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Abstract—Cross-silo federated learning (FL) is a privacy-
preserving distributed machine learning where organizations
acting as clients cooperatively train a global model without
uploading their raw local data. Recently, the cross-silo FL in
multiaccess edge computing (MEC) is used in increasing indus-
trial applications. Most existing research on cross-silo FL pays
attention to the performance aspect, ignoring the incentive mech-
anism for high-quality client selection and long participation
in model training for efficient and stable FL, which has pre-
vented the widespread adoption of cross-silo FL in MEC. In this
article, we propose an incentive mechanism with quality-Aware
and reputation-Aware based on the infinitely repeated game for
cross-silo FL named VARF. VARF selects high-quality and high-
reputation edge nodes (ENs) as candidates for model training in
the cross-silo FL by a heuristic algorithm and then motivates
the selected ENs to actively contribute their resources. VARF
also models the long-term behavior of ENs in cross-silo FL as
an infinitely repeated game and derives a stable and long-term
cooperative strategy for clients while maximizing the amount of
local data for model learning in cross-silo FL. Extensive simula-
tions with real-world data sets demonstrate that the performance
of VARF is more beneficial than other benchmarks. Meanwhile,
experimental results show that cloud platforms (CPs) and ENs
eventually form a long and stable cooperative relationship under
the trigger strategy.

Index Terms—Cross-silo federated learning (FL), long-term,
multiaccess edge computing (MEC), quality, repeated game,
reputation.

I. INTRODUCTION

W ITH the rise of machine learning (ML) and the popu-
larity of Internet of Things (IoT) devices, tremendous
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data produced by IoT devices makes it difficult to process the
data using traditional methods. In the traditional cloud-based
approach, data collected by IoT devices is uploaded and pro-
cessed at cloud servers or data centers in a centralized manner.
Nevertheless, this approach is no longer sustainable for the
following reasons. First, data owners are progressively sen-
sitive to privacy. Second, the cloud-based approach involves
long propagation delays and leads to unacceptable delays for
applications that must make real-time decisions. Third, trans-
ferring data to the cloud for processing places a burden on
the backbone network. Fortunately, multiaccess edge comput-
ing (MEC) [1], [2], [3], [4] can enable edge nodes (ENs) to
locally collect and process various data under the coordina-
tion of remote cloud [5], which alleviates the data privacy
issues, latency, and communication inefficiency of the tradi-
tional cloud-based approach. However, ML in MEC still needs
to provide shared data externally, which leads to the disclosure
of data privacy.

In view of increasingly stringent data privacy regulations,
federated learning (FL), a privacy-preserving distributed ML,
was introduced in MEC [5], [6], [7], [8]. FL is aimed to learn
a shared model by performing distributed training locally on
participating clients and aggregating the local models into a
global one. Compared with traditional ML, the client (i.e.,
device or organization) in FL just sends a local model update
trained on its own local raw data to the central server rather
than uploading the raw data of the client. Simply put, the utility
of data is well maintained and data privacy can be preserved.
FL as an enabling technology of edge intelligence (EI) enables
ENs to conduct model training without transmitting their raw
data to central servers [9], which counters the privacy issue of
clients and alleviates the communication burden.

In recent years, FL as an emerging branch of ML
has attracted a lot of attention from academia and indus-
try. Extensive research was conducted on the statistical
Challenges, privacy and security issues, model, and system
Challenges areas. Specifically, researchers studied distributed
optimization [10], [11], [12], privacy [13], [14], adversarial
attack and defense [15], [16], communication efficiency [17],
[18], [19], computation efficiency [20], [21], and model [22].
Above all focus on the performance improvement of FL, these
studies are based on an optimistic assumption that all the
clients contribute their resources unconditionally [23], [24],
which is not practical in the real scenarios of MEC.

The research on the incentive mechanism is fundamen-
tal and significant to FL in MEC. Most importantly, the
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clients participating in model training consume their compu-
tation resources and communication resources [25]. Without
well-designed economic compensation, self-interested clients
are not enthusiastic to participate in model training of
MEC. Furthermore, uploading their model update to the cen-
tral server may lead to security and privacy issues (e.g.,
model stealing, and inference attack). Moreover, clients may
intentionally or unintentionally perform undesirable behav-
iors resulting in low-quality local model updates, which can
degrade the performance of the global model and cause model
convergence problems [26], [27]. Namely, deficient partici-
pants might cause FL to malfunction in reality [28]. Besides,
cross-silo FL in MEC has a wider range of industrial appli-
cations compared with cross-device FL. Consequently, it is
necessary and critical to formulate an efficient and stable
incentive mechanism for cross-silo FL in MEC.

Existing incentive mechanisms are not directly applicable
to cross-silo FL in MEC. First of all, the resource gap [29]
between different ENs and unreliable ENs may perform unde-
sirable behaviors both will depress the performance of the
global model. Therefore, the incentive mechanism should take
model update quality and client reliability into considera-
tion. Moreover, although there have been existing studies
and research on designing incentive mechanisms for cross-
device FL, the incentive mechanisms for cross-device FL
cannot be utilized for cross-silo FL. This is because cross-
silo FL involves multiple organizations or entities with their
own data, goals, and interests, which makes it more complex
and challenging to incentivize participation. In such scenar-
ios, a different set of incentive mechanisms that consider the
varying needs and interests of different organizations must be
designed and implemented. These mechanisms may involve
incentives such as revenue sharing, or access to valuable data
or resources. On the other hand, ENs acted as organizations
in cross-silo FL may execute multiple cross-silo FL processes
repeatedly as a consequence of their time-varying local data set
but the challenge that long-term selfish participation behaviors
of ENs is unsolved. According to the above challenges, We
should design a suitable incentive mechanism for cross-silo
FL in MEC.

However, the current cross-silo FL incentive mechanisms
face several challenges, including a lack of trust, unequal
contributions, and free-riding. Therefore, we aim to design
an incentive mechanism to motivate high-quality and high-
reputation ENs to actively and long participate in model learn-
ing of cross-silo FL and ultimately enhance the performance
of FL in MEC. Meanwhile, the ENs who participate in
model training will be rewarded according to their contribu-
tion degree. To achieve the goal, We first estimate the learning
quality and learning reputation of clients leveraging histor-
ical learning records, where the freshness of the historical
records is considered, and assign weights using an exponen-
tial forgetting function. Then, we select the high-quality and
high-reputation ENs as candidates for training by a heuristic
algorithm. Infinitely repeated games allow for the possibility
of building long-term relationships and establishing reputa-
tions, which can have a significant impact on the incentive
mechanisms. Thus, we next model the long-term behavior of

ENs in cross-silo FL as an infinitely repeated game, where
the trigger strategy ensures that both the cloud platform (CP)
and ENs actively and long participate in the task of cross-silo
FL. Finally, we demonstrate the performance of the proposal
through extensive simulations with multiple real-world data
sets and learning models.

The major contributions of this article are as follows.
1) Design of Incentive Mechanism for Cross-Silo FL in

MEC: We study the quality-aware and reputation-aware
cross-silo FL in MEC, where learning quality and learn-
ing reputation are estimated to select high-quality and
high-reputation ENs for model training. Moreover, we
optimize the long-term profits of ENs by allowing them
to selfishly choose degrees of contribution. It is the first
work to investigate the incentive mechanism of cross-
silo FL in MEC under the consideration of data quality,
the reliability of ENs, and the long-term participation of
ENs.

2) Incentive Mechanism (VARF): We propose an incen-
tive mechanism with quality-aware and reputation-aware
for cross-silo FL based on the infinitely repeated game
named VARF. VARF can select the high-quality and
high-reputation ENs as candidates by a heuristic algo-
rithm, then optimize the long-term profits of ENs by
solving profit maximization problems of the efficiency
wage model based on the infinitely repeated game for
CP and ENs. Finally, we verify the stability of the trig-
ger strategy in the infinitely repeated game and the
trigger strategy ensures a long and stable cooperative
relationship between CPs and ENs.

3) Performance Evaluation: We conduct extensive experi-
ments based on real-world data sets and widely adopted
learning models, where the incentive mechanism can
recruit high-reputation ENs to contribute high-quality
data and motivate ENs to maintain long-term cooper-
ation. The simulation results express that the proposed
schema has higher accuracy and lower loss than the other
three benchmarks, the detail as shown in Section VI.
Moreover, experimental results also show that CPs and
ENs eventually form a long and stable cooperative
relationship under the trigger strategy.

The structure of this article is as follows. Section II
presents some related work. In Section III, we introduce the
system overview, followed by the model and formulation in
Section IV. We express the incentive mechanism VARF based
on the infinitely repeated game in Section V. The experimen-
tal studies are presented in Section VI. In Section VII, we
conclude this article.

II. RELATED WORK

In this section, we introduce related work regarding FL,
cross-silo FL, and incentive mechanism.

A. Federated Learning

Recently, the performance optimization of promising FL has
gained the attention of industry and academia. Wang et al. [8]
notionally considered the convergence bound of distributed

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 24,2023 at 08:26:35 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: VARF: AN INCENTIVE MECHANISM OF CROSS-SILO FEDERATED LEARNING IN MEC 15117

gradient descent and made an optimal tradeoff between local
updates and global parameter aggregation to minimize the loss
function for a given resource budget. Wang et al. [30] proposed
communication-mitigated FL (CMFL) which can markedly
reduce the communication burden while ensuring learning con-
vergence. Luo et al. [31] proposed a low-cost sampling-based
algorithm to learn the unknown parameters associated with
convergence. Wang et al. [32] achieved an experience-driven
control framework that can counterpoise the bias conducted by
non-IID data and accelerate convergence. These researches are
based on the assumption of voluntary participation of clients.
However, without well-designed incentive mechanisms, clients
are unwilling to voluntarily participate in model training.

B. Cross-Silo FL

A few researchers have analyzed cross-silo FL. Tang and
Wong [33] proposed an incentive mechanism for the features
of public goods in cross-silo FL. Zhang et al. analyzed the
selfish participation and long-term behaviors of heterogeneous
clients in cross-silo FL. Marfoq et al. [34] defined the topology
design problem for cross-silo to maximize the number of com-
munication. Majeed et al. [35] built a horizontal cross-silo FL
model for traffic classification using flow-based time-related
features. Heikkilä et al. [36] learned complex models and guar-
anteed rigorous privacy in cross-silo FL under the combination
of additively homomorphic secure summation protocols with
differential privacy. Although there is some research about
cross-silo FL, none of them considers the quality, reputa-
tion, and long-term participation and cooperation of clients
in cross-silo.

C. Incentive Mechanism

There are more and more papers concentrating on the incen-
tive mechanism design for FL in recent years. Deng et al. [25]
proposed a quality-aware FL system, which significantly
improves the quality of distributed learning through precise
user incentives and model aggregation. Kang et al. [24]
presented an incentive mechanism that considers reputation
and contract theory to motivate reliable clients to participate
in the task of FL. Tang and Wong [33] designed an incentive
mechanism for cross-silo FL targeting the features of public
goods. Ma et al. [37] designed an auction mechanism that inte-
grates the concept of padding and an efficient pricing strategy
to guarantee desired properties in restricted MEC environ-
ments. Zeng et al. [38] proposed three multidimensional
game-theoretic models to study the economic behaviors of
participants and validated their applicability. However, none
of the above papers analyzes the long-term participation of
high-quality and high-reputation clients for cross-silo FL in
MEC.

D. Infinitely Repeated Game

Infinitely repeated games allow for the development of long-
term relationships and the emergence of cooperative behavior,
which can lead to outcomes that are more efficient and ben-
eficial for all players involved. Thus, incentive mechanisms

Fig. 1. Overview of cloud-edge-based cross-silo FL system.

in infinitely repeated games can be very effective at encour-
aging cooperation and deterring defection. Chi et al. [39]
proposed a multistrategy repeated game-based incentive mech-
anism to guide participants to provide long-term participation
and high-quality data, but the quality of data and reputation
of participants are not evaluated before model training. In
addition, the stability of the trigger strategy is not demon-
strated. Li et al. [40] proposed an incentive model based on
the infinitely repeated game and designed a trigger strategy
with credible threats. Zhao et al. [41] proposed a three-party
repeated game model based on game theory, which indicates
that the proposed model is feasible and effective in maximiz-
ing the benefits of game participants. However, the issue of
quality and reputation is ignored in both papers above.

In summary, research on the long-term participation of
high-quality and high-reputation clients in cross-silo is largely
unexplored. Moreover, incentive mechanisms previously used
in other scenarios cannot be directly applied to FL in MEC [5].
That’s because the widening resource gap between different
ENs might degrade the performance of the global model for
FL. Consequently, designing an incentive scheme that can
encourage active and long-term participation of high-quality
and high-reputation nodes is essential and crucial.

III. SYSTEM OVERVIEW

In this section, we first present a cloud-edge-based cross-silo
FL system in MEC. Next, we introduce the cost incurred, utili-
ties and profits during the process of participating in the task in
detail. Then, we formulate the long-term profit maximization
problems for both CP and ENs.

A. System Description

As depicted in Fig. 1, we consider a scene with a CP and
N ENs. Let N = {1, 2, . . . , n, . . . , N} denotes the set of ENs.
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TABLE I
KEY SYMBOLS USED IN THIS ARTICLE

EN n, n ∈ N , has a local data set Sn collected from the edge
devices (EDs) it covers which may change over time, where
the number of the local data set is Sn = |Sn|. Therefore, each
EN may iteratively perform cross-silo FL processes owing to
its time-varying data set. EN n can choose a subset Xn ⊆ Sn

of its local data set for local model training. Let xn denote
the size of the chosen subset, i.e., xn = |Xn|. Then, all local
model updates on the CP are aggregated to generate the global
model. The detailed key symbols used in this article are listed
in Table I. Cross-silo FL aims to get the optimal weights
of the global model ω∗ to minimize the global loss function
L(ω) [42]

L(ω) =
∑

n∈N

xn∑
n′∈N xn′

Ln(ω;Xn) (1)

where Ln(ω;Xn) is the loss for subset Xn given ω

ω∗ = arg min
ω

L(ω). (2)

In round t, the CP distributes the global parameter wt to the
ENs selected. Here, we suppose that N ′ is the set of the ENs
selected and the number of the ENs selected is j. Then, the
ENs selected train their own local model with the local data
based on the global parameter wt as follows:

ωt+1
n = ωt − η�Ln

(
wt

n

)
(3)

where η is the step size.
Next, the selected ENs transfer their local model ωt+1

n to
CP, and the updated global model is calculated as

ωt+1 =
∑j

n=1 xnω
t+1
n∑j

n=1 xn

. (4)

Several rounds are required to achieve convergence for
cross-silo FL, in which one round consists of K iterations. The
training process is terminated when the accuracy of the global

model meets the requirements or the training time exceeds a
predefined threshold.

B. Profit of CP and ENs in One Cross-Silo FL Process

In this section, we present the cost, utility, and profit of the
efficiency wage model for the CP and ENs in one cross-silo
FL process in detail.

1) Cost of ENs in One Cross-Silo FL: Undoubtedly, the
cloud-edge-based cross-silo FL process in MEC mentioned
above brings the cost to ENs. The cost of ENs is given in
detail as follows.

Model Accuracy Loss: The purpose of model training by
ENs is to obtain a global model with good accuracy. The global
model with high accuracy means the global model with little
loss of accuracy [43]. L(wK)−L(w∗) is devoted to calculating
the accuracy loss of the global model, where L(wK) and L(w∗)
are the global losses with parameters wK and w∗, respectively,
and K is the number of iterations in one cross-silo FL process.
As stated by [43], [44], and [45], the expected global model
accuracy loss is bounded by O([1/

√
BK] + [1/K]), where B

is the total batch size, namely, B = ∑
n∈N ′ X t

n. As noted
above, O([1/

√
BK]+ [1/K]) decreases when the total amount

of all chosen local data
∑

n∈N ′ X t
n for model training and the

number of iterations K increase. Thus, we denote the model
accuracy loss of EN n, n ∈ N ′, in round t as L(X t

n,X t−n),
which depends on the amount of data contributed by all ENs
selected for model training when the number of iterations K
is fixed and can be computed by

L
(X t

n,X t−n

) = 1
√(

xt
n +

∑
n′∈N ′,n′ �=n xt

n′
)

K

+ 1

K
(5)

where xt−n = {xt
1, xt

2, . . . , xt
n−1, xt

n+1, . . . , xt
j}.

Computation Cost: In the cloud-edge-based cross-silo FL,
the processing capacity for EN n is denoted as f t

n (i.e., CPU-
cycle frequency). Denote the number of CPU cycles required
by EN n to execute a data unit by ct

n. According to [24], [33],
[45], [46], and [47] the computation cost of EN n for one
iteration in round t can be calculated by

Ecmp
n,t = ζct

nxt
nf t

n
2 (6)

where ζ is the effective capacitance parameter of the comput-
ing chipset for EN n. This article assumes that ζ , ct

n, and f t
n are

the same for all ENs. In this case, we denote the computation
cost of the EN n ∈ N as Ecmp

n,t = Hxt
n, where H = ζct

nf t
n

2.
Communication Cost: After K local training iterations, ENs

selected transfer local model updates wt
n to CP for model

aggregation, then receive the global model wt for the next
round of model training. The data transmission between ENs
and CP can be through either the wired network or the wire-
less networks [45]. G is transmission bandwidth, ht

n is channel
gain between EN n and the CP, ρt

n is transmission power of
the EN n and Nt

0 is the background noise. The communication
consumption of the EN n in a global training is denoted as
follows:

Ecom
n = σρt

n

G ln
(

1+
[

ρt
nht

n
Nt

0

]) . (7)
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Here, we assume that all ENs have the same communication
resource, and the parameter of a local model update is σ which
is an identical constant value for all ENs. In this context, all
ENs consume the same communication cost. In this article,
the communication cost of EN n is denoted as Ecom

n .
Total Cost: As stated above, we describe the total cost of

EN n as

C
(X t

n

) = θnL
(X t

n,X t−n

)+ KEcmp
n,t + Ecom

n (8)

where θn denotes the valuation of EN n toward the model
accuracy, which expresses the importance of model accuracy
to EN n [33], [45]. That is, θn is the unit benefit of EN n
by applying the global model. For instance, θn can be the
unit benefit loss of a supermarket when using the customer
experience-driven service, or the customer churn for per unit
loss of model accuracy of an insurance company when using
a customer churn analysis model.

2) Profit of the CP and ENs in One Cross-Silo FL: In this
section, we analyze the profit of the CP and ENs in one cross-
silo FL.

EN: ENs will incur costs when they contribute their
resources in cross-silo FL, and they need to be paid to incen-
tive them to complete the training. The profit of edge ENs is
the difference between reward and cost

Un
(X t

n

) = r
(X t

n

)− C
(X t

n

)
(9)

where Un(X t
n) represents the profit that EN n participates in

the training in round t, r(X t
n) means the reward to EN n that

CP distribute according their data contribution X t
n in round t,

C(X t
n) is the incurred cost that EN n contributes resources in

round t.
CP: The data contributed by the ENs can bring utility to

the CP, and the CP needs to pay ENs according to their data
contribution. The profit of CP is the difference between the
utility and the reward

Uc
(X t

n

) = y
(X t

n

)− r
(X t

n

)
(10)

where Uc(X t) represents the profit of CP in the round t and
y(X t

n) is the utility brought to CP by the data contributed X t
n

in round t.

C. Problem Definition

Since CPs and ENs are highly autonomous service
providers, motivating them to forego short-term interests in
consideration of long-term profits and to provide high-quality
and reliable data continuously and stably is crucial to the
research of incentive mechanisms for cross-silo FL in MEC.
The CP and ENs are both rational individuals: the CP obtains
more via incentivizing ENs to contribute high-quality and
reliable resources for a long time while ENs benefit more
by continuously and stably providing high-quality and high-
reputation data. Consequently, there are two problems to be
solved in this study. First, the CP has to determine the cross-
silo FL which performs in round t by which ENs at which
price to maximize its long-term profit. Second, ENs have to
make a tradeoff between the reward obtained by contribut-
ing resources and the incurred cost. In other words, the EN
n needs to decide if it should participate in the cross-silo FL

or not, and how to contribute resources (i.e., the number of
resources and the quality of the resources) for maximizing its
own long-term profit. In this section, we present the long-term
profit maximization problem for the CP and ENs. It can be
formulated as follows:

Aim : max

(
∑

t∈T

Un
(X t

n

)
,
∑

t∈T

Uc
(X t

n

)
)

s.t. n ∈ N , T = 1, 2, 3, . . . , t, . . . (11)

As shown in (11), the aim of this article is to formulate
an incentive mechanism to maximize the long-term profits of
both CP and ENs.

IV. MODEL AND FORMULATION

To long obtain high-quality and high-reputation resources,
in this section, we first estimate the learning quality and the
learning reputation of the EN n in each round according to
the historical learning quality and reputation record. Then, we
select the high-quality and high-reputation ENs as candidates
for model training in the cross-silo FL by a heuristic algorithm.
Finally, we analyze the interactions among the CP and ENs
in one single time slot.

A. Learning Quality Estimation

The quantity and quality of the contributed local data both
can influence the aggregated global model accuracy of FL
significantly. At present, there is a lack of appropriate met-
rics to measure the quality of the local model update and
global aggregation model. To ensure the quality of the col-
lected data, we can form a schema for estimating the quality
of the contributed data.

1) Learning Quality Quantification: Contribution evalua-
tion is the primary task in formulating the incentive mechanism
of cross-silo federal learning. The quantification of learning
quality can be used to measure the contribution of clients
for a trained global model. One feasible approach is to com-
pute the cross entropy between LLi (evaluation of the local
data set on the global FL model) and LSi (evaluation of
the global data set on the local model) [48]. Nonetheless,
the method consumes significant overhead when transmit-
ting the data. Another approach is to calculate the difference
between lossj(ts) (the average test loss of task ltj’s global
model) and lossi,j(te) (the average training loss of node i’s
local model) as the data quality of node i in round t [25].
However, the local data of ENs actually is incremental in
cross-silo FL. Thus, the difference between lossj(ts) gener-
ated at the start of round t and lossi,j(te) formed at the end of
round t cannot fully reflect the contribution of clients. Based
on the loss reduction measurement method [25], we formulate
a new loss reduction measurement method.

As shown in Fig. 2, the round t begins at It
t−1 and terminates

at It+1
t . ENs willing to participate in training need to contribute

their data at It
n within [It

t−1, It+1
t ]. Local model updates that are

not submitted during the time slot will be rejected in round t.
The selected local model updates are aggregated to generate
the final global model at time It+1

t . Then, the next round starts.
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Fig. 2. Computational process for data quality in one Cross-Silo FL.

Support the average training loss of EN n is losst
n in round t

and the average training loss of all ENs in round t is losst
avg.

We describe the data quality of EN n in round t as follows:

dt
n = losst

avg − losst
n. (12)

The quantity of the training data is of vital importance, and
the learning quality of EN n is defined as the product of the
size of data contributed and the data quality in round t

qt
n =

{
dt

nxt
n, if It

t−1 < It
n ≤ It+1

t
0, Otherwise.

(13)

2) Overall Learning Quality Estimation of EN With
Interaction Freshness: Data contributed by EN n Change over
time in each round. And malicious nodes may contribute high-
quality data only in one round to gain a chance to participate in
model training and do evil during the training process. Unlike
cross-device FL, the clients have an identity and can carry
state from round to round in cross-silo FL [49]. Thus, we
can regard the interaction among the ENs during the process
of model training in cross-silos FL as long-term cooperation.
According to the historical learning quality record of EN n, we
can estimate the overall learning quality of EN n. The learning
quality of ENs changes with time and recent learning quality
has a greater weight than past learning quality. To reflect the
time effect on learning quality, we adopt a freshness fading
function to assign the weights: κ(t) = ξT−t, where ξ ∈ (0, 1)

is a given fade parameter about quality freshness, T is the
current round and t is the training round within [1, T] [24].
Therefore, the overall learning quality of EN n up to round t
is computed by

q̂t
n =

∑T
t=1 κ(t)qt

n∑T
t=1 κ(t)

. (14)

B. Learning Reputation Estimation

1) Learning Reputation Quantification: One unreliable EN
may execute intentionally or unintentionally unwelcome
behaviors to mislead the training. The quantification of
learning reputation is crucial to select high-quality ENs and

reliable model training. The subjective logic is a widely
adopted probabilistic reasoning framework [24], [50], [51],
[52], [53], which is utilized to evaluate the trustworthiness or
reliability of different clients. The subjective logic uses “opin-
ion” to indicate that subjective beliefs are expressed by posi-
tive, negative, and uncertain statements [50]. In this article, we
leverage a subjective logic model to generate the learning rep-
utation of the EN n according to the learning quality of EN n

bt
c→n = pt

c→n
ςαt

n

ςαt
n + ϕβ t

n

dt
c→n = pt

c→n
ϕβ t

n

ςαt
n + ϕβ t

n

ut
c→n = 1− pt

c→n. (15)

In the cloud-edge-based FL system, the reputation opin-
ion of CP c for EN n is displayed by a tuple vector
γ t

c→n = {bc→n, dc→n, uc→n} in round t. bc→n, dc→n, and
uc→n are belief, disbelief, and uncertainty, respectively [54].
bc→n + dc→n + uc→n = 1, and bc→n, dc→n, uc→n ∈ [0, 1].
αt

n and β t
n are the numbers of positive interactions and nega-

tive interactions in the round t separately. The CP determines
whether the interaction between itself and ENs n in round t
is positive or negative according to the learning quality of the
EN n. Namely, the CP regards the training process as a posi-
tive interaction event between the CP and the EN n in round
t if the learning quality of the EN n is greater than 0, and
vice versa. pt

c→n represents the probability of success for the
packet transmission, which affects the uncertainty of the opin-
ion [24]. Thus, the reputation of the CP for the EN n in round
t is expressed as

Rt
c→n = bt

c→n + aut
c→n. (16)

Positive interactions can enhance the reputation of ENs
while negative interactions would reduce the reputation of
ENs. To depress negative interaction events, the negative inter-
actions are put on a higher weight than the positive interactions
during the process of reputation calculation. ς and ϕ are
denoted as the weights of positive and negative interactions,
respectively. Here, ς � ϕ and ς + ϕ = 1.

2) Overall Learning Reputation Estimation of EN With
Interaction Freshness: In cross-silo FL, the trustworthiness of
the EN changes with rounds, and the EN is not always reli-
able for model training. Similar to the overall learning Quality
estimation of EN with interaction freshness, we adopt the
freshness fading function κ(t) to assign the weights. Hence,
the overall learning reputation of the EN n up to round t can
be computed by

b̂t
c→n =

∑T
t=1 κ(t)bt

c→n∑T
t=1 κ(t)

d̂t
c→n =

∑T
t=1 κ(t)dt

c→n∑T
t=1 κ(t)

ût
c→n =

∑T
t=1 κ(t)ut

c→n∑T
t=1 κ(t)

(17)

and R̂c→n = ([
∑T

t=1 κ(t)Rt
c→n]/[

∑T
t=1 κ(t)]).
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Fig. 3. Process of selecting positive ENs.

Algorithm 1 ENs Selected Algorithm by the Contribution
Degree

Input: q̂t: the set of the learning quality of ENs in round t;
R̂t

c: the set of the learning reputation of ENs in round t; b̂t:
the set of the self-employment income of ENs in round t.

Output: sp: the set of ENs where metric > 0; mpn: the
normalize where metric > 0.

1: Compute the maximum value of all the learning qual-
ity and all the learning reputation in round t max q̂t and
max R̂t

c;

2: metric← q̂t

max q̂t

R̂t
c

max R̂t
c

;

3: Sort index values of metric from small to large as m_index;
4: for m ∈ m_index do
5: Record the index position of m idx;
6: if metric[m] > 0 then
7: break
8: end if
9: end for

10: sp← m_index[idx:];
11: mp← metric[sp];
12: Normalize mp to get mpn;
13: return sp, mpn.

C. Process of Selecting ENs

The ENs may intentionally or unintentionally update low-
quality parameters to deteriorate the global model quality of
the cross-silo FL. For better performance of the FL, we apply
quality and reputation as the metrics to assess the contribution
degree of an EN in one cross-silo FL, as illustrated in Fig. 3.
To ensure that the ENs selected are high-quality and high-
reputation, we develop a measurement schema that considers
both the quality of the contributed resources and the reputation
of the EN and the detailed process as shown in Algorithm 1.
We first achieve a measurement schema according to the data
contribution in the current round and the historical learning

quality record and learning reputation record by a heuristic
algorithm, and obtain the contribution degree metric of ENs,
as shown in the following:

metric = q̂t

max q̂t

R̂t
c

max R̂t
c

(18)

where q̂t = {q̂t
1, q̂t

2, . . . , q̂t
N} is the set of the learning quality of

ENs in round t, max q̂t is the maximum value of all the learn-
ing qualities in round t; where R̂t

c = {R̂t
c→1, R̂t

c→2, . . . , R̂t
c→N}

denotes the set of the learning reputation of ENs in round t,
max R̂t

c is the maximum value all the learning reputation in
round t. If the metric is greater than 0, it indicates that the
EN is reliable or the data contributed is helpful for improving
the performance of model training, and vice versa. As shown
in Fig. 3, We can finally select the ENs that have a positive
utility on the model performance, denoted by sp. Namely, sp
represents the set of ENs where metric > 0. To this end, mp
measures the significance of selected model updates and mpn

denotes the normalized result of mp.

D. Behaviors Among the CP and ENs in Consecutive
Time Slots

Due to the time-varying local data sets of ENs, they may
repeatedly execute cross-silo FL processes. Consequently, the
cloud-edge-based FL system operates as a time slot with a time
span divided into T consecutive slots with equal span. And
each time slot with equal duration means one cross-silo FL
process. We describe the behaviors among ENs in consecutive
time slots as demonstrated in Fig. 2. Strictly speaking, we first
present the interactions of ENs in one slot and then outline the
interactions in the infinite time slots.

We first introduce the interactions among the CP and ENs
in one slot. As illustrated in Fig. 2, one slot represents one
cross-silo FL process which performs one global aggregation
and k local iterations. In each time slot, the CP first gives
rewards to ENs, then the EN n decides if it should participate
in the cross-silo FL or not, and how to choose the degree

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 24,2023 at 08:26:35 UTC from IEEE Xplore.  Restrictions apply. 



15122 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 17, 1 SEPTEMBER 2023

TABLE II
PROFIT MATRIX OF BOTH CP AND ENS

of data contribution to maximize their own profit formulated
in (9) while the degrees of other ENs’ data contribution are
determined. When ENs are short-sighted and only focus on
their profits in the current slot, we build their interactions as
a selfish stage game in one cross-silo FL (SSFL), which is
presented in Section IV-E in detail.

Then, we introduce the interactions among the CP and ENs
in the infinite time span which is split into T consecutive slots
with equal duration. In [33], [45], [55], and [56] each time
slot can be a week for hospitals or a month for an insurance
company. In the infinite time span, the data sets of ENs change
over time. In this article, X t−1

n and X t
n are the local data sets

of EN n in slot t−1 and slot t, respectively, where X t−1
n �= X t

n
and xt−1

n < xt
n ∀n ∈ N . To update the global models with data

sets changed with time, ENs repeat the cross-silo FL process.
In time slot t, ENs first download the global model ωt and
then execute the next cross-silo FL according to their current
local data sets to train the global model ωt+1. In the infinite
time span, the CP provides appropriate rewards for ENs to
motivate ENs to join the model training from a long-term per-
spective to maximize its profit. Next, ENs choose the degree
of data contribution for the task in cross-silo FL to maximize
their own long-term profit. We model the long-term interac-
tions of the CP and ENs as an efficiency wage model of an
infinitely repeated game based on SSFL, which is described
in Section V-A in detail.

E. Stage Game Analysis

As we all know, both the CP and ENs are rational individ-
uals. Simply put, the CP should not only consider reducing
cost but also motivate ENs to work hard with appropriately
high rewards depending on their contribution so as to improve
model accuracy; after that, the EN decides whether to accept
the model training task and whether to work hard according to
the reward given by the CP. Between them is a game process.
Next, we analyze the behaviors among the CP and ENs in one
cross-silo FL process.

1) Selfish Stage Game in One Cross-Silo FL: In one cross-
silo FL process, both CP and ENs selfishly choose their
strategies to maximize their own profits. We model the selfish
behaviors of the CP and ENs in the one-time slot as follows.

Game 1 (SSFL):
1) Players: CP and the set of ENs N .
2) Strategies: CP has two strategies, namely, the strategy

Y that provides the ENs the optimal reward r∗ and the
strategy N that does not provide the optimal reward r∗,

and the strategy set is Sc = (Y, N).Each EN has two
strategies, specifically, P means that the EN n works hard
on the model training task, and Q means that the EN n
slacks off in the model training task, and the strategy
set of ENs is Sn = (P, Q).

3) Objectives: CP aims to maximize its profit Uc(Sc,Sn),
and the EN n aims to maximize its profit Un(Sc,Sn).

SSFL can be defined by G = (P,Sm,Um), m ∈ P , where
P = {c, n}, c = CP, n ∈ N , is a set of players in Game 1,
Sm is the set of player m’s strategies, and Um is the profit
of player m. In SSFL, the strategy of the ENs is whether to
accept the model training task and whether to work hard for
the task, while the strategy of the CP is whether to provide
the optimal reward.

In one cross-silo FL, the profit matrix of both the CP and
EN are shown in Table II. The calculation formulas of CP and
EN are as follows:

⎧
⎪⎪⎨

⎪⎪⎩

Uc(Y, P) = y
(X t

n

)− r
(X t

n

)

Uc(Y, Q) = p ∗ y
(X t

n

)− r
(X t

n

)

Uc(N, P) = 0
Uc(N, Q) = 0

(19)

s.t. r
(X t

n

) ≥ 0, y
(X t

n

) ≥ 0, p > 0, n ∈ N ′

where Uc(Sc,Sn) represents the profit of the CP in the round t,
y(X t

n) is the utilities that the trained model generated by ENs
bring in round t, and r(X t

n) is the reward that the CP pays to
the EN n according to their data contributed X t

n in round t
⎧
⎪⎪⎨

⎪⎪⎩

Un(Y, P) = r
(X t

n

)− C
(X t

n

)

Un(Y, Q) = r
(X t

n

)

Un(N, P) = r0
(X t

n

)− C
(X t

n

)

Un(N, Q) = r0
(X t

n

)
(20)

s.t. r0(X t
n

) ≥ 0, r
(X t

n

) ≥ 0, C
(X t

n

) ≥ 0, n ∈ N
where Un(Sc,Sn) represents the profit for EN n which pro-
ceeds in round t, C(X t

n) is the incurred cost of EN n in round
t, which can be obtained by (8).

2) Nash Equilibrium Solution of SSFL: Following we
establish the Nash equilibrium (NE) of SSFL and then draw
the unique NE:

Definition 1 (Nash Equilibrium): When Sc and Sn are fixed,
if S∗c ∈ {Y, N} satisfies U(S∗c ) ≥ U(Sc) and S∗n ∈ {P, Q}
satisfies U(S∗n ) ≥ U(Sn), (S∗c ,S∗n ) is the NE in SSFL.

Backward induction can be utilized to address the NE in
Game 1. As shown in Fig. 4, the EN n chooses Q strategy to
obtain more profit when the CP does not provide the optimal
reward. When the CP provides the optimal reward, the EN n
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Fig. 4. Profit of both CP and ENs in one cross-silo FL.

decides whether to work hard or not. That is, the EN n chooses
their degree of data contribution (P, Q). Under the condition
that the CP must provide the reward r, the EN n will choose
the Q strategy. At the same time, the profit p ∗ y− r that the
EN n brings to the CP is most likely negative, so the reward r
to the EN paid by the CP is low (r < r0). The CP will choose
the N strategy to benefit more while the EN n chooses the
self-employment strategy Q. Consequently, the NE strategy of
the Game 1 is (N, Q). Namely, without proper incentives, the
game outcome in one cross-silo FL process is (N, Q), which
is called the MEC dilemma in this article.

V. INCENTIVE MECHANISM DESIGN

In this section, we formulate an incentive mechanism to
achieve the long-time aims of the CP and ENs in MEC. As
described above, both the CP and ENs are rational individu-
als, which results in the MEC dilemma. Since neither the CP
nor ENs knows at which stage the cross-silo FL terminates,
the game processes are identical with repeated games without
the final stage [57]. To solve the MEC dilemma, we intro-
duce the efficiency wage model of the infinitely repeated game
to realize a cooperative incentive model for the CP and ENs
over a long time. In this article, the dynamic repeated game
is applied to model the interactions between the CP and ENs
about contribution and rewards. We first analyze the behaviors
among the CP and ENs where the infinite time is split into
many time slots. Then, we introduce the basic process of the
proposed incentive mechanism. Finally, we evolve the dynamic
evolution process of CP and ENs reaching equilibrium by
establishing the replicator dynamic equation.

A. Infinitely Repeated Game Analysis

In this section, we explore the repeated game, i.e., the long-
term behaviors among CP and ENs in the infinite time span
with SSFL as illustrated in Fig. 5. As described above, the
game processes are identical to an infinitely dynamic repeated
game that will not end. K local iterations and one global aggre-
gation are executed in one time slot. In the infinite time span,
the CP first chooses whether to give the optimal reward r∗
to maximize its long-term total profit, then the EN chooses
whether to accept the model training task and chooses its
degree of data contribution if accepts the task according to
the reward provided by CP to maximize its long-term total

Fig. 5. Framework of the VARF incentive mechanism.

profit. It moves on to the next round after one cross-silo FL
is completed. The learning quality and learning reputation are
estimated according to historical records and transferred to
the CP. Then, the CP and ENs reselect their own strategies
based on each other’s behavior. In short, the repeated game
is a staged game in which the same stage game is repeatedly
executed over and over.

Definition 2 (Infinitely Repeated Game): Given a staged
game G, the process of infinitely repeated G game is called
repeated game G(∞, δ), where δ(δ ∈ [0, 1)) is the discount
factor of players [58] and it describes the importance of future
gains in the current stage. Moreover, for any t, before play-
ing the t-stage game, all players can see the histories of the
previous (t − 1) stage game

G(∞, δ) = (P,Sm,Um, T, δ), m ∈ P . (21)

In the repeated game G(∞, δ), S t
m (S t

m ∈ Sm) denotes
the strategy selected in stage t by the player m, and S t =
(S t

c,S t
1,S t

2,S t
3, . . . ,S t

n) is described as the strategy combi-
nation. The benefit of each player in G(∞, δ) is equal to the
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present value of the benefit of each stage. Supposed that Ui(S t)

is the benefit of the player i in stage t, the present value of
the total profit is calculated by

πi = π1 + π2δ + π3δ
2 + · · · =

∞∑

t=1

δt−1Ui
(S t). (22)

If the constant π̄ , as the long-term profit of each stage of an
infinitely repeated game, can yield the same discounted value
as the infinite profit sequence π1, π2, . . . of a certain player in
the infinitely repeated game, then π̄ is called the average return
of π1, π2, . . . The present value can be computed by (23)

πi = π̄ + π̄δ + π̄δ2 + · · · = π̄

1− δ
. (23)

According to (22) and (23), the average return is calculated
as follows:

π̄ = (1− δ)

∞∑

t=1

δt−1Ui
(S t). (24)

Thus, the present value of the CP is

Uc
(S∞c ,S∞n

) = π̄c

1− δ
(25)

where π̄c is the average return of the CP.
Then, for the EN n, its present value is

Un
(S∞c ,S∞n

) = π̄n

1− δ
(26)

where π̄n is the average return of the EN n.
The repeated game is modeled by the behaviors between

CP and ENs over an infinite time span as below.
Game 2 (Repeated Game in Infinite cross-silo FL, RGFL).
1) Players: CP and the set of ENs N .
2) Strategies: CP has two strategies in stage t, namely, the

strategy Y that gives ENs the optimal reward r∗, the
strategy N that does not give the optimal reward r∗,
and the strategy set is Sc = (Y, N).Each EN has three
strategies in stage t, specifically, P means that the EN n
accepts the task and works hard, and Q means that the
EN n accepts the task but slacks off, and the strategy
set of ENs is Sn = (P, Q).

3) Histories: The strategy profile history of CP S t
c till the

stage t and the strategy profile history of each EN S t
n

till the stage t.
4) Objectives: CP targets to maximize its long-term profit

Uc(S∞c ,S∞n ), and EN n targets to maximize its long-
term profit Un(S∞c ,S∞n ).

Theorem 1 (Folk Theorem of Infinite Repeated Game):
G(∞, δ) is an infinitely repeated game with G as a stage game,
and its benefit of NE is denoted as (a1, a2, . . . , an), and its fea-
sible benefit is denoted as (b1, b2, . . . , bn). If there is bi > ai

for any player i and δ is close enough to 1, then there must be
an subgame perfect Nash equilibrium (SPNE) path for infinite
repeated games G(∞, δ), which can realize the average return
of all players in the infinitely repeated games.

According to Theorem 1, any realizable and individually
rational strategies of the CP and ENs can be an SPNE. As
the success of cross-silo FL is determined by the long-term

Algorithm 2 VARF Incentive Mechanism Algorithm for CP
Input: the cross-silo FL task φ, the set of ENs N , the set of

the learning quality estimation of all ENs q̂, the set of the
learning reputation estimation of all ENs R̂c

Output: the optimal reward r∗(X t
n), the degree of contributing

data mt
n;

1: for t← 1 to ∞ do
2: Publish information of the task φ;
3: for n ∈ N do
4: Compute mt

n depending on q̂t
n and R̂c→n by

Eq.(18);
5: Check the history information of the EN n;
6: if mt

n > 0 and (m0
n, m1

n, . . . , mt−1
n ) > 0 then

7: Hire the EN n;
8: Compute the optimal reward r∗(X t

n) by
Eq.(29);

9: else
10: Refuse to hire the EN n;
11: end if
12: end for
13: Record and return r∗(X t

n) and mt
n;

14: end for

active and credible contribution of ENs, we typify the SPNE
that can maximize the local data contributed by high-quality
and high-reputation ENs to increase the accuracy of the global
model.

B. Basic Process of the Proposed Incentive
Mechanism (VARF)

In this article, the cross-silo FL processes with the incentive
mechanism can be built as an infinitely repeated game as fol-
lows. First, the CP chooses whether to give the optimal reward
r∗ to maximize its long-term total profit. Then, the EN n
chooses whether to accept the model training task and chooses
its degree of data contribution if accepts the task according to
the reward provided by the CP to maximize its long-term total
profit.

The CP considers whether to hire the EN for the cross-silo
FL according to the learning quality quantification and the
learning reputation estimation based on the current and histor-
ical data. If the CP determines to hire the ENs, it will compute
and prepay the matched payment to the ENs according to (29).
Then, ENs who are hired contribute their local model updates
to the CP.

The trigger strategies of the CP and ENs in the tth stage
are as follows.

CP: If the metric is greater than 0 in the previous t−1 stages
and it is greater than 0 in the t stage, the EN will be hired
and prepaid the corresponding optimal reward r∗ calculated
by (29) in stage t; otherwise, it will not be hired. The detailed
process is described in Algorithm 2.

EN: The optimal reward r∗ not only compensates for the
self-employment income r0 and the negative utility Cost but
also there are additional benefits. If the CP does not provide
the optimal reward r∗, ENs will refuse the task. ENs will
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Algorithm 3 VARF Incentive Mechanism Algorithm for ENs

Input: the subset X t
n of the local dataset for model train-

ing, the reward r(X t
n) paid by CP in round t; the

self-employment income r0(X t
n) in round t;

Output: the strategy of EN n;
1: for t← 1 to ∞ do
2: if rn > r0

n then
3: Compute q̂t

n by Eq.(14) and R̂c→n by Eq.(17);
4: Submit q̂t

n and R̂c→n to the CP;
5: if the EN is hired then
6: Compute C(X t

n) by Eq.(8);
7: Check history information of the EN n;
8: if

∑t−1
1 r(X t

n) >
∑t−1

1 (r0(X t
n)+ C(X t

n)) then
9: Choose to work hard;

10: Submit model update to the CP;
11: end if
12: else
13: Wait for next task;
14: end if
15: else
16: Choose to slack off;
17: end if
18: end for

accept the task and work hard when the optimal reward r∗ is
paid in the previous t−1 stages and in the t stage; Otherwise,
ENs would accept the task but slack off. The detailed process
is expressed in Algorithm 3.

The trigger strategy makes both CP and ENs threatened and
the discount factor δ controls a credible threat. The threat of
the CP is that once the EN slacks off, it will not employ the
EN in the next stage. The threat of ENs is that they will refuse
the task if the reward is lower than r0 and they will not work
hard if the reward r is less than r0 plus negative utility Cost.
Both threats make no CP and ENs are reluctant to violate the
trigger strategy lonely, which meets the principle of NE.

Definition 3 (Subgame Perfect Nash Equilibrium): In a
dynamic game, a strategy profile S∗ = (S∗c , S∗1, S∗2, . . . , S∗n)
composed of the strategies of CP and ENs is an SPNE if it
represents a NE of every subgame of the original game.

To guarantee the trigger strategy formulated is credible, the
combination of the trigger strategies of the CP and ENs is
required to be an SPNE. Therefore, finding the SPNE of the
RGFL is crucial in the infinitely repeated game.

Definition 4 (One-Shot Deviation Principle [59]): In an
infinitely repeated game, a strategy combination is an SPNE
when and only when each player passes the one-shot deviation
test at each stage.

In short, if no player can gain more profits by deviating
from the strategy of the original game, the strategies chosen
by all players form an SPNE. Namely, no player can benefit
by deviating from its original strategy at a certain stage and
then returning to the original strategy.

Next, we prove the trigger strategy of VARF is an SPNE.
And one-shot deviation principle is used to characterize
players’ behaviors at the SPNE. Therefore, the long-term

discounted total profit πe
h of the EN n works hard should be

higher than the long-term discounted total profit πe
s of the EN

n slacks off when performing the task in the cross-silo FL. The
long-term discounted total profit π r

h of optimal reward by the
CP should be higher than the long-term discounted total profit
π r

s that does not give optimal reward to motivate the EN to
work hard to perform tasks with high rewards. Therefore, the
following is an analysis of the effectiveness of the incentive
mechanism.

EN: For ENs, we assume the long-term profits when ENs
do not violate the trigger strategy is πe

h as

πe
h =

(
r∗(Xn)− Cost(Xn)

)+ δ × (r∗(Xn)− Cost(Xn)
)

+ δ2 × (r∗(Xn)− Cost(Xn)
)+ · · · + δt−1

× (r∗(Xn)− Cost(Xn)
)+ · · ·

=
∞∑

T=1

δT−1(r∗(Xn)− Cost(Xn)
)

= (r∗(Xn)− Cost(Xn))

1− δ
. (27)

Assuming that the ENs violate the trigger strategy in stage
t, p is the probability of the EN improving the accuracy of
model training and obtaining a high reward r∗ when the EN
slacks off in the cross-silo FL. In this case, the total profit is
πe

s as

πe
s =

(
r∗(Xn)− Cost(Xn)

)+ δ × (r∗(Xn)− Cost(Xn)
)+ · · ·

+ δt−2 × (r∗(Xn)− Cost(Xn)
)+ δt−1 × r∗(Xn)

+ δt × (p× r∗(Xn)+ (1− p)× r0(Xn)
)

+ δt+1 × (p× r∗(Xn)+ (1− p)× r0(Xn)
)+ · · ·

=
t−1∑

T=1

δT−1(r∗(Xn)− Cost(Xn)
)+ δt−1 × r∗(Xn)

+
∞∑

T=t+1

δT−1(p× r∗(Xn)+ (1− p)× r0(Xn)
)

= (1− δ)r∗(Xn)+ (1− p)δr0(Xn)

(1− pδ)(1− δ)
. (28)

If the total profit of the EN satisfies πe
h > πe

s , the EN n will
not violate its trigger strategy. Therefore, ENs choose not to
violate the trigger strategy if the optimal reward r∗ satisfies
the following conditions:

r∗n > r0(Xn)+ Cost(Xn)+ 1− δ

δ(1− p)
× Cost(Xn). (29)

CP: If the CP always provides the optimal reward r∗ satis-
fying (29) and accordingly ENs choose to work hard, the total
profit of the CP in the infinite repeated game is πc

h as shown
in (30). The total profit πc

s of the CP is 0 if the CP chooses
not to hire ENs

πc
h =

(
y(Xn)− r∗(Xn)

)+ δ × (y(Xn)− r∗(Xn)
)+ δ2

× (y(Xn)− r∗(Xn)
)+ · · · + δt−1

× (y(Xn)− r∗(Xn)
)+ · · ·

= 1

1− δ
× (y(Xn)− r∗(Xn)

)
. (30)
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Therefore, the CP will follow its trigger strategy in the
infinitely repeated game if it satisfies the condition as follows:

(y(Xn)− r∗(Xn))

1− δ
> 0. (31)

Simply put, CP will always provide the optimal reward r∗
if (y(Xn)− r∗(Xn)) > 0.

Thus, the strategy profile of CP and ENs is the SPNE of
RGFL under the constraint (29) and (31). According to (29)
and (31), we can obtain the result as follows:

y(Xn) > r∗(Xn) > r0(Xn)+ Cost(Xn)

+ 1− δ

δ(1− p)
× Cost(Xn). (32)

Therefore, the rewards of ENs can be calculated by (32),
and mt

n represents the measurement of the learning quality and
learning reputation calculated by (18)

r∗(Xn) = r0(Xn)+ Cost(Xn)+ 1− δ

δ(1− p)

× Cost(Xn)×
(
1+ mt

n

)
. (33)

According to (27) and (28), the discount factor δ in this
article is given by

δ > δ∗n =
(r∗(Xn)− Cost(Xn))− r∗(Xn)

(p× r∗(Xn)+ (1− p)× r0(Xn))− r∗(Xn)

= Cost(Xn)

Cost(Xn)+ (1− p)(y(Xn)− r0(Xn)− Cost(Xn))

(34)

where δ∗n is the threshold discounted factor of EN n to perform
the trigger strategy S∗ in Game 2. If the CP and ENs are patient
enough, that is, the discounted factor δn ≥ δ∗n , the CP and ENs
will play the trigger strategy at the SPNE.

C. Evolution Analysis

The long-term profit of the repeated game in infinite cross-
silo FL is static equilibrium. Namely, the repeated game cannot
express the dynamic evolution process of players reaching
equilibrium. To show the process of players from SSFL to
RGFL under the incentive and threat of trigger strategy, we
explore the relations between the two from the perspective
of both CP and ENs and prove the stability of the trigger
strategy in RGFL via establishing the replicator dynamic equa-
tion between CP and ENs. Suppose that x and 1 − x are the
proportions of the CP that choose Y strategy and N strategy,
respectively, while z and 1− z are the proportions of the ENs
that choose Y strategy and Y strategy separately.

1) Strategy Stability Analysis of the Cloud Platform:
According to the profit matrix shown in Table II and the profit
result calculated by the discount calculation method above,
we know that Uc(Y, P) = ([y− r∗]/[1− δ]), Un(Y, P) =
([r∗ − Cost]/[1− δ]), Uc(Y, Q) = ([p ∗ y− r∗]/[1− δ]),
Un(Y, Q) = ([r∗]/[1− δ]), Uc(N, P) = 0, Un(N, P) =
([r0 − Cost]/[1− δ]), Uc(N, Q) = 0, and Un(N, Q) =
([r0]/[1− δ]).

The expected profit when the CP gives the optimal reward
to the EN is

e1 = zUc(Y, P)+ (1− z)Uc(Y, Q)

= z
y− r∗

1− δ
+ (1− z)

p ∗ y− r∗

1− δ
. (35)

The expected profit when the CP does not give the optimal
reward to the EN is

e2 = zUc(N, P)+ (1− z)Uc(N, Q) = 0. (36)

Therefore, the average revenue of the CP population is as
follows:

ēc = x

[
z

y− r∗

1− δ
+ (1− z)

p ∗ y− r∗

1− δ

]
. (37)

The dynamic equation of the replicators of CP is

dx

dt
= x(e1 − ēc) = x(1− x)

[
z

y− r∗

1− δ
+ (1− z)

p ∗ y− r∗

1− δ

]
.

(38)

2) Strategy Stability Analysis of Edge Nodes: The expected
profits of ENs actively perform tasks are

e3 = xUn(Y, P)+ (1− x)Un(Y, Q)

= x
r∗ − Cost

1− δ
+ (1− x)

r∗

1− δ

= r∗ − xCost

1− δ
. (39)

The expected profit of ENs passively perform tasks is

e4 = xUn(N, P)+ (1− x)Un(N, Q)

= x
r0 − Cost

1− δ
+ (1− x)

r0

1− δ

= r0 − xCost

1− δ
. (40)

Therefore, the average revenue of the ENs population is as
follows:

ēn = z

(
r∗ − xCost

1− δ

)
+ (1− z)

(
r0 − xCost

1− δ

)
. (41)

The dynamic equation of the replicators of ENs is

dz

dt
= z(e3 − ēn)

= z

[
r∗ − xCost

1− δ
− z

(
r∗ − xCost

1− δ

)

− (1− z)

(
r0 − xCost

1− δ

)]
. (42)

3) Trigger Strategy TS Stability Analysis: On the basis of
evolutionary game theory, a dynamic replication system is built
for CP and ENs based on (38) and (42). The corresponding
Jacobian matrix can be expressed as shown in (43), at the
bottom of the next page.

According to (43), we can observe that the trace of the
matrix trJ < 0 and the Jacobian determinant detJ > 0 when
x = 1 and z = 1. That is, (x = 1 and z = 1) is an equilibrium
point, locally stable. At the same time, it is the evolution-
arily stable strategy of the dynamic replication system. This

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 24,2023 at 08:26:35 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: VARF: AN INCENTIVE MECHANISM OF CROSS-SILO FEDERATED LEARNING IN MEC 15127

TABLE III
COMPARISON BETWEEN EXISTING RESEARCH WITH PROPOSED SCHEME

reveals that if the CP chooses the strategy that does not give
the optimal reward, it will be punished by ENs; likewise, if
the EN chooses the strategy of passively and inefficiently per-
forming the task, then it will be punished by the CP. As a
result of being punished, the expected profit of both parties
in the game is less than the profit when the cooperation is
selected. In the infinite time horizon, all players will eventu-
ally choose the trigger strategy through Continuous learning
and adjustment. Finally, both the CP and ENs will build a sta-
ble cooperative relationship. To summarize, the evolutionarily
stable strategy of the dynamic replication system can resist the
invasion of other noncooperative strategies.

Table III summarizes the comparison between existing
research and the proposed scheme for quality, reputation,
long-term participation, and stability analysis, see the related
references for detail.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of VARF for
cross-silo FL in the cloud-edge system by simulation. We
evaluate the proposed incentive mechanism by comparing it
with several benchmarks [all trained mechanism (ATM), Bid
price first mechanism (BFM), and Positive effects mechanism
(PEM)] under different scenarios: 1) Clean data sets (CDs)
and 2) Noisy label data sets (NLDs); c) Error label data sets
(ELDs).

A. Experimental Settings

The simulation environment in this article is a server with
RTX 8000 GPU (48G). To compare with previous methods,
we perform simulations based on the data set used in [5], [24],
[25], [33], and [45], and the data set has been widely used by
many existing FL works. We simulate the algorithms by setting
k = 5, ς = 0.03, and ϕ = 0.97 after testing. The other detailed
parameter settings are shown in Table IV, in which NEN means
the number of ENs having a noisy training data set. And Nlevel
represents the noise level of the noisy ENs in the range [0, 1],

TABLE IV
PARAMETERS SETTINGS

a higher value of Nlevel indicates a higher noise level of the
ENs. This is an important consideration when designing MEC
systems because the noise level can affect the accuracy and
reliability of any ML. Therefore, it is important to develop
methods to consider the specific application or use case and
the tolerable level of noise in the data. Here, we set Nlevel
with {0, 0.3, 0.5, 1} for different scenarios to demonstrate the
tolerance of our scheme to noise, respectively.

1) Non-IID Setting: Simulating the non-IID setting is
important for evaluating the robustness and effectiveness of
FL algorithms in real-world scenarios. Here, we simulate the
non-IID setting by data partitioning.

1) Determine the Size of Data Set and the Number of
Shards: Suppose the size of the data set is N and the
number of shards is M, then the size of shards is N/M.

2) Partition the Data: Allocate subsets according to the
number of ENs N and the ratio rt ([6:5:4:3:2]). The ratio

J =
⎡

⎣ (1− 2x)
[
z y−r∗

1−δ
+ (1− z) p∗y−r∗

1−δ

]
x(1− x)

[
y−r∗
1−δ
+ p∗y−r∗

1−δ

]

0
{
(1− 2z) r∗−x∗Cost

1−δ
+ r0−x∗Cost

1−δ

⎤

⎦ (43)
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of all subsets l and the number of shards in subsets can
be computed by

a = �N/len(rt)�
b = N%len(rt)

l = rt ∗ a+ [rt
[
i] for i in range(b)

]

c = M ∗ [l
[
j] for j in range(N)

]

sum(l)
. (44)

3) Distribute Subsets to ENs: Finally, we distribute each
subset to a different EN to perform training.

2) Data Set Setting: All incentive mechanisms are trained
with the same data sets and each learning model is trained
with N nodes under three different scenarios.

1) Clean Data Sets: All ENs have unchanged training data
sets to train the model normally.

2) Noisy Label Data Sets: Among N ENs, the training
data sets of n1% of ENs are clean, but in the train-
ing data sets of other nodes, n2% of data samples
are incorrectly labeled, i.e., labels are generated by
label(d) = (label(d)+ 1) %10.

3) Error Label Data Sets: Among N ENs, the training data
sets of n3% of ENs are clean, but the training data sets
of other n4% of ENs are incorrectly labeled.

B. Benchmarks

To compare the performance of VARF with other schemes,
we design reasonable benchmarks as follows.

1) All Trained Mechanism: All the ENs are selected for
model training disregarding the data quality and the
truthfulness of ENs.

2) Bid Price First Mechanism: Under the condition that
the truthfulness of ENs is not guaranteed, ENs with the
lowest bid are preferentially selected.

3) Positive Effects Mechanism: ENs with positive effects
are selected for model training, regardless of bid, data
quality, truthfulness, and reputation of ENs.

C. Impact of Different Incentive Mechanisms

In this article, we perform four different learning tasks.
Specifically, the MLP and CNN models are trained with
MNIST and CIFAR, respectively. To conduct a fair compar-
ison, VARF and other all benchmarks adopt the Federated
Averaging algorithm for model aggregation to complete four
learning tasks. Besides, all incentive mechanisms run four
learning tasks to compare the performance of each learning
model with 100 ENs and four learning tasks in each iteration.
There are four different scenarios among the 100 ENs: 1) 100
ENs are clean; 2) the training data sets of 70 ENs are clean
but the other 30 ENs have noisy training data sets with a 30%
noisy level; 3) the training data sets of 70 ENs are clean but the
other 30 ENs have noisy training data sets with a 50% noisy
level; and 4) the data sets of 70 ENs are clean but the data sets
of the other 30 ENs are error. Each incentive mechanism runs
30 iterations, then the average accuracy and loss results of the
learning model in the cross-silo FL are plotted in Figs. 6 and 7,
respectively.

(a) (b)

(c) (d)

Fig. 6. Average model accuracy of MLP-Mnist (MM), CNN-Mnist (CM),
MLP-Cifar (MC), CNN-Cifar (CC) with different incentive mechanisms under
different scenarios: (a) CD; (b) 30% NLD; (c) 50% NLD; and (d) ELD.

(a) (b)

(c) (d)

Fig. 7. Average loss of MLP-Mnist (MM), CNN-Mnist (CM), MLP-Cifar
(MC), CNN-Cifar (CC) with different incentive mechanisms under different
scenarios: (a) CD; (b) 30% NLD; (c) 50% NLD; and (d) ELD.

We can discover that VARF achieves the highest accuracy
score compared with other all benchmarks under any scenario.
As shown in Fig. 6(a), when evaluating the CNN trained with
MNIST under CDs, ATM achieves a 73.27% accuracy score,
PEM achieves a score of 81.75% and BFM achieves a score
of 93.88%, while VARF can achieve a 96.13% accuracy score,
which can improve the accuracy score by 31.2%, 17.6%, and
2.4%, respectively. Similar observations can be made for other
learning models in other scenarios. Moreover, we observe that
the accuracy of the model will be lower when the quality
of the data set gets worse. With the same learning model,
the accuracy score of VARF is 96.13%, 95.53%, 95.49%, and
87.15% under scenarios 1)–4), respectively.
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Fig. 8. Average model accuracy of the learning model with different numbers
of clients N when 30% labels are variable under different scenarios: (a) CD;
(b) 30% NLD; (c) 50% NLD; and (d) ELD.

Fig. 9. Average model accuracy of the learning model with different numbers
of clients N when 50% labels are variable under different scenarios: (a) CD;
(b) 30% NLD; (c) 50% NLD; and (d) ELD.

Fig. 7 shows that VARF reaches the lowest loss compared
with other all benchmarks under any scenarios. As shown in
Fig. 7(a), when evaluating the CNN trained with MNIST under
CDs, the loss of ATM is 1.573, the loss of PEM is 0.83, the
loss of BFM is 0.21 and the loss of VARF is 0.13. Besides,
it’s obvious that the loss of the model will be higher when
the quality of the data set gets worse. With the same learning
model, the loss value of VARF is 0.13, 0.26, 0.38, and 0.73
under scenarios 1)–4) separately.

D. Impact of the Number of ENs N

We show how the number of ENs N affects the average
model accuracy of all the learning models after running 30
iterations under different scenarios in Figs. 8 and 9.

Figs. 8 and 9 show that the score of average model accuracy
after running 30 iterations increases with N under different
scenarios: 1) CDs; 2) 30% NLDs; 3) 50% NLDs; and 4) ELDs.
There are three major statements in this section. First of all,
the score of average model accuracy increases with N in any
scenario. Second, VARF outperforms all benchmarks in all
scenarios. Moreover, the performance of the model increases

(a) (b)

Fig. 10. Average model accuracy and loss of learning models with the
different numbers of iterations G. (a) Accuracy & iteration. (b) Loss &
iteration.

significantly with N when the data quality is low for all learn-
ing models. For instance, the accuracy score of VARF is
92.19%, 93.83%, and 93.85% in CDs when the number of
ENs N is 20, 50, and 100, respectively. And the accuracy
score of ATM, PEM, BFM, and VARF is 87.45%, 88.87%,
91.11%, and 93.85% in CDs when the number of ENs N is
100, respectively. In addition, the model accuracy performed
by VARF decreases from 93.85% in the CDs to 89.51% in the
Error data sets while the model accuracy of ATM decreases
from 87.4% in the CDs to 68.19% in the Error data sets.

E. Impact of the Number of Rounds G

We show how the number of rounds G affects the average
model accuracy and average model loss of all the learning
models after running 30 iterations under different scenarios:
1) 5 rounds; 2) 10 rounds; 3) 15 rounds; 4) 20 rounds; 5) 25
rounds; and 6) 30 rounds. Then, we plot the average model
accuracy results of the learning model in Fig. 10(a) and the
average model loss results of the learning model in Fig. 10(b).

According to Fig. 10(a), we can observe that the model
accuracy increases with G for all learning models and VARF
can achieve optimal performance. However, the model accu-
racy of ATM and PEM is only slightly improved compared
with VARF and BFM. Besides, Fig. 10(b) shows that the
model loss decreases significantly with G for VARF and
BFM while the model losses of ATM and PEM are basically
unchanged. As shown in Fig. 10, VARF performing 30 rounds
improves the accuracy score by 3.6% and reduces the model
loss by 66.7% compared to running 5 rounds.

F. Impact of Noisy Level Y

This section shows how the noisy level Y affects the average
model accuracy and average model loss of all the learning
models after running 30 iterations with different noisy level Y
under different scenarios: 1) the training data sets of 50 ENs
are clean but the other 50 ENs have noisy training data sets
and 2) the training data sets of 70 ENs are clean but the other
30 ENs have noisy training data sets.

As illustrated in Fig. 11, you can see that the model accu-
racy decreases with noisy level Y for all learning models and
VARF performs optimally with any noisy level Y under differ-
ent scenarios. Comparing Fig. 11(a) and (b), we find that the
score of accuracy can deteriorate when upgrading the number
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(a) (b)

Fig. 11. Average model accuracy of the learning model with different noisy
levels under different scenarios: (a) 50% labels are variable and (b) 30% labels
are variable.

(a) (b)

Fig. 12. Average loss of learning model with a different noise level under
different scenarios: (a) 50% labels are variable and (b) 50% labels are variable.

of noisy training data sets. Moreover, we can observe that the
model accuracy will decline dramatically when the noise level
exceeds 50%. Taking the VARF learning model as an exam-
ple, the model accuracy is 79.28% when the number of noisy
training data sets is 50 and the noisy level is 100% whereas the
model accuracy is 89.51% when the number of noisy training
data sets is 30 and the noisy level is 100%.

In accordance with Fig. 12, we discover that the model loss
improves with noisy level Y for all learning models and the
model loss of VARF remains the smallest among all learn-
ing models. Besides, Fig. 12 shows that the model loss will
improve when upgrading the number of noisy training data
sets for all learning models. For instance, the model accuracy
is 0.7 when the number of noisy training data sets is 50 and
the noisy level is 100% while the model accuracy is 0.51 when
the number of noisy training data sets is 30 and the noisy level
is 100%.

G. Evolutionary Stability

We show how the strategy of both CPs and ENs evolve with
iterations under the action of the trigger strategy. 10 CPs and
100ENs are selected as players in the evolutionary game. The
initial proportions of CPs and ENs are set as 0,4, 0.5, 0.6, and
0.7, respectively. Fig. 13(a) and (b) show the strategy selection
of CPs and ENs under the action of trigger strategy.

As illustrated in Fig. 13(a) and (b), we can find that at
the beginning of the game, there exist deviations from the
evolutionary stability strategy between CPs and ENs. After
long-term learning, all players including CPs and ENs even-
tually form a stable cooperative relationship under the trigger

(a) (b)

Fig. 13. Verification of strategy selection of CPs and ENs under the action
of trigger strategy. (a) Evolution analysis of CPs. (b) Evolution analysis of
ENs.

strategy. The final stable strategy is that the ENs choose strat-
egy P to actively participate in the task while the CPs choose
strategy Y to provide the optimal reward r∗.

VII. CONCLUSION

In this work, we propose an incentive mechanism for cross-
silo FL in MEC, VARF, which can enhance the performance
of learning tasks in cross-silo FL via motivating active and
long-term participation of high-quality and high-reputation
organizations. we estimate the learning quality and learning
reputation of organizations according to the historical learn-
ing record. We model interactions of organizations in the
long-term cross-silo FL as an infinitely repeated game. We
obtain the optimal SPNE that can select high-quality and high-
reputation organizations for participating in long-term model
training while maximizing the amount of local data for model
learning in cross-silo FL, which is a trigger strategy com-
plied with a punishment strategy. Extensive simulations under
diverse distributed learning tasks have been executed, and
simulation results show that the infinitely repeated game can
motivate active and long-term cooperation among organiza-
tions with high quality and high reputation and eventually
CPs and ENs form a long and stable cooperative relation-
ship under the trigger strategy. Meanwhile, VARF improves
the performance of learning tasks and degrades the loss of
learning tasks in cross-silo FL.

For future work, we take into consideration the combination
of VARF and blockchain to ensure the credibility of historical
learning quality and learning reputation and control access to
the final global model.
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