
Towards Distributed Collaborative Rendering
Service for Immersive Mobile Web

Liang Li, Yakun Huang, Xiuquan Qiao, Yifa Meng, Dingguo Yu, Pei Ren and Schahram Dustdar

Abstract—The offloading of rendering to remote servers in
resource-constrained devices is a promising strategy for develop-
ing mobile web-based immersive applications. However, achieving
satisfactory delay experiences in large-scale mobile web-based
immersive applications by solely offloading rendering to the cloud
or edge servers can be challenging due to congestion in the core
network and the lack of concurrent computing ability. To address
these issues, we propose a distributed and collaborative render-
ing service (DCR) framework for mobile web-based immersive
applications. The DCR framework constructs a collaborative
rendering service architecture that includes cloud, edge, and
terminal computing nodes, which can effectively alleviate the
computing and transmission pressure on remote computing nodes
and adapt to various immersive service environments. To achieve
rendering offload between computing nodes, DCR proposes an
approach of intermediate structure rendering offload based on
JavaScript Object Notation (JSON) data format, which requires
fewer computing and network resources. Additionally, the DCR
deploys a new 3D model loading engine based on rendering in-
termediate JSON data communication, which provides dynamic,
on-demand, asynchronous, and discrete rendering data services
to the mobile web browsers.

I. INTRODUCTION

THE widespread use of lightweight and cross-platform
immersive web services, such as web augmented reality

(AR) and virtual reality (VR), in mobile web-based immersive
applications and metaverse has been documented. To ensure
high fidelity and immersive services with real-time experience,
it is essential to enable low-latency and low-energy 3D model
rendering, as noted in [1]. To address this need, web rendering
engines, such as Three.js and Babylon.js, have been developed
to provide intensive rendering and are becoming the dominant
approach. However, given the resource-constrained nature of
the mobile web browser and the inefficient JavaScript com-
puting environment, the challenge lies in providing a real-time

L. Li are with Lab of Future Imaging Technology and Application Labo-
ratory of Zhejiang Province; Key Lab of Film and TV Media Technology of
Zhejiang Province; School of Media Engineering, Communication University
Of Zhejiang, Hangzhou, Zhejiang 310018, China. E-mail:liliang@cuz.edu.cn.

Y. Huang and X. Qiao (corresponding author) are with State Key Lab-
oratory of Networking and Switching Technology, Beijing University of
Posts and Telecommunications, Beijing 100876, China. E-mail:{ykhuang,
qiaoxq}@bupt.edu.cn.

Y. Meng are with Beijing Key Laboratory of Big Data in Secu-
rity&Protection Industry, Beijing 100021, China. E-mail:mengyifa@126.com.

D. Yu (corresponding author) are with Key Lab of Film and TV Media
Technology of Zhejiang Province; School of Media Engineering, Commu-
nication University Of Zhejiang, Hangzhou, Zhejiang 310018, China. E-
mail:yudingguo@cuz.edu.cn.

P. Ren is with the AI Innovation Center, Midea Group, Beijing 100015,
China. Email: renpei@midea.com.

S. Dustdar is with the Distributed Systems Group, Technische Universität
Wien, 1040 Vienna, Austria. E-mail:dustdar@dsg.tuwien.ac.at.

experience with large 3D models [2]. Despite the promotion
by the World Wide Web Consortium (W3C) standards orga-
nization of the WebGL standard, which enables 3D rendering
acceleration using native graphics cards, it remains insufficient
to render large 3D models and provide real-time interaction.

Table I provides an overview of two approaches that address
the challenge of rendering intensive 3D content on resource-
constrained mobile web. The first approach is native on-
demand rendering, which employs level of detail (LOD)
and field of view (FoV) techniques to optimize rendering
data and reduce computing resource and network bandwidth
demand [4]. While this approach can provide real-time and
accurate rendering strategies, it requires efficient cache man-
agement and complex viewport prediction, posing challenges
for mobile web developers and users. The second approach
is offloading rendering tasks to the resource-rich cloud center
and providing rendering services in streaming [5]. However,
the increasing demand for network and computing resources
due to the high concurrency of requests and the complex
computing requirements of rendering services poses significant
challenges. The limited core network bandwidth hampers the
support of computing resources in the cloud for offloading ren-
dering tasks [6]. Although low-delay edge computing services
can potentially address this issue, personalized participation
and content production requirements in immersive applications
for the metaverse have created significant differences among
users in terms of rendering computing content. These differ-
ences have presented significant challenges for rendering com-
puting offloading and data delivery. Consequently, offloading-
based rendering is limited to specific application scenarios,
making it challenging to provide services for ubiquitous large-
scale immersive applications.

With the development of 5G and Beyond 5G (B5G), mobile
edge computing and device-to-device (D2D) communication
have become key technologies that promise to enable dis-
tributed collaborative rendering of mobile web content. This
article begins by introducing the key characteristics of im-
mersive mobile web 3D services and subsequently analyzes
the critical challenges involved in achieving real-time, low-
energy consumption, and high-fidelity 3D rendering. The
article presents a distributed collaborative rendering service
mechanism (DCR) based on a Cloud-Edge-devices architec-
ture, which offers several advantages over existing computing
offloading approaches. Firstly, DCR requires less computing
resources for rendering, resulting in a smaller volume of
rendered data and reducing the dependence on network and
computing environments for computing offloading. Secondly,

This article has been accepted for inclusion in a future issue of this magazine.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on July 06,2023 at 05:29:49 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Summary of rendering techniques for the mobile web

Methods Characteristics Disadvantages

On-demand rendering

LOD
The pressure of 3D model loading and transmission is
relieved by the gradual optimization of the triangular
network structure [3].

Not suitable for the immersive mobile web, which
relies on efficient local cache resource management
and under-supported by computing resources.

FOV

Adopts progressive transmission and on-demand
loading based on the human eye viewport to achieve
efficient transmission and rendering of large
scenes. [4].

Due to the necessity of providing a real-time and
accurate on-demand loading strategy based on the
dynamic context, rendering techniques are a source of
difficulties and uncertainties for an interactive user
experience.

Rendering offloading

Cloud

The ECs of rich computing resources and scalability
provide rendering services in the form of a stream. [5]

The ability to provide adaptive services for diversified
environments is compromised because core network
congestion will affect the implementation of the
offloading of the computing.

Edge

This technique provides reliable rendering offloading
services for resource-constrained high-bandwidth and
low-latency mobile networks through edge cloud
computing resources. [6].

It is costly to deploy computing resources under
limited scalability for the high concurrency
requirements of mobile web and advanced GPU
computing.

Hybrid

This technique uses cloud-edge collaboration to
effectively supplement the limited and expensive
computing resources of the edge cloud, which
significantly improves the concurrency of mobile user
access. [7].

Over-reliance on core computing nodes and networks
will cause service interruption when core computing
nodes and organizations fail.

DCR proposes a novel approach to loading discrete rendered
data with low latency, thereby reducing the dependence on
stable network and computing resources. Finally, DCR in-
tegrates D2D collaborative computing with the cloud-edge-
devices collaborative rendering computing approach, making
it adaptable to various service environments. To validate the
feasibility of DCR, we have implemented a preliminary pro-
totype that renders complex 3D model services for the mobile
web, improving efficiency through collaborative offloading.
We evaluate the performance of the prototype and discuss
future research directions regarding immersive application
rendering offloading services.

II. CHARACTERISTICS AND CHALLENGES

This section delves into the features of rendering offloading,
which are illustrated in Figure 1. Additionally, it examines the
obstacles encountered by current methods.

A. Characteristics

1. Limited computing capability of mobile web browsers.
In order to maintain consistency of page data, the interpretation
threads of JavaScript and the GUI threads in mobile web
browsers are mutually exclusive. In accordance with this
mechanism, any thread tasks with a large pre-sequence delay
consumption in the queue can result in delays in computing
response of post-sequence threads, which may even lead to
loading blocks. This issue is particularly problematic for delay-
sensitive and high computing resource-consuming applica-
tions, such as mobile VR/AR, as loading blocks can severely
impair the user’s interactive experience. To improve the in-
tensive computing performance, WebAssembly can be used to
quickly load and instantiate precompiled code, which is much
more efficient than JavaScript interpretation computing. How-
ever, due to the mobile browser’s security mechanisms and

underlying architecture, there may be insufficient computing
resources available [8].

2. High demands for high-quality media presentation
and interaction. Immersive applications impose a higher
demand for rendering quality in 3D scenes due to their close
interaction and wider visual field [9]. To overcome the impact
of low resolution and fast motion on the user experience
caused by monocular domain and close-up interaction, ultra-
high resolution and frame rate are required [10]. However,
the use of image data with ultra-high resolution entails more
complex rendering computation and greater communication
bandwidth requirements. Thus, achieving ultra-low latency
and real-time rendering is dependent on rich computing and
network resources, and is considered a crucial factor for
rendering offloading in immersive experience services.

3. Continuous service delivery requires a stable network
environment. It is imperative for mobile web immersive ap-
plications to respond promptly to users’ motion and interaction
requests with low Motion-to-Photons Latency (MTP, less than
20ms). With frequent user interaction, immersive applications
that rely on continuous image rendering have more stringent
requirements for continuous data provision than traditional
applications. This continuous data supply is highly reliant on
stable and uninterrupted high frame rate data. The advent of
5G network services provides a chance to better fulfill the
requirements of immersive services in terms of computing
throughput and transmission delay [11]. However, mobile web
browsers face limitations in storing the presented data in local
storage hardware with larger storage capacity due to security
restrictions and lack of underlying resources. Additionally,
advance rendering based on server cache cannot withstand
the pressure of massive data capacity in multi-user scenarios
due to differences in content delivery of multi-user channels.
Therefore, mobile devices require a continuous and stable

This article has been accepted for inclusion in a future issue of this magazine.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on July 06,2023 at 05:29:49 UTC from IEEE Xplore. Restrictions apply.

network esource that supports low-latency continuous content
to ensure uninterrupted and reliable access to immersive
applications.

4. The dynamics of services eager an intelligent dis-
tributed resource orchestration. In light of their conve-
nience and universality, web services exhibit a marked degree
of randomness and spatial aggregation, particularly in the
context of mobile AR. This randomness engenders consid-
erable uncertainty with regard to the distribution of network
and computing resources available to the mobile web [10].
Notably, the rendering of these services necessitates the use
of computing nodes external to the application device, with
data exchanged via a network (e.g., a D2D communication
channel). This process is heavily reliant on the quality of
the external network and computing environment. Given the
inherent variability of network and computing resources, the
rendering of immersive mobile web services via computing
nodes is inherently complex.

B. Challenges

Rendering offloading based on computing nodes imposes
higher requirements on the network infrastructure and service
environments, such as a flexible rendering node structure,
a lightweight rendering environment, and an efficient multi-
source rendering mechanism.

1. Lack of sufficient computing and network resources
support in complex environments.

To meet the demands of high-quality media presentation and
multi-user channel interaction, rendering offloading requires
significant computing resources and ample delivery bandwidth.
Utilizing a central server allows for low latency through the
use of advanced frameworks, such as machine learning and
deep neural networks, which can provide superior performance
for a limited number of users. However, when there is a high
degree of request concurrency among users, the efficiency of
data delivery can be compromised. Decentralized rendering
based on peer-to-peer computing nodes, such as mobile de-
vices, can address this issue by providing ultra-low latency

rendering and computing offloading capabilities, dependent
upon sufficient computing nodes. Therefore, effectively de-
ploying rendering computing offload services in unfamiliar
service environments presents an important challenge for
immersive applications.

2. Low latency, high quality interaction rendering deliv-
ery. In current approaches to offloading rendering, computing
nodes transmit immersive application renderings as video
streams. Mobile web browsers must either load these streams
asynchronously or store them in cache for rendering. However,
hardware limitations may hinder mobile web browsers from
efficiently indexing and loading multimedia data that has been
remotely delivered and stored in cache. In high-frequency
interaction scenarios, mobile web browsers struggle to load
video streams with low latency, presenting significant chal-
lenges to the user’s experience. Furthermore, the convergence
of computing and rendering data from multiple synchronous
sources will pose additional obstacles to the low-latency
computing capabilities of mobile web browsers.

3. Reuse of continuous rendered data from multiple
sources. In mobile web-based immersive applications, high-
quality media presentation and interactions are necessary,
making multi-source rendering the leading solution. Multi-
source offloading rendering services requires the optimization
of data reuse between multiple computing nodes to improve
the utilization of rendered data and reduce network delivery
latency. Moreover, redundancy check mechanisms of multiple
sources can address packet loss and frame skipping caused
by network fluctuations. However, existing remote rendering
approaches in continuous video stream structures may create
challenges in multiplexing and aggregating multi-source ren-
dering computations. Firstly, stream-based data reuse relies
on efficient cache computation and adequate cache resources.
Secondly, continuous content data structures require precise
synchronization of the rendered computing data from multiple
sources.

4. Flexible network and computing resource structure.
The provision of an immersive service environment is a

Interactive
instruction

Distributed computing node

Rendering
computing

Pre-processing

Coding
compression

 Streaming push

Mobile Web AR

Mobile Web VR

S
en

de
r

R
ec

ie
ve

r

Motion capture Gyroscope

Device

Screen

Packet analyzing

Video
decoding

Audio
decoding

Cache

A
ud

io

re
nd

er
in

g

S
pe

ak
er

re

sp
on

se
S

cr
ee

n
re

sp
on

se

Sensor

Synchronizer

Decoder

N
et

w
or

k

S
ce

en

re
nd

er
in

g

C
ac

he

sc
he

du
lin

g FOV
prediction

Behavioral
perception

MTP optimization
Response

Gesture, position
and interaction Mobile web browser

Hardware

ContentBehavioral
interaction

Fig. 1. Network node-based rendering system

This article has been accepted for inclusion in a future issue of this magazine.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on July 06,2023 at 05:29:49 UTC from IEEE Xplore. Restrictions apply.

complex and highly variable process that results in dynamic
changes in the distribution of network computing nodes and
access to rendered computing data. However, the existing
central computing nodes, consisting of cloud servers and edge
servers, are affected by the bandwidth of the core network
and the resources of the core computing nodes. The effective
transfer of computing tasks from mobile web browsers to
computing nodes is contingent upon the high performance
and reliability of the network and mobile edge servers.
Unfortunately, the current distribution of computing nodes
impedes the decentralization of rendering, thereby limiting the
effectiveness of existing approaches to offloading rendering to
computing nodes. This constraint further exacerbates the chal-
lenges in achieving widespread adoption of such approaches
for the changing service environments.

III. METHODS OF THE DCR FRAMEWORK

To meet these challenges, developing a collaborative render-
ing service framework composed of multiple computing nodes
is wise. We will indicate how the proposed DCR framework
addresses these challenges.

A. Distributed collaborative rendering solution

The DCR framework offers rendering services for mobile
web-based immersive applications by means of offloading
the rendering process. The proposed solution is distinct from
current practices in several ways. First, we utilize various
computing nodes, including edge servers and mobile devices,
within the network to offload rendering and provide these ser-
vices for mobile web-based immersive applications. To address
the challenge of creating an efficient rendering environment,
we use a lightweight rendering environment based on JSON
exchange data. Second, the centralized and decentralized com-
puting nodes cooperate in providing computing services based
on the offloaded multi-node rendering service. This solution
can switch the service between different computing nodes
based on the change in the service environment, providing
a flexible network resource structure. Third, we adopt a JSON
data format that is customized to exchange rendered data
between computing nodes and application devices. With only
minimal computing resources on the web side, this data
format can reduce the burden of rendering and push images
to the multimedia elements of the web browser. Finally, in
multi-source collaborative rendering, we utilize a granularity
computing task scheduling and rendered data reused approach
to minimize the redundancy of data and the dependence on
specific computing nodes.

B. Construction of collaborative rendering offloading

The DCR framework is primarily implemented for the pur-
pose of building distributed computing nodes. In a distributed
rendering architecture, effective management of computing
nodes, task scheduling, and data exchange are crucial for ad-
dressing the pressure on centralized rendering. Consequently,
this work will elaborate on the offloading of distributed
rendering.

To begin with, computing nodes are deployed on the mobile
edge server and the mobile devices surrounding the application
device. The DCR approach establishes a rendering offloading
service using a Docker container on the mobile edge server.
This rendering offloading service functions as a microservice
on the mobile devices. The main advantage of this approach is
that the mobile browser requires minimal computing, making
it suitable for various application device hardware scenarios.

Secondly, in order to implement rendering offloading ser-
vices within the D2D communication on computing nodes
around mobile browsers, a central controller was deployed
on the edge server. To integrate new computing nodes into
the cooperative rendering network, we adopted a registration
mechanism in the central controller, which registered the
rendering computing status of the computing nodes to the
DCR.We introduced a reference approach [12] to achieve
awareness of the multi-user multiple input and multiple output
environment and cooperative rendering scheduling. Addition-
ally, we borrowed algorithms from literature [13] and uti-
lized deep neural networks and resource scheduling methods
to appropriately schedule collaborative rendering computing
services to achieve collaborative optimization of latency and
energy. However, the edge-based registration mechanism
requires a central controller to optimize the geographically
distributed computing nodes, and may not scale well for larger
distributed rendering computing due to excessive overhead and
delays caused by status reports of the computing nodes. In
such cases, optimal scheduling results can be achieved through
the coordination of cloud and edge scheduling mechanisms by
relying on sufficient computing resources of the cloud server.
Finally, computing node discovery and task allocation in the
D2D communication can be realized.

Thirdly, DCR employs a dynamic rendering offloading
scheduling strategy on the edge server, which determines
the current rendering approach and strategy. This dynamic
scheduling enables the framework to adapt to diverse network
and application devices’ computing resource environments by
adjusting the rendering and network connection approaches
accordingly. The mobile edge server is responsible for deter-
mining a context-aware rendering offloading strategy and the
appropriate data accessing approach based on the prevailing
context. To execute this policy, the following steps are taken:

• DCR employs a dynamic deployment strategy for granu-
larity rendering tasks based on the computing capability
of each computing node. Furthermore, we establish a
redundancy reused mechanism for sharing computing
resources and rendered data, taking into account the
distribution of computing nodes with services.

• In cases where the remote server’s computing resources
or network access is obstructed, DCR utilizes an end-
to-end approach to offload rendering, with data shared
within the D2D communication. Conversely, when the
server’s resources and network access are available, the
edge cloud and mobile devices collaborate to offload
rendering and share data through both the access network

This article has been accepted for inclusion in a future issue of this magazine.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on July 06,2023 at 05:29:49 UTC from IEEE Xplore. Restrictions apply.

and D2D communication.

In DCR architecture, computing nodes situated on edge
servers or mobile devices fulfill distinct roles. When network
resources are scarce, a higher degree of latency may be ob-
served in DCR computing nodes deployed on mobile devices.
Conversely, when network resources are abundant but available
mobile devices for computing offloading are limited, mobile
edge servers exhibit superior performance. In such cases, it
is advantageous to deploy on mobile devices. To optimize
performance, computing nodes can be strategically placed on
both mobile edge servers and mobile devices in proximity
to the application device, thereby establishing a redundant
mechanism for the computing nodes. This configuration allows
rendering computing offloading scheduling to swiftly adapt to
user distribution in the current service environment, ensuring
low-latency rendering computing services. Simultaneously,
in scenarios where network resources are limited and few
mobile devices surround the application device, the browser-
based rendering computing approach can promptly deliver an
immersive application rendering response. Consequently, by
implementing a dynamic computing offloading method that
encompasses browser-based rendering computing techniques,
DCR computing nodes situated on edge servers, and DCR
computing nodes deployed on mobile devices, the initial
rendering computing delay of the DCR can be rendered less
susceptible to network bandwidth fluctuations.

Finally, the offloading method presented herein utilizes a
JSON-based data format for exchanging information between
the mobile web immersive application and computing nodes.
This approach differs from traditional model loading tech-
niques as the computing nodes in DCR directly load the
model file as a model object. Due to its smaller execution
environment and direct loading capabilities, this method is
readily deployable within the microservices of mobile de-
vices. Moreover, the JSON-based data format offers several
advantages, including reduced bandwidth consumption and
increased loading efficiency, in comparison to the multimedia
stream data formats employed by existing techniques. To
facilitate seamless and uninterrupted data service between the
multi-computing nodes and the application device, DCR incor-
porates asynchronous communication and on-demand loading.
Further details on this approach can be found in Section III-C.

C. Low-MTP loading by JSON-based data
By adopting an active and continuous data service approach,

browsers can efficiently and reliably access rendered data, fa-
cilitating low latency and low energy consumption in rendering
services. Computing nodes converts JSON data to string data
and sends it back to mobile web-based immersive applications
via access and D2D communications. The rendered data is
parsed by the mobile web browser and added directly to the
scene, resulting in low latency. In DCR, interactive JSON data
is defined as a class with a vertex object list element named
’vertices’ and a face list element named ’faces’. The ’vertices’
and ’faces’ lists consist of classes that respectively describe the
normal vectors and faces of triangular meshes. Each element

of the ’vertices’ list contains the x-, y-, and z-coordinates of
a point or face’s normal vector. An element of the ’faces’ list
contains the point index of the triangular mesh, a collection of
the face’s vertices, color description, and material index. DCR
advance renders and bakes the material data on the mobile
edge server or shares rendered JSON data between computing
nodes to reduce browser computing resource consumption.
On-demand loading optimizes the textures data of the 3D
model as attributes when the browser loads. When the mobile
browser requests texture data, it sends a request to the edge
server. The edge server responds with device status data under
a registration mechanism, which enables the DCR to establish
communication links between computing devices. The mobile
browser can then access the cached data stored in the cache
of other computing nodes or the edge server. The browser
performs other rendering computations, such as lights. The key
advantage of this approach is its minimal computing demand
on the mobile web browser, making it applicable to various
application device hardware scenarios.

The rendering and loading of 3D models in mo-
bile web-based immersive applications are affected by the
web browser’s indirect computing resource scheduling and
JavaScript interpretation execution mechanism. Therefore, it
is necessary to adjust the approach to loading the 3D model
to the browser while optimizing the rendering. To achieve this,
we optimize the model data retrieval process from a simple
interface to enable asynchronous caching and on-demand load-
ing through the web browser’s multi-threading and caching.
Asynchronous browser threads and database technology are
used to cache and synchronize the model data on-demand
on the mobile web browser. The use of asynchronous threads
enables browsers to open up new loading threads besides the
main thread, allowing JavaScript to run in the background.
This approach ensures the loading thread’s independence from
other scripts and does not affect the web’s performance,
enabling the quick loading of required resources and reducing
waiting time. Consequently, multi-threaded parallel loading is
an effective way to solve the problem of excessive resource
consumption and long loading delays.

In addition, the browser database, as a local database, can
be created and used through JavaScript, providing convenient
operations such as finding an interface and establishing an
index suitable for this scenario. The combination of the
browser database and browser cache provides fast rendering
data index and services. With this approach, users who enter
the same page can directly read the corresponding model data
through the browser database among computing nodes, avoid-
ing the reliance on the network to request the corresponding
model resources. This method improves the efficiency of any
subsequent loading.

D. Collaborative and stable offloading for rendering service

To reduce the computing delay caused by repetitive tasks,
we propose a granularity computing task scheduling and
rendered data redundancy reused approach. Specifically, we
utilize DCR to preprocess or process the model in real-

This article has been accepted for inclusion in a future issue of this magazine.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on July 06,2023 at 05:29:49 UTC from IEEE Xplore. Restrictions apply.

time on the central server based on the physical structure
of 3D objects. This allows us to divide the JD model into
several model blocks, which can be encapsulated along with
business-related information (such as angle and interaction)
into fine-grained rendering task descriptors. By leveraging user
demand prediction, we can then map multiple fine-grained
rendering sub-tasks to establish the service logic of mobile
web immersive application. Assuming that the immersive
application’s specific service environment contains n indepen-
dent 3D scenes denoted by S = [S0, S1, ..., Sn−1], we can
divide the rendering of each scene into m fine-grained sub-
tasks represented by T f = [T f

0 , T
f
1 , ..., T

f
m−1]. Additionally,

we can combine the model data blocks corresponding to each
fine-grained subtask into [M0,M1, ...,Mm−1]. The rendering
task for each scene can be described as T c = [tc0, T

c
1 , ..., T

c
n−1],

where T c
i = [T f

f(i)] and T f
f(j) ∈ T

f with f(i) representing the
mapping function between the ith scene and T f . By utilizing
this approach, we can effectively reduce the computing delay
caused by repetitive tasks and optimize the rendering process
of the immersive application.

The rendering tasks’ granularity organization in the remote
cloud server is represented by a matrix A = [STi,j], where i
and j are indices that range from 0 to n− 1 and 0 to m− 1,
respectively. The symbol of subtask T f

j is expressed by STi,j
if T f

j ∈ T c
i , otherwise, it is represented as ′null′.

When the service in the regional network is triggered by
the application device, the fine-grained computing task and
the matrix A are migrated to the edge cloud for collabora-
tive control. The edge cloud assigns computing tasks to the
collaborative computing nodes based on the current scene’s
time sequence and logical relations. Once a rendering subtask
is completed by a computing node in the network, it sends
the rendered data to the application device via short-range
communication links, such as D2D. Additionally, the com-
puting node requests the edge cloud to update the computing
task state matrix A, which describes the storage index of
the current subtask rendered data (including computing node
information). During the allocation of subtask T f

i , the edge
cloud traverses the state of the jth column subtask in matrix
A. If T f

i has already been completed (i.e., the STi,j state
is the storage index of subtask computing output data), the
edge cloud notifies the application device to communicate
directly with the corresponding computing node. To render a
3D scene, DCR divides the large JD file into model file blocks
and renders them on multiple computing nodes. This enables
multiple mobile devices to collaborate on rendering a large JD
model file simultaneously, resulting in faster rendering of the
complete model. The server can merge multiple fragments of a
3D model into a complete model and return it to the browser.
Alternatively, the browser can initiate multiple requests to push
the model fragments individually to the scene, and the server
can request other model fragments in parallel to avoid the
idle state of the mobile browser while waiting for network
IO. Finally, the server executes the rendering process using an
approach based on docker or microservice.

IV. PERFORMANCE EVALUATION

This section outlines our experimental methodology that
serves three distinct purposes. Firstly, we aim to evaluate the
efficacy of the offloaded service environment that was con-
structed using the DCR to illustrate its advantages. Secondly,
we aim to verify the latency and quality of the interaction
in the rendering when the environment undergoes changes.
Lastly, we seek to verify the benefits of the rendering reuse
approach employed in the DCR.

A. Effectiveness of the collaborative rendering offloading

We aim to assess the effectiveness of different approaches,
including Browser (rendering in the browser), DCR-Edge
(employing DCR that computing nodes deployed on the edge
server), and DCR-Devices (employing DCR that computing
nodes deployed on mobile devices), by measuring the response
delays under different 3D model file sizes. To achieve this,
we utilized ten dockers on mobile devices with a 1.6 GHz and
4 GB RAM single-core processor and a mobile edge server
with six dockers as computing nodes. This setup was chosen
because mobile devices often serve multiple purposes, includ-
ing acting as computing nodes, and therefore have limited
computing resources. By utilizing low computing resources,
user participation can be enhanced without negatively affecting
other services, especially in environments where resources are
limited. The browser rendering was performed using Chrome
simulation with an 8-core CPU and 8GB RAM, and the
bandwidth of the D2D channel was set to 300 Mbps. The
response delays for each approach are presented in Table II.

TABLE II: The effectiveness in initial response delay (ms)

Model volume (MB) 1.505 4.511 10.698 22.227 32.623 53.416

Browser
τtran 80 137 447 685 903 1322

τload 430 1068 1701 2168 2892 4182

τsum 510 1205 2148 2853 3795 5504

DCR-Edge

τcom 3 4 7 8 10 13

τtran 61 188 404 930 1320 2290

τload 21 45 95 190 252 467

τsum 85 237 506 1128 1582 2770

DCR-Devices

τcom 4 4 7 12 20 35

τtran 17 54 126 266 378 656

τload 21 45 95 190 252 467

τsum 42 103 228 468 650 1158

Here, τtran, τload, and τcom denote the transmission delay,
browser loading and rendering delay, and rendering computing
offloading delay, respectively. The total delay, denoted by
τsum, is described as τsum = τload + τtran or τsum =
τload + τtran + τcom.

The results in Table II indicate that DCR is generally more
efficient in achieving an initial response than other approaches.
However, the optimization efficiency of DCR on the mobile
edge server is not significant with the increase in the model
file capacity. The advance rendering of the DCR framework
results in a 4x capacity increase compared to the original 3D

This article has been accepted for inclusion in a future issue of this magazine.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on July 06,2023 at 05:29:49 UTC from IEEE Xplore. Restrictions apply.

model, which may cause substantial delays when transmitted
between computing nodes. To overcome this limitation, DCR
can deploy computing nodes around the application device to
avoid access network blocking, as shown in the DCR-Devices
section of Table II.

Next, we verify the effectiveness of the DCR architecture
in immersive services under a 3D model volume of 10.698
MB with different application device computing capabilities.
We use the Chrome tool to simulate application devices
with different computing abilities. The delays with different
browser computing capability for each approach are presented
in Table III. As a result, DCR has lower requirements for
browser computing capability than existing methods, making it
more suitable for pervasive application devices. Consequently,
an efficient and low-latency rendering environment can be eas-
ily constructed through the collaborative rendering offloading
service of edge servers and mobile devices.

TABLE III: The delays with different browser computing (ms)

Browser computing Original 1
4

Original 1
6

Original

Browser
τload 1701 6216 9180

τsum 1886 6401 9365

DCR-Edge
τload 95 390 612

τsum 506 801 1023

DCR-Devices
τload 95 390 612

τsum 306 601 823

B. Latency and interaction quality in different services

This subsection also employs the Chrome tool to simulate
various connection bandwidths in order to examine the effec-
tiveness of DCR in different network environments. Figure 2a
illustrates that DCR deployed on edge server computing nodes
yields a worse rendering delay than browser-based rendering
when the bandwidth is low, i.e., less than 20 Mbps. This
outcome can be attributed to the advance rendering process
that generates greater data volume, as discussed previously.
To address this issue, we conducted experiments with different
numbers of mobile devices as computing nodes to evaluate the
initialization response delay. Figure 2a shows that deployment
on mobile devices results in lower latency than both browser-
based rendering and computing nodes deployed on mobile
edge servers. DCR sends the rendered data to the application
device through the D2D channel instead of the access network,
thus minimizing the impact of network bandwidth. Further-
more, as more computing nodes are deployed, the optimization
of the DCR in initialization response delay becomes more
pronounced.

The MTP is a crucial index for assessing the quality of user
experience. In this study, we utilized the stats.js tool (from
https://github.com/mrdoob/stats.js) to measure the MTP, which
is typically expressed by the interactive frame rate, of two
different approaches: the DCR framework deployed on edge
and traditional browser-based approaches. The results of our
experiments are shown in Table IV, where fmin represents

1 0 5 0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0
0

2 0 0 0
4 0 0 0
6 0 0 0
8 0 0 0

1 0 0 0 0
1 2 0 0 0
3 0 0 0 0
3 2 0 0 0
3 4 0 0 0

De
lay

 (m
s)

B a n d w i d t h (M b p s)

 D C R (e d g e s e r v e r)
 D C R (6 n o d e s)
 D C R (1 0 n o d e s)
 D C R (2 0 n o d e s)
 O r g i n a l r e n d e r i n g

(a) DCR’s delay in various network bandwidth

0 1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 6 0 %0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

D C R - E d g e

De
lay

 (m
s)

P e r c e n t a g e o f d a t a r e u s e

 L o a d i n g
 T r a n s i m i s s i o n
 R e n d e r i n g

(b) DCR-Edge with reused

0 1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 6 0 %0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

D C R - D e v i c e

De
lay

 (m
s)

P e r c e n t a g e o f d a t a r e u s e

 L o a d i n g
 T r a n s i m i s s i o n
 R e n d e r i n g

(c) DCR-Devices with reused

Fig. 2. In-depth analysis of DCR in different environments.

the minimum interactive frame rate, fmax represents the
interactive maximum frame rate, and fsta represents the stable
interactive frame rate. It indicates that DCR-Edge and browser
rendering approach achieve similar MTP scores. This outcome
can be attributed to the fact that when users request interactive
content, the animation data is rendered directly in the mobile
device cache through WebGL. In contrast, third-party servers
(such as server-based rendering approaches) provide the data
service. The advance rendered data is directly inserted into
the current scene using the ’add’ approach, thereby avoiding
the extra delay that is caused by the data stream index and
cache. Overall, these findings demonstrate that DCR provides
similar interactive frame rates to browser-based rendering
approaches, as a result of its ability to directly render data
in the mobile device cache, which bypasses the need for a
third-party server’s data service.

C. Effectiveness of the reuse from multiple sources

This subsection examines the efficacy of rendered data
reused within the DCR framework. Specifically, the model
processing module partitions the original model using a granu-
larity segmentation approach. This approach involves the reuse

This article has been accepted for inclusion in a future issue of this magazine.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on July 06,2023 at 05:29:49 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: The interactive frame rate (FPS)

Model volume (MB) 4.511 10.698 22.227 32.623 53.416

Browser
fmin 28 15 10 20 19
fmax 60 60 45 37 35
fsta 60 60 43 33 31

DCR-Edge
fmin 27 21 10 20 19
fmax 60 60 45 37 35
fsta 60 60 42 33 31

of repetitive model segmentation units within a given scene,
which are then superimposed based on semantic information.
To evaluate the effectiveness of this approach, we varied the
proportion of reusable scenes within the overall scene (i.e.,
model file ratio) and measured the initial rendering delay,
as illustrated in Figure 2b and Figure 2c. Figure 2b is the
performance of DCR’s edge with different data reuse, and
Figure 2c is the performance of DCR’s mobile devices with
different data reuse. The results indicate that the efficiency
of DCR optimization increases as the reuse ratio increases.
In real service environments, as the increase in user scale,
there is greater potential for reusing rendered data across
different mobile browsers. Therefore, DCR can offer a superior
user experience for mobile network immersive applications
compared to existing methods when involving dense users.
These findings highlight the suitability of DCR for showcasing
large-scale and complex service environments.

D. Discussion

Our approach raises several issues that we need to con-
sider in order to better understand the contribution of this
paper. Firstly, our experiment did not consider the server-
based rendering computing offloading method. This is because
in an actual service environment, the rendering computing
offloading service is typically deployed on a remote cloud
server with abundant computing resources, and may even
require a specialized software and hardware environment for
rendering computing services. However, this would require
service providers or operators to spend additional capital and
energy costs to support rendering computing offloading, which
is currently not cost-effective. Additionally, while the server-
based rendering computing method offers the advantage of
low computing offloading delay for the remote server and
low loading delay for the application device, the rendered
multimedia data from the server-based rendering computing
is much larger than that of the original 3D model and DCR
framework method. When network resources are limited, this
can cause unacceptable delays. Furthermore, the efficiency of
interactive response is also a major factor that we did not
consider when examining the server-based rendering comput-
ing offloading method. Thus, considering both service cost
and user experience, DCR method is a practical approach to
rendering computing offloading services.

Secondly, it is beneficial to integrate it with existing stud-
ies and technologies to enhance the performance of DCR.
Although these technologies are not novel, it is essential to

discuss their integration to bolster the credibility of DCR.
Optimization technologies in web browsers, such as browser
database cache and asynchronous thread communication, can
significantly improve the latency of DCR, which is discussed
in Section III-C. Moreover, DCR’s discrete data loading
approach can proficiently organize cached data to provide
users with seamless and high-quality interactive experiences.
Browser-based asynchronous communication and on-demand
loading can reduce the amount of data rendered and loaded
by the browser, further contributing to smoother user experi-
ences. When combined with DCR’s continuous data service
mechanism and discrete loading method, this approach can
produce a more polished interaction experience, surpassing
what existing rendering computing offloading methods can
achieve. However, these techniques are not reflected, so it is
challenging to evaluate their impact accurately in comparison
to other optimization methods.

Thirdly, we would like to clarify that although some works
are highly relevant to this paper, they may be relatively
complex. However, various scholars have already conducted
extensive research on these works, resulting in significant
findings. For instance, Yang Li et al. have proposed a hybrid
model of non-orthogonal multiple access (NOMA) and fre-
quency division multiple access to facilitate multi-user dual
computation offloading [14], which provides a comprehen-
sive reference model for real-time scheduling of distributed
collaborative rendering. Additionally, optimizing time delay
and collaborative energy offload computing is one of the
primary research areas in computing offload optimization.
Literature such as (e.g., [15]) has proposed more advanced
mathematical models that establish a balance between delay
and energy between the device and multi-access computing
node. Moreover, while we have adopted a relatively simple and
rough method, i.e., segmentation based on physical structure
in the reuse of rendered data, more advanced and novel
research methods exist in relevant studies, such as fine-grained
segmentation methods for 3D models and business demand
prediction. In particular, the feature extraction method using
the depth neural network for fine-grained segmentation is more
scientific and effective, which can better ensure the smoothness
of the 3D model. These works are highly significant to the
DCR framework, yet they are not our innovations, and we
have not introduced or verified them in detail in this work.

V. CONCLUSIONS AND FUTURE WORK

In this work, we propose the DCR, which provides a render-
ing service for large-scale mobile web-based immersive appli-
cations. We have made several key findings. Firstly, we have
demonstrated that increasing the number of mobile devices de-
ployed as DCR computing nodes can enhance the efficiency of
optimizing the response delay. However, we must acknowledge
the issue of user privacy protection and security that arises
when offloading computing tasks between untrusted mobile
devices. To address this concern, we propose researching
solutions such as blockchain technology or offloading between
personal mobile devices in future work. Secondly, we have

This article has been accepted for inclusion in a future issue of this magazine.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on July 06,2023 at 05:29:49 UTC from IEEE Xplore. Restrictions apply.

found that DCR computing nodes deployed on edge servers
or mobile devices play different roles. When the network
resources are insufficient, mobile devices with DCR computing
nodes will provide a shorter delay. Conversely, when the net-
work resources are sufficient, and the mobile devices available
for offloading computing are limited, mobile edge servers will
perform better. We recommend deploying computing nodes
on both mobile edge servers and mobile devices around the
application device and establishing a redundancy mechanism
for the computing nodes. This way, the offloaded rendering can
be scheduled quickly according to the user distribution in the
current service scenario to provide low latency. In scenarios
where network resources are insufficient and few mobile
devices are available, the browser-based rendering approach
can provide a quick rendering response. To make DCR less
affected by the properties of the service environment, we
propose a dynamic computing offloading approach in future
work. This approach will include browser-based rendering,
DCR edge-based rendering, and DCR mobile devices-based
rendering. By incorporating these rendering methods, DCR
can provide a more flexible and efficient rendering service for
large-scale mobile web-based immersive applications.

ACKNOWLEDGMENT

This work is supported in part by the National Natural
Science Foundation of China under Grant 62202065, in part
by the Zhejiang provincial natural science foundation under
Grant LTGG23F020001, in part by the Key Lab of Film
and TV Media Technology of Zhejiang Province under Grant
2020E10015, in part by the Project funded by China Postdoc-
toral Science Foundation 2022TQ0047 and 2022M710465.

REFERENCES

[1] C. Liu, W. T. Ooi, J. Jia, and L. Zhao, “Cloud baking: Collaborative
scene illumination for dynamic Web3D scenes,” ACM Transactions on
Multimedia Computing, Communications, and Applications (TOMM),
vol. 14, no. 3s, pp. 1–20, 2018.

[2] X. Qiao, P. Ren, S. Dustdar, L. Liu, H. Ma, and J. Chen, “Web AR:
A promising future for mobile augmented reality—state of the art,
challenges, and insights,” Proceedings of the IEEE, vol. 107, no. 4,
pp. 651–666, 2019.

[3] Z. Lv, X. Li, H. Lv, and W. Xiu, “BIM big data storage in WebVRGIS,”
IEEE Transactions on Industrial Informatics, vol. 16, no. 4, pp. 2566–
2573, 2019.

[4] Y. Yang, L. Feng, X. Que, F. Zhou, and W. Li, “Energy- and quality-
aware task offloading for WebVR service in terminal-aided mobile edge
network,” IEEE Transactions on Vehicular Technology, vol. 71, no. 8,
pp. 8825–8838, 2022.

[5] T. Kämäräinen, M. Siekkinen, J. Eerikäinen, and A. Ylä-Jääski,
“CloudVR: Cloud accelerated interactive mobile virtual reality,” in
Proceedings of the 26th ACM international conference on Multimedia,
2018, pp. 1181–1189.

[6] L. Lin, X. Liao, H. Jin, and P. Li, “Computation offloading toward edge
computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1584–1607,
2019.

[7] Y. Huang, X. Qiao, S. Dustdar, J. Zhang, and J. Li, “Toward decentral-
ized and collaborative deep learning inference for intelligent iot devices,”
IEEE Network, vol. 36, no. 1, pp. 59–68, 2022.

[8] D. Lehmann, J. Kinder, and M. Pradel, “Everything Old is New Again:
Binary Security of WebAssembly,” in 29th USENIX Security Symposium
(USENIX Security 20), 2020, pp. 217–234.

[9] X. Hou, Y. Lu, and S. Dey, “Wireless VR/AR with edge/cloud comput-
ing,” in 2017 26th International Conference on Computer Communica-
tion and Networks (ICCCN). IEEE, 2017, pp. 1–8.

[10] Y. Siriwardhana, P. Porambage, M. Liyanage, and M. Ylianttila, “A
survey on mobile augmented reality with 5G mobile edge computing: ar-
chitectures, applications, and technical aspects,” IEEE Communications
Surveys & Tutorials, vol. 23, no. 2, pp. 1160–1192, 2021.

[11] J. Du, F. R. Yu, G. Lu, J. Wang, J. Jiang, and X. Chu, “MEC-assisted
immersive VR video streaming over terahertz wireless networks: A
deep reinforcement learning approach,” IEEE Internet of Things Journal,
vol. 7, no. 10, pp. 9517–9529, 2020.

[12] C. Ding, J.-B. Wang, H. Zhang, M. Lin, and J. Wang, “Joint mu-mimo
precoding and resource allocation for mobile-edge computing,” IEEE
Transactions on Wireless Communications, vol. 20, no. 3, pp. 1639–
1654, 2021.

[13] F. Jiang, K. Wang, L. Dong, C. Pan, W. Xu, and K. Yang, “Deep-
learning-based joint resource scheduling algorithms for hybrid mec
networks,” IEEE Internet of Things Journal, vol. 7, no. 7, pp. 6252–
6265, 2020.

[14] Y. Li, Y. Wu, M. Dai, B. Lin, W. Jia, and X. Shen, “Hybrid noma-fdma
assisted dual computation offloading: A latency minimization approach,”
IEEE Transactions on Network Science and Engineering, vol. 9, no. 5,
pp. 3345–3360, 2022.

[15] D. Song, T.-B. Li, W.-H. Li, W.-Z. Nie, W. Liu, and A.-A. Liu,
“Universal cross-domain 3d model retrieval,” IEEE Transactions on
Multimedia, vol. 23, pp. 2721–2731, 2021.

Liang Li is currently a Professor at School of Media Engineering, Com-
munication University Of Zhejiang, Lab of Future Imaging Technology and
Application Laboratory of Zhejiang Province, and Key Lab of Film and
TV Media Technology of Zhejiang Province, Hangzhou, China. His research
interests lie in augmented reality, virtual reality, and services computing.

Yakun Huang is currently a Postdoctoral Researcher at the State Key
Laboratory of Networking and Switching Technology, Beijing University of
Posts and Telecommunications, Beijing, China. His current research interests
include video streaming, mobile computing, and augmented reality.

Xiuquan Qiao is currently a Full Professor with the State Key Laboratory
of Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing, China. His current research interests include the
future Internet, services computing, computer vision, distributed deep learning,
augmented reality, virtual reality, and 5G networks.

Yifa Meng is currently a senior engineer with Beijing Key Laboratory of Big
Data in Security&Protection Industry, Beijing, China. His current research
interests include system architecture design, artificial intelligence.

Dingguo Yu was born in 1976 and is the director of the Key Lab of Film
and TV Media Technology of Zhejiang Province, China. He received his M.S.
and Ph.D. degrees in computer application technology from Tongji University,
China in 2005 and 2011, respectively. His research focuses on media fusion
technology, big data and artificial intelligence for media, and so on.

Pei Ren received his Ph.D. degree in Computer Science from State Key
Laboratory of Networking and Switching Technology, Beijing University of
Posts and Telecommunications, China. He is currently working with the Midea
Group. His current research interests include machine learning, augmented
reality, edge computing, and 5G networks.

Schahram Dustdar (Fellow, IEEE) is a Full Professor of Computer Science
and is heading the Distributed Systems Research Division at the TU Wien.
He is an ACM Distinguished Scientist, ACM Distinguished Speaker, IEEE
Fellow, and Member of Academia Europaea.

This article has been accepted for inclusion in a future issue of this magazine.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on July 06,2023 at 05:29:49 UTC from IEEE Xplore. Restrictions apply.

