
Task Computation Offloading for Multi-Access
Edge Computing via Attention Communication

Deep Reinforcement Learning
Kexin Li , Xingwei Wang , Qiang He , Mingzhou Yang,

Min Huang ,Member, IEEE, and Schahram Dustdar , Fellow, IEEE

Abstract—This article investigates how to enhance the Multi-access Edge Computing (MEC) systems performance with the aid of

device-to-device (D2D) communication computation offloading. By adequately exploiting a novel computation offloading mechanism

based on D2D collaboration, users can efficiently share computational resources with each other. However, it is challenging to

distinguish valuable information that truly promotes a collaborative decision, as worthless information can hinder collaboration among

users. In addition, the transmission of large volumes of information requires high bandwidth and incurs significant latency and

computational complexity, resulting in unacceptable costs. In this article, we propose an efficient D2D-assisted MEC computation

offloading framework based on Attention Communication Deep Reinforcement Learning (ACDRL), which simulates the interactions

between related entities, including device-to-device collaboration in the horizontal and device-to-edge offloading in the vertical.

Second, we developed a distributed cooperative reinforcement learning algorithm that includes an attention mechanism that skews

computational resources towards active users to avoid unnecessary resource wastage in large-scale MEC systems. Finally, to improve

the effectiveness and rationality of cooperation among users, we introduce a communication channel to integrate information from all

users in a communication group, thus facilitating cooperative decision-making. The proposed framework is benchmarked, and the

experimental results show that the proposed framework can effectively reduce latency and provide valuable insights for practical design

compared to other baseline approaches.

Index Terms—Multi-access edge computing, reinforcement learning, task computation offloading, user cooperation

Ç

1 INTRODUCTION

THE number of Internet of Things (IoT) devices and applica-
tions has increased dramatically and has opened a new era

inwhich user equipment acts as both a data producer and con-
sumer [1]. However, many user equipments can hardly afford
the computing and memory resources demanded to process

complex compute-insensitive tasks. Recently, Multi-access
Edge Computing (MEC) technology has been proposed to
solve this problem by distributing developing computation,
storage, and other resources at edge nodes of the network,
such as base station and access point [2]. The new computing
paradigmbrings computational resources closer to user equip-
ment avoiding sending data to the network and therefore can
support ultra-low latency and high computational applica-
tions. Furthermore, users can offload their computation-inten-
sive tasks to the resource-rich remote clouds via wireless
access. It gives rise to the challenging problem of how to opti-
mize computation resources. Computation offloading service
provides a feasible scheme for supporting MEC such that the
demands of the optimization problems aremet [3].

In the early stage of developing MEC computation off-
loading technology, some existing studies focus on minimiz-
ing the long-term time latency and energy consumption in a
centralizedmanner [4], [5]. These approaches to coordination
equipment need the global perspective to monitor the whole
system status information, and obtain the offloading decision
by centralized training. However, with the increase of intelli-
gent devices and the emergency of computation applications,
such as Virtual Reality/Augmented Reality (VR/AR), these
approaches will increase the executing cost and communica-
tion cost, resulting in poor system performance. Meanwhile,
the computing power of edge servers is usually limited, and
these methods fluctuate seriously due to the influence of the
network, so it may not be feasible to offload all tasks to edge

� Kexin Li and Mingzhou Yang are with the College of Computer Science
and Engineering, Northeastern University, Shenyang 110819, China.
E-mail: neulikexin@stumail.neu.edu.cn, yangmingzhou11@163.com.

� Xingwei Wang is with the College of Computer Science and Engineering
and State Key Laboratory of Synthetical Automation for Process Indus-
tries, Northeastern University, Shenyang 110819, China.
E-mail: wangxw@mail.neu.edu.cn.

� Qiang He is with the College of Medicine and Biological Information
Engineering, Northeastern University, Shenyang 110169, China.
E-mail: heqiang@bmie.neu.edu.cn.

� Min Huang is with the College of Information Science and Engineering,
Northeastern University, Shenyang 110819, China.
E-mail: mhuang@mail.neu.edu.cn.

� Schahram Dustdar is with the Distributed Systems Group, TUWien, 1040
Vienna, Austria. E-mail: dustdar@dsg.tuwien.ac.at.

Manuscript received 18 July 2022; revised 27 October 2022; accepted 25
November 2022. Date of publication 25 January 2023; date of current version
8 August 2023.
This work was supported in part by the National Key R & D Program of China
under Grant 2022YFB4500800; in part by the National Natural Science Foun-
dation of China under Grants 62032013 and 61872073; in part by the LiaoN-
ing Revitalization Talents Program under Grant XLYC1902010.
(Corresponding author: Xingwei Wang.)
Recommended for acceptance by F. Delicato.
Digital Object Identifier no. 10.1109/TSC.2022.3225473

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 4, JULY/AUGUST 2023 2985

1939-1374 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 31,2023 at 09:32:56 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3511-2582
https://orcid.org/0000-0003-3511-2582
https://orcid.org/0000-0003-3511-2582
https://orcid.org/0000-0003-3511-2582
https://orcid.org/0000-0003-3511-2582
https://orcid.org/0000-0003-2856-4716
https://orcid.org/0000-0003-2856-4716
https://orcid.org/0000-0003-2856-4716
https://orcid.org/0000-0003-2856-4716
https://orcid.org/0000-0003-2856-4716
https://orcid.org/0000-0002-1820-6141
https://orcid.org/0000-0002-1820-6141
https://orcid.org/0000-0002-1820-6141
https://orcid.org/0000-0002-1820-6141
https://orcid.org/0000-0002-1820-6141
https://orcid.org/0000-0003-3793-968X
https://orcid.org/0000-0003-3793-968X
https://orcid.org/0000-0003-3793-968X
https://orcid.org/0000-0003-3793-968X
https://orcid.org/0000-0003-3793-968X
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
mailto:neulikexin@stumail.neu.edu.cn
mailto:yangmingzhou11@163.com
mailto:wangxw@mail.neu.edu.cn
mailto:heqiang@bmie.neu.edu.cn
mailto:mhuang@mail.neu.edu.cn
mailto:dustdar@dsg.tuwien.ac.at

servers [6]. Therefore, these centralized methods are not suit-
able for the dynamic MEC environment, especially those
with delay-sensitive tasks.

A promising solution is to offload tasks through Devices-
to-Devices (D2D) links by utilizing the computing resources
of other user equipment, called D2D-assisted computation
offloading scheme. It is shown in [7] that the D2D-assisted
scheme can effectively improve the utilization of idle resour-
ces in the network, and at the same time, offloading tasks to
other users proactively can substantially reduce the pressure
on edge servers during peak-time traffic. Furthermore, a
D2D-assisted scheme can coordinate channel interference in
a time-varying communication environment and allow users
tomake intelligent offloading decisions in a distributedman-
ner. Specifically, in case of multiple user equipment request
computing services from collaborative computing between
users instead of the same edge server.

Most existing D2D-assisted edge computation offloading
schemes focus on the optimization or a game-theoretical
method, in which computation offloading and resource allo-
cation problems are combined and formulated asmixed-inte-
ger linear programming problems [8], [9], [10], [11], [12].
Besides, most of the literature usually solves the problem
within a time slot, e.g., only focusing on the channel condi-
tions within a time slot. However, they have to update the
channel conditions and resolve the offloading and resource
allocation problems when the channel conditions change. It
brings enormous computational overhead to finding optimal
decisions, especially for dynamic decision-making problems
like the Internet of Vehicles (IoV). Existing methods are time-
consuming and no longer suitable for dynamic environment.
Although some studies have attempted tomodel the problem
as aMarkovian problem, the explosion of dimensionality and
indeterminate transition probabilities increase the complex-
ity of optimization. Meanwhile, Multi-agent Deep Reinforce-
ment Learning (MADRL) has attracted much attention as the
most popular machine learning technique, such as Multi-
Agent Deep Deterministic Policy Gradient (MADDPG) [13],
Distributed Multi-Agent Policy Gradient (DiMA-PG) [14]. In
addition, high-performance computer technology enables
MADRL to realize the ability to handle dynamic and complex
tasks [15], [16], [17]. Several pioneering research works have
employed MADRL techniques to address D2D-assisted
computational offloading, as it excels in copingwith dynamic
environments and making sequential decisions under the
uncertainty of multiple agents [18], [19], [20], [21]. Although
thesemethods canwell capture the features of mixed cooper-
ative-competitive relationships among users and are highly
robust and scalable, all the above works are based on the pre-
defined communication of the D2D-assisted architecture and
assume that all users share global information. In a dynamic
user environment, the predefined D2D-assisted architecture
cannot distinguish the valuable information that facilitates
collaborative decision-making from a large amount of glob-
ally shared information. In this case, communication cannot
be helpful and can hinder user collaboration. In addition,
transferring large amounts of information requires high com-
munication costs and can incur significant system latency
and computational complexity.

Inspired by the above research, we propose an Attentions
Communication Deep Reinforcement Learning (ACDRL)

algorithm, an innovative paradigm focused on computa-
tional offloading that can handle dynamicD2D-assisted com-
munication architectures, especially under a partially
observable environment in a dynamic user environment.
First, this system model considers inseparable tasks and
builds a D2D-assisted horizontal model to simulate the rela-
tionship between different user entities, including horizontal
D2D communication among users and vertical communica-
tion between users and edge nodes. A queue system is
applied to estimate the offloading process of tasks. Unlike the
predefined D2D-assisted communication architecture in pre-
vious work, the state of the D2D-assisted architecture is
timely changing in this system. Second, for ACDRL, an atten-
tionmechanism is proposed to generate the thoughts of users
based on the current states, further reflecting whether the
user needs computation services or not. If so, called initiator,
then selected other users, called collaborators, and form a
communication group. In practice, the states of a user (initia-
tor) and its communication groupwill change due to the state
of tasks. Therefore, each initiator needs to grasp the states of
collaborators in the communication group at each time slot.
Moreover, we introduce a bidirectional Long Short-Term
Memory (LSTM) unit as the communication channel to con-
nect each user within a communication group and integrate
the action intents of whole users. Different from the works as
mentioned in [22], the LSTMunit in this system takes internal
states as input and returns thoughts that guide users for coor-
dinated communication group strategies. It can take advan-
tage of its structure to select suitable users within its
observations and outputs important information for coopera-
tive decision-making, making it possible to learn coordinated
strategies in dynamic communication environments. This
process can reduce the dimension of the D2D-assisted com-
putation offloading group, reducing the dimension of the
state observed by ACDRL. Finally, according to the states
information of other users in the communication group, the
actor-critic-based model is used to train the new experience
replay with communication group information and obtain
the offloading decisions.

In this framework, we use D2D-link to offload tasks to
other User Equipment (UE) with idle computing resources,
which improves the utilization of computing resources in the
MEC system. At the same time, by taking advantage of the
short distance between UEs, the communication cost is effec-
tively reduced, thereby reducing the system cost. In addition,
our proposed architecture only focuses on the UEs that
require computation offloading services (initiator) and have
idle computing resources (collaborator), which can signifi-
cantly reduce thewaste of computing resources, especially in
dynamic scenarios. On the other hand, our offloading deci-
sion-making system is arranged on each UE. The D2D-
assisted MEC computation offloading system can realize
information sharing and promote cooperation among UEs,
and optimize the computation offloading decision-making
process in dynamic scenarios. Themajor contributions of this
article are summarized as follows:

1) D2D-assisted Computation Offloading Architecture in
MEC system. We propose a novel D2D-assisted edge
computation offloading architecture that includes
both horizontal and vertical cooperation in dynamic

2986 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 4, JULY/AUGUST 2023

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 31,2023 at 09:32:56 UTC from IEEE Xplore. Restrictions apply.

users MEC systems. It enables users to simulta-
neously offload their tasks to edge nodes and other
users with idle computing resources in the commu-
nication range and makes efficient assignment deci-
sions online.

2) ACDRL-based Computation Offloading Model. We for-
mulate the tasks computation offloading as a Mar-
kov Decision Process (MDP) minimization problem
and propose a cooperative multi-agent reinforce-
ment learning ACDRL to minimize the average sys-
tem tasks delay. Specifically, when fixing offloading
decisions, we can reset the settings of the UE and its
communication group based on the latest system
information. Based on this, we adopt a task offload-
ing algorithm to give an effective dynamic task off-
loading scheme.

3) Performance Evaluation. We conduce extensive experi-
ments to evaluate the performance of ACDRL scheme.
The simulation results demonstrate the efficacy of our
proposed algorithm compared to existing schemes can
reduce 12.7% of the system latency cost and improve
20.7% task completion rate in the system. And provide
insights related to the cooperative computation off-
loading in dynamic userMEC environment.

The rest of this article is organized as follows. In Section 2,
the related work is described. Section 3 details the offloading
problem as a partial observable MDP. In Section 4, the coop-
erative decision-making problem among independentmulti-
users is proposed, and an ACDRL scheme is derived to solve
the problem in Section 3. The simulation results are pre-
sented in Section 5. Finally, Section 6 summarizes this article.

2 RELATED WORK

Computation offloading in MEC has been widely regarded
as a pivotal technology to improve the Quality of Service
(QoS) performance of applications, which are the critical
and fundamental parts of D2D communications. Depending
on their execution modes, existing D2D-assisted computa-
tion offloading methods can be divided into centralized and
decentralized schemes. In the centralized schemes, the edge
node is responsible for computing resources for the users
and monitoring information such as the interference level of
users and network states. For instance, Yang et al. [9] pro-
posed an offloading method by regarding the computation
offloading process as a resource contention game, which
minimized the individual task execution cost and the sys-
tem overhead. Lan et al. [23] assumed that the task offload-
ing and the resource optimization problem are formulated
as a mixed-integer nonlinear programming problem
(MINLP) with joint consideration of the user equipment
allocation policy, task offloading policy, and computational
resource allocation policy to find the optimal offloading
strategy in D2D systems. All these works targeted at deriv-
ing the optimal strategy for one time slice under an optimi-
zation or game framework, while not considering the
dynamic channel conditions time-varying environments of
the network. Furthermore, some Deep Reinforcement
Learning (DRL) algorithms have been developed to solve
the computation offloading problem in dynamic communi-
cation environments, especially in dynamic user scenarios

[24], [25], [26], [27]. However, centralized schemes require
edge nodes to have global information. In the dynamic net-
work environment, such as dynamic user requests and net-
work dynamics, the complexity of the centralized schemes
increases with the number of users, resulting in enormous
traffic and computation pressure on the edge nodes.

To reduce the computation load of edge nodes and the
communication load of traffic, a series of distributed
approaches based on D2D communications schemes in
which users make offloading decisions independently. For
instance, Chen et al. [28] proposed a D2D-enable multi-
helper MEC system and proved that D2D-assisted computa-
tional offloading communication mode could offload wire-
less traffic from wireless network infrastructure, which was
considered as the most promising distributed collaborative
computing offloading technology in MEC system. Xing
et al. [29] investigated the joint task assignment and com-
munication rate for D2D-enabled multi-helper MEC system
assuming binary task offloading. This work enhanced the
local user’s computation latency by exploiting D2D collabo-
rations at the network edge. However, it is not practiced
since they assumed that all users are deployed at fixed loca-
tions with static wireless channels. Lin et al. [30] investi-
gated computation offloading designs for D2D cooperative
between the two users who can dynamically exchange the
computation loads via the D2D links. Although this design
realized minimization optimal within a given finite time
horizon, it ignored the scalable and efficient cooperation.

A few recent studies have attempted to adopt theMADRL
algorithm to solve D2D-assisted computation offloading
optimization problems. For instance, Shi et al. [20] consid-
ered a specific Stackelberg game solution and adopted neu-
ral networks as the functional approximator in the MADRL,
reducing the time cost in the negotiation process and achiev-
ing time-efficient resource allocation. Chen et al. [31] formu-
lated the computation offloading problem as a multi-agent
Markov decision process, for which a distributed learning
framework was proposed beyond fifth-generation networks.
Moreover, the rapid development of the MADRL algorithm
increases by jointly considering it and other optimal meth-
ods, such as game theory and federated learning, to achieve
excellent performance in the MEC computation offloading
[32], [33]. Unlike the existing frameworks that predefined
D2D communication and cannot handle dynamic users sce-
nario, we consider a dynamic D2D-assisted computation off-
loading architecture for efficient utilization of computing
resources. Moreover, we propose an ACDRL algorithm to
address the problems of complicated convergence and inef-
fective cooperation brought by dynamic D2D communica-
tion. It further reduces the system latency and achieves time-
efficient computation offloading in the dynamic user MEC
scenario.

3 SYSTEM MODEL AND ASSUMPTIONS

In this section, we introduce the system modeling of D2D-
assisted collaborative edge computation offloading. Particu-
larly, we present the corresponding network architecture in
Sections 3.1, and 3.2 introduces the system model, including
local computing, edge computing, and D2D-assisted comput-
ing architecture. Section 3.3 models the problem formulation.

LI ETAL.: TASKCOMPUTATION OFFLOADING FOR MULTI-ACCESS EDGE COMPUTING VIA ATTENTION COMMUNICATION DEEP... 2987

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 31,2023 at 09:32:56 UTC from IEEE Xplore. Restrictions apply.

Some key modeling parameters and notations are summa-
rized in Table 1.

3.1 Network Architecture

An illustration of the network architecture of D2D-assisted
collaborative edge computation offloading is shown in
Fig. 1. In this system, the operational timeline in our system
is discredited into time slot T ¼ f1; 2; . . . tg, where each
time slot has a during of D seconds. The duration matches
the timescale at which task offloading could be updated
[34]. The network architecture of D2D-assisted consists two
entitles: The Edge Nodes (ENs) and UEs.

EN: We consider a fundamental model consisting of a set
N ¼ f1; 2; . . .ng of ENs. In this MEC system, we assume that
each EN deploys a Base station (BS) and an edge server (ES);
BS is mainly used for communication while ES provides
computing services and each BS has a stable power supply

and can broadcast radio frequency energy to ES. Each ES has
more excellent computation capacity than UEs. The compu-
tation capability and the bandwidth resources of EN m are
defined as fm (cycles per second) andBm, respectively.

UE: LetMp ¼ f1; 2; . . .mpg denote the set of UEs. In prac-
tice, UEs may correspond to smart devices or a low-power
IoT system, i.e., Smart Home, Autonomous Driving. In
addition, we introduce the concepts of initiator, collaborator,
and communication group. Depending on the task’s require-
ments and the equipment’s computing capacity, UEs are
tagged as initiator and collaborator. Initiator refers to the
UE who needs the computation offloading service. The Initi-
ator selects other users with idle computation resources
within D2D links communication, called collaborators, and
in each Initiator’s field to form a communication group for
coordinated strategies. A set of initiators M ¼ f1; 2; . . .mg,
and a set of collaborators I ¼ f1; 2; . . . ig, where M �
Mp; I �Mp. Each Initiator is assumed to have a finite com-
putation capability gm (cycles per second). It connects to EN
by Wireless Fidelity and other collaborators by D2D links.
We focus on the computational tasks xt

m of initiator m at
time slot t, which can be processed depending on computa-
tion offloading decision in three cases: 1) locally, 2) offload-
ing to EN n, and 3) offloading to other collaborators which
would like to share the idle computation resources. For any
initiator, a new task arrival probability with Poisson distri-
bution #t at the start of each time interval. We denote the
task of initiatorm as xtm ¼ fctm; ztm; dtm; gmg, where ctm; z

t
m, d

t
m,

and gm are defined as the data size, the requested CPU
cycles, the max tolerance latency of the task, and the com-
puting capacity of initiatorm, respectively.

At the beginning of each time slot t, a new task arrives at
initiator m, the attention mechanism will determine
whether the user is an initiator. Then, the communication
channel will select I collaborators to form a communication
group C. Second, the agent selects one collaborator of the
communication group or EN n to execute the task according
to the computation offloading decision. Attention mecha-
nisms and communication channels will be described in
detail in Sections 4.2 and 4.3. Eventually, the agent collects
the global information, including data sizes, network status,
the processing capacity of initiator m, collaborator i, and
EN n, then it makes an offloading decision according to this
information.

TABLE 1
Default Simulation Parameters

Parameter Description

Mp Number of UE
M Number of initiator
N Number of EN
I Number of collaborator
dtm Max tolerance latency of task xt

m

ctm The data size of task xt
m

ztm Requested CPU of the task xt
m

vt
m Max waiting delay of the task xt

m

Dt
m Total delay of task xt

m
gm Computing capacity of initiatorm
fn Computing capacity of EN n
st
n Wait time at the queue of EN n

be;tm;n Channel bandwidth between initiatorm and
EN n

%tm;n Transmitting power between initiatorm and
EN n

ht
m;n Channel gain between initiatorm and EN n

L Path loss at a unit distance
dtm;n Distance between initiatorm and EN n

&2 Gaussian noise ratio
bu;tm;i Channel bandwidth between initiatorm and

collaborator i
%tm;i Transmitting power between initiatorm and

collaborator i
ht
m;i Channel gain between initiatorm and

collaborator i
qi Computing capacity of collaborator i

�t
i Maximum amount time of collaborator i

rtm;n Transmission rate between initiatorm and
EN n

rtm;i Transmission rate between initiatorm and
collaborator i

Ot
m Indicator of the task need offload or not

Yt
m;n Indicator of the task offload to EN n or not

Zt
m;i Indicator of the task offload to collaborator i

or not
gt Discount factor
Ht

m Thought of initiatorm at time slot t

~Ht

m Integrated thought of communication group
of initiatorm at time slot t

Fig. 1. System model of user cooperation MEC.

2988 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 4, JULY/AUGUST 2023

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 31,2023 at 09:32:56 UTC from IEEE Xplore. Restrictions apply.

3.2 System Model

3.2.1 Local Computing

In this article, we assume that each computation task is indi-
visible. Considering the local computing processing, the
generated task of initiator m is sent to the computing queue
of the local device. The time consumption of the task xtm
depends on the computation capacity gm of the initiator m,
the required CPU cycles ztm. Thus, the local delay Dl

mðtÞ can
be expressed as Dl

mðtÞ ¼ ztm=gm. We can obtain the energy
consumption of task xt

m for local computing processing as
El

mðtÞ ¼ rm � ztm, where rm is the power coefficient of energy
consumed per CPU cycle at initiatorm.

3.2.2 Edge Computing

Next, we analyze the delay of edge computing. To execute
tasks at EN n, initiator m first needs to transmit the input
data with the size of ctm to the EN n. Similar to many studies,
the returning data is generally much smaller than the input
data [35]. Thus, we assume that the transmission time of
return delay can be ignored. Consequently, if the offloading
strategy of initiatorm is offloading the task to edge server n,
then we will consider the transmission delay Dtr

m;nðtÞ, wait-
ing delay st

n at queue of EN n, and execution delay Dex
m;nðtÞ.

On one hand, the data transmission delay is determined by
the data size ctm, the distance dtm;n and the transmission rate
rtm;n. In the communication model of this system, the EN
can serve as a multiple access scenario. As a realistic
approach, we assume that EN n owns bandwidth resources
that can be divided into orthogonal sub-channels of size
be;tm;n Hz each according to [36]. Therefore, we define W ¼
f1; � � �; wg as the set of available sub-channels for initiator.
Each sub-channel can be allocated to at most one initiator.
At time slot t, the bandwidth allocated to initiator m in the

form of EN n is denoted as be;tm;n ¼ Bm
Pt
m;nP

W
Pt
m;w

;m 2M;n 2
N , where Pt

m;n is a set of bandwidth allocation factors based
on realistic conditions. When Pt

m;n ¼ 1, the communication
resources of EN n are equally allocated to initiators. In terms
of the Shannon Theorem [37], the transmission rate rtm;n

from initiatorm to EN n can be calculated by

rtm;n ¼ be;tm;nlog 2

�
1þ

%tm;nh
t
m;n

L � dtm;n þ &2

�
; (1)

where %tm;n is the transmitting power, ht
m;n is the antenna

gain at EN n, L is the path loss at a unit distance and dtm;n is
the distance between initiator m and EN n. &2 is the power
of additive white Gaussian noise of edge computation
offloading.

Consequently, if the computation task is executed at EN
n, the transmission delay Dtr

m;nðtÞ of computation task xt
m

can be expressed as Dtr
m;nðtÞ ¼ ctm=r

t
m;n. If the computational

task xt
m is selected as offloading to EN n, the execution delay

Dex
m;nðtÞ can be given as Dex

m;nðtÞ ¼ ztm=fn, where fn repre-
sents the CPU clock speed of the server at EN n. Although
the communication delay of EN is affected by distance,
dynamic bandwidth, and channels, Dex

m;nðtÞ < Dl
mðtÞ gener-

ally holds in practical systems [32]. Furthermore, it should
be noted that in this system, taking the waiting delay into
account for the execution delay is necessary for EN offload-
ing scenarios. Thus, the total delay of edge computing

equals the execution delay pulses the transmission delay
and waiting time of EN n which can be expressed as
De

mðtÞ ¼ Dtr
m;nðtÞ þDex

m;nðtÞ þ st
n.

Furthermore, we can obtain the transmission energy con-
sumption for initiator offloading the task xtm to EN n is
etrm;nðtÞ ¼ ctm � %tm;n=r

t
m;n. And obtain the execution consump-

tion for edge computing processing at EN n as eexm;nðtÞ ¼
rn � ztm, where rn is the power coefficient of energy con-
sumed per CPU cycle at EN n. Therefor, we can obtain the
total energy consumption Ee

mðtÞ for edge computing off-
loading the task xt

m to EN n: Ee
mðtÞ ¼ etrm;nðtÞ þ eexm;nðtÞ.

3.2.3 D2D-Assisted Computing

If the request cannot be satisfied through the local comput-
ing, initiator also can seek help from surrounding users that
would like share idle computation resources (we assume
that every UE can establish direct D2D links), called D2D-
assisted computation offloading model. We define i 2 I and
SNRt

m;i as the index for communication group of initiator m
and the signal-noise-ratio (SNR) at collaborator i assigns
channel to initiator m, respectively. Therefore, the SNRt

m;i

can be formulated as follow:

SNRt
m;i ¼

jð1þ %tm;ijht
m;ij

2ÞÞrmj2

s2
i

; i 2M;m 2M; (2)

where %tm;i and ht
m;i denote the corresponding transmit

power, and a ratio function of the channel gain, respec-
tively. ðrmÞ2 is the transmit power of initiator m, s2

i denotes
the additive white Gaussian noise at the collaborator i.
Then, the corresponding transmission rate among users by
D2D links can be calculated as

rtm;i ¼ bu;tm;ilog2ð1þ SNRt
m;iÞ: (3)

Therefore, the D2D-assisted computation offloading
transmission delay Dtr

m;iðtÞ for task xt
m of initiator m to fetch

the content through D2D communication can be calculated
as Dtr

m;iðtÞ ¼ ctm=r
t
m;i, where ctm is the size of content xt

m. If
the computation task will be offloaded to collaborator i, the
execution delay can be given as Dex

m;iðtÞ ¼ ztm=qi, where qi
represents the CPU clock speed of the server at collaborator
i, thus the total delay equals the execution delay adding the
transmission delay which can be expressed as Du

mðtÞ ¼
Dtr

m;iðtÞ þDex
m;iðtÞ. Unlike the Edge computing considering

the waiting delay, we assume that only idle UEs can share
their resources, so there is no waiting delay in the D2D-
assisted computation offloading scheme. In addition, we set
a maximum amount of time �t

i for each collaborator to
ensure their tasks can be executed timely, which means that
the computation tasks need to be completed within �t

i for
offloading to collaborator i.

Similarly to edge computing, we can obtain that the total
energy consumption for D2D-assisted computing, the total
energy consumption for offloading the task xt

m to collabora-
tor i isEu

mðtÞ ¼ etrm;iðtÞ þ eexm;iðtÞ, where etrm;iðtÞ ¼ ctm � %tm;i=r
t
m;i,

eexm;iðtÞ ¼ ri � ztm, and ri is the power coefficient of energy con-
sumed per CPU cycle at collaborator i.

LI ETAL.: TASKCOMPUTATION OFFLOADING FOR MULTI-ACCESS EDGE COMPUTING VIA ATTENTION COMMUNICATION DEEP... 2989

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 31,2023 at 09:32:56 UTC from IEEE Xplore. Restrictions apply.

3.3 Problem Formulation

The offloading framework makes decisions by minimizing
the long-term delay which interacts with the MEC environ-
ment. For each task generated by initiator, we denote
set fOt

m;Yt
m;n;Zt

m;ig as the offloading status of task xt
m,

where Ot
m;Yt

m;n;Zt
m;i 2 f0; 1g;Ot

m þ Yt
m;n þ Zt

m;i ¼ 1. Ot
m ¼

1 means the task will be executed locally, Ot
m ¼ 0 means the

task will be executed at EN or collaborator. And Yt
m;n ¼ 1

indicates whether EN n is selected to perform the computa-
tion offloaded task, Zt

m;i indicates whether collaborator i is
selected to perform the task; otherwise, Zt

m;i ¼ 0. Therefore,
for a task generated by initiator m, the total task delay can
be denoted as

Dt
m ¼ Ot

m �Dl
mðtÞ þ Yt

m;n �De
mðtÞ þ Zt

m;i �Du
mðtÞ: (4)

Note that we try to make a offloading decision at each
time slot to minimize the long-term process time of tasks
with some constrains, i.e., the total energy consumption is
under the energy budget Ebudget. Therefore, in this system,
the task offloading problem can be formulated as follows:

Minimize
XM
m¼1

XT
t¼1

Dt
m; 8m 2M; 8t 2 T (5a)

s.t. C1 : Ot
m;Yt

m;n;Zt
m;i 2 f0; 1g; 8m 2M; 8t 2 T (5b)

C2 : Du
mðtÞ < �t

i; 8m 2M; 8i 2 I (5c)

C3 : De
mðtÞ < st

n; 8m 2M;8n 2 N (5d)

C4 : De
mðtÞ; Du

mðtÞ < dm;v
t
m; 8m 2M (5e)

C5 : El
mðtÞ; Ee

mðtÞ; Eu
mðtÞ < Ebudget; 8m 2M: (5f)

It is rather challenging to achieve the above objective
since the optimization problem in (5) is NP-Hard. Next, the
proof of NP-Hardness for this problem is presented.

Theorem 1. The optimization problem is NP-Hard.

Proof. Consider there are M tasks xt
1; x

t
2; . . . ; x

t
m with the

offloading energy budget Ebudget, which means that with
different offloading schemes for each time slot, the total
energy consumption cannot exceed the energy budget for
each task. We use Dm to denote total system latency of
task xt

m, and Em to denote total energy consumption for
task xt

m. Then, our optimization problem can be formu-
lated as

Minimize

Pm¼M
m¼1 Dm

M
(6a)

s.t.
X
m2M

Em � Ebudget: (6b)

tu

We introduce the trivial 0-1 knapsack problem [38]:
“maximize:Pn

i¼1 ¼ vi � xi; subject to:
Pn

i¼1 vi � xi � C; xi 2 f0; 1g.” Here,
vi and vi denote the weight and volume of the ith item, and
C means the capacity of the knapsack. By mapping wi, vi,
and C in the trivial 0-1 knapsack problem to Dm, Em, and
Ebudget in the optimization problem of this computation off-
loading scheme, we get the two problems to be equivalent.
Therefore, the optimization problem of this computation
offloading scheme is NP-Hard. This completes the proof.

As Theorem 1 proved, the problem in (5) is NP-Hard,
and the computation offloading decision is memoryless
with a sequential decision-making process. Therefore, we
formulate the task computation offloading as an MDP mini-
mization problem. Nevertheless, traditional approaches
have extremely high computation complexity, which may
have some limitations in practical applications, especially in
a dynamic network. At the same time, the D2D-assisted
communication group dynamically changes. The previous
work in designing the D2D-assisted offloading model usu-
ally assumes that the communication group is fixed and can
not react to the D2D-assisted communication group changes
due to their poor cooperatively. Therefore, it is necessary to
introduce more intelligent methods in the system.

4 OPTIMIZATION ALGORITHM

To deal with the above problem, we propose an Attention
Communication Deep Reinforcement Learning (ACDRL)
framework for the MEC computation offloading including
three main phases, i.e., local Actor-Critic-based model train-
ing, attention mechanism, and communication channel. Par-
ticularly, the three basic elements of MDP are introduced in
Section 4.1, and the details of the training and the whole
flow in the processed ACDRL framework are introduced in
Section 4.2. The learning framework of ACDRL for the com-
putation offloading is depicted in Fig. 2.

4.1 Three Basic Elements

The offloading framework makes decisions by searching the
policy strategy p for each agent and minimizing the long-
term reward (system latency) rt which interacts with the
MEC environment. The policy p is a mapping from its states
st to its action at. In this system, the objective is to find an
optimal policy to optimize the expected long-term system
latency.

4.1.1 UE State

At the beginning of time t, each UE observes the global state
information, including the task state, UE state, EN state,
D2D link rate, and the network state from initiator to EN.
We define the system states as st ¼ fX t; Ct; Et; rDt ; rNt g,
where X t ¼ fxt

1; x
t
2; . . .x

t
mg denotes the task state of each UE

at time slot t. Ct ¼ fc1; c2; . . . cig denotes the state of collabo-
rators of communication group, where ci ¼ f�t;Qtg, �t ¼
f�t

1; �
t
2; . . .�

t
ig denotes the maximum amount of time that

can be occupied of collaborator i at time t, and Qt ¼
fq1; q2; . . . qig denotes the computation capability of collabo-
rators. Et ¼ fF ; stg denotes the states of ENs, where F ¼
ff1; f2; . . . fng denotes the computation capability of ENs,
and st ¼ fst

1; s
t
2; . . . s

t
ng denotes the waiting time of EN n at

time slot t. rDt ¼ frtm;1; r
t
m;2; . . . r

t
m;ig denotes the D2D link

rate between initiator m to collaborator i. rNt ¼
frtm;1; r

t
m;2 . . . r

t
m;ng denotes the link rate at time slot t from

initiatorm to EN n.

4.1.2 UE Action

After receiving the state st, initiator m will decide where to
offload the task through above methods. The action of initia-
tor m at time slot t can be defined as at ¼ fOm;Yt

m;n;Zt
m;ig 2

2990 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 4, JULY/AUGUST 2023

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 31,2023 at 09:32:56 UTC from IEEE Xplore. Restrictions apply.

f0; 1g, where Ot
m þ Yt

m;n þ Zt
m;i ¼ 1. That is, the task compu-

tation offloading decision should be learned.

4.1.3 System Reward

The agent interacts with the environment by finding the cor-
responding relationship between state st and action at, and
guides the selection of the next action according to the
reward Rt of each step. To reduce the system latency of the
computation tasks, we consider the system latency in this
computation offloading process as the system reward.

In order to derive the reward function of this model, we
find an immediate utility at time t to quantify the task com-
putation reward for the tasks of UEs. Therefore, in this sys-
tem, we define the system reward of execution as Rt which
can be expressed as Rt ¼

PM;T
m¼1;t¼1 g

t � rðst; atÞ; 8m 2M; 8t 2
T , where the discount factor g 2 ½0; 1� demonstrates the
importance of the instant reward. And rðst; atÞ ¼ Dt

m at each
time slot t.

4.2 Offloading Method Based on ACDRL Algorithm

4.2.1 The Whole Process

We consider eachUE as an agent and possesses three types of
components: Attention mechanism, Communication chan-
nel, and Actor-Critic network. First, for each UE agent in this
system, we consider the partially observable distributed
environments where each UE agent m (the agent on initiator
m) receives local state smt at each time slot t; t 2 T (process 1
of Fig. 2), the ActorNet(1) network takes local states as input
and extracts a hidden layer as thought which encodes local
states and action intentions, represented asHt

m ¼ m1ðsmt ; um1Þ
(process 2 of Fig. 2). Within each episode T , the attention
mechanism takes thought as input and decides whether that
UE needs to cooperate or not (processes 3 and 4 of Fig. 2). If

needed, it is called the initiator and selects other UEs called
collaborators to form a communication group aswe justmen-
tioned at Section 3.1.

At the same time, the communication group is deter-
mined by the attention mechanism and maintained the
same within episode T . The communication channel con-
nects with other agents in the communication group of initi-
ator m, inputs the thoughts of other agents (local states and
action intention), and outputs the integrated thoughts to
guide the next action intention of the agent (process 5 of
Fig. 2). By sharing local observational information and
encoding action intent in a dynamic group, the respective
agents can establish an association of global environmental
predictions, guide other agents, and cooperate to make
action intention decisions.

Finally, the generation of the offloading action relies on
the use of the Deep Neural Network (DNN). It considers
the historical transition as the input, and outputs approxi-
mate Qðst; atÞ. The agent can observe the state st from the
environment, choose a course of action at according to the
policy pðst; atÞ, and generate an immediate reward rt (pro-
cess 6 to 16 of Fig. 2).

4.2.2 Attention Mechanism

In the study of distributed multi-agent reinforcement learn-
ing algorithms, making a final decision requires that the state
of all agents be fully considered [39]. Traditional deep rein-
forcement learning cannot solve the problems caused by
high-dimensional state space, and dynamic networks
increase the complexity of state space further. However, in
MEC computation offloading schemes, the states of users are
affected by task arrival rate, computing power, network, and
other dynamic conditions. Therefore, offloading services are

Fig. 2. System model of user cooperation MEC based on ACDRL.

LI ETAL.: TASKCOMPUTATION OFFLOADING FOR MULTI-ACCESS EDGE COMPUTING VIA ATTENTION COMMUNICATION DEEP... 2991

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 31,2023 at 09:32:56 UTC from IEEE Xplore. Restrictions apply.

not necessary for each user. Mainly based on the D2D-
assisted computation offloading architecture, usersmay con-
stantly switch between the identities of ‘need help’ and
‘help’. Inspired by the attention mechanism [40], we only
focus on the user who requires offloading services, and other
users as a member of the communication group only
requires basic information, which can significantly reduce
the complexity of the calculation while reducing the delay of
the offloading process, and further improving the computa-
tion offloading efficiency and effective.

Therefore, our attention mechanism cannot observe
global information in total, but can encode observable field
and action intention to determine whether the agent
requires offloading services, in other words, whether it
wants to be an initiator. Specifically, the attention mecha-
nism is an RNN network, at every fixed time step, the hid-
den state of the previous step and the encoding including
the local observations and actions of the agent are defined
as an input at this step, and the output is a classifier to deter-
mine whether it is an initiator. In addition, it does not need
attention at every time step to determine whether the user
wants to be the initiator, because collaboration strategies
take a while to be effective. We usually set a fixed time to
update initiators and communication groups in a specific
scenario. The pseudo-code of the method is shown in Algo-
rithm 1.

4.2.3 Communication Channel

The previous studies of D2D-assisted model architecture
always fixed the system model initially, which made the
computation offloading process substantial computational
complexity. As we mentioned earlier, reducing the compu-
tation dimension by keeping active collaborators retained in
the communication group will change the system architec-
ture since the user’s role is dynamically changing. There-
fore, we introduce a communication channel to integrate
the information of all agents to determine the communica-
tion group. Specifically, the communication group is an
LSTM unit, parameterized as ug. At the same time, each
agent partially observes the environment, and the commu-
nication channel can facilitate the sharing of information
between the agents to produce more reasonable computa-
tion offloading decisions.

When an initiator selects its collaborators, it usually
selects users within the range it can observe. Similar users
can guarantee lower communication latency, while coopera-
tive decision-making can be more easily accomplished
among adjacent agents. When multiple initiators select a
user to join their communication group, the user will partic-
ipate in the communication group of each initiator and act
as a bridge for information sharing. Assuming user k is
selected by two initiators a and b sequentially. The commu-
nication channel integrates their thoughts: f ~Ht

a; . . .
~Ht0
kg ¼

gðHt
a; . . .Ht

kÞ. Then user k communicates with b’s group:
f ~Ht

b; . . .
~Ht00
k g ¼ gðHt

b; . . .Ht0
k Þ. User k disseminates the

thought from one group to other groups, guiding a coopera-
tion strategy among the groups. The pseudo-code of the
method is shown in lines 2 to 7 of Algorithm 1.

For each initiator m and its communication group C, the
attention mechanism is parameterized by up. We train one

critic network uc embedded with a attention mechanism for
each initiatorm. The integrated thought is defined as ~Ht

m, it is
merged with Ht

m and input to the next attention mechanism
policy network. Then the attention mechanism policy net-
work outputs the action intention aitm ¼ m2ðHt

m;
~Ht
m; u

m2Þ.
We calculate the average of the difference inQ-value between
independent actions intention �aii and cooperative actions

DQt
m ¼

1

jCj ð
X
i2C

Qðsi; aiijucÞ �
X
i2C

Qðsi; �aiijucÞÞ: (7)

We store ðDQt
m;Ht

mÞ into a queue U , and perform min-
max normalization on DQ in U. Then we will get DQ̂ 2 ½0; 1�,
it can be used as the tag of the binary classification. We
update up in the loss function as

LðupÞ ¼ � ^DQt
mlogðpðHmjupÞÞ � ð1� ^DQt

mÞlogð1� pðHmjupÞ:
(8)

The pseudo-code of the method is shown in line 8 to line
14 of Algorithm 1.

Algorithm 1. Attention Mechanism Method

Input: Communication group C, a set of UEmp

Output: initiatorm, Communication group C of the initiator
1: for episode ¼ 1; . . . episodemax do
2: for time slot ¼ 1; � � �; T do
3: Get thoughtHt

m ¼ m1ðsmt ; um1Þfor each initiatorm
4: Each agent m decides whether to initiate communica-

tion based onHt
m every T time slot

5: for i in communication group do
6: ð ~Ht

m;
~Ht
1; . . . ;

~Ht
iÞ ¼ gðHt

m;H1
t ; . . . ;Hi

t; u
gÞ, where

agent 1 to i in communication group of initiatorm
7: end
8: Select action intention aitm ¼ m2ððHt

m;
~Ht
m; u

m2Þ for each
agentmwith communication

9: Select action aitm ¼ m2ðHt
m; u

m2Þ for each agent m with-
out communication

10: for m =1,... M do
11: Obtain reward rmt based on aitm, and get new obser-

vation stþ1
12: Get action for �aitm ¼ m2ðHt

m; u
m2Þ in initiator m’s com-

munication group C
13: Compute different of mean Q values with and with-

out communication DQt
m

14: Store (Ht
m;DQ

t
m) in U

15: end
16: Store transition ðs; a; r; s0Þ in D
17: end
18: Compute DQ̂
19: Update the attention parameter up by (8)
20: end

4.2.4 The Training Process

Considering the strategy improvement, we employ the
Actor network mðuÞ to generate the next state action
mðatþ1jumÞ instead of selecting the action corresponding to
the largest Q-value in the action space. Since in such a
multi-dimensional action space, the greedy strategy needs
to find the global maximum Q-value in every step, it is inad-
equate to find the global maximum Q-value in such a large

2992 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 4, JULY/AUGUST 2023

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 31,2023 at 09:32:56 UTC from IEEE Xplore. Restrictions apply.

action space. Moreover, we employ the Critic network QðuÞ
criticizes the policy according to the estimated Q-value
Qðst; atjuQÞ 	 Qðst; atÞ by a method similar to supervised
learning, so that the gradient can be written as (process 13
of Fig. 2)

ruJðmÞ ¼ Est;at
D½rumðatjstÞrQmðst; atÞja¼mðstÞ�; (9)

where D is the experience replay memory containing
fst; at; rt; stþ1; Cg, and stores the transitions of all agents.
The action value function can be updated as follow:

LðuÞ ¼ Est;at;rt;stþ1;C ½ðQ
mðst; atÞ � yÞ�2; (10)

where y ¼ rþ gQm0ðstþ1; atþ1Þjatþ1¼mðstÞ.

Algorithm 2.D2D-Assisted Attention Cooperative Multi-
Agent Deep Reinforcement Learning

Input: um1 , um2 , um, uc, uQ, ug and up for attention cooperative for-
mulation, g for the target network, a and b for PER
method.

Output: Computation offloading decision
for Agent m 2M do
Initialize the target Actor and Critic networks with weights
um0 um and uQ0 uQ;
Initialize the queue U and the replay buffer D

end
for episode ¼ 1 to episodemax do
Initialize system environment and obtain state st
for t ¼ 1 to T � 1 do
Choose action at
 muðatjstÞ for each Agent

end
Get initiator and it’s communication group C by Attention
mechanism method;
Obtain the next state stþ1 and reward rt;
Store transition ðat; st; rt; stþ1; CÞ in D;
Update s stþ1
If t mod T =0 then
Sample a subset D0 from D by PER

end
Set y ¼ rþ gQm0ðstþ1; atþ1Þja0

j
¼mjðsjÞ

For each gradient step do
Update Actor network by sampling policy gradient
using (9)
Update Critic network by minimizing the loss using (10)
Update the Critic network using uQ uQ þ aQ � rum

LQðuQÞ
Update the Actor network using um um þ am � um
Update the target networks using (14)

end
end

The Actor network mðuÞ can be updated based on the
action at evaluated by the Critic network which is generated
by the forward transfer of the Actor. Therefore, the iterative
formula of the policy gradient rumm is used to update the
Actor network (processes 12 and 15 of Fig. 2)

rumm ¼ ratQðst; atjuQÞst¼st;at¼mðstÞ: (11)

To improve the stability of the learning process, we intro-
duce two target networks um0 and uQ0 for Actor and Critic
networks to limit the change speed of the target value. Since

the Critic network Qðs; ajuQÞ is also used to calculate the tar-
get value rt þ gQðstþ1;mðstþ1ÞjumÞÞjuQÞ, the update of Q-
value is prone to shock. The target network updates the
weight according to the way of slowly tracking the online
network, u0 tu þ ð1� tÞu0; t � 1.

The MEC environment receives and performs the off-
loading action at returned by the Agent during the learning
process (process 16 of Fig. 2). Then, the Agent feeds back a
reward rt and a next state stþ1. Normally, an experience
replay mechanism is used in this process which stores pre-
vious experiences ðst; at; rt; stþ1; CÞ, then sampling these
experiences evenly in small batches D0, and updating the
online network of Actor and Critic at each time step (pro-
cess 7 of Fig. 2). However, most deep learning algorithms
assume that these state samples are not independent and
identically distributed. In order to improve the efficiency of
sample utilization and improve the learning rate, a sample
policy called Priority Experience Replay (PER) mechanism
is introduced in this method (process 8 of Fig. 2), which can
make learning from experience replay more efficient [41]. In
this mechanism, the estimate of Temporal-Difference Learn-
ing (TD-error) c is recorded as Q-value, reflecting the
degree to which Agent has learned from current experience.
It can be expressed as follow:

c ¼ rt þ g½max
atþ1

Qm0ðstþ1; atþ1Þ �Qmðst; atÞ�jatþ1¼mðstÞ: (12)

The experience of a large TD-error value means that
there is still much room for improvement in intensive read-
ing of sample prediction, and Agent can learn a lot from
this sample. The TD-error value is very small or even very
negative, which means that this behavior is opposite to the
correct direction. The application of PER strategy allows
Agent to learn from successful experience and prevents
Agent from choosing the wrong operation from the bad
experience, thereby improving the quality of learning strat-
egy. Therefore, based on TD-error c, we define the sam-

pling probability Pm of Agent m as Pm ¼ pamP
j
pa
j

, where a is

the control parameters for sorting quantity for priority, j is
the index of the PER batch sample. pm ¼ jcmj þ �, and � is a
small positive constant that can prevent the critical case of
this transition from reconsidering once an error with zero
probability occurs. Because transitions with high Pm values
are replayed more often, this practice changes the replay
frequency of some samples, thus introducing bias. We can
use Importance Sampling (IS) weights to correct this devia-
tion hm ¼ ð 1N � 1

Pm
Þb, where b is to adjust the correction

degree. In the process of Q-value learning update, hmcm is
used instead of cm. At the same time, for the stability of
training, the weight is always normalized as 1

maxmhm
.

Finally, apply the following update to the Actor and
Critic networks (process 9 and process 14 of Fig. 2), where
aQ and am are the network learning rates

uQ uQ þ aQ � rumL
QðuQÞ; um um þ am � um: (13)

The target Critic network and target Actor network are
updated according to the following way to step-by-step
track the online Critic network and Actor network (process
11 of Fig. 2):

LI ETAL.: TASKCOMPUTATION OFFLOADING FOR MULTI-ACCESS EDGE COMPUTING VIA ATTENTION COMMUNICATION DEEP... 2993

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 31,2023 at 09:32:56 UTC from IEEE Xplore. Restrictions apply.

uQ0 tuQ þ ð1� tÞuQ0; um0 tum þ ð1� tÞum0; (14)

where t � 1 is the temperature parameter. The pseudo-
code of the method is shown in Algorithm 2.

4.2.5 Computational Complexity Analysis

We have defined T time steps in the reinforcement learning
algorithm, i.e., T ¼ f1; 2; . . . tg, the computational complex-
ity can be simplify expressed as OðT 2Þ [42]. However, it
should be noted many parameters i.e., the number of UE,
the number of initiators. Therefore, to determine the compu-
tational complexity of our algorithm, we analyze the
computational complexity of two modules (communication
channel and the attention mechanism). Let denote P as the
number of UEs in this system, I is the number of the com-
munication group, Q is the dimensionality of the UE’s state
space, U is the number of experiences sampled in each
round of training, and V is the max episode during the
training process. For the communication channel, let set the
hidden layer dimension to l, according to [43], the complex-
ity of the communication channel is OðI � l2Þ. For the atten-
tion mechanism, the complexity is OðP 2 �QÞ according to
Algorithm 1. Moreover, assume that the computation com-
plexity for the training of one experience is OðLÞ, where L is
the number of multiplication operations in the neural net-
work, the computation complexity of the proposed algo-
rithm is OðLI2P 2QV Þ according to [22].

The actual implementation latency of the system is also
crucial in measuring system performance. Based on current
hardware conditions, the training process for deep learning
induces a significant computational latency, and it is not
practical to complete the training on a mobile device [44].
Therefore, we attempt to move the training process to a
closer-edge server where computational resources are more
abundant. To implement the above strategy, each UE agent
uploads historical information collected during execution,
i.e., states, actions, and rewards received by the UE agent,
to the edge server. The historical information generated by
the UE agent in a time slot is only a few kilobytes in size
since all of those are digital data, and the communication
latency for this part is minimal. Once the training process is
complete, the UE downloads the weights of the trained
actor network from the edge server. It imports them into its
actor network to complete the computational offload deci-
sion. Moreover, the weights of the neural networks are digi-
tal data, and the size of the actor network for each UE agent
is about 400 KB in size, which does not cause much trans-
mission latency. Therefore, transferring the complex train-
ing process to the edge server requires only a tiny
transmission latency. In addition, compared to traditional
strategies, our approach significantly reduces the amount of
real-time signaling overhead since it only requires the col-
laborators within the UE agent’s communication group to
upload the historical information to the edge server.

5 SIMULATION RESULTS

5.1 Simulation Settings

In this part, we employ Pytorch 1.3 framework to compare
the performance of several methods. Without loss of gener-
ality, let’s assume a setting with 150 UEs and 8 ENs in this

MEC computation offloading environment. There are 45
collaborators for each initiator in its communication group.
Throughout the experiments, we suppose a scenario where
UEs are randomly distributed within an area of 350m�
350m. Similar to [26], we consider that the different perform
distinct computation capabilities of UE gm, uniformly dis-
tributed between 0.5 and 3.5 GHz, the computation capabili-
ties of EN fn are distributed between 31.5 and 51.5 GHz. The
channel bandwidths between the UEs and ENs range from
[4, 20] MHz, and the bandwidth among UEs ranges from
[100, 200] kHz according to [18], [22]. The Key evaluation
parameters are listed in Table 2.

Without loss of generality, for the task execution, the task
tolerance latency follows the uniform QoS between [5, 30]
seconds, and the waiting time at ENs queue ranges from [0,
40] seconds. While the task data sizes follow the uniform
distribution on [100, 1000] KB, the requested CPU ztm ranges
from [10, 50] G cycles according to [45]. Moreover, the pass-
loss constant L is -2, the channel gain between UE and
EN ht

m;n and among UEs ht
m;i range from [-20, -5] dB and

[-5, -10] dB [39], respectively. For the design of the ACDRL,
we set the size of experience replay memory D as 1,024 [22].
There are three different sizes for batch D0, which are 128,
256, and 512. For the parameters of ACDRL, the target net-
work parameter is 0.8, a and b for the PER method as 0.9
and 0.9 [26], respectively. For the parameters of the target
network, we set the aQ, am and t for PER method as 0.9, 0.9,
and 0.001 respectively, which have been verified to be suit-
able for DRL [18], [22], [46].

5.2 Convergence Analysis

To demonstrate the validity of the proposed method in
terms of convergence, we perform the simulation experi-
ment with Mp ¼ 20, N ¼ 8, a random tolerance latency dtm 2
½5; 20� seconds for each task.

5.2.1 Episode versus Average Episode Reward

We evaluate the convergence of the proposed algorithm
ACDRL under different experimental settings. The simula-
tion results are shown in Fig. 3. In the subfigures, the x-axis
shows the episode, and the y-axis shows the normalized
average reward in each episode. We plot the performance
of the comparison algorithms and ACDRL under different
parameter settings.

TABLE 2
Parameters Setting

Parameter Value

Mp 20
N 8
D 0.01s
gm, qi 1.5
 3.5 GHz[26]
fn 31.5
 51.5GHz[26]

be;tm;n 4
20 MHz[18]

bu;tm;i 100
200 KHz[18]

ctm 100
1000 KB[18]
PER batch 256
Episode 3000

2994 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 4, JULY/AUGUST 2023

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 31,2023 at 09:32:56 UTC from IEEE Xplore. Restrictions apply.

Fig. 3a shows the convergence of our algorithm under
different values of learning rate (“lr” in this figure), where
the learning rate is the step that moves toward the mini-
mum value of the loss function in each iteration. It can be
shown in this figure, when lr = 0.01, the convergence rate is
relatively fast, and the average reward converges to the
smallest value. When the learning rate is small, the conver-
gence rate slows down and the average reward increases.
When the learning rate is big, the average reward is higher.
Fig. 3b shows the convergence of our proposed algorithm at
different batch sizes. The batch refers to the amount of expe-
rience each selection step under the PER strategy. It can be
shown in this figure, when batch = 256, the convergence is
relatively fast and the average reward is smaller than other
algorithms. The convergence rate will slow down when the
size of batch increases or decreases, and the average reward
of convergence will increase.

5.2.2 Performance of Execution

and Convergence Time

Fig. 4 shows the effect of the different numbers of UEs on
execution delay and convergence time. As the number of
UEs increases, the execution time and convergence time
increase, which is consistent with the previous theoretical
analysis. The line graph shows that when the number of UE
increases, the execution time of the proposed algorithm
becomes longer. This is because more UE can generate more
tasks, and more tasks consume more time for scheduling.
The bar graph shows that its convergence time is acceptable

compared with its total execution time. Similarly, the con-
vergence time of the designed algorithm grew gradually as
the number of UEs increase. This is because more UEs can
generate more tasks, and the algorithm execution time
becomes longer, correspondingly.

5.2.3 Effect of Communication Group Size

A larger communication group will cause invalid training
data to increase system latency (i.e., all UE in this system
are collaborators), and a small communication group will
cause the most appropriate UE for offloading to be lost.
Therefore, we explore the size of the communication
group I effects on the average system reward. We com-
pare three sizes of the communication group by 10%,
30%, and 50% of the number of UE Mp, and change the
number of UE Mp from 20 to 100 for comparison. As
shown in Table 3, when the size of the communication
group is 10% of UEs Mp, the average system reward
increases as the number of UE increases, when the size of
the communication group is increased to 30% of Mp, the
average system reward decreases slightly. However,
when the number of UE increases to 50% of Mp, the aver-
age system reward increases again. It proves our conjec-
ture that the average system reward will not decrease
with the size of the communication group increase, and
choosing an appropriate communication group can effec-
tively reduce system reward.

5.3 Method Comparison

In this section, we evaluate the presented intelligent offload-
ing strategy by comparing it with several benchmarks,
including MADDPG [39], MAAC-based algorithm [18], and
DQN-based algorithm [46]. The MADDPG, MAAC, and
DQN are widely used in MDP problems. The DQN-based

Fig. 3. Performance under different parameter setting: (a) learning rate;
(b) batch size.

Fig. 4. Convergence time and execution time as the number of UEs
varies.

TABLE 3
Normalized Average System Reward

size
Mp

20 40 60 80 100

10% 0.3933 0.3998 0.4619 0.5167 0.5494
30% 0.3806 0.4034 0.4614 0.5114 0.5312
50% 0.3812 0.4335 0.4767 0.5237 0.5563

LI ETAL.: TASKCOMPUTATION OFFLOADING FOR MULTI-ACCESS EDGE COMPUTING VIA ATTENTION COMMUNICATION DEEP... 2995

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 31,2023 at 09:32:56 UTC from IEEE Xplore. Restrictions apply.

algorithm can be regarded as a single agent to make the
computation offloading dependently. For the MADRL, we
adopt the state-of-art MADRL framework MADDPG
approach. Moreover, the MAAC-based algorithm is also a
multi-agent reinforcement learning based on actor-critic
like our algorithm.

We look at how the number of UEs affects the average
system latency of these computation offloading algo-
rithms. In Fig. 5a, as the amount of UEs grows, the average
system latency of each algorithm increases. More UEs
compete for transmission and computing resources at
edge nodes when the number of UE increases. When the
number of UE increases to 100, our algorithm maintains a
ratio of average system latency around 0.53 less than other
algorithms. This is because our algorithm ignores mean-
ingless information in the system. It reduces the dimension
of the state space and improves computational efficiency.
Moreover, our algorithm can reduce communication
latency effectively. When the number of UE increases to
150, it achieves an average system latency of 11% lower
than those of other algorithms.

Next, as shown in Fig. 5b, the proposed algorithm always
receives a higher task completion rate than the other algo-
rithms, especially in the case of a large number of UEs.
When the number of UE is 150, the proposed algorithm
increases the task completed rate by 17% compared with
the benchmark methods. This is because the computation
offloading method based on the ACDRL method integrates
all agent information in the communication group, improv-
ing cooperation’s effectiveness and rationality. Therefore,

our scheme improves the computation task by choosing the
most effective offloading decision and completing it within
the tolerance latency.

In Fig. 6a, as the task arrival probability increase, the pro-
posed algorithm always maintains a lower average reward
when compared with the benchmark algorithms. When the
task probability is small, most methods can achieve an aver-
age reward of around 0.2. When the task arrival probability
increases 1.0, the average reward of our algorithm increases
by 40:1%, while those of the benchmark methods increase
by at least 52%. This implies that as loads of the system
increase, especially at peak-time traffic, the average reward
of the proposed algorithm increases less than those of the
benchmark algorithms.

As shown in Fig. 6b, the proposed algorithm achieves a
higher task completion rate than the benchmark algorithms,
especially when a large task arrival probability. This is
because the proposed algorithm can effectively use the idle
computation resources at the network by D2D links. When
the task arrival probability increases from 0.1 to 1.0, the task
completed rate of the proposed algorithm remains higher
than 0.89, while those of the benchmark methods decrease
from 0.97 to 0.76. This is because when the task arrival prob-
ability increases, the limited computation resources cannot
meet the requirements of all tasks. Therefore, some tasks
may be dropped since they are incomplete within their max
tolerance latency. This implies that as the load of the system
increases, our algorithm may have a more significant task
completed rate than the other algorithms, as it has fewer
tasks dropped.

Fig. 5. Performance evaluation under different number of UE with (a)
average system latency; (b) task completed rate.

Fig. 6. Performance evaluation under different task arrival probability
with: (a) Average system latency; (b) Task completed rate.

2996 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 4, JULY/AUGUST 2023

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 31,2023 at 09:32:56 UTC from IEEE Xplore. Restrictions apply.

We evaluate the performance of the system under differ-
ent max tolerance latency and algorithm settings in Fig. 7a.
It shows that as the max tolerance latency increases from 5
to 30 seconds, the task completed rate of the four methods
increases significantly. As expected, it can be seen that our
proposed algorithm can maintain a higher task completion
rate than other algorithms. Specifically, the task competition
rate of ACDRL is much higher than other algorithms,
mainly while the max tolerance latency is small. This veri-
fies that our algorithms are more excellent in time-sensitive
tasks than other algorithms.

Similarly, Fig. 7b shows that as the max tolerance latency
increases from 5 to 30 seconds, the average system
latency increases significantly with four methods. This is
because most tasks cannot be completed when the max
tolerance latency is small. As the max tolerance latency
is prolonged to 30 seconds, the task has enough time to
process and transmit, and the average system latency
increases for this reason.

6 CONCLUSION

In this article, we studied the computation offloading problem
in a D2D-assisted communication framework and proposed
an attention communication multi-agent reinforcement learn-
ingmodel to optimize offloading decisions byminimizing the
average system latency in dynamic users MEC environment.
In this system, the attention mechanism lets the computing
resource tilt to active users to adapt to a dimensional

explosion and reduce the communication overhead in a
dynamic MEC environment. Moreover, the communication
channel integrates all agents information in the communica-
tion group, thereby facilitating collaborative decision-making,
which improves the effectiveness and rationality of coopera-
tion. Numerical results show that the proposed ACDRL
method is effective and superior to the baseline algorithms in
moving edge computation offloading.

In our future work, we will design architecture to intro-
duce an incentive mechanism to encourage mobile devices
to deal with the computation offloading problem. At the
same time, we will consider UEs’ computing service cost
(such as price) to adapt the actual MEC system.

REFERENCES

[1] B. Ji et al., “A survey of computational intelligence for 6G: Key
technologies, applications and trends,” IEEE Trans. Ind. Informat.,
vol. 17, no. 10, pp. 7145–7154, Oct. 2021.

[2] S.-W. Ko, K. Han, and K. Huang, “Wireless networks for mobile
edge computing: Spatial modeling and latency analysis,” IEEE
Trans. Wireless Commun., vol. 17, no. 8, pp. 5225–5240, Aug.
2018.

[3] C. Jiang, X. Cheng, H. Gao, X. Zhou, and J. Wan, “Toward compu-
tation offloading in edge computing: A survey,” IEEE Access,
vol. 7, pp. 131 543–131 558, 2019.

[4] J. Zheng, Y. Cai, Y. Wu, and X. Shen, “Dynamic computation off-
loading for mobile cloud computing: A stochastic game-theoretic
approach,” IEEE Trans. Mobile Comput., vol. 18, no. 4, pp. 771–786,
Apr. 2019.

[5] B. Yang, X. Cao, J. Bassey, X. Li, and L. Qian, “Computing offload-
ing in multi-access edge computing a multi-task learning
approach,” IEEE Trans. Mobile Comput., vol. 20, no. 9, pp. 2745–
2762, Sep. 2021.

[6] F. Saeik et al., “Task offloading in edge and cloud computing: A
survey on mathematical, artificial intelligence and control theory
solutions,” Comput. Netw., vol. 195, 2021, Art. no. 108177.

[7] X. Wang, R. Li, C. Wang, X. Li, T. Taleb, and V. C. M. Leung,
“Attention-weighted federated deep reinforcement learning for
device-to-device assisted heterogeneous collaborative edge cach-
ing,” IEEE J. Sel. Areas Commun., vol. 39, no. 1, pp. 154–169, Jan.
2021.

[8] U. Saleem, Y. Liu, S. Jangsher, X. Tao, and Y. Li, “Latency minimal
for D2D-enabl partial computing offloading in mobile edge
computing,” IEEE Trans. Veh. Technol., vol. 69, no. 4, pp. 4472–4486,
Apr. 2020.

[9] Y. Yang, C. Long, J. Wu, S. Peng, and B. Li, “D2D-enabled
mobile-edge computing offloading for multiuser IoT network,”
IEEE Internet Things J., vol. 8, no. 16, pp. 12 490–12 504, Aug.
2021.

[10] Y. Pan, C. Pan, Z. Yang, M. Chen, and J. Wang, “A caching strat-
egy towards maximumal D2D assisted offload gain,” IEEE Trans.
Mobile Comput., vol. 19, no. 11, pp. 2489–2504, Nov. 2020.

[11] M. Hamdi, A. B. Hamed, D. Yuan, andM. Zaied, “Energy-efficient
joint task assignment and power control in energy harvesting D2D
offload communications,” IEEE Internet Things J., vol. 9, no. 8,
pp. 6018–6031, Apr. 2022.

[12] M. Sun, X. Xu, X. Tao, and P. Zhang, “Large-scale user-assisted
multi-task online offloading for latency reduction in D2D-enabled
heterogeneous networks,” IEEE Trans. Netw. Sci. Eng., vol. 7,
no. 4, pp. 2456–2467, Fourth Quarter 2020.

[13] L. Ryan, W. Yi, T. Aviv, H. Jean, A. Pieter, and M. Igor,
“Multiagent actor-critic for mixed cooperative-competitive envi-
ronments,” in Proc. 31st Int. Conf. Neural Inf. Process. Syst., 2017,
pp. 6382–6393.

[14] A. Khan, C. Zhang, D. D. Lee, V. Kumar, and A. Ribeiro, “Scalable
centralized deep multi-agent reinforcement learning via policy
gradients,” 2018, arXiv:1805.08776.

[15] H. Peng and X. Shen, “Multi-agent reinforcement learning based
resource management in MEC- and UAV-assisted vehicular
networks,” IEEE J. Sel. Areas Commun., vol. 39, no. 1, pp. 131–141,
Jan. 2021.

Fig. 7. Performance evaluation under different max tolerance latency (in
seconds) with: (a) task completed rate; (b) average system latency.

LI ETAL.: TASKCOMPUTATION OFFLOADING FOR MULTI-ACCESS EDGE COMPUTING VIA ATTENTION COMMUNICATION DEEP... 2997

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 31,2023 at 09:32:56 UTC from IEEE Xplore. Restrictions apply.

[16] Z. Chen, L. Zhang, Y. Pei, C. Jiang, and L. Yin, “NOMA-basedmulti-
user mobile edge computation offloading via cooperative multi-
agent deep reinforcement learning,” IEEE Trans. Cogn. Commun.
Netw., vol. 8, no. 1, pp. 350–364,Mar. 2022.

[17] A. Sacco, F. Esposito, G. Marchetto, and P. Montuschi,
“Sustainable task offloading in UAV networks via multi-agent
reinforcement learning,” IEEE Trans. Veh. Technol., vol. 70, no. 5,
pp. 5003–5015, May 2021.

[18] Z. Li and C. Guo, “Multi-agent deep reinforcement learning based
spectrum allocation for D2D underlay communications,” IEEE
Trans. Veh. Technol., vol. 69, no. 2, pp. 1828–1840, Feb. 2020.

[19] B. Huang, X. Liu, S. Wang, L. Pan, and V. Chang, “Multi-agent
reinforcement learning for cost-aware collaborative task execution
in energy-harvesting D2D networks,” Comput. Netw., vol. 195,
2021, Art. no. 108176.

[20] D. Shi, L. Li, T. Ohtsuki, M. Pan, Z. Han, and V. Poor, “Make smart
decisions faster: Deciding D2D resource allocation via stackelberg
game guided multi-agent deep reinforcement learning,” IEEE
Trans.Mobile Comput., vol. 21, no. 12, pp. 4426–4438, Dec. 2022.

[21] Q. He et al., “Reinforcement-learning-based competitive opinion
maximization approach in signed social networks,” IEEE Trans.
Comput. Social Syst., vol. 9, no. 5, pp. 1505–1514, Oct. 2022.

[22] M. Tang and V. W. Wong, “Deep reinforcement learning for task
offloading in mobile edge computing systems,” IEEE Trans. Mobile
Comput., vol. 21, no. 6, pp. 1985–1997, Jun. 2022.

[23] X.-Q. Pham, T.-D. Nguyen, V. Nguyen, and E.-N. Huh, “Joint ser-
vice caching and task offloading in multi-access edge computing:
A QoE-based utility optimization approach,” IEEE Commun. Lett.,
vol. 25, no. 3, pp. 965–969, Mar. 2021.

[24] G. Li, M. Chen, X. Wei, T. Qi, and W. Zhuang, “Computation off-
loading with reinforcement learning in D2D-MEC network,” in
Proc. Int. Wireless Commun. Mobile Comput., 2020, pp. 69–74.

[25] H. Zhou, T. Wu, H. Zhang, and J. Wu, “Incentive-driven deep rein-
forcement learning for content caching and D2D offloading,” IEEE
J. Sel. Areas Commun., vol. 39, no. 8, pp. 2445–2460, Aug. 2021.

[26] J. Tang, H. Tang, N. Zhao, K. Cumanan, S. Zhang, and Y. Zhou,
“A reinforcement learning approach for D2D-assisted cache-
enabled hetnets,” in Proc. IEEE Glob. Commun. Conf., 2019, pp. 1–6.

[27] Y. Lan, X. Wang, D. Wang, Z. Liu, and Y. Zhang, “Task caching,
offloading, and resource allocation in D2D-aided fog computing
networks,” IEEE Access, vol. 7, pp. 104 876–104 891, 2019.

[28] X. Chen, L. Pu, L. Gao, W. Wu, and D. Wu, “Exploiting massive
D2D collaboration for energy-efficient mobile edge computing,”
IEEE Wireless Commun., vol. 24, no. 4, pp. 64–71, Aug. 2017.

[29] Y. Yang, C. Long, J. Wu, S. Peng, and B. Li, “D2D-enabled mobile-
edge computation offloading for multi-user IoT network,” IEEE
Internet Things J., vol. 8, no. 16, pp. 12490–12504, Aug. 2021.

[30] Q. Lin, F. Wang, and J. Xu, “Optimal task offloading scheduling
for energy efficient D2D cooperative computing,” IEEE Commun.
Lett., vol. 23, no. 10, pp. 1816–1820, Oct. 2019.

[31] X. Chen, C. Wu, Z. Liu, N. Zhang, and Y. Ji, “Computation off-
loading in beyond 5G networks: A distributed learning frame-
work and applications,” IEEE Wireless Commun., vol. 28, no. 2,
pp. 56–62, Apr. 2021.

[32] X. Wang, C. Wang, X. Li, V. C. M. Leung, and T. Taleb, “Federated
deep reinforcement learning for Internet of Things with decentral-
ized cooperative edge caching,” IEEE Internet Things J., vol. 7,
no. 10, pp. 9441–9455, Oct. 2020.

[33] D. Shi, H. Gao, L. Wang, M. Pan, Z. Han, and H. V. Poor, “Mean
field game guided deep reinforcement learning for task placement
in cooperative multiaccess edge computing,” IEEE Internet Things
J., vol. 7, no. 10, pp. 9330–9340, Oct. 2020.

[34] L. Pu, X. Chen, J. Xu, and X. Fu, “D2D fogging: An energy-efficient
and incentive-aware task offloading framework via network-
assisted D2D collaboration,” IEEE J. Sel. Areas Commun., vol. 34,
no. 12, pp. 3887–3901, Dec. 2016.

[35] X. Qiu, W. Zhang, W. Chen, and Z. Zheng, “Distributed and col-
lective deep reinforcement learning for computation offloading: A
practical perspective,” IEEE Trans. Parallel Distrib. Syst., vol. 32,
no. 5, pp. 1085–1101, May 2021.

[36] X. Cao et al., “Massive access of static and mobile users via recon-
figurable intelligent surfaces: Protocol design and performance
analysis,” IEEE J. Sel. Areas Commun., vol. 40, no. 4, pp. 1253–1269,
Apr. 2022.

[37] Q. Qi et al., “Knowledge-driven service offloading decision for
vehicular edge computing: A deep reinforcement learning
approach,” IEEE Trans. Veh. Technol., vol. 68, no. 5, pp. 4192–4203,
May 2019.

[38] G. Gao, M. Xiao, J. Wu, H. Huang, S. Wang, and G. Chen,
“Auction-based VM allocation for deadline-sensitive tasks in dis-
tributed edge cloud,” IEEE Trans. Serv. Comput., vol. 14, no. 6,
pp. 1702–1716, Nov./Dec. 2021.

[39] W. Hou, H. Wen, H. Song, W. Lei, and W. Zhang, “Multiagent
deep reinforcement learning for task offloading and resource allo-
cation in cybertwin-based networks,” IEEE Internet Things
J., vol. 8, no. 22, pp. 16 256–16 268, Nov. 2021.

[40] P. Rodr�ıguez, D. Velazquez, G. Cucurull, J. M. Gonfaus, F. X.
Roca, and J. Gonz�alez, “Pay attention to the activations: A modu-
lar attention mechanism for fine-grained image recognition,”
IEEE Trans. Multimedia, vol. 22, no. 2, pp. 502–514, Feb. 2020.

[41] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized expe-
rience replay,” in Proc. 5th Int. Conf. Learn. Representations, 2016.

[42] A. Omidkar, A. Khalili, H. H. Nguyen, and H. Shafiei,
“Reinforcement-learning-based resource allocation for energy-
harvesting-aided D2D communications in IoT networks,” IEEE
Internet Things J., vol. 9, no. 17, pp. 16 521–16 531, Sep. 2022.

[43] A. Sherstinsky, “Fundamentals of recurrent neural network
(RNN) and long short-term memory (LSTM) network,” Physica D:
Nonlinear Phenomena, vol. 404, 2020, Art. no. 132306.

[44] Z. Gao, L. Yang, and Y. Dai, “Large-scale computation offloading
using a multi-agent reinforcement learning in heterogeneous
multi-access edge computing,” IEEE Trans. Mobile Comput., to be
published, doi: 10.1109/TMC.2022.3141080.

[45] S. Jo�silo and G. D�an, “Wireless and computing resource allocation
for selfish computation offloading in edge computing,” in Proc.
IEEE Conf. Comput. Commun., 2019, pp. 2467–2475.

[46] H. Ye, G. Y. Li, and B.-H. F. Juang, “Deep reinforcement learning
based resource allocation for V2V communications,” IEEE Trans.
Veh. Technol., vol. 68, no. 4, pp. 3163–3173, Apr. 2019.

Kexin Li received the BS degree in software
engineering from the Harbin University of Science
and Technology, Harbin, China, in 2015, and the
MS degree in computer technology from North-
eastern University, Shenyang, China, in 2018,
where she is currently working toward the PhD
degree in computer application technology. Her
research interests include software-defined net-
working, edge computing, and machine learning.

Xingwei Wang received the BS, MS, and PhD
degrees in computer science from Northeastern
University, Shenyang, China, in 1989, 1992, and
1998, respectively. He is currently a professor
with the College of Computer Science and Engi-
neering, Northeastern University. He has pub-
lished more than 100 journal articles, books and
book chapters, and refereed conference papers.
His research interests include cloud computing
and future Internet. He has received several best
paper awards.

Qiang He received the PhD degree in computer
application technology from Northeastern Univer-
sity, Shenyang, China, in 2020. He also worked
with the School of Computer Science and Tech-
nology, Nanyang Technical University, Singapore,
as a visiting PhD researcher from 2018 to 2019.
He has published more than ten journal articles
and conference papers. His research interests
include social network analytic, machine learning,
data mining, and software-defined networking.

2998 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 4, JULY/AUGUST 2023

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 31,2023 at 09:32:56 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TMC.2022.3141080

Mingzhou Yang received the BSc degree in
computer science and technology from the She-
nyang University of Technology, Shenyang,
China, in 2015, and the MSc degree in computer
software and theory from Northeastern Univer-
sity, Shenyang, China, in 2017. She is currently
working toward the PhD degree in computer
application technology with Northeastern Univer-
sity, Shenyang, China. Her research interests
include social network analysis and computa-
tional intelligence.

Min Huang (Member, IEEE) received the BS
degree in automatic instrument, the MS degree in
systems engineering, and the PhD degree in con-
trol theory fromNortheastern University, Shenyang,
China, in 1990, 1993, and 1999, respectively. She is
currentlya professor with theCollege of Information
Science and Engineering, Northeastern University.
She has published more than 100 journal articles,
books, and refereed conference papers. Her
research interests include modeling and optimiza-
tion for logistics and supply chain system.

Schahram Dustdar (Fellow, IEEE) is a full pro-
fessor of computer science (informatics) with a
focus on Internet Technologies heading the Dis-
tributed Systems Group with the TU Wien. He is
chairman of the Informatics Section of the Acade-
mia Europaea (since December 9, 2016). He is a
member of the IEEE Conference Activities Com-
mittee (CAC) (since 2016), the Section Commit-
tee of Informatics of the Academia Europaea
(since 2015), a member of the Academia Euro-
paea: The Academy of Europe, Informatics Sec-

tion (since 2013). He is the recipient of the ACM Distinguished Scientist
Award (2009) and the IBM Faculty Award (2012). He is an associate edi-
tor of IEEE Transactions on Services Computing, ACM Transactions on
the Web, and ACM Transactions on Internet Technology, and on the edi-
torial board of IEEE Internet Computing. He is the editor-in-chief of Com-
puting (an SCI-ranked journal of Springer).

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

LI ETAL.: TASKCOMPUTATION OFFLOADING FOR MULTI-ACCESS EDGE COMPUTING VIA ATTENTION COMMUNICATION DEEP... 2999

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 31,2023 at 09:32:56 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

