an actuation command to shut down all sources
of ignition, e.g., cooktops, toasters, etc. Therefore, for such
an application, reducing the communication latency of
sending the gas measurements to a compute node, aids in
processing the data faster, and reduces the overall latency
of responding to fire hazards. For this reason, we apply
the proposed approach which aims at reducing the
communication latency of sending data to nearby and
remote compute nodes, in order to examine the potential
benefits.

To emulate the smart meter, we use real gas volume
measurements from a smart home, which have been col-
lected periodically every 30 minutes during the course of 4
days, i.e., 200 measurements. This dataset is part of the data
provided by the Loughborough University, which has been

gathered in the context of the REFIT project that monitored
20 smart homes in the United Kingdom [59].

5.2 Prototype-based Results

In this section, we use our prototype implementation to cre-
ate fog computing systems based on the traditional and con-
text-aware routing approaches, and we report on our
findings. Specifically, Section 5.2.1 presents comprehensive
results of the communication latency to reach every com-
pute node of the system based on each routing approach.
For these results, we assume that the data analysis compo-
nent of the context-aware routing is able to determine the
compute node that accepts the application requests. After-
wards in Section 5.2.2, we present results from the runtime
of a specified scenario with dynamic load from application
requests. In addition, the data analysis component utilizes a
rather simplistic strategy: Send each application request to
the most recent node that has accepted requests of the same
context, and reset the compute nodes component with every
second transmission. This experiment aims at showing that
even in cases which do not allow for great benefits (e.g.,
with dynamic load and a very simplistic data analysis com-
ponent), the proposed context-aware routing mechanism
may still be able to show improvements.

Since the proposed approach aims at reducing the com-
munication latency (which is independent of potential proc-
essing delays), this evaluation reflects on that by focusing
on network-related metrics (rather than application execu-
tion metrics). Nevertheless, the additional utilization of
computational resources in the gateway, which is required
to execute the context-aware routing, is considered as the
overhead of the proposed approach. For this reason, we dis-
cuss resource utilization aspects in Section 5.2.3. For all the
presented results, we have repeated each experiment 200
times with the values of our dataset in order to capture the
general behavior of each examined approach.

5.2.1 Context-Aware Routing Results

In order to acquire a comprehensive view of the two exam-
ined approaches considering that context-aware routing is
able to determine the node that accepts each application
request, we perform the following experiment. The gateway
sends application requests to each compute node of the sys-
tem two times. One time the data is sent according to tradi-
tional routing (i.e., on a path towards the cloud), and the
other time according to the context-aware routing (i.e.,
directly to the selected compute node). Each time, we mea-
sure the communication latency to reach the compute node,
and the hop count (using Traceroute which is a command
line tool for network diagnostics). In the communication
latency, we also include message parsing and making the

Fig. 5. Location of the compute nodes used in the evaluation.
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data available to the application hosted in the destination
node (but exclude any further processing by that applica-
tion). Table 1 shows these measurements for each compute
node, along with the percentages of reduction when using
the proposed context-aware routing approach.

Notably, the hop count to reach each node of the system
is always the same in the 200 iterations, because the under-
lying network connectivity is not affected by our experi-
ments. For this reason, in Table 1 we do not specify average
and standard deviation of the hop count. The reason we
measure the hop count is because network hops can be
used as an indicator of bandwidth availability since nodes
that reside many hops away from each other, tend to com-
municate with low bandwidth [60]. Therefore, lower hop
count can be associated with higher bandwidth [14], [61].

In traditional routing, whereby each application request
is forwarded to the compute node in closest proximity on a
path towards the cloud (as shown in Fig. 5), the average
latency increases the farther away from the gateway the
compute node is located. In the context-aware routing,
whereby the gateway sends the application request to each
compute node directly, the average latency also increases
the farther away the compute node is located. However, the
rate of increase is significantly lower in the context-aware
routing.

Both approaches reach the first compute node with 15
hops in 93 milliseconds (ms) because both approaches
send the application request to the closest compute node
directly. After that, the difference in both the communica-
tion latency and the hop count becomes evident. Specifi-
cally, the context-aware routing approach reduces the
average communication latency by up to 23 percent, and
the average hop count by up to 73 percent. Notably, even
though the difference in the communication latency
becomes larger when the distance of the compute node
becomes longer, the percentages of reduction become sig-
nificant even with compute nodes that reside nearby. For
example, to reach the compute nodes in the Netherlands
and in London (from Vienna), the context-aware routing
reduces the average communication latency by 20 percent
and 23 percent, respectively. This shows that our approach
shows benefits for both inter- and intra-continent commu-
nication. The former can be representative of large-scale
applications that operate wordwide, while the latter may

be considered indicative of results for medium-scale sys-
tems (e.g., that operate within Europe).

To further analyze the rate of increasing communication
latency for each routing approach, we plot the average val-
ues of Table 1 in Fig. 6. Since the values shown in this figure
exhibit the pattern of straight lines, we also show the linear
trendlines which are created using the Least Squares
method. Even though the communication latency increases
monotonically (which is expected since the physical dis-
tance of the compute nodes increases), there is a steep rise
in the latency of the compute node 6, i.e., the node in Mon-
treal. This derives from the increased latency to reach the
remote compute nodes in America, due to the significantly
longer distance from the gateway (which can also be
observed in Fig. 5). Notably, this rise prevents the values of
each routing approach from following the pattern of a
straight line holistically. However, it is visually evident that
the values of the group of nodes before the rise (i.e., the
latency of the nodes in Europe), and the values of the group
of nodes after the rise (i.e., the latency of the nodes in Amer-
ica), both exhibit a linear pattern. For this reason, Fig. 6
shows a different trendline for each group of nodes.

For each trendline, we also present its linear function in
the form of y ¼ Slope � xþ Intercept. We do this because the
slope of a linear function shows the rate of increase of the
output values. Thus, since the y values of Fig. 6 show com-
munication latency, and the x values show the nodes in the
order of increasing distance, the slope indicates the rate of
increased latency based on the proximity of the gateway
(for each routing approach). In addition, we present the
coefficient of determination R2 for each trendline. R2 is a
widely-used statistical measure which indicates how close
are the actual values to the values of the trendline [27]. The
value of R2 is always between 0 and 1 [62]. Small values
indicate that the model (or the trendline in our case) does
not represent the data well, while high values show that the
model can be considered representative for the data [63].
Thus, we use R2 to advocate that the presented trendlines,
and consequently the slopes which indicate the rate of
increase in the communication latency, bear statistical
significance.

For the compute nodes in Europe, the function of the
trendline of the traditional approach is y ¼ 11:7 � xþ 81:3,
and has a coefficient of determination R2 ¼ 0:997. This

TABLE 1
Communication Latency (in ms) and Hop Count to Reach Each Compute Node of the System Based on the Two Examined

Approaches, and the Percentages of Reduction
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coefficient of determination shows that the trendline repre-
sents the data very well. In addition, we note that the slope
of this trendline is 11.7. For the same nodes, the function of
the trendline of the proposed approach is y ¼ 3:5 � xþ 89:1,
and has a coefficient of determination R2 ¼ 0:948. While the
coefficient of determination of this trendline is also very
high, the slope is significantly lower, i.e., 3.5. This means
that in the context-aware routing, the communication
latency grows by a factor of 3.5 which is about 70 percent
lower than in the traditional routing.

For the compute nodes in America, we note that the func-
tion of the trendline of the traditional approach is y ¼
32:2 � xþ 65:2, and has a coefficient of determination
R2 ¼ 0:985 which shows that the trendline exhibits statisti-
cal significance. We also note that the value of the slope of
this trendline is 32.2. For the same nodes, the function of the
trendline of the proposed approach is y ¼ 20:1 � xþ 95:6,
and has a coefficient of determination R2 ¼ 0:948. While R2

is also very high in the proposed approach, the slope of the
trendline is much lower, i.e., 20.1. Specifically, this slope
shows that the communication latency in the context-aware
routing grows by a factor of 20.1 which is about 38 percent
lower than in the traditional routing.

Therefore, we conclude that the communication latency
of sending IoT data to compute nodes of fog computing sys-
tems increases for both routing approaches, when the nodes
reside farther away from the gateway. However, the rate of
increase is significantly lower in the context-aware routing
approach. As a result, context-aware routing is able to send
the IoT data with lower communication latency than the tra-
ditional approach.

5.2.2 Results From a Scenario With Dynamic Load

In this section, we aim at showing that the proposed con-
text-aware routing mechanism may be able to outperform
the traditional routing approach, even in cases which do not
allow for great benefits. To this end, we measure the com-
munication latency of the context-aware routing when
using a very simplistic strategy in the data analysis compo-
nent. In the following, first we describe the details of the sce-
nario for this experiment, and then we present the produced
results.

Scenario: The strategy we use in the data analysis compo-
nent of the context-aware approach is the following: First,
send an application request using the traditional approach,
and store the compute node that accepted this request.
Then, send the next request directly to the node that
accepted the data before. After that, the compute nodes
component is reset and the process is repeated.

In addition, we consider the potential load from other
application requests and other gateways, along with the
potentially limited resources of the compute nodes on path.
This is emulated in our system by configuring the compute
nodes on path to have 7 percent probability of accepting an
application request, while the final cloud compute node has
100 percent probability (due to integrating virtually unlim-
ited resources, as discussed in Section 3). Since there are 9
compute nodes (apart from the final cloud node), the proba-
bility of all these nodes rejecting an application request
(and thus the request reaching the final cloud node) is

ð1� 0:07Þ9 ¼ 0:52, i.e., approximately 50 percent. We do this
to emulate a realistic environment for our experiments (as
discussed in Section 4.1), whereby approximately half of the
application requests are executed by nodes on path, and the
other half in the cloud.

After executing an application, the probability of accept-
ing another application request increases from 7 to 50 per-
cent for every compute node. This is done to emulate that
when one of the hosted applications finishes, a compute
node has more available computational resources. This
increase is temporary, and lasts until the next application
request is sent from the gateway (after that the probability
is reset to 7 percent). The reason that the probability
increase is temporary, is to emulate that other gateways in
the area may send application requests, and occupy the
newly available computational resources.

Results: For this experiment, the gateway sends each one
of the 200 application requests two times according to the
traditional and the context-aware routing approaches. For
the context-aware, the gateway uses the mechanism dis-
cussed in Section 4.2, and the aforementioned strategy for
the data analysis component. The produced results which
are related to the communication latency and the hop count
of the network paths of each routing approach, are shown
in Fig. 7. Similar to the values of Table 1, for the communica-
tion latency we include message parsing but exclude any
further processing by the application in the destination
node.

Fig. 7a shows the distribution of the hop count of the
application requests for both approaches. The traditional
routing measurements have an average value of 72 hops,
and a standard deviation of 33 hops. The context-aware
routing measurements have an average value of 51 hops,
and a standard deviation of 32 hops. Thus, the proposed
approach reduces the average hop count by 29 percent.
Notably, the box plot of the traditional routing does not
have an upper whisker, and the median overlaps with the
upper quartile. The former indicates that 25 percent of the
maximum values are equal, and the later that 50 percent of
the maximum values are equal.

This happens because approximately half of the applica-
tion requests are sent to the final cloud node which bears
the maximum hop count. Thus, as Fig. 7a indicates, half of

Fig. 6. Average communication latency to reach each compute node of
the system based on the two examined routing approaches (values
acquired from Table 1).
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the values of the hop count in traditional routing equal the
maximum value. The same applies to the context-aware
routing, i.e., approximately half of the application requests
are sent to the final cloud node. However, since the context-
aware routing sends some of these requests to that node
directly, the hop count is significantly lower (as shown in
Table 1). For this reason, the box plot of the hop count in the
context-aware routing has lower values, and does not
exhibit similar behavior.

In addition, we note that the maximum hop count in this
experiment, which represents the number of hops to reach
the cloud node in Los Angeles, is 99 hops. This is slightly dif-
ferent to the hop count of Los Angeles shown in Table 1,
which is 95 hops. The reason that this happens, is that we use
the external IP addresses for the communication between
compute nodes. The Google Cloud Platform allows commu-
nication between Google compute nodes, using either inter-
nal IPs (that can be used only between Google nodes), or
external IPs that are addressable by any node on the Internet.
The network paths when using internal IPs may bemore sta-
ble, which could prevent having slightly different hop count
between experiments. However, a setup that utilizes external
IPs, is more representative of computing systems which con-
sist of compute nodes that may belong to different providers
(which is possible in fog computing systems). Nevertheless,
when using external IPs, slightly different hop count values
between experiments might be observed, due to the dynamic
nature of the Internet. We do not consider that this compro-
mises the presented results. On the contrary, we believe that
results which include slight dynamic changes are more rep-
resentative of real-world setups, in which, such phenomena
are imminent.

Fig. 7b shows the distribution of the communication
latency. The measurements of the traditional routing have
an average value of 302 ms, and a standard deviation of
140 ms. The measurements of the context-aware routing
have an average value of 258 ms and a standard deviation
of 113 ms. Therefore, the context-aware routing reduces the
average latency by 15 percent. Notably, the median of the
traditional routing, is higher than the upper quartile of the
context-aware routing. This means that 75 percent of the
values of the context-aware routing are lower than 50 per-
cent of the values of the traditional routing. This further
advocates that the proposed context-aware routing mecha-
nism is able to reduce the communication latency of sending
application requests in fog computing systems.

5.2.3 Resource Utilization

As discussed in Sections 5.2.1 and 5.2.2, context-aware rout-
ing is able to provide latency and bandwidth benefits due to
using the mechanism of Section 4.2. The implementation of
this mechanism however, may require the utilization of
additional computational resources in the gateway, which
can be regarded as the overhead that accompanies the pre-
sented benefits.

In our experiments, the gateway is implemented on a
Raspberry Pi 4 single-board computer (which is a popular
choice for an IoT gateway [35]). Using Top (a command line
tool for monitoring resource utilization), we examine the
resource utilization of the process that routes the application

requests according to each routing approach. Notably, both
approaches exhibit similar resource utilization with CPU
that has occasional spikes which do not surpass 9 percent,
and RAM that does not exceed 10 percent. The resource utili-
zation of the compute nodes which execute the IoT applica-
tions, is not affected by our approach since the context-aware
routingmechanism is only executed in the gateway.

In addition, we note that the time required to execute the
proposed mechanism in our experiments, i.e., the delay
needed for finding a compute node that has accepted data
of certain context in the past, is negligible. However, this
delay may increase if a complex data analysis component is
used, or if the number of different contexts stored in the
compute nodes component grows significantly (due to the
delay of searching). Therefore, the presented results apply
to fog computing systems with a gateway which makes
application requests of a reasonable number of different
contexts (i.e., when a search in the compute nodes compo-
nent does not incur significant delay).

The application responses used in the proposed
approach might also be considered as overhead since the
traditional routing does not make use of such information.
Nevertheless, when a reliable communication protocol is
employed for the communication between compute nodes
(e.g., using the request/response HTTP which we use in
our experiments), the address of a compute node can be
encapsulated within the HTTP responses. This way, the
application response can be sent without transmitting addi-
tional messages to the gateway. Thus, we conclude that the
context-aware routing approach using a rather simple data
analysis strategy, is able to provide solid benefits without
inducing significant additional overhead.

5.3 Simulation-Based Evaluation

In this section, we turn our attention to the performance of
our mechanism when using the RL-based strategy for the
data analysis component (presented in Section 4.3) under a
wide range of settings and scenarios. To evaluate this strat-
egy in a comprehensive manner, we build a Python-based
simulator which allows us to increase the scale of our
experiments substantially (compared to using the setup of
Section 5.1). In addition, we model our simulator to con-
sider the network parameters of our real-world setup

Fig. 7. Network path measurements of the application requests based on
traditional and context-aware routing.
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(discussed in Section 5.1) in order to ensure that the simula-
tions imitate a realistic environment. The results we report
in this section are based on the average latency achieved
from 100,000 time steps, i.e., for the first 100,000 application
requests. Each experiment is repeated 20 times, and the
average values are reported with 95 percent confidence
intervals.

When running our experiments, we compare three rout-
ing approaches: i) The traditional routing approach. ii) The
simple context-aware routing approach discussed in Sec-
tion 5.2. iii) The RL-based approach with Q-learning dis-
cussed in Section 4.3, which is referred to as Context-Aware
with Q-Learning (CA-QL).

5.3.1 Scenarios

To examine the performance of the three routing
approaches, our simulator considers three deployment sce-
narios with inherently different characteristics, as shown
below:

� Small-scale deployment: In this scenario, there are two
compute nodes: a local edge node which is assumed
to be very close to the gateway (average latency of
10 ms), and a remote cloud node which is located far
away (with average latency corresponding to the
node in Los Angeles, as shown in Table 1). This can
be considered representative of small-scale setups
with one nearby edge node, and one remote cloud
node. Notably, this scenario resembles setups which
have transitioned from the cloud computing para-
digm by adding a local edge node.

� Medium-scale deployment: This scenario includes a
chain of 5 compute nodes deployed in the same con-
tinent. The communication of these compute nodes
corresponds to the nodes in Europe (from Sec-
tion 5.1), and is based on the latency values of
Table 1. This scenario is considered representative
for setups of medium-scale fog computing systems
which operate in a wide area within the same
continent.

� Large-scale deployment: This scenario corresponds to
the real-world setup discussed in Section 5.1, and
includes a chain of 10 compute nodes which commu-
nicate with the average latency values reported in
Table 1. We consider this as a representative scenario

for large-scale setups of fog computing systems
which may need to operate worldwide.

In addition, we experiment with different cases of nodes
accepting new application requests, in each of the three tar-
get deployment scenarios. In particular, we consider that
each compute node accepts an application request with a
probability, as discussed in Section 5.2.2. However, in this
experiment, we vary this probability in order to acquire
results which cover a wider range of fog computing sys-
tems. After a compute node has accepted a request, the
probability of accepting the subsequent one increases to a
higher value (i.e., to 50 percent, as discussed in Section 5.2.2).
In line with our prototype-based experiments, this applies
to all compute nodes but the final cloud node, which always
accepts new application requests.

We do this because the main factor that determines the
performance of our context-aware routing approach, is
whether the nearby compute nodes have sufficient available
resources to accept new application requests. In case these
nodes are busy, our approach may reduce the communica-
tion latency by sending the application requests directly to
nodes with available resources. Thus, by considering differ-
ent application request acceptance probabilities, and differ-
ent deployment scenarios, this experiment aims at verifying
that our context-aware routing mechanism is able provide
latency benefits in fog computing systems, for a wide range
of parameters.

5.3.2 Results

In Fig. 8, we show the results of our simulations using the
three routing approaches, and considering the three target
deployment scenarios. In CA-QL, the discount factor is set
to g ¼ 0:9 which is a common value for g, and is usually
selected due to reducing the long-term penalty [64].

In each deployment scenario of Fig. 8, we can observe
that all routing approaches tend to converge towards the
same minimum latency value when the initial acceptance
probability increases. This happens because when this prob-
ability becomes high, it is the first compute node on path
that accepts most of the application requests. Thus, the con-
text-aware routing approaches are not able to provide bene-
fits by bypassing busy nodes, since most nodes tend to have
enough spare resources to accept new requests. This obser-
vation shows that when the proposed approach is not able
to provide benefits, the performance of the system does not

Fig. 8. Average communication latency achieved by the three examined routing approaches for each deployment scenario, as the probability that a
compute node accepts an application request grows.
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degrade significantly, but rather produces similar results to
the traditional approach.

In our target environments, such as IoT systems that pro-
cess huge amounts of data, the probability of nearby nodes
accepting new application requests is rather low, as dis-
cussed in Section 4.1. For this reason, we consider the results
with low initial acceptance probability more relevant for
this evaluation. According to these results, in Fig. 8a which
shows the average latency in small-scale deployments, we
note that the context-aware approaches, i.e., the simple con-
text-aware and the CA-QL, both outperform the traditional
routing consistently, while the RL-based CA-QL also out-
performs the simple context-aware. Similar behavior can
also be observed in Fig. 8b which shows the average latency
of medium-scale deployments. Notably, the latency reduc-
tion of CA-QL compared to the traditional approach (in
Fig. 8b), reaches 19.5 percent. Based on the latency values of
the nodes in Europe which are used in this experiment, this
reduction approximates the maximum possible reduction in
the average latency (shown in Table 1). This indicates that
the results of Table 1, which are produced assuming that
the proposed context-aware mechanism is able to select the
most appropriate compute node, are actually achievable
when implementing predictive methods (such as the CA-
QL) in the data analysis component.

Finally, for Fig. 8c which shows the average latency of
large-scale deployments, we note that the context-aware
approaches show benefits for a range of small probabilities,
but when the probability increases, the results are mixed. This
happens due to the high-latency to reach the remote compute
nodes in another continent. When most of the application
requests are accepted by the final cloud node (i.e., small accep-
tance probabilities), the traditional approach has the highest
latency due to the forwarding by the nodes on path. In this
case, the context-aware approaches provide the benefits
shown in the left-hand side of Fig. 8c until the intersection
point (at approximately 4 percent probability), due to sending
some of the application requests directly to the final cloud
node. Notably, when an application request does not reach
the cloud, but is accepted by a remote compute node (i.e., in
another continent), the context-aware mechanism favors that
remote node for the subsequent request even though the
latency may be high. The traditional routing on the other
hand, does not favor any nodes, which means that the subse-
quent request is sent on a path and might be accepted by a
nearby node. For this reason, when there are compute nodes
in different continents, and the acceptance probability
increases, the traditional approach tends to have lower latency
than the context-aware. Hence, after the intersection point (in
Fig. 8c), the traditional routing performs better.

Notably, similar behavior may also occur before the inter-
section point. However, the benefit from sending some of the
application requests to the cloud directly, which are achieved
by the context-aware approaches, are large enough to over-
shadow the shortcomings. This is also the reason that our pro-
totype shows the benefits of Fig. 7b using 7 percent
probabilities. The results of Fig. 8c are not completely in align-
ment with Fig. 7b because the latency between the nodes in
our simulations, is based on Table 1 which has slightly differ-
ent values than the values of Fig. 7b (due to using actual Inter-
net measurements and external IP addresses, as discussed in

Section 5.2.2). Nevertheless, while Fig. 7b shows that our pro-
totype can provide benefits in a large-scale deployment,
Fig. 8c shows that there is actually a range of small probabili-
ties for which the context-aware approaches can provide ben-
efits. Outside this range, our simulations show that the
traditional approach is slightly better than the simple context-
aware, while CA-QL exhibits high variance, but does not per-
form better than the traditional.

Discussion. In general, we observe that the exact latency
achieved by each routing approach is a function of the spe-
cific environment, i.e., the latencies in the underlying net-
work, and the node acceptance probabilities. Nevertheless,
we note that for low acceptance probabilities (which is our
target environment), the context-aware approaches consis-
tently outperform the traditional routing in all our experi-
ments (both prototype- and simulation-based). This happens
because the traditional approach takes time to send the
application requests on a path of compute nodes towards the
cloud, until a node eventually accepts it. The simple context-
aware routing, on the other hand, takes advantage of the
awareness of the last node that accepted the request, which
may be a node farther along the path, and bypasses all previ-
ous nodes, thereby saving time. CA-QL performs even better
than the simple context-aware in most settings we examine,
with performance gains that are more pronounced in the
small- and medium-scale deployment scenarios. This occurs
because CA-QL learns to direct application requests to cloud
nodes when other intermediate compute nodes are likely to
be busy. Notably, it can be observed that CA-QL strikes a
good balance across the range of parameters explored:When
it pays off to bypass intermediate nodes, it usually performs
better than the alternatives, while as soon as intermediate
nodes becomemore eager to accept requests, its performance
converges to that of the traditional routing.

When the compute node acceptance probabilities are
low, the gains of CA-QL over the traditional approach in
terms of latency reach up to 31 and 19.5 percent, for the
small- and medium-scale deployment scenarios, respec-
tively. Even though in the large-scale scenario, we observe a
range of parameters for which the simple context-aware
and the traditional routing perform better, we note that CA-
QL has more tangible benefits overall. Notably, in our
experiments we assume that the exact behavior of the com-
pute nodes, is not known in advance (e.g., through monitor-
ing the available resources). Therefore, even if it may not be
entirely possible to create a mechanism that always selects
the closest compute node with available resources, we con-
sider that CA-QL offers a very good compromise.

5.3.3 Memory Consumption

An important aspect of CA-QL is the amount of maintained
state. As discussed in Section 4.3.1, for every stored context,
an agent needs OðNkþ1Þ space to store state information,
where N is the number of nodes and k is the number of the
most recent responses used in our state representation (his-
tory size). The Q-table has Nk states, and for each state there
are N available actions. The value of k can be selected with
space limitations in mind. A large k may make it infeasible
to operate the agent, especially on a resource-limited device,
such as a Raspberry Pi which could be used as the gateway.
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Performance-wise, in the small- and medium-scale deploy-
ment scenarios, CA-QL is not very sensitive to the choice of
k. However, in the large-scale scenario, low values of k (e.g.,
k ¼ 1) might result in increased latency. For this reason,
larger values may be more desirable. To appropriately tune
the state space size given a specific maximum memory
thresholdM to be used by an application’s Q-learning agent
at the gateway, k can be set to k � blogNðM=cÞ � 1c, where c
is the space necessary per state-action pair. In fact, this is
the method we use to tune k in the experiments of Sec-
tion 5.3.2, setting M ¼ 256 MiB. Finally, we should recall
that for each different context, the gateway operates a sepa-
rate Q-learning agent. This is something the system opera-
tor needs to keep in mind in order to configure
appropriately the amount of memory resources dedicated
to each agent process. In our implementation, c ¼ 8 bytes:
one 32-bit floating point number to store the current esti-
mate of the Q function value, and a 32-bit integer to store
the counter of how many times the action has been selected
given that state.

6 CONCLUSION

In this paper, we propose a routing mechanism which con-
siders the context of the IoT data in order to route applica-
tion requests to compute nodes of fog computing systems.
To achieve that, a history of previous transmissions is kept,
so that new application requests can be sent directly to com-
pute nodes which usually accept requests of the same con-
text. We evaluate this approach using a prototype
implementation with distributed nearby and remote com-
pute nodes, and by performing extensive simulations. The
results from our prototype show that compared to a state-
of-the-art method, context-aware routing reduces the
latency of sending IoT data to compute nodes of fog com-
puting systems by up to 23 percent, and lowers the hop
count by up to 73 percent (which indicates lower bandwidth
utilization). Furthermore, we show that when using a sim-
ple strategy for selecting compute nodes, our approach is
able to reduce the latency and the hop count of the transmis-
sions, without inducing significant overhead. In addition,
we perform simulations on a wealth of settings, and we
show sound benefits when combining the proposed con-
text-aware mechanism with a RL-based predictive method.
Based on these results, we deduce that such a routing mech-
anism can further advance fog computing systems.

Due to the promising results, in the future we plan to
analyze further the information which is stored by our
mechanism, i.e., the compute nodes, and the context that
each compute node accepts. Specifically, we consider two
promising research directions for future work: i) To explore
effective ways for profiling the IoT data, and for extracting
context. ii) To investigate additional ways for predicting the
compute node in closest proximity which may accept new
application requests (e.g., by examining/combining various
machine learning models).
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