
12886 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 14, 15 JULY 2023

Speeding at the Edge: An Efficient and Secure
Redactable Blockchain for IoT-Based

Smart Grid Systems
Youshui Lu , Member, IEEE, Xiaojun Tang, Member, IEEE, Lei Liu , Member, IEEE,

F. Richard Yu , Fellow, IEEE, and Schahram Dustdar , Fellow, IEEE

Abstract—As a promising approach to extending cloud
resources and services, blockchain-enabled Internet of Things
(IoT)-based smart grid edge computing has attracted much atten-
tion. However, the edge node’s resource-constraint nature makes
it difficult to store the entire chain as the sensing IoT data vol-
ume increases. To address this issue, we propose an FS scheme, a
fast and secure multithreshold trapdoor Chameleon hash scheme
which serves as the basis for block substitution at the edge nodes
to solve the storage limitation problem. The FS scheme is used
to achieve a consensus-based block substitution, which allows
t-out-of-n edge nodes to compute a hash collision collaboratively
to reliably substitute a historical block without leaking the ran-
domness R. Also, inspired by the rationale of fast polynomial
interpolation, we optimize the FS scheme to FS-I to reduce the
time complexity from O(nt) to O(tlog2t). In addition, we fur-
ther optimize FS-I to FS-II by using a fast Fourier transform
(FFT) to dramatically improve the computational efficiency of
Lagrange interpolation, which leads to a significant improvement
in terms of block substitution performance. Finally, We provide
security analysis and evaluate the performance through compre-
hensive experiments and the results show that FS can achieve
up to several magnitudes better than DTTCH. The results also

Manuscript received 11 August 2022; revised 20 December 2022 and 17
February 2023; accepted 4 March 2023. Date of publication 7 March 2023;
date of current version 7 July 2023. This work was supported in part
by the National Key Research and Development Program of China under
Grant 2022YFF0903400; in part by the Open Research Fund Program
of Key Laboratory of Agricultural Blockchain Application, Ministry of
Agriculture and Rural Affairs under Grant 2022KLABA01; in part by the
China Postdoctoral Science Foundation under Grant 2022M712535; in part
by the Natural Science Foundation Research Program of Shaanxi Province
under Grant 2023-JC-QN-0749; in part by the Key Research and Development
Program of Shaanxi Province under Grant 2021GXLH-Z-054; in part by
the Key Research and Development, Guangdong High Level Innovation
Research Institution Project under Grant 2021B0909050008; and in part by
the Transformation Program of Qinghai Province under Grant 2021-GX-112.
(Corresponding author: Xiaojun Tang.)

Youshui Lu is with the School of Electrical Engineering, Xi’an Jiaotong
University, Xi’an 710049, China, and also with the Key Laboratory of
Agricultural Blockchain Application, Ministry of Agriculture and Rural
Affairs, Agricultural Information Institute, Chinese Academy of Agricultural
Sciences, Beijing 100081, China (e-mail: yolu6176@uni.sydney.edu.au).

Xiaojun Tang is with the School of Electrical Engineering, Xi’an Jiaotong
University, Xi’an 710049, China (e-mail: xiaojun_tang@xjtu.edu.cn).

Lei Liu is with the Guangzhou Institute of Technology, Xidian University,
Guangzhou 510555, China (e-mail: tianjiaoliulei@163.com).

F. Richard Yu is with the Department of Systems and Computer
Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada
(e-mail: richard.yu@carleton.ca).

Schahram Dustdar is with the Distributed Systems Group, Vienna
University of Technology, 1040 Vienna, Austria (e-mail: dustdar@
dsg.tuwien.ac.at).

Digital Object Identifier 10.1109/JIOT.2023.3253601

demonstrate that the FS scheme can provide high service quality
for large-scale IoT-based smart grid systems.

Index Terms—Blockchain, Chameleon hash (CH), edge com-
puting, industrial Internet of Things (IoT), redactable blockchain.

I. INTRODUCTION

W ITH the development of computing technologies,
Internet of Things (IoT)-based edge computing have

been applied to the smart grid systems to improve the relia-
bility, quality, and flexibility of the energy transmission while
reducing the communication latency between different nodes.
IoT-based edge computing [2], [3] aims at providing compu-
tational resources close to billions of end devices at the edge
of the smart grid network, it scales to a massive number of
sites and is a cost efficient way to achieve scalability than
cloud services. However, its resource-constraint and hetero-
geneous nature do also bring security challenges. During the
data transmitting process, attacks, such as sniffer attacks and
jamming attacks could disable the connections by congesting
the network. Further, the data in the edge networks are divided
into many parts and stored in different storage domains, which
may cause data reliability issues [1], [4].

Meanwhile, many scholars use blockchain as a building
block to integrate edge computing in IoT-based smart grid
systems [5], [6], [7]. With the blockchain technology, it is
possible to build a distributed control at dozens of edge
nodes. Thanks to the chain structure and consensus process,
blockchain can transparently protect the collected IoT data’s
accuracy, consistency, and validity. The integration of edge
computing and blockchain seems to be a win–win solution
that can provide secure and reliable services.

However, integrating blockchain and edge computing still
suffer data storage capacity problems. Although the edge node
could provide relatively large storage, as the collected IoT data
increases, the storage required for blockchain ledger is ever-
growing. As a result, the edge nodes will eventually consume
the entire storage. The size of the current Bitcoin chain is more
than 380 GB in size as of the end of February 2022 [8], while
in the IoT-based smart grid settings, the size of the chain could
be even larger. To address this problem, approaches, such as
Ethereum differentiate full and light nodes. Only the full node
stores the entire chain, while the light node only stores the
block’s headers.

2327-4662 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 10,2023 at 09:17:00 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6598-7606
https://orcid.org/0000-0001-8173-0408
https://orcid.org/0000-0003-1006-7594
https://orcid.org/0000-0001-6872-8821

LU et al.: SPEEDING AT THE EDGE: AN EFFICIENT AND SECURE REDACTABLE BLOCKCHAIN 12887

Nevertheless, such a fashion brings centralization risk since
the full nodes may be malicious and the light nodes have
no efficient detection methods [9], [10]. Also, the edge node
should be able to verify transactions and blocks, therefore,
it is required to store the entire chain. Another solution is
to overwrite the original on-chain data directly, but doing so
would break the blockchain’s tamper-resistance property. The
existing approaches cannot effectively solve storage issues.

To address the storage limitation at the edge, our high-
level idea to use redactable blockchain rationale [13], [27],
[28], [29] to construct a hybrid node for the edge computing
servers. So that in the collaborative edges, it enables the block
substitutions of the historical block seamlessly when the stor-
age of the edge server reaches the maximum, thus, mitigating
the storage constraint of the edge.

Meanwhile, Chameleon hash (CH)-based redactable
approaches [11], [12], [13], [16], [17], [18], [19], [20] are
becoming popular in both academia and industrial fields. CH
scheme is a one-way hash function that contains a public key
and a trapdoor, where hashing is parametrized by public key
pk. As long as the trapdoor sk is not revealed, it is difficult
to find a hash collision. In the contrast, if sk is revealed to
the adversary, the arbitrary collision can be found efficiently.
In this article, we use the dynamic threshold trapdoor CH
scheme (DTTCH) [20] as a building block to enable the
block substitution process. Although DTTCH can tolerate a
considerable number of malicious nodes by replacing a single
sk with multiple secret keys, direct using DTTCH still faces
two main challenges.

1) Vulnerability Toward Randomness R: With a publicly
accessible R, it is getting easier for the adversaries to
find the arbitrary collision.

2) High Computational Overheads: Compared with tradi-
tional block creation, overwriting the historical block
by using the DTTCH scheme incurs high computational
overheads, which is not compatible with a large-scale
IoT-based smart grid system.

To address the aforementioned challenges, we propose the
FS scheme, a fast and secure multithreshold trapdoor CH
scheme which serves as the basis for block substitution in
the edge nodes under IoT-based smart grid systems. The FS
scheme is used to achieve a consensus-based block substitu-
tion, which allows a t-out-of-n edge node to compute a hash
collision collaboratively to reliably substitute a historical block
without leaking the randomness R. Also, inspired by the ratio-
nale of fast polynomial interpolation [14], we optimize the FS
scheme to FS-I to reduce the time complexity from O(nt)
to O(tlog2t). In addition, we further optimize FS-I to FS-II
by using fast Fourier transform (FFT) [15] to dramatically
improve the computational efficiency of the Lagrange interpo-
lation, which leads to a significant improvement in terms of
block substitution performance.

Finally, we conduct a security analysis and a comprehen-
sive performance evaluation throughout the proof-of-concept
implementation which we realized in Python and C++.
The evaluation results show that FS-II’s performance can
be improved by several orders of magnitude compared with
the DTTCH approach, it demonstrates that our proposed

method is viable for a large-scale IoT-based smart grid
system.

The main contributions of this work are summarized as
follows.

1) We propose a redactable blockchain for the IoT-based
smart grid systems, which can substitute the histori-
cal data and transaction of the earlier blocks without
affecting the integrity of the original chain, address-
ing the storage barrier for the edge nodes in large-scale
IoT-based smart grid systems.

2) We propose an FS scheme to achieve consensus-based
block substitutions, which allows a t-out-of-n edge node
to compute a hash collision collaboratively to reli-
ably substitute a historical block without leaking the
randomness R.

3) We optimize the FS scheme to FS-I by borrowing the
rationale of fast polynomial interpolation to reduce the
time complexity from O(nt) to O(tlog2t). To further
optimize FS-I to FS-II, we use FFT to dramatically
improve the computational efficiency of the Lagrange
interpolation, leading to a significant improvement in
terms of block substitution performance.

4) We instantiate a prototype implementation of the FS
scheme, and evaluate the performance of algorithms and
block substitution operations through comprehensive
experiments. The results demonstrate that our proposed
method is practical when applied to a large-scale IoT-
based smart grid system.

II. RELATED WORK

The CH algorithm was first proposed by Krawczyk and
Rabin [11]. It is hashed by a public key, and the trap door
is equivalent to a hash backdoor and is hidden. Users can use
trapdoors to compute collisions of different messages with the
same hash. In an editable blockchain, the user can replace the
data in the block with any content without breaking the chain
hash continuity by using the CH’s private key. In the editable
blockchain method proposed by the author, the trapdoor of
CH can be calculated by multiparty calculation under the de-
centralization setting, that is, the process of block modification
can be completed by multiparty security calculation. To ensure
the traceability of the modification operation, the method sets
a flag in the modified block to indicate the data modification
operation and to ensure the transparency of the modification
operation.

Ateniese et al. [13] first proposed a redactable blockchain
by using CH so that data in the block can be replaced without
resulting hard forks. Also, Derler et al. [16] proposed a fine-
grained transaction-level redactable blockchain, their scheme
uses a policy-based CH with ephemeral trapdoors. It allows
any entity that satisfies the defined policy can then find col-
lisions for a given hash. However, it is vulnerable for the
entity to rewrite transactions being compromised or the sin-
gle ephemeral trapdoor and long-term trapdoor are leaked,
and data on the chain can be modified arbitrarily. Moreover,
Deuber et al. [17] proposed the first redactable blockchain in
the permissionless setting, once an edit operation is proposed

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 10,2023 at 09:17:00 UTC from IEEE Xplore. Restrictions apply.

12888 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 14, 15 JULY 2023

TABLE I
COMPARISON WITH THE RELATED WORK

by a user, the protocol starts a consensus-based voting pro-
cess, and only after obtaining enough votes for approving the
redaction, the new block is updated. Also, the old state of the
block is maintained for validation purposes. However, the vot-
ing period is very long and will cause high latency (it takes
almost a few days to reach a consensus and publish a redac-
tion block). In addition, Zhang et al. [18] proposed threshold
trapdoor CH (TTCH) by using multiple secret keys instead of
a single fixed secret key to finding collisions, it could improve
the security of the trapdoor, but the computational costs are
large.

As shown in Table I, another work proposed by
Huang et al. [19] is threshold CH (TCH), especially, for
Industrial IoT (IIoT) settings, which allows a block rewrite
by a group of authorized entities. However, in the rewrite pro-
cess of TCH, the system cannot tolerate malicious sensors,
because the entire system will fail if one node is compromised.
Similarly, Lu et al. [20] proposed an Acce-chain which enables
the rewrite operation governed by a group of edge nodes,
thus, making the rewrite process more controllable. Also, the
authors present a DTTCH scheme which can easily find a col-
lision through a group of trapdoor keys rather than relying on a
single trapdoor key, it has better resilience to key compromise.
In addition, the rewrite process is consensus-based which can
tolerate a considerable number of faulty nodes. Moreover, even
if an entity is executing a rewrite, the rest nodes in the system
remain unlinkable, so it will not increase the latency. However,
the newly generated randomness during rewrite operation will
be exposed to the public which brings vulnerabilities to the
system, also it is not practical for a large-scale IoT-based smart
grid setting.

At the same time, Ateniess and others cooperated with
Accenture [21] to implement a prototype system of an editable
blockchain based on the Hyperledger Federation chain. The
author uses a double-trapdoor CH [22] with an active trap-
door to encrypt the active trapdoor through an attribute-based
encryption scheme, which enables a fine-grained modifica-
tion permission assignment. Users generate an active trapdoor
for the hash each time they hash with the CH public key.
Other users who hold a CH long-term trapdoor can only com-
pute collisions for a hash if they also get an active trap for
that hash. Compared with the single trap in the traditional
scheme, the CH with an active trap improves the flexibility of
the trap and the security of computing collisions by setting a
long-term trapdoor and a short-term trapdoor. This means that
the modifying party needs the authorization of the encrypting
party to calculate collisions and solves the problem that any

block can be modified only by a long-term trap in blockchain
modification.

III. PRELIMINARIES

This part presents the preliminaries on the fundamental
cryptographic constructs for our algorithm design.

Notations: Let g denote a generator of a cyclic group G

of order p. For a λ-bit prime number p, an algorithm is effi-
cient if it runs in probabilistic polynomial time (PPT) in the
length of its input. We denote the integer modulo p as Zp and

r
R← Zp denote that r is chosen uniformly at random from

Zp, ab represent the multiplication of two integers a ∈ Zp

and b ∈ Zp.

A. Computational Assumptions

1) Discrete Logarithm Assumption: Given the cyclic group
generation algorithm (G, p, g)← Gen(1λ), we get the cyclic
group G, order p and the generator g. The discrete logarithm
(DL) problem is by given g, gx ∈ G, x← Zp, compute x.

Definition 1 (DL Assumption): We say the DL problem is
hard relative to G if for all probabilistic polynomial-time
algorithms A there exists a negligible function negl such that

AdvDL
G,A(λ) = Pr

[
(G, p, g)← Gen

(
1λ
)

a← Zp : A(g, p, gx) = x
] = negl(λ).

2) Computational Diffe–Hellman Assumption: Given the
cyclic group generation algorithm (G, p, g) ← Gen(1λ),
we get the cyclic group G, order p and the generator g.
Computational Diffe–Hellman (CDH) problem is by given
(g, ga, gb), a, b← Zp, compute gab.

Definition 2 (CDH Assumption): We say the CDH problem
is hard relative to G if for all probabilistic polynomial-time
algorithms A there exists a negligible function negl such that

AdvCDH
G,A (λ) = Pr

[
(G, p, g)← Gen

(
1λ
)

a, b← Zp : A
(

g, ga, gb
)
= gab

]
= negl(λ).

3) Divisible Computational Diffe–Hellman Assumption:
Given the cyclic group generation algorithm (G, p, g) ←
Gen(1λ), we get the cyclic group G, order p, and the gener-
ator g. Divisible computational Diffe–Hellman (DCDH) [26]
problem is by given (g, ga, gb), a, b← Zp, compute ga/b.

Definition 3 (DCDH Assumption): We say the DCDH
problem is hard relative to G if for all probabilistic
polynomial-time algorithms A there exists a negligible func-
tion negl such that

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 10,2023 at 09:17:00 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SPEEDING AT THE EDGE: AN EFFICIENT AND SECURE REDACTABLE BLOCKCHAIN 12889

Fig. 1. Architecture of blockchain for IoT-based smart grid systems.

AdvDCDH
G,A (λ) = Pr

[
(G, g, p)← Gen

(
1λ
)

a, b← Zp : A
(

g, ga, gb
)
= ga/b

]

= negl(λ).

B. Dynamic Threshold Trapdoor Chameleon Hash Scheme

In our previous work, we proposed the DTTCH
scheme [20], which is using multiple secret keys instead of
a single fixed secret key to find collisions. DTTCH is built
on the bilinear group G1,G2,GT with order p. The functions
satisfy the DCDH assumption.

1) TT.Setup (1λ)→ (params): The algorithm takes as input
a security parameter 1λ and outputs the system param-
eter params = (G1,G2, p, g1, g2, H’), g1, g2 is the
generator of G1, G2, respectively.

2) TT.Gen (params, t, n)→ (hk, (sk1, . . . , skn)): The algo-
rithm takes as input the system parameter params, a
predefined threshold t and the total number of the enti-
ties in the system n, and outputs n secret keys (sk1,. . . ,
skn) and the public hash key hk = (h1, h2, ĥ).

3) TT.Hash(m, hk) → (�, R): The algorithm takes as input
a message m and a hash key hk, and outputs a hash
� = hr

1̂hm and a randomness R = gr
1.

4) TT.HVer (m, �, hk, R) → (True or False): The algorithm
takes as input a committed message m, a hash �, a hash
key hk and a randomness R, and verifies through bilinear
pairing function, and outputs [True/False].

5) TT.Sign (ski, m′, �)→ (σi): The algorithm takes as input
a secret key ski, a message m′ and the hash �, and
outputs the message m′’s credential σi.

6) TT.Hcol ((σ1, . . . , σt), R, hk, �, m) → (⊥ or R′): The
algorithm takes as input t credentials (σ1,. . . ,σt), a
randomness R, a public hash key hk, a hash � and
a message m, the algorithm first verifies by run-
ning TT.HVer(m, �, hk, R), if verified, the algorithm
returns ⊥. Otherwise, it parses each σi for i ∈ [1, . . . , t]
and outputs a new randomness R′.

IV. SYSTEM OVERVIEW

In this section, we first present a typical user case with
blockchain-enabled IoT-based smart grid systems, where edge
nodes have limited storage. Then, we discuss the threat model
and identify the design goals.

A. Application Scenario

In a multilayer IoT-based smart grid system, there is a large
amount of IoT data which is latency sensitive, the typical
applications include demand response, energy trading, and so
on. Traditional cloud outsourcing services can not well support
those applications due to the large communication overheads.
Applications using edge computing must allow quick state
synchronization between different edge nodes to guarantee
that the quality of services is not affected by switching of
edge domains. For example, in demand response energy trad-
ing applications, where it is highly anticipated that the data
(such as real-time electricity usage) used for pricing must
be reliable and consistent so as to eliminate possible unex-
pected accidents. Integrating the blockchain technology can
help protect data security and accountability in the smart grid
network.

B. Architecture

The typical multilayer blockchain-based IoT-based smart
grid system is illustrated in Fig. 1. It mainly consists of four
entities.

1) Full node (cloud server) has massive storage and com-
putational power. Full nodes store the entire blockchain.

2) Hybrid node (edge) has relatively limited computation
and storage capacity. It is the intermediate storage layer
between IoT-based smart grid devices and the Cloud
Server. Hybrid Node in the proposed architecture only
stores the blocks that contain the hot data (most fre-
quently accessed) and the block headers of the entire
chain.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 10,2023 at 09:17:00 UTC from IEEE Xplore. Restrictions apply.

12890 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 14, 15 JULY 2023

3) Key authority is a trusted authority that responds by
issuing secret keys to each entity in the system and
publishing the genesis block.

4) IoT devices (e.g., actuators and sensors) are used
for generating and collecting sensing data. As its
highly resource-constrained nature, it only generates and
uploads raw sensing data to the edge devices.

C. Main Operations

The main operations consist of block creation, block sub-
stitution, and data query. We provide a brief introduction in
the following.

1) Block Creation: This operation proposes a block which
stores the smart grid IoT sensing data and finally appends such
block to the ledger after consensus.

2) Block Substitution: This operation substitutes the block
with cold data by the generated block with hot data. It only
takes place when the edge nodes reach their maximum storage
limit.

3) Data Query: This operation allows the edge node to
query from the full nodes. In this article, we mainly focus
on the reliable block substitution part.

D. Security Model

In this article, we focus on the security of the process of
substituting the historical blocks, we assume that the system
can tolerate a maximum number of n-t Byzantine nodes. Also,
we assume that the communication channel is secure and the
adversary can not break the standard cryptographic assump-
tions and primitives, e.g., finding hash collisions or forging
credentials. For our proposed FS scheme, we will consider
the following three security properties.

1) Indistinguishability: Given a multithreshold CH �FS
scheme, a randomness generated by Hash(·) is indistin-
guishable from a randomness generated by Hcol(·) from
the set of all functions having the same domain M.

2) Collision-Resistance: An adversary A is given oracle
access to Hcol(·), the probability for A to forge a valid
hash collision is negligible.

3) Robustness: An adversary A can control a maximum
number of t − 1 entities (t is the predefined threshold)
and also is given oracle access to Sign(·) and Hcol(·),
the probability for A to forge a valid hash collision is
negligible.

E. Design Goals

The macro aim of this article is to design a novel blockchain
architecture which is compatible with IoT-based edge comput-
ing systems. To overcome the storage constraint barrier, we
aim to use the idea of a “redactable blockchain” to enable
the substitution of the historical blocks without breaking the
links between the original blocks. In this article, we aim to
improve the security and efficiency of the substitution oper-
ation in addition to our previous work DTTCH scheme. The
details of the micro design goals are as follows.

1) Efficiency: Compared to the ordinary block genera-
tion (below the storage limit of the edge devices),

the proposed scheme should have a close performance
during the block substitution process.

2) Security: The proposed scheme should have fundamental
security properties, including indistinguishability, colli-
sion resistance, and robustness. In addition, it should
also guarantee the trapdoor key’s security, with entities’
shares (less than t), the adversaries can not reconstruct
the original trapdoor key to find hash collisions.

V. FS SUBSTITUTION SCHEME

In this section, we first present the FS substitution scheme
to address the security vulnerabilities caused by the expo-
sure of randomness R in the DTTCH scheme. In addition, we
introduce an optimized method by integrating fast Lagrange
interpolation and FFT. Finally, we discuss the detailed process
of block substitution.

A. Construction of FS Scheme

To hide the randomness R, inspired by Sigma Protocol [23],
instead of using zero-knowledge proof primitives, we construct
a lightweight FS scheme without sacrificing the zero-
knowledge nature but improving the security compared to the
DTTCH scheme.

1) FS.Setup (1λ) → (params): Choose a random oracle
H’ : GT → Zp. The algorithm FS.Setup(·) takes as
input a security parameter 1λ and outputs the system
parameter params = (G1,G2, p, g1, g2, H’), g1, g2 is
the generator of G1, G2, respectively.

2) FS.Gen (params, t, n) → (hk, (sk1, . . . , skn),
(pk1, . . . , pkn)): The algorithm takes as input the
system parameter params, a predefined threshold t and
the total number of the entities in the system n, chooses

a random number x
R← Zp and ĥ

R← G1, and sets
h1 = gx

1 and h2 = gx
2, then computes d s.t. xd ≡ 1 mod

p, picks a polynomial v of degree t−1 with coefficients
from Zp, and sets the constant term of v to d (which
means v(0) = d). Finally, the algorithm outputs n secret
keys ski = v(i), public keys pki = gski

2 and the public
hash key hk = (h1, h2, ĥ).

3) FS.Hash (m, hk)→ (�, π): The algorithm takes as input
a message m and a hash key hk, chooses a random

number r
R← Zp, computes a hash � = hr

1̂hm and a ran-
domness R = gr

1. And then generates a random hidden

parameter z
R← Zp and takes it as an input to further

generate another hidden parameter ζ = H′(P), where
P = e(g1, gx

2)
z. Hides R in the exponent as forms of

Sigma protocols and obtains w = Rζ /gz
1 = gζ r+z

1 , denote
π = (w, P) as the proof of randomness R. The algorithm
then outputs (�, π).

4) FS.HVer (m, �, hk, π)→ (True or False): The algorithm
takes as input a committed message m, a hash �, a hash
key hk and a randomness proof π , and outputs ζ ←
H′(P) through the public parameter H′, then verifies

P · e(w, h2) = e

((
�

ĥm

)ζ

, g2

)

(1)

if equals, it outputs True, otherwise it outputs False.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 10,2023 at 09:17:00 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SPEEDING AT THE EDGE: AN EFFICIENT AND SECURE REDACTABLE BLOCKCHAIN 12891

5) FS.Sign (ski, m′, �)→ (σi): The algorithm takes as input
a secret key ski, a message m′ and the hash �, and
outputs the message m′’s credential

σi =
(

�

ĥm′

)ski

. (2)

6) FS.SVer (pki, σi, m′, �) → (True or False): The algo-
rithm takes as input public keys pki, credentials σi, a
message m′, a hash �, verifies

e

(
�

ĥm′ , pki

)
= e(σi, g2) (3)

if equals, it outputs True, otherwise it outputs False.
7) FS.Hcol ((σ1, . . . , σt), π, hk, �, m) → (⊥ or π ′): The

algorithm takes as input t credentials (σ1,. . . ,σt), a ran-
domness proof π , a public hash key hk, a hash �, and
a message m, the algorithm first verifies by running
FS.HVer(m, �, hk, π), if verified, the algorithm returns
⊥. Otherwise, it parses each σi for i ∈ [1, . . . , t] and
outputs Lagrange coefficient

li =
⎡

⎣
t∏

j=1,j 	=i

(0− j)

⎤

⎦

⎡

⎣
t∏

j=1,j 	=i

(i− j)

⎤

⎦

−1

mod p. (4)

The algorithm then computes a new randomness R′ =∏t
i=1 σ

li
i , and the new proof π ′ = (w′, P′) of R′ as

described in FS.Hash(·). It next checks if the following
equation holds:

P · e(w, h2) = e

((
�

ĥm

)ζ

, g2

)

. (5)

If yes, the algorithm outputs π ′, otherwise, it outputs ⊥.

B. Optimized Construction

1) FS-I Optimization: In the FS scheme, it incurs massive
computational overheads during the polynomial multiplica-
tion in the process of generating secret keys and computing
the Lagrange coefficient. Given a t-degree polynomial φ and
a set of points, {x1, . . . , xn}, and a set of function values,
{f1, . . . , fn}, the current FS scheme requires O(nt) arith-
metic operations. To improve the FS scheme’s computational
performance, inspired by Fast polynomial interpolation meth-
ods, we propose the optimized scheme, named FS-I, FS-I
focuses on optimizing HCol(·), and the procedure is as
follows.

1) Separately compute φ(x).
Part(1): φL(x) = φ(x)mod(x−x1)(x−x2) · · · (x−xn/2).

Part(2): φR(x) = φ(x)mod(x − xn/2+1))(x − xn/2+2)

· · · (x− xn).
2) Compute recursively and further differentiate Part(1) and

Part(2).
3) Output the value of φL(x) from x1, x2, . . . , xn/2, and the

value of φR(x) from xn/2+1, xn/2+2, . . . , xn.
4) Finally, get the value of the leaf node on the last level

of recursion φ(x)mod(x− xi), based on the Polynomial
Reminder Theorem, the value equals φ(i).

Fig. 2. Block structure.

To get the value of interpolation function Li =∏
j∈T,j 	=i [(x− j)/(i− j)] when x = 0, the FS-I scheme will

first define N(x) = ∏
i∈T(x − i), then get the numerator

Ni(x) = [N(x)]/[x− i] =∏j∈T,j 	=i(x− j), and the denominator
Di = Ni(i) =∏j ∈ T, j 	= i(i− j), and we have

Li(x) = Ni(x)

Di
. (6)

Therefore, through FS-I, it minimizes the time complexity
from O(nt) to O(tlog2t) which dramatically improves the
computational efficiency, especially, for t > 64.

2) FS-II Optimization: To further optimize the compu-
tational efficiency of Lagrange interpolation, we use FFT
as a building block in the computation. Given a set of
points {(x0, y0), (x1, y1), . . . , (xn, yn)}, there exists only one
Lagrange polynomial φ whose degree is below n, φ =∑

i∈[n] L[n]
i (x)yi, and the Lagrange interpolation

L[n]
i (x) =

∏

j∈[n],j 	=i

x− xj

xi − xj
. (7)

As L[n]
i is determined by the set {xi}i∈[n], by using FFT, the set

will be transformed to {xi}i∈T , T ⊂ [n], and {xi}i∈T , T ⊂ [n].
In Gen(·) and HCol(·), FS-II will contribute to improv-

ing the computation of the elements in the finite cyclic group
Zp. By replacing the entities id {1, . . . , n} with the unit-roots
{ωi−1

n }i ∈ [n], it will significantly improve the performance
because using unit root results in efficient modular inversion.

C. Block Substitution

1) Block Structure: Since each block substitution will gen-
erate a new randomness proof, and this proof must be included
in the block for future verification, therefore, we propose a
novel block structure for our proposed Hybrid nodes at the
edge. As shown in Fig. 2, each block includes block head-
ers, a hash of the previous block’s header, the randomness R’s
proof π , transactions, and the block metadata. Each block is
chained by including the hash of the previous block. Also, a
block header includes a block number BKNum, a timestamp
TS, a root hash Root, and a Merkle Hash Tree [24]. The Root
is used for verifying the integrity of the data records. In Hybrid
nodes, we use our FS scheme to generate the block header’s
hash and use the traditional hash (e.g., SHA265) for others.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 10,2023 at 09:17:00 UTC from IEEE Xplore. Restrictions apply.

12892 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 14, 15 JULY 2023

TABLE II
SYSTEM INITIALIZATION

2) Block Substitution Process: In the multilayer IoT-based
smart grid system, the edge node is responsible for monitor-
ing, controlling, and regulating the behavior of IoT devices
based on their resource usage and activities. They collect sens-
ing data among IoT devices along with resource management,
utilize their own applications and resources to process, catch
and upload data in real time, offload computation, and pro-
pose blocks through consensus. While the edge node storage
reaches the maximum, the block substitution with hot data is
executed for storing the ever-growing IoT data.

To execute the block substitution operation among the con-
sortium of edge nodes, our proposed method can tolerate a
considerable number of malicious or failure nodes. The block
substitution will be executed by rounds, within each round,
it will elect a node as the proposing node. However, a single
Byzantine node may attack the network by imposing a large
number of blocks. To address such venerability, we restrict
each edge node can only propose one block per n rounds (n
is the total number of the edge nodes in the network).

Before executing the block substitution operation, the Key
authority in the system will first initialize by generating the
system parameters, including threshold t and n pairs of public
and secret keys (sk1, . . . , skn), (pk1, . . . , pkn) and the hash key
hk = (h1, h2, ĥ) through TT.Gen(·), and then assigns them to
each edge node in the system. Note that under low-risk circum-
stances, a small threshold parameter t is sufficient as the loss
may not be significant if an accident occurs; for medium-risk
settings, a medium value of t is desirable to tolerate attacks for
a high-risk environment, a high value of t might be required to
tolerate failures, e.g., t > n/2. The detailed block substitution
process is discussed as follows.

Step 1 (Block Proposal): During the block proposing phase,
the system elects a leader node throughp = v mod |R|, v
represents the number of views, p is the leader node’s ID, R
is the total number of the edge nodes in the system. Once a
leader is elected, it will collect all the transactions, package
them into a block, and then broadcast them to the network.
The detailed block proposing process is shown in Algorithm 1.

Step 2 (Voting Process): Once other edge nodes in the
system receive PROPOSAL message, they will first conduct
the verification process. As the public keys are public access
and bonded with the transactions in the block. The edge nodes
will use it to verify the signatures of d and Txs. The detailed
voting process is shown in Algorithm 2.

Step 3 (Collision Finding): When the leader node received
the credential from the rest of the nodes, it will first verify the

Algorithm 1: Block Proposal
Input: Leader election results
Output: PROPOSAL message

1 Set v = VIEW, n = Rblock + 1;
2 Txs← GetTxFromTxPool();
3 MerkelRoot′ ← BuildMHT(Txs);
4 Set BlockHeader′ = (n, TS′, Root′, PrevHash);
5 d← Sig(Hash(BlockHeader′));
6 Block←

ConstructBlcok(BlockHeader′, �, Txs, MetaData);
7 Primary node → All: PROPOSAL message

<< PROPOSAL, v, n, d >, Block >;

Algorithm 2: Voting Process
Input: PROPOSAL message
Output: Credential σi or Failure

1 For edge node Ni:
2 if v == VIEW && n == Rblock + 1 then
3 if Sig_Verify(d)==True && Tx_Verify(Txs)==True
4 && � == GetBlcok(n).�

5 then
6 σi = FS.Sign(ski, BlockHeader′, �);
7 Ni → Primary:VOTE message < VOTE, v, i, σi >;
8 Ni monitors the communication port to Primary;
9 else

10 return Failure ; // verification
failure

11 end
12 else
13 return Failure ; // view ID and

substitution pointer does not match.
14 end

credentials. Once the number of collected and verified creden-
tials is sufficient(more than t), the leader node will then enter
into the collision-finding process. After that, the leader will
execute FS.HCol(·) and generate the proof of randomness π .
The detailed collision finding process is shown in Algorithm 3.

Step 4 (Block Confirmation): When the edge nodes received
the message that contains PROOF, they will first verify the
view number and the id of the proposed block, and then
they will validate the proof of the randomness π . If both
are verified, the edge nodes will update the block substitu-
tion pointer number to Rblock + 1. Edge nodes will also send
message COMMIT to the leader node and the full nodes sep-
arately. Message COMMIT includes the new block’s header
information. As full nodes have sufficient storage, they will
append the new block to the last block on the chain after veri-
fication of the proofs. The detailed block confirmation process
is shown in Algorithms 4 and 5.

VI. SECURITY ANALYSIS

A. Proof of Indistinguishability

Theorem 1: If the DCCTH scheme satisfies indistinguisha-
bility, the FS scheme will also hold.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 10,2023 at 09:17:00 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SPEEDING AT THE EDGE: AN EFFICIENT AND SECURE REDACTABLE BLOCKCHAIN 12893

Algorithm 3: Collision Finding Process
Input: VOTE message
Output: The proof of randomness π ′ or WAIT

1 For the leader node Primary:
2 for σi, i ∈ [1, N] do
3 if FS.SVer(pki, σi, BlockHeader′, �) == True then
4 ValidCredentialCount = ValidCredentialCount+1;
5 else
6 DROP σi ; // If verification fails,

withdraw the credential
7 end
8 end
9 if ValidCredentialCount ≥ t then

10 π ′ ← FS.HCol(·)((σ1, ..., σt), π, hk, BlockHeader′);
11 sig← Sig(π ′);
12 Primary→ All : PROOF message

<< PROOF, v, n, π ′ >, sig >;
13 else
14 WAIT for ; // If not received a

sufficient number of credentials
15 end

Algorithm 4: Confirmation Process
Input: PROOF message
Output: COMMIT message or Failure

1 if v == VIEW && n == Rblock + 1 then
2 if Sig_Verify(sig) == True &&

FS.HVer(BlockHeader′, �, hk, π ′) == True then
3 Set Rblock = Rblock + 1;
4 Substitute The Historical Block with the Proposal

Block Ni → HC : Historical BlockHeader
Substitute and Backup BlockHeader
Ni → Primary : COMMIT message
< COMMIT, v, n, i, sigi >;

5 Ni → Cloud : COMMIT message
< COMMIT, BlockHeader′, v, n, i, sigi >

6 else
7 return Failure;
8 end
9 else

10 return Failure;
11 end

Proof: The proof process is simulated by the simulator S
and the adversary A. Assume that the maximum number for
A to execute the DCCTH algorithm is n(λ). S acts as a dis-
tinguisher to attack DCCTH. S is able to obtain the hash
public keys pk∗, and it is given oracle access to Hash(·)
and HCol(·)(denoted asHashOrHCol). While A can learn
leaked messages from S , its goal is to break the indistin-
guishability of DCCTH. S can randomly choose g ∈ [1, n(λ)]
as the index of executing HashOrHCol. At gth execution,
S directly computes the hash (�, π) ← Hash(pk∗, m), but
not to call the randomness (�, π) and the hash generated
by HCol(·).

Algorithm 5: Confirmation Process (Leader Node)
Input: COMMIT message
Output: Success or Failure

1 for COMMIT ∈ Ni, i ∈ [1, N] do
2 if Sig_Verify(sigi) == True then
3 CommitNum = CommitNum+ 1;
4 else
5 Pass ; // If verification fails, it

will not update the count
6 end
7 end
8 if CommitNum ≥ N/2+ 1 then
9 Substitute and Backup BlockHeader Primary→

Fullnode : <BackupBlock, v, n, sigPrimary>;
10 return Success ; // end Process.
11 else
12 return Failure;
13 end

To set up the cryptographic game, S generates n nodes for
A. First, S random chooses a node from n, Hash(·) takes
as input the chosen node’s hash public key. S can access
to the Sign(·) function of each node, and it can also obtain
signed credentials from t out of n nodes. If A commits a set
of messages (m0, m1) at gth execution. Although S can get
the hash value (�b, πb) by calling the HashOrHCol, it can
not distinguish whether the hash is generated by the Hash(·)
function or the HCol(·) function. S outputs (�b, πb) and sends
to A. Since DCCTH has indistinguishability, A can not dis-
tinguish whether the randomness proof πb is generated by
Hash(·) or HCol(·), therefore, we have |Pr(S0) − Pr(S1)| ≤
VDCCTH−ind(λ).

B. Proof of Collision-Resistance

Theorem 2: If the Sigma protocol is witness-
indistinguishable and zero-knowledge and satisfies the
DCDH assumption, the FS scheme is Collision-Resistance.

Proof: We prove the FS’s collision-resistance property by a
series of cryptographic games in the following.

Game 0: This round is to initialization for the game. For
each execution request, the adversary A calls HCol(·) from
the challenger C to get (�, m′, (σ1, . . . , σi)), C computes R′ =∏t

i=1 σ
Li
i and w = R′ζ /gz

1 to output proof π = (w, P).
If A forges proof (�∗, (m∗, π∗), (m′∗, π ′∗)), C will verify

π∗ and π ′∗ by

P∗ · e(π∗, h2
) = e

((
�
∗

ĥm∗

)ζ ∗

, g2

)

(8)

P′∗ · e(π ′∗, h2
) = e

((
�
∗

ĥm′∗

)ζ ′∗

, g2

)

. (9)

Game 1: Assume A tries to obtain the randomness r from
Hash(·), and verifies through HVer(·). Since DL assumption
holds, A can not get r from w = gζ r+z

1 within PPT time.
Game 2: Assume A tries to forge proof π . As in Sigma pro-

tocol, proving indistinguishability can be reduced to prove a

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 10,2023 at 09:17:00 UTC from IEEE Xplore. Restrictions apply.

12894 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 14, 15 JULY 2023

general zero-knowledge property. So for (w1, w2) in (π1, π2),
we should prove that A can not distinguishw1 and w2 within
PPT time. Since A can not learn any knowledge from w∗,
therefore, A can not get w∗ within PPT time.

Game 3: Given DCDH tuple (g1, g2, gx
1, gx

2, gy
1) to the

challenger C, A sets the system parameters (h1 = gx
1, h2 =

gx
2, ĥ = gy). For (�∗, R∗, R′∗, m∗, m′∗) given by C, A com-

putes hash(m∗, R∗) = hash(m′∗, R′∗) and gets g(y/x)
1 =

(R′∗/R∗)(1/[m∗−m′∗]). If A sets R′ = gy/x
1 and forges R′’s proof

π ′ = (w, P) (w = R′ζ /gz′
1), C receives (�∗, π ′) and verifies

P · e(w, h2) = e((�/̂hm)ζ , g2) through HVer(·)

LHS = e
(
g1, gx

2

)z′ · e
(

g
(y

x)ζ−z′
1 , gx

2

)

= e(g1, g2)
xz′ · e(g1, g2)

(y
x ζ−z′)x

= e(g1, g2)
yζ (10)

RHS = e

((
�
∗

ĥm∗

)ζ

, g2

)

= e

⎛

⎝

(
hr′

1 ĥm∗

ĥm∗

)ζ

, g2

⎞

⎠

= e
(

hr′ζ
1 , g2

)
= e

(
gxr′ζ

1 , g2

)

= e(g1, g2)
xr′ζ . (11)

From the above equations, we have LHS 	= RHS, that is to
say, A can not forge a valid proof through (�∗, m∗).

C. Proof of Robustness

Theorem 3: If the benign entities numbert > n/2 in the
system, and the DL assumption holds, the FS scheme is robust.

Proof: In the robustness experiment AdvROB
A,TTCH(λ), assume

that the maximum number of entities for the adversary A can
control is t− 1, that means A can get a maximum number of
t− 1 signatures. For A to succeed in the experiment, A must
first sign the new messages m′ with the t− 1 secret keys, and
forge a valid credential by satisfying the following equation.

1) SVer(σi, m′∗, pki, �, hk) = True.
2) σi 	= Sign(ski, m′∗, �).

Since all entities’ key pairs are generated by Gen(·) during the
system initialization, the forged credential share by A must be
verified by the corresponding entity’s public key. Since each
valid credential σi is signed by the same entity’s secret key,
it implies that for a A to succeed, it must obtain one more
entity key pair in addition to the t − 1 key pairs. As A tries
to obtain secret keys through monitoring the valid credentials
sent by the entities, however, for A to be able to succeed,
he must break the DL assumption. Since A can not break
DL assumption within PPT time, therefore, the FS scheme is
robust.

VII. PERFORMANCE EVALUATIONS

A. FS Related Experiments

We first conduct a series of comparison experiments to eval-
uate the performance of the DTTCH scheme and our proposed
FS scheme.

Setup: We implement the construction of FS with C++
by using cryptographic library libff and polynomial library

TABLE III
SIZE OF THE MAIN SYSTEM PARAMETERS

TABLE IV
PERFORMANCE OF DTTCH SCHEME (THRESHOLD t

VARIES FROM 5 TO 30, UNIT: MILLISECOND)

libfqfft. Moreover, the bilinear pairing is defined over the 256-
bit Barreto-Naehrig [25] curve, the FFT is defined over libfqfft.
The experiments are deployed on computing nodes with Intel
Core i7-10700 CPU with 6 core processors running at 2.9 GHz
and 16-GB RAM with Ubuntu 18.04 system.

The default threshold t satisfies t > n/2. For simplicity, we
set the size of the message to 1 kB, and each result is cal-
culated by the average running time of 1000 executions. The
experiments first initialize the ellipse curve through random-
izing, and the functions will be computed based on the same
ellipse curve.

The main system parameters are shown in Table III. The
size of hk is larger than other parameters because hk includes
three parts which are generated from G1,G2, and Zp, respec-
tively. Since hk is generated during the system initialization
process, it will not affect the performance of the system
afterwards.

The size of the symmetric bilinear groups and G2 used
in this experiment are all 32 bytes, where the secret key
is generated by G1, the public key is generated by G2. As
we use a 256-bit Bn elliptic curve, the security is equiv-
alent to the security of a 3072-bit RSA algorithm, but it
generated a smaller hash and credentials than the same-level
RSA algorithm. During the system initialization phase, key
authority distributes hash keys, secret keys, and public keys
to each entity in the system. Much message communication
overheads will incur during the four phases of block substi-
tution, therefore, using smaller parameters will decrease the
communication costs.

Performance Evaluation: The performance is shown in
Table IV, and the experimental performance results of the FS
scheme are shown in Table V. The FS scheme optimizes the
security and computational efficiency over the DTTCH scheme
by introducing a novel FS.SVer(·) to verify the credentials.
In addition, the FS scheme uses the fast Lagrange interpola-
tion method to find collisions while using FFT to calculate
the polynomial. This experiment sets the number of entities
n = 2t− 1, and records the time cost of six algorithms in the
FS scheme with the threshold parameter t increasing from 8
to 512, where t is a geometric progression.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 10,2023 at 09:17:00 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SPEEDING AT THE EDGE: AN EFFICIENT AND SECURE REDACTABLE BLOCKCHAIN 12895

(a) (b)

Fig. 3. Performance evaluation of FS scheme. (a) Computational costs of FS.Gen(·), FS.Hash(·), and FS.HVer(·). (b) Computational costs of FS.Sign(·)
and FS.SVer(·).

(a) (b)

Fig. 4. Comparison experiments of HCol(·) in different schemes. (a) Computational costs of FS.HCol(·). (b) Performance comparison with TT.HCol(·)
and TCH.HCol(·).

TABLE V
PERFORMANCE OF FS SCHEME (THRESHOLD t VARIES

FROM 8 TO 512, UNIT: MILLISECOND)

Fig. 3(a) evaluates the average performance overhead of the
FS scheme for key generation, hash generation, and hash ver-
ification. Compared with the DTTCH scheme, FS is over ten
times faster, it is because FS uses the unit root and FFT calcu-
lations to generate the selected polynomial secret keys during
the key generation phase. Both hash and verification opera-
tions are single computational operations and their cost does
not change with the increase of threshold t. In addition, as
hash and pairing function verification involve polynomial cal-
culations, the time cost required for both operations is also
optimized. Fig. 3(b) shows the cost for signing and verifica-
tion in FS. This experiment records the time costs of signing
by all participants. Since only t valid certificates need to be
collected in FS to calculate collisions, the average cost of veri-
fication is calculated by randomly selecting t certificates from
all participant certificates in the experiment. It can be seen
from Fig. 3(b) that the time cost to sign the certificate and
verify it is linearly related to t. In real-world settings, the

signing operation can be performed by all the participants in
parallel. Although the verification operation can only be per-
formed by a single participant in a serial manner, the results
of this experiment show that the operation is still affordable
in large-scale systems (greater than 100 entities).

Fig. 4(a) evaluates the performance of the HCol(·) with dif-
ferent threshold parameters. Secret-sharing algorithms in FS
use fast Lagrange interpolation to aggregate t credentials on
an exponential basis during collision computation, therefore,
HCol(·) is significantly correlated to threshold parameters. As
shown in Fig. 4(b), the performance of FS.HCol(·) has a sig-
nificant raise compared to TT.HCol(·). TT.HCol(·) requires
300 ms to find collisions while FS.HCol(·) only takes 0.8 ms
and only takes 11 ms when t = 512.

In addition, compared with the similar scheme
Huang et al. [19], as shown in Fig. 4(b), the FS scheme does
also exceed the performance of the TCH scheme proposed
by Huang et al. As t increases, the costs of TCH.HCol(·)
dramatically increases. Through the experiments, it demon-
strates that the FS scheme is viable for large-scale IoT-based
smart grid systems.

B. Rewrite Experiments

We instantiate a prototype of FS scheme-enabled blockchain
with Go language. In addition, we also instantiate proto-
types of DTTCH and TCH scheme-enabled blockchain as the
comparison experiment. To evaluate the performance of the
operations in the chain, we conduct a list of experiments on

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 10,2023 at 09:17:00 UTC from IEEE Xplore. Restrictions apply.

12896 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 14, 15 JULY 2023

(a) (b) (c) (d)

Fig. 5. Performance evaluation of the rewrite operation. (a) Throughput. (b) Latency. (c) Throughput comparison with baseline. (d) Latency comparison with
baseline.

the rewrite operations including the comparison experiments
with the baseline Hyperledger Fabric 2.0. We use PBFT in our
prototype, however, in real settings, the consensus mechanism
is plug-gable according to different requirements, for example,
the network size, and other variables.

Setup: The prototype was deployed on the Aliyun CES
as the experimental platform, each node is running in the
Docker container on 20 physical edge nodes, and each server is
equipped with Intel Core i7 10700@ 2.90 GHz, 16-GB RAM,
the operating system is 64-bit Ubuntu 18.04.4 LTS and the
network bandwidth is 10 Mb/s. Meanwhile, we use Raspberry
Pi 4 Modele B to generate transactions and transmit them to
the edge node. We use the Grpc protocol for communication
between different nodes. We set the transactions per block to
300 because 300 is the performance bottleneck based on our
past experience.

Experiment Evaluation-1: We use the number of nodes as
the variable to evaluate the throughput and latency of the
rewrite operations. We set the threshold to a fixed t = N/2+1,
and increase the number of nodes from 8 to 64.

The throughput experiment results are shown in Fig. 5(a),
which demonstrates that the throughput decreases slowly as
the number of nodes increases. When there are eight nodes
in the network, the throughput reaches 2166 transactions per
second (TPS), while it decreases to around 1600 TPS when
there are 64 nodes. It is reasonable because as the number
of nodes increases, the network will incur more overheads,
including communication costs, verification costs, and so on.

Experiment Evaluation-2: In addition, we also conduct the
comparison experiment with the baseline (Hyperledger Fabric
2.0), DTTCH-based and TCH-based. We use the number of
nodes as the variable to evaluate the throughput and latency
of the rewrite operations of the comparison approaches. We
set the threshold to a fixed t = 5, and increase the number of
nodes from 2 to 10.

As shown in Fig. 5(c), the throughput of our approach is 2.5,
3, and 3.5 times faster than which of the baseline, DTTCH-
based and TCH-based, respectively. It also implies that the
performance will not lose much when there are fewer nodes in
the network. For the latency experiments results, as shown in
Fig. 5(b), the latency has an inverse relation with the through-
put, the latency increases as the number of nodes increases.
Moreover, as our experiments were done under an ideal envi-
ronment, however, in real settings, the data generation rates
of different IoT devices fluctuate, and the performance of our
approach will also be affected.

VIII. CONCLUSION

In this article, we proposed FS to build a redactable
blockchain for the edge. Through FS, we address the storage
problem of traditional blockchain caused by ever-growing IoT
data. The proposed block substitution operation is used when
the edge node reaches the maximum storage, it empowers
FS to substitute the historical blocks in a secure and control-
lable way while maintaining the connectivity of the chain. In
addition, we optimize the FS scheme through fast polynomial
interpolation and FFT to increase the performance by several
magnitudes compared to which of DTTCH, while guarantee-
ing the security of randomness R at the same time. Through
a detailed security analysis and comprehensive experiments,
we demonstrate that our proposed methods are practical for
a large-scale IoT-based smart grid setting. Finally, we will
continue work on the arena of blockchain-enabled edge com-
puting direction, hopefully, we will research the layer2 part
for further optimizing the scalability of the blockchain.

REFERENCES

[1] R. Yang, F. R. Yu, P. Si, Z. Yang, and Y. Zhang, “Integrated blockchain
and edge computing systems: A survey, some research issues and chal-
lenges,” IEEE Commun. Surveys Tuts., vol. 21, no. 2, pp. 1508–1532,
2nd Quart., 2019.

[2] L. Liu et al., “Blockchain-enabled secure data sharing scheme in
mobile-edge computing: An asynchronous advantage actor–critic learn-
ing approach,” IEEE Internet Things J., vol. 8, no. 4, pp. 2342–2353,
Feb. 2021.

[3] Y. Ju et al., “Joint secure offloading and resource allocation for vehicular
edge computing network: A multi-agent deep reinforcement learning
approach,” IEEE Trans. Intell. Transp. Syst., early access, Feb. 10, 2023,
doi: 10.1109/TITS.2023.3242997.

[4] Y. Lu, Y. Qi, S. Qi, Y. Li, H. Song, and Y. Liu, “Say no to price
discrimination: Decentralized and automated incentives for price audit-
ing in ride-hailing services,” IEEE Trans. Mobile Comput., vol. 21,
no. 2, pp. 663–680, Feb. 2022. [Online]. Available: https://doi.org/10.
1109/TMC.2020.3008315

[5] M. B. Mollah et al., “Blockchain for future smart grid: A comprehensive
survey,” IEEE Internet Things J., vol. 8, no. 1, pp. 18–43, Jan. 2021.

[6] T.-V. Le, C.-L. Hsu, and W.-X. Chen, “A hybrid blockchain-based
log management scheme with nonrepudiation for smart grids,” IEEE
Trans. Ind. Informat., vol. 18, no. 9, pp. 5771–5782, Sep. 2022,
doi: 10.1109/TII.2021.3136580.

[7] M. Li, C. Lal, M. Conti, and D. Hu, “LEChain: A blockchain-based law-
ful evidence management scheme for digital forensics,” Future Gener.
Comput. Syst., vol. 115, pp. 406–420, Feb. 2021. [Online]. Available:
https://doi.org/10.1016/j.future.2020.09.038

[8] R. de Best. “Bitcoin blockchain size 2010–2020.” Jul. 2022. [Online].
Available: https://www.statista.com/statistics/647523/worldwide-bitcoin-
blockchain-size

[9] V. Buterin. “A next generation smart contract and decentralized applica-
tion platform.” 2022. [Online]. Available: https://github.com/ethereum/
wiki/wiki/White-Paper

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 10,2023 at 09:17:00 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TITS.2023.3242997
http://dx.doi.org/10.1109/TII.2021.3136580

LU et al.: SPEEDING AT THE EDGE: AN EFFICIENT AND SECURE REDACTABLE BLOCKCHAIN 12897

[10] S. Xue, X. Zhao, X. Li, G. Zhang, and C. Xing, “A trusted system
framework for electronic records management based on blockchain,” in
Web Information Systems and Applications (Lecture Notes in Computer
Science 11817). Cham, Switzerland: Springer, 2019, pp. 548–559.
[Online]. Available: https://doi.org/10.1007/978-3-030-30952-755

[11] H. Krawczyk and T. Rabin, “Chameleon signatures,” in Proc. Netw.
Distrib. Syst. Security Symp. (NDSS), San Diego, CA, USA, 2000,
pp. 143–154.

[12] G. Ateniese and B. de Medeiros, “On the key exposure problem in
chameleon hashes,” in Proc. 4th Int. Conf. Security Commun. Netw.
(SCN), 2004, pp. 165–179.

[13] G. Ateniese, B. Magri, D. Venturi, and E. Andrade, “Redactable
blockchain—or—rewriting history in Bitcoin and friends,” in Proc. IEEE
Eur. Symp. Security Privacy (EuroS P), 2017, pp. 111–126.

[14] J. V. Z. Gathen and J. Gerhard, “Fast polynomial evaluation and inter-
polation,” in Modern Computer Algebra, 3rd ed. Cambridge, U.K.:
Cambridge Univ. Press, 2013, ch. 10.

[15] J.-P. Berrut and L. N. Trefethen, “Barycentric Lagrange interpolation,”
SIAM Rev., vol. 46, no. 3, pp. 501–517, 2004.

[16] D. Derler, K. Samelin, D. Slamanig, and C. Striecks, “Fine-grained and
controlled rewriting in blockchains: Chameleon-hashing gone attribute-
based,” in Proc. Netw. Distrib. Syst. Security Symp. (NDSS), 2019,
pp. 18–21.

[17] D. Deuber, B. Magri, and S. A. K. Thyagarajan, “Redactable blockchain
in the permissionless setting,” in Proc. IEEE Symp. Security Privacy
(S P), May 2019, pp. 124–138.

[18] J. Zhang et al., “Serving at the edge: A redactable blockchain with fixed
storage,” in Web Information Systems and Applications (WISA) (Lecture
Notes in Computer Science 12432), G. Wang, X. Lin, J. Hendler,
W. Song, Z. Xu, and G. Liu, Eds. Cham, Switzerland: Springer, 2020.
[Online]. Available: https://doi.org/10.1007/978-3-030-60029-7_58

[19] K. Huang et al., “Building redactable consortium blockchain for indus-
trial Internet-of-Things,” IEEE Trans. Ind. Informat., vol. 15, no. 6,
pp. 3670–3679, Jun. 2019.

[20] Y. Lu et al., “Accelerating at the edge: A storage-elastic blockchain for
latency-sensitive vehicular edge computing,” IEEE Trans. Intell. Transp.
Syst., vol. 23, no. 8, pp. 11862–11876, Aug. 2022. [Online]. Available:
https://doi.org/10.1109/TITS.2021.3108052

[21] Accenture Debuts Prototype of ‘Editable’ Blockchain for Enterprise
and Permissioned Systems [EB], Accenture, Dublin, Ireland, Sep. 2016.
Accessed: Aug. 10, 2017.

[22] J. Camenisch, D. Derler, S. Krenn, H. C. Pöhls, K. Samelin, and
D. Slamanig, “Chameleon-hashes with ephemeral trapdoors,” in Proc.
IACR Int. Workshop Public Key Cryptogr., 2017, pp. 152–182. [Online].
Available: https://doi.org/10.1007/978-3-662-54388-7_6

[23] C. P. Schnorr, “Efficient signature generation by smart cards,” J.
Cryptol., vol. 4, no. 3, pp. 161–174, 1991. [Online]. Available: https://
doi.org/10.1007/BF00196725

[24] R. C. Merkle, “A certified digital signature,” in Proc. Annu. Int. Cryptol.
Conf., 1989, pp. 218–238.

[25] K. Kasamatsu. “Barreto-Naehrig curves.” 2014. Accessed: Aug. 14,
2014. [Online]. Available: https://tools.ietf.org/id/draft-kasamatsu-
bncurves-01.html

[26] F. Bao, R. H. Deng, and H. Zhu, “Variations of Diffie-Hellman problem,”
in Proc. Int. Conf. Inf. Commun. Security, 2011, pp. 201–219.

[27] K. Ashritha, M. Sindhu, and K. V. Lakshmy, “Redactable blockchain
using enhanced chameleon hash function,” in Proc. 5th Int.
Conf. Adv. Comput. Commun. Syst. (ICACCS), 2019, pp. 323–328,
doi: 10.1109/ICACCS.2019.8728524.

[28] J. Xu, K. Xue, H. Tian, J. Hong, D. S. L. Wei, and P. Hong, “An
identity management and authentication scheme based on redactable
blockchain for mobile networks,” IEEE Trans. Veh. Technol., vol. 69,
no. 6, pp. 6688–6698, Jun. 2020, doi: 10.1109/TVT.2020.2986041.

[29] K. Huang, X. Zhang, Y. Mu, F. Rezaeibagha, X. Du, and N. Guizani,
“Achieving intelligent trust-layer for Internet-of-Things via self-
redactable blockchain,” IEEE Trans. Ind. Informat., vol. 16, no. 4,
pp. 2677–2686, Apr. 2020, doi: 10.1109/TII.2019.2943331.

Youshui Lu (Member, IEEE) received the B.S.
degree from The Australian National University,
Canberra, ACT, Australia, in 2013, the M.S. degree
from The University of Sydney, Camperdown, NSW,
Australia, in 2015, and the Ph.D. degree from the
School of Computer Science and Technology, Xi’an
Jiaotong University, Xi’an, China, in 2021.

He is currently an Assistant Professor with the
School of Electrical Engineering, Xi’an Jiaotong
University. His research interests include blockchain
technology, distributed systems, Internet of Things,

data security, and smart grid.

Xiaojun Tang (Member, IEEE) was born in Jiangxi,
China, in 1973. He received the B.S. and M.S.
degrees in control theory and control engineering
from Xi’an University of Technology, Xi’an, China,
in 1998 and 2001, respectively, and the Ph.D. degree
in instrument science and technology from Xi’an
Jiaotong University, Xi’an, in 2004.

From 2007 to 2008, he was a Postdoctoral Fellow
with The University of New Orleans, New Orleans,
LA, USA. Since 2014, he has been a Professor with
the Department of Measurement and Control, School

of Electrical Engineering, Xi’an Jiaotong University. His research interests
include smart sensor and instrumentation, condition monitoring technology
for power equipment, and smart control.

Lei Liu (Member, IEEE) received the B.Eng. degree
in communication engineering from Zhengzhou
University, Zhengzhou, China, in 2010, and the
M.Sc. and Ph.D. degrees in communication engi-
neering from Xidian University, Xi’an, China, in
2013 and 2019, respectively.

From 2013 to 2015, he worked with Technology
Company. From 2018 to 2019, he was supported by
China Scholarship Council to be a visiting Ph.D.
student with the University of Oslo, Oslo, Norway.
He is currently a Lecturer with the Department

of Electrical Engineering and Computer Science, Xidian University. His
research interests include vehicular ad hoc networks, intelligent transportation,
mobile-edge computing, and Internet of Things.

F. Richard Yu (Fellow, IEEE) received the Ph.D.
degree in electrical engineering from The University
of British Columbia, Vancouver, BC, Canada, in
2003.

From 2002 to 2006, he was with Ericsson, Lund,
Sweden, and a start-up in California, USA. He
joined Carleton University, Ottawa, ON, Canada, in
2007, where he is currently a Professor. His research
interests include connected/autonomous vehicles,
security, artificial intelligence, blockchain, and wire-
less cyber–physical systems.

Dr. Yu received the IEEE TCGCC Best Journal Paper Award in 2019,
the Distinguished Service Awards in 2016 and 2019, the Outstanding
Leadership Award in 2013, the Carleton Research Achievement Awards in
2012 and 2021, the Ontario Early Researcher Award (formerly, the Premiers
Research Excellence Award) in 2011, the Excellent Contribution Award
at IEEE/IFIP TrustCom10, the Leadership Opportunity Fund Award from
Canada Foundation of Innovation in 2009, and the Best Paper Awards at
IEEE ICNC18, VTC17 Spring, ICC14, Globecom12, IEEE/IFIP TrustCom09,
and International Conference on Networking 05. He serves on the editorial
boards of several journals, including the Co-Editor-in-Chief for Ad Hoc &
Sensor Wireless Networks and a Lead Series Editor for IEEE TRANSACTIONS
ON VEHICULAR TECHNOLOGY, IEEE COMMUNICATIONS SURVEYS AND
TUTORIALS, and IEEE TRANSACTIONS ON GREEN COMMUNICATIONS
AND NETWORKING. He has served as the technical program committee
co-chair of numerous conferences. He has been named in the Clarivate
Analytics list of Highly Cited Researchers in 2019 and 2020. He is an
IEEE Distinguished Lecturer of both Vehicular Technology Society (VTS) and
Communication Society. He is an elected member of the Board of Governors
of the IEEE VTS and the Editor-in-Chief for IEEE VTS Mobile World
Newsletter. He is a registered Professional Engineer in the province of Ontario,
Canada, and a Fellow of IET and Engineering Institute of Canada.

Schahram Dustdar (Fellow, IEEE) received the
Ph.D. degree in business informatics from the
University of Linz, Linz, Austria, in 1992.

He is currently a Full Professor of Computer
Science (informatics) with a focus on Internet tech-
nologies heading the Distributed Systems Group, TU
Wien, Wein, Austria. He has been the Chairman of
the Informatics Section of the Academia Europaea,
since December 2016.

Prof. Dustdar was a recipient of the ACM
Distinguished Scientist Award in 2009 and the

IBM Faculty Award in 2012. He is an Associate Editor for the IEEE
TRANSACTIONS ON SERVICES COMPUTING, ACM Transactions on the Web,
and ACM Transactions on Internet Technology. He is on the Editorial Board of
IEEE. He has been a member of the IEEE Conference Activities Committee
since 2016, the Section Committee of Informatics of the Academia Europaea
since 2015, and the Academia Europaea: The Academy of Europe, Informatics
Section since 2013.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on July 10,2023 at 09:17:00 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/ICACCS.2019.8728524
http://dx.doi.org/10.1109/TVT.2020.2986041
http://dx.doi.org/10.1109/TII.2019.2943331

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

