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Abstract 

The vision for 6G networks is to offer pervasive 

intelligence and internet of intelligence, in which the 

networks natively support artificial intelligence (AI), 

empower smart applications and scenarios in various 

fields, and create a "ubiquitous-intelligence" world. In 

this vision, the traditional session-oriented architecture 

cannot achieve flexible per-user customization, 

ultimate performance, security and reliability required 

by future AI services. 

In addition, users' requirements for personalized AI 

services may become a key feature in the near future. 

However, the traditional AI deployment based on 

cloud/mobile edge computing (MEC) has limitations 

such as low throughput, long delay, poor privacy, and 

high carbon emissions, resulting in the inability to 

provide personalized quality of experience (QoE) 

assurance. By integrating AI in the network, the 

network AI has more advantages than cloud/MEC AI, 

such as better QoS assurance, lower latency, less 

transmission and computing overhead, and stronger 

security and privacy. Therefore, this article proposes 

the task-oriented native-AI network architecture 

(TONA), to natively support the network AI. By 

introducing task control and quality of AI services 

(QoAIS) assurance mechanisms at the control layer of 

6G, the TONA can achieve the finest service 

granularity at the task level for guaranteeing every 

user’s personalized QoE. 

1 Introduction 

The traditional communications system is session-

oriented and typically provides connections between 

specific terminals or between terminals and application 

servers. Its network architecture offers a complete 

lifecycle management mechanism (such as creation, 

modification, deletion, and anchor transfer of end-to-

end (E2E) communication tunnels) and quality of 

service (QoS) assurance for sessions, aiming to 

provide connections for data transmission, support 

user mobility, and ensure user experience. To achieve 

the 6G vision of pervasive intelligence and internet of 

intelligence, support for native AI at the 6G network 

architecture level is necessary [1] [2] [3]. Unlike the 

traditional communication services, AI is a data- and 

computing-intensive process, which requires 

ubiquitous distribution, high real-time performance, 

and high security and privacy — aspects that 6G 

needs to support.  

To achieve the 6G vision of pervasive intelligence 

and internet of intelligence, the challenges and 

solutions have been provided in lots of articles [4] [5] 

[6] [7], they think the network architecture in 6G 

requires significant transformation compared to 

traditional communications systems, as normally the 

system architecture can only be re-designed in the 
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initial stage of one generation of radio network, and will 

keep unchanged in later releases. Such 

transformation will involve the introduction of new 

resources — computing, data, and algorithms — 

required by AI, and the design of real-time 

management and control mechanisms to support 

multi-node collaboration and heterogeneous 

resources collaboration, as well as security and 

privacy mechanisms for distributed AI workflows 

across multiple nodes (including terminals and 

network nodes).  

Based on the proceeding transformation, this article 

further proposes a task-oriented native-AI network 

architecture (TONA) to meet personalized AI service 

demand and requirements. This article mainly: 

(1) Introduces three-layer logical architecture of task 

management and control system, and designs 

the task lifecycle management procedures, which 

include the collaboration of multi-dimension 

heterogeneous resources (communication, 

computing, data, and algorithm) and multi-node 

at the control layer.  

(2) Defines task-specific QoAIS indicators for the 

mapping from Service Level Agreement (SLA) 

indicators — e.g., service requirement zone (SRZ) 

and user satisfaction ratio (USR) — to QoAIS 

indicators, and discusses task-level QoS 

assurance to meet individual requirements of 

different users. 

(3) Compares the network AI and cloud/mobile edge 

computing (MEC) in terms of QoAIS indicators. 
Thanks to providing the AI executing 

environments closer to UE, TONA is anticipated 

to have some advantages, such as better data 

privacy protection, lower latency, and lower 

energy consumption. 

(4) Lists some open issues, including distributed AI 

learning, mobility management, and security 

assurance. 

2 Network AI 

The cloud AI architecture has been widely used in 

the 5G era to provide centralized computing, big data 

analysis, and AI training and inference services, where 

terminals provide data, mobile networks provide 

communication channels, and clouds provide AI 

capabilities. Coordinating these independent functions 

and resources among multiple facilities provides 

effective, flexible, smooth, and stable services and 

ensures QoE is extremely difficult. For latency-

sensitive ultra-reliable low-latency communication 

(URLLC) services, MEC deploys application servers 

close to base stations and therefore has lower latency 

than cloud AI. However, the AI platform is still deployed 

at the application layer. Joint optimization of 

connection and AI resources (i.e., computing, data, 

model/algorithm) still requires cross-layer 

collaboration in MEC. Consequently, the preceding 

problems involved in cloud AI remain unresolved. 

Deploying AI functions (such as cloud and MEC) at 

the application layer leads to low throughput, high 

latency, poor privacy, and high carbon emissions. To 

address these problems, the network AI is launched to 

extend computing from the cloud to physically closer 

edges to end users. It also provides data storage and 

processing functions as well as AI capabilities inside 

the network, achieving higher security. Although this 

"device-edge-cloud" architecture with edge cloud is 

expensive to deploy, it can support compute-intensive, 

latency-sensitive, security-assured, and privacy-

sensitive applications such as interactive virtual reality 

(VR) and augmented reality (AR) games, autonomous 

driving, and smart manufacturing [7]. Therefore, it is 

becoming promising in various high-value-added 

application scenarios. 

By introducing AI in the network, 6G network AI 

applies to three scenarios (shown in Figure 1): 

Network element (NE) intelligence, network 

intelligence, and service intelligence. NE intelligence is 

the native intelligence of single nodes, e.g., core 

network (CN) or radio access network (RAN) nodes. 

Network intelligence refers to the collaboration of 

multiple intelligent NEs to achieve swarm intelligence. 

Both NE intelligence and network intelligence can be 

triggered internally or externally via open interface. 

Moreover service intelligence refers to the 6G network 

AI being provided as a service, which is generally 

triggered by external services and implemented in the 

network, without understanding the application service 

logic. Put simply, NE intelligence and network 

intelligence provide AI services for internal network 

modules, and service intelligence provides AI services 

for external third-party applications. Here, we assume 

that some network units like base stations and UEs will 

have some type of AI processor which can be used for 

themselves and the third parties. 
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Fig.1 Scenarios and requirements of 6G network AI 

 

To support the three scenarios, the 6G native AI 

network architecture should have a unified framework 

for different types of AI training and inference. For 

example, a distributed AI environment must be built on 

the 6G network. Specifically, the 6G native AI network 

architecture must be able to: (1) use various native AI 

capabilities (e.g., connection, computing, data, and AI 

training and inference capabilities) of NEs and 

terminals; (2) provide on-demand AI, computing, and 

data services for networks and third-party applications; 

and (3) guarantee the QoAIS in heterogeneous, 

dynamic, fully distributed, and other complex wireless 

environments. This is the reason that our proposed 

solution shift from a session-oriented to a task-oriented 

architecture to address the preceding challenges. 

3 Network Paradigm Change 

The TONA, as shown in Figure 2, introduces the 

orchestration and control functions as well as the 

resource layer in network AI. The control function uses 

control layer signaling to control multi-nodes (UEs, 

base stations, and CN NEs) and heterogeneous 

resources in real-time.  

 
Fig.2 Network paradigm changes 

 

We believe that the 6G network architecture 

requires the following changes in the design paradigm: 

(1) Change 1: The object to be managed and 

controlled in network are changed from sessions 

to tasks. 

(2) Change 2: The resources of the object are 

changed from one dimension to multi-dimensions, 

from homogeneous to heterogeneous. 

(3) Change 3: The object control mechanism are 

changed from session-control to task-control. 

(4) Change 4: The performance indicators of the 

object are changed from session-QoS to task-

QoS.   

3.1 Change 1: From Session to Task 

AI tasks differ from traditional sessions in terms of 

technical objectives and methods. 

In terms of technical purposes, a traditional 

communications system provides session services, 

typically between terminals or between terminals and 

application servers, to transmit user data (including 

voice). Conversely, network AI (i.e., NE intelligence 

and network intelligence) aims to provide intelligent 

services for networks and improve communication 

network efficiency. Service intelligence seeks to 

provide app-specific intelligent services for third parties. 

Thus, sessions and AI tasks have different purposes. 

In terms of technical methods, to transmit user data, 

a traditional communications service needs to 

maintain a QoS assurance mechanism for user-

oriented connection channels as well as their lifecycle 

management, such as E2E tunnels from UEs to base 

stations and then to the CN. This is necessary to 

provide QoS guarantee for the data transmission. 

Conversely, AI is a data- and computing-intensive 

service. Compared with sessions, AI introduces new 

resources, including computing (e.g., CPU, GPU, and 

network processing unit (NPU)), data (generated or 

used by AI), and algorithms (e.g., neural network 

models and reinforcement learning). Thus 6G 

networks need to introduce new resource 

management mechanisms. However, it is difficult to 

efficiently implement AI services on a single node due 

to the bottlenecks in single-point computing, data 

privacy protection, and ultra-large model storage.  

Consequently, a new collaboration mechanism in 6G 

networks is required to implement computing, 
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algorithm, and data collaboration among multiple 

nodes. Hence, sessions and AI tasks have different 

technical methods. 

These differences show that the session-oriented 

system cannot support native AI and that a new task-

oriented system needs to be designed for the new 

resource management mechanism and multi-node 

collaboration mechanism. This article defines a task 

that coordinates multi-node and multi-dimensional 

resources at the 6G network layer to achieve a given 

objective. For example, a federated learning in 

network needs the coordination of multiple nodes of 

the base station and multiple UEs, and the 

coordination of communication, AI model, and 

computing resources. 

3.2 Change 2: From single-dimension to multi-

dimension heterogeneous resources 

The traditional wireless system establishes tunnels 

and allocates radio resources for data transmission. 

Conversely, TONA implements collaboration among 

heterogeneous resources of connection, computing, 

data and model/algorithm to execute AI tasks. Take an 

AI inference task as an example. In this case, 

executors need to obtain certain resources to execute 

the tasks. Specifically, the executors need to obtain 

computing resources like computing timeslots for the 

tasks, data resources like the data collected in real-

time or external data input, and algorithm resources 

including a possible AI model such as a graph neural 

network (GNN), a convolutional neural network (CNN), 

or reinforcement learning.  

3.3 Change 3: From Session-control to Task- 

control 
Unlike session control, task management and 

control in network AI includes the following functions: 

(1) Decomposing and mapping from external services 

to internal tasks, (2) Decomposing and mapping from 

service QoS to task QoS, and (3) Providing 

heterogeneous and multi-node collaboration 

mechanisms to orchestrate and control 

heterogeneous resources of multiple nodes at the 

infrastructure layer in real-time (to implement 

distributed serial or parallel processing of tasks and 

real-time QoS assurance). For a simple service 

request, one service may correspond to or be mapped 

as one task. For a complex service request (e.g., 

integration of multiple service flows, or a service flow 

with numerous calculations), one service may be 

mapped to multiple nodes for systematic execution. 

For function (3), the execution of an AI task requires 

collaboration in two dimensions: 

Heterogeneous resources collaboration: The 

execution of a task may require some or all of the 

heterogeneous resources. For example, task 

deployment requires configuring the heterogeneous 

resources, and task execution requires scheduling the 

heterogeneous resources in real-time. 

Multi-node collaboration: First, in a traditional 

communications network, connection-specific 

computing is mainly implemented on a single NE, and 

computing sharing and collaboration are not required. 

The emergence of AI is accompanied by large-scale 

AI training, large-model AI inference, and massive 

perceptual image processing, requiring significantly 

more computing than traditional networks do. Simply 

expanding the computing capability of each NE across 

the entire network will result in high deployment costs. 

Hence, distributed computing is needed, which 

completes a task collaboratively among multiple nodes 

through shared computing. Second, as data 

ownership awareness grows, data privacy protection 

requirements become more stringent. For example, 

the raw data of User Equipment (UE) cannot be 

uploaded to networks for training. Federated learning 

solves this problem through collaborative learning and 

gradient transfer at the data layer among multiple 

nodes. Third, model training consumes substantial 

computing and storage resources to support native AI, 

and thus a good model needs to be shared within the 

network, and collaboration for models among multiple 

nodes is required. 

3.4 Change 4: From Session-QoS to Task-QoS 

Unlike previous generations of mobile networks, 6G 

networks are not just channels that serve traditional 

communications services. Different AI scenarios have 

different requirements for AI service quality. They 

demand an indicator mechanism to quantitatively or 

hierarchically convey user requirements while also 

orchestrating and controlling the comprehensive effect 

of AI resources. Therefore, this article proposes the 

quality of AI service (QoAIS). 

The QoS of traditional communication networks 

mainly considers connection-specific performance 

indicators such as latency and throughput of 

communication services [8]. In addition to these 

traditional communication resources, 6G networks will 

introduce new resources such as computing, algorithm, 

and data, requiring an extension of evaluation 

indicators. At the same time, with the implementation 

of "Carbon Neutrality" and "Peak Carbon Dioxide 

Emissions" policies, the global AI industry's attention 

on data security and privacy, and users' increasing 

requirements for network autonomy, users will focus 

on more than just performance indicators in the future. 

The requirements on aspects such as overhead, 

security, privacy, and autonomy will increase, and 

these aspects will become new dimensions for 

evaluating QoS. Consequently, the QoAIS indicator 

system needs to be extended from the existing 

indicators during the initial design [9]. 

For example, the QoAIS indicators for AI training 

services are as follows: 
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(1) Efficiency: efficiency indicator boundary, training 

duration, generalization, reusability, robustness, 

explainability, consistency between the loss 

function and optimization objective, and fairness 

(2) Overhead: storage overhead, computing 

overhead, transmission overhead, and power 

consumption 

(3) Security: storage security, computing security, 

and transmission security 

(4) Privacy: data privacy, and algorithm privacy 

(5) Autonomy: fully autonomous, partially 

autonomous, and manually controllable 

QoAIS is an essential input for the network AI 

orchestration and management system and control 

functions. The orchestration and management system 

decomposes and maps QoAIS to generate QoS 

requirements of AI tasks, and then maps the task QoS 

to QoS requirements of multi-dimensional 

heterogeneous resources. The management, control, 

and user plane mechanisms are designed to ensure 

continuous QoAIS assurance. 

4 Architecture and Key Technologies 

This section describes the logical architecture and 

deployment options of TONA, and QoAIS details. 

4.1 Logical Architecture of TONA 

First, we introduce fundamental basic concepts in 

wireless network. A communications system consists 

of a management domain and a control domain. The 

Operations Administration and Maintenance (OAM) 

deployed in management domain is used to operate 

and manage NEs through non-real-time (usually within 

minutes) management plane signaling. The control 

domain is deployed on core network (CN) NEs, base 

stations, and terminals, and features with real-time 

controlling signaling (usually within milliseconds). For 

example, an E2E tunnel for a voice call can be 

established within dozens of milliseconds by control 

signaling. 

Unlike the centralized, homogeneous, and stable AI 

environment provided by the cloud, the network AI 

faces the following technical challenges when 

embedded in the wireless networks: (1) AI needs to be 

distributed on numerous CN NEs, base stations, and 

UEs. Therefore, it is necessary to consider how to 

manage the massive number of nodes efficiently in the 

architecture design. (2) The computing, memory, data, 

and algorithm capabilities of different nodes vary 

significantly, requiring the architecture design to also 

consider how to efficiently manage these 

heterogeneous nodes efficiently. (3) The dynamic 

variation of the channel status and the computing load 

need to be factored into the architecture design. 

 

Fig.3 Logical architecture of TONA 
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To address the aforementioned challenges, TONA 

includes two logical functions, as shown in Figure 3: (1) 

AI orchestration and management, called Network AI 

Management & Orchestration (NAMO); and (2) task 

control. NAMO decomposes and maps AI services to 

tasks and orchestrates the AI service flows. It is not 

performed in real-time and is generally deployed in the 

management domain. Task control introduces the 

Task Anchor (TA), Task Scheduler (TS), and Task 

Executor (TE) functions in the control domain in three 

layers. This layered design strikes a balance between 

the task scope and real-time task scheduling, and 

effectively manages the numerous, heterogeneous 

nodes and aware of dynamic change of 

heterogeneous resources (e.g. channel status and 

computing load). 

The following describes the detailed functionalities 

of TA, TS, and TE. 

TA manages the lifecycle of tasks (including 

deploying, starting, deleting, modifying, and monitoring 

tasks) based on task QoS requirements. It also 

implements collaboration among heterogeneous 

resources to guarantee coarse-grained QoS in the 

initial deployment phase. 

TS controls and schedules tasks in the task 

execution phase. It consists of the information 

collection and resource management modules. 

Information collection requires that TS senses the 

computing load, data processing capabilities, 

algorithm models being used, and channel conditions 

on a plurality of nodes in real-time. Based on this 

information, TS has a more real-time resource 

management capability than TA. For example, when 

the network environment changes, TS adjusts AI 

models and data processing functions or schedules 

connection and computing resources in real-time to 

achieve timely QoS assurance. 

TE is responsible for task execution and possible 

service data interaction. For example, federated 

learning needs to transfer intermediate gradient 

information among multiple nodes. 

4.2 Deployment Architectures 

The statuses of TEs (e.g., the CPU load, memory, 

electricity, and UE channel status) change in real-time. 

As such, deploying TA and TS close to each other can 

reduce the management delay. According to the 

design logic of wireless networks, the CN and RAN 

need to be decoupled as much as possible. For 

example, the CN should be independent of RAN Radio 

Resource Management (RRM) and Radio 

Transmission Technology (RTT) algorithms. Therefore, 

this article recommends that TA/TS be deployed on 

RAN and CN, named RAN TA/TS and CN TA/TS, 

respectively. This way will allow TA to manage TEs in 

real-time flexibly. Four deployment scenarios of TONA 

are shown in Figure 4 to describe the necessity and 

rationality of CN TA and RAN TA. These scenarios are 

only examples — there may be other deployment 

scenarios and architectures. 

Assume that TA, TS, and TEs are deployed in RAN 

to perform federated learning between the base station 

and UEs. Considering the 6G architecture is 

undetermined, this article reuses the 5G RAN 

architecture for reference. A gNodeB is a 5G base 

station, which can be deployed in standalone mode or 

by separating the centralized unit (CU) from the 

distributed units (DUs). In the latter mode, the CU may 

be deployed on the cloud for non-real-time signaling 

control and data transmission. The DUs may be 

deployed closer to UEs for real-time resource 

allocation, data transmission and retransmission. 
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Fig.4 Four deployment scenarios of TONA 

 

Scenario 1: gNodeB + UEs. In this scenario, the 

gNodeB serves as both TA and TS, and the UEs serve 

as TEs. Here, a UE is a computing provider and task 

executor, which accepts task assignment and 

scheduling from the gNodeB. The Uu interface and 

Radio Resource Control (RRC) layer between the 

gNodeB and the UE can be enhanced to support task 

controlling and scheduling purposes. 

Scenario 2: CU + DUs. In this scenario, the CU serves 

as both TA and TS, and the DUs serve as TEs. Here, 

a DU is the computing provider and task executor. The 

F1 interface and F1-AP layer between the CU and the 

DU can be enhanced to support task controlling and 

scheduling purposes. 

Scenario 3: CU + DUs + UEs. In this scenario, the CU 

serves as TA, the DUs as TSs, and the UEs as TEs. 

Here, a UE is a computing provider and task executor, 

and the CU is the task manager. A DU observes a task 

allocated by the CU to UEs, and performs 

heterogeneous resources scheduling and real-time 

QoS guarantee. This scenario separates TA from TSs. 

TSs are deployed lower than TA is; TSs can therefore 

acquire the status of TE heterogeneous resources 

more quickly to achieve real-time task QoS monitoring 

and rapid adjustment of heterogeneous resources. 

The Uu interface and RRC/Medium Access Control 

(MAC) layer between the CU/DU and the UE can be 

enhanced to support task controlling and scheduling 

purposes. 

Scenario 4: CN + gNodeB + UEs. In this scenario, the 

CN serves as TA, the gNodeB serves as TS, and the 

UEs serve as TEs. Here, a UE is the computing 

provider and task executor. The Non Access Stratum 

(NAS) interface and NAS layer between the CN and 

the UE can be enhanced to support task controlling 

purposes, and the Uu interface and RRC/MAC layer 

between the gNodeB and the UE can be enhanced to 

support task scheduling purposes. 

In this example, TA, TS, and TE are only logical 

functions, which may be deployed on the same or 

different nodes depending on the scenarios. Logically, 

a single node may have multiple functions (any 

combination of TA, TS, and TE). 

4.3 Task QoS Assurance 

To guarantee QoAIS, the aforementioned 

hierarchical management and control architecture is 

implemented through three-layer closed-loop 

management. The TS layer monitors and optimizes 

the heterogeneous resources in real-time to ensure 

task QoS within TA resource configurations. When the 

task QoS guarantee is beyond the range of the TS 

layer (e.g. the computing resource controlled by the TS 

is not sufficient for a task, the TS should report to TA 

to allocate more computing resource to guarantee the 

QoS of this task), the TA layer modifies the overall 

resource configuration. For example, the TA layer 

adjusts the network nodes involved in the task and 

replaces the model or data warehouse. When the task 

QoS guarantee is beyond the range of the TA layer, 

NAMO performs optimization by changing the anchor 

position of an AI task or decomposing the mapping 

between AI services and AI tasks. 
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Table 1 lists the mapping between the QoAIS and 

resource QoS indicators. The QoAIS indicators are 

decomposed into task QoS indicators and then 

mapped to resource QoS indicators, which jointly 

guarantee the QoAIS at the management, control, and 

user planes. The QoS indicators in each resource 

dimension are classified into indicators suitable for 

quantitative evaluation (such as resource overheads) 

and qualitative evaluation (such as security level, 

privacy level, and autonomy level). For the indicators 

suitable for quantitative evaluation, the quantization 

solutions are mature or easy to formulate, such as 

training duration, algorithm performance boundary, 

computing precision, and resource overheads. 

However, some other indicators (e.g., model 

robustness, reusability, generalization, and 

explainability) cannot be evaluated quantitatively. 

Therefore, we need to consider indicators that reflect 

user requirements and introduce them by phase. 

 

Table 1. Mapping between QoAIS indicators and resource QoS indicators in the AI training service 

QoAIS Indicator Resource- 

specific 

Quantitative Indicator Non-quantitative Indicator 

Performance indicator 

boundary, training 

duration, generalization, 

reusability, robustness, 

explainability, 

consistency with 

optimization objective, 

and fairness 

Data Feature redundancy, integrity, 

data accuracy, and data 

preparation duration 

Sample space balance, 

integrity, and sample 

distribution dynamics 

Algorithm Performance indicator 

boundary, training duration, 

convergence, and optimization 

objective matching degree 

Robustness, reusability, 

generalization, explainability, 

and fairness 

Computing Computing precision, duration, 

and efficiency 

None 

Connection Bandwidth and jitter, delay and 

jitter, bit error rate and jitter, 

and reliability 

None 

5 Task Procedures 

From the E2E procedure perspective, NAMO 

submits the AI service request to TA for execution after 

receiving an external service request. The E2E 

procedure is as follows: 

(1) Generate or import an AI use case, which is an AI 

service request submitted by a user to the 

network. This use case may call one or more 

types of network AI services, such as AI training, 

verification, and inference. 

(2) Decompose the use case into one or more AI 

services. 

(3) Decompose an AI service into one or more AI 

tasks (AITs), and decompose the AI service 

QoAIS into the AI task QoS. 

(4) Determine the anchor position of an AIT. 

(5) Decompose the task QoS into resource QoS 

requirements, and specify the heterogeneous 

resources required by the AIT. 

(6) Determine and configure the heterogeneous 

resources required by the AIT. This involves 

selecting nodes (those that participate in 

computing and provide data and 

algorithms/models), establishing connections 

between nodes, and updating the configurations. 

(7) Among the selected nodes, determine and adjust 

the computing allocation in real-time, optimize 

the communication connection quality, collect the 

required data, and replace or optimize the 

algorithms/models. This is necessary to ensure 

the task QoS and further guarantee the QoAIS. 

The management layer has poor real-time 

performance. Although it can obtain a wide range of 

network information, such information is coarse-

grained. Furthermore, the management layer cannot 

obtain real-time information about radio links and 

terminal resources. Conversely, the control layer has 

good real-time performance. However, while it can 

obtain accurate information, the range of this 

information is limited. Hence, some functions are 

suitable for the management or the control layer, and 

others may be achieved through the collaboration of 

both layers. 

6 Advantage Analysis 

Compared with cloud/MEC AI, the TONA and 

QoAIS have the following advantages (summarized in 

Table 2) in meeting users' customized AI service 

requirements: 

(1) QoAIS assurance 

Dynamic wireless environments require joint 

optimization of the heterogeneous resources 

(connection and three AI resources) to achieve 

precise QoAIS assurance. In TONA, all 

heterogeneous resources are inside the network and 

can perceive each other. Furthermore, a real-time 

(within milliseconds) collaboration mechanism is 
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designed at the control layer. Conversely, the 

cloud/MEC AI lacks a collaboration mechanism 

between the communication resources and the three 

AI resources, meaning that these resources cannot 

observe each other in real-time. Generally, they 

observe each other through the management layer 

(with non-real-time capability openness) or the 

application layer (within seconds or minutes), which 

cannot adapt to dynamic wireless environment 

changes in real-time, and cannot guarantee QoAIS. 

Take device-cloud joint AI training as an example 

[10] [11], the Cloud AI cannot be aware of the 

connection's real-time status to adjust the 

heterogeneous resources and thus cannot provide 

customized training solutions for users with different 

connection performances. Meanwhile, for TONA, the 

network detects environment changes (such as 

terminal movement, disconnection, and burst 

interference) in real-time and quickly adjusts the joint 

training solution. For example, in TONA the network 

can change the split learning [12] [13] point to reduce 

the intermediate data size when the UE is far away 

from the base station. Thus, QoAIS can be achieved 

for customized AI training services. 

Take device-cloud computing offloading as an 

example. If a terminal's local computing resource 

does not meet the requirements of computing-

intensive services, cloud/MEC AI offloads some 

computation to the cloud. During the execution of 

computing tasks, the computing resource utilization 

of terminals changes in real-time (within milliseconds). 

The non-real-time collaboration of cloud AI (within 

seconds or minutes) cannot trace users' computing 

requirements in real-time, nor can it promptly offload 

computing to the cloud. As such, this approach fails 

to meet users' customized QoAIS requirements. On 

the other hand, for TONA, during task execution, 

TONA can detect the dynamic changes of computing 

loads on terminals in real-time and promptly adjust 

the computing resource allocation, calculation 

precision, and serial or parallel computing mode on 

the network. As such, this approach can ensure 

QoAIS for customized computing offloading services. 

(2) Latency 

TONA computing is distributed on NEs closer to 

UEs or even directly on UEs to process data locally. 

This not only successfully achieves real-time and 

low-latency AI services, but also significantly reduces 

data transmission. In the cloud/MEC AI mode, a large 

amount of data needs to be transmitted to the 

cloud/MEC for training, meaning that E2E data 

transmission takes longer to complete. 

Take joint device-cloud AI inference as an example 

[14] [15]. Cloud/MEC AI transmits data from devices 

to the cloud, performs real-time training/interference, 

and transmits the results back to devices. The long 

transmission distance causes high latency, making it 

difficult to meet the requirements of ultra-low latency 

scenarios such as Industrial Internet of Things (IIoT), 

even if the application server is deployed on the MEC. 

By contrast, for TONA, data processing is terminated 

within a network, the E2E transmission latency is as 

low as 1 millisecond, enabling ultra-low latency. 

(3) Overhead 

TONA can optimally allocate resources through the 

real-time collaboration mechanism of the 

heterogeneous resources, maximizing the overall 

resource utilization and reducing the transmission 

and computing overheads. Conversely, because the 

cloud/MEC AI cannot adapt to dynamic environments, 

it allocates resources based on only the maximum 

resource consumption to ensure QoAIS. As a result, 

the overall resource utilization is low, and the 

resource overhead is high. 

Take joint device-cloud AI training as an example. 

For Cloud/MEC AI, long device-cloud distance 

causes large transmission overheads. On the other 

hand, for TONA, data is processed nearby, effectively 

reducing data transmission overheads. 

Furthermore, Cloud/MEC AI cannot measure 

quality of wireless connections in real-time. Different 

connections status of TEs lead to low AI efficiency 

and increase computing overhead. In federated 

learning, for example, straggler terminals may be 

abruptly disconnected from the network or cause a 

long delay. If a large amount of straggler data is 

discarded, the number of training samples is reduced, 

affecting the convergence efficiency of the current 

round. If a long delay occurs, the iteration time of the 

current round is prolonged. However, for TONA, the 

network can detect each UE’s channel status and set 

a longer local training period for the straggler to 

reduce the total reporting numbers when the UE‘s 

data rate is low. This improves the overall AI training 

efficiency and reduces the computing overhead. 

(4) Security 

TONA has native data security and privacy 

protection capabilities because it processes data 

inside the network. Unlike TONA, the cloud/MEC AI 

protects data privacy only at the application layer. 

 

Table 2. Performance comparison of cloud/MEC AI and TONA 

 Cloud/MEC AI TONA 

QoAIS 
Difficulty to guarantee the personalized 

QoAIS. 

Easy to guarantee the personalized QoAIS. 

Latency 
Higher latency due to out-network 

processing (e.g. second/minute level). 

Lower latency due to in-network processing 

(e.g. millisecond level). 
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Resource 

overhead 

Larger transmission overheads. Less transmission overheads. 

Larger computation overheads. Less computation overheads. 

Security Data privacy is ensured by the application 

layer. 

Native security and privacy via in-network 

processing. 

7 Open Research Issues 

Although the industry has reached a preliminary 

consensus on 6G native AI networks, some efficient 

support and standardization methods need further 

research and development. 

(1) Distributed AI learning: Distributed AI learning 

involves collaboration and interaction among 

multiple TEs. The definition of the collaboration 

mechanisms and interaction information vary 

according to algorithms. Therefore, we need to 

study how to natively and efficiently support 

distributed AI from the architectural perspective. 

(2) Mobility: Assuming a UE participates in the task 

process (e.g., the UE is a participant in task 

execution), when the UE moves from one base 

station to another, how to guarantee the service 

continuity for AI tasks is a critical problem (e.g., 

how to achieve zero-millisecond interruption). 

(3) Security assurance: Considering the distributed 

deployment of TEs in TONA, the access of 

multiple heterogeneous devices and distributed 

AI learning pose significant challenges to network 

AI security. Therefore, for the distributed 

communication and learning of TEs, the 

implementation of port monitoring, privacy 

protection and security isolation is an important 

research direction to ensure the security of TONA. 

8 Conclusion 

To meet the 6G vision of pervasive intelligence and 

internet of intelligence, TONA is proposed to support 

efficient collaboration of heterogeneous resources and 

multi-node in wireless networks, and to provide new 

services in the form of tasks at the network layer. By 

bringing new dimensions of resources to 6G networks 

(i.e., computing, data, and model/algorithm), this 

architecture enables the SLA assurance of computing 

related services such as AI services, further explores 

the application scenarios of 6G networks, and enriches 

the value of wireless networks. Furthermore, the task 

concept and TONA proposed in this article support not 

only AI tasks, but also sensing-, computing- and data 

processing-specific tasks. 
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