
Vol.:(0123456789)1 3

Applied Intelligence (2023) 53:21211–21226 
https://doi.org/10.1007/s10489-023-04665-7

Rotating machinery fault diagnosis based on feature extraction 
via an unsupervised graph neural network

Jing Feng1,2 · Shouyang Bao1,2 · Xiaobin Xu1,2  · Zhenjie Zhang1,2 · Pingzhi Hou1,2 · Felix Steyskal3 · 
Schahram Dustdar4

Accepted: 21 April 2023 / Published online: 23 May 2023 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Fault diagnosis is an essential process for the health maintenance of rotating machinery. With the development of AI technol-
ogy, many deep learning-based methods have been applied to fault diagnosis to enhance the intelligence level of equipment 
maintenance. Such methods normally need a large amount of labeled data for model training. However, label acquisition is a 
difficult task that requires extensive human labor. To address these issues, a fault diagnosis method based on feature extrac-
tion via an unsupervised graph neural network is proposed in this paper. In the proposed method, the K-nearest neighbor 
approach is adopted to construct a fault graph from the collected signals, thereby providing extra relationship information 
for fine feature mining. Then, the GraphSAGE model is trained on the constructed graph in an unsupervised way, that is, 
it does not need labeled data, to extract features of each signal sample. Based on the extracted features, some traditional 
classifiers are adopted to identify the fault types. The proposed model is evaluated on a rolling bearing dataset provided by 
the University of Paderborn and a motor rotor dataset collected by a constructed motor rotor system. Compared with some 
traditional deep learning-based fault diagnosis methods, the proposed model can achieve more accurate diagnoses even when 
there are only a few labeled samples.
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1 Introduction

Rotating parts in power machinery and working machin-
ery easily experience faults after long-term operation. It is 
essential to detect failures early, thereby preventing deadly 
accidents and saving maintenance costs [1]. Therefore, fault 
diagnosis plays a vital role in industrial manufacturing [2]. 
The aim of fault diagnosis is to identify the type of fault, the 
location where the fault occurred, or even the extent of the 
fault in the running device. In the early stage, fault detection 

relied heavily on manual inspection, which costs consider-
able manpower. With the development of sensor technology, 
various sensors, e.g., acceleration sensors, speed sensors and 
displacement sensors, can be installed to monitor the work-
ing states of devices. The distribution and amplitude as well 
as the impulses on the waveform of signals that are collected 
from the sensors vary with different fault conditions; thus, 
signals are able to reflect the operating status of a device.

Intuitively, signal analysis is deployed to explore distin-
guished signal features for fault diagnosis. For example, 
time domain analysis [3], frequency domain analysis [4] and 
time–frequency analysis [5] are adopted to extract signal 
features by analyzing signal properties. In such methods, 
the effect of extracted features highly relies on signal quality. 
Noise is unavoidable in the fault diagnosis stage. Moreover, 
entropy-based indicators [6], such as sample entropy (SE), 
permutation entropy (PE) and fuzzy entropy (FE), are widely 
applied to extract signal features by quantifying the amount 
of randomness in a signal. The choice of the indicators has a 
high impact on the performance of feature extraction. Addi-
tionally, with the development of sensor technology, the 
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amount and variety of signals are augmented, and extract-
ing features by the above methods may be time-consuming 
or produce redundant information.

In recent years, deep learning-based algorithms, such as 
CNNs [7] and RNNs [8], have been increasingly applied in 
fault diagnosis. Such methods integrate feature extraction 
with classification, thereby avoiding the selection of fea-
tures. Nonetheless, a large number of labeled samples are 
required to train such deep models to realize their advantages 
in mining massive fault data. However, it is usually difficult 
to obtain a large number of labeled samples in actual working 
conditions. Training a deep neural network in a label scar-
city situation cannot achieve a good convergence state, which 
leads to insufficient network model expressions and poor gen-
eralization performance. Therefore, some deep representation 
learning methods [9, 10], such as autoencoders (AEs), are 
capable of extracting features and establishing complex map-
ping relationships between fault features and fault categories. 
AEs depend less on prior knowledge. Although such deep 
representation learning methods can achieve feature extrac-
tion without the aid of labeled data, they consider only each 
signal sample and not the relationship between the samples, 
which may cause insufficient mining outcomes.

Moreover, a graph is a kind of structured data that consists of 
a set of nodes and edges. Various kinds of data can be modeled 
as a graph to convey the relationships between data samples. 
Moreover, a graph neural network (GNN) [11, 12], which is 
a deep learning method based on graph domain analysis, has 
been proven to be an excellent model for mining knowledge 
from graphs. Specifically, graph embedding learning, which 
aims to represent nodes in a low-dimensional vector space by 
preserving the topological structure of the graph and node con-
tent information, has been proposed so that graph analysis tasks, 
such as node classification, link prediction and graph clustering, 
can be easily used in some traditional machine learning algo-
rithms, such as logistic regression, support vector machine clas-
sification and K-means clustering. Through a graph structure, 
graph embedding learning can mine information from nodes in 
addition to node relationship information, and this information 
can be used to obtain plentiful features. Furthermore, the inter-
active mechanism aids graph embedding learning to achieve 
better feature extraction by sharing information.

In this paper, to overcome the drawbacks of signal-based 
methods and deep learning-based methods, which may suffer 
from insufficient feature extraction, we apply graph embed-
ding learning to fault diagnosis scenarios for fine feature 
extraction, thereby achieving accurate fault diagnosis. Spe-
cifically, to explore the relationship among the fault samples, 
a fault graph is constructed from the collected vibration sig-
nals to convey the extra features for fault samples. Moreover, 
a graph sample and aggregate (GraphSAGE) method [13] is 
adopted in an unsupervised way to further extract features 
from the constructed fault graph. Finally, some traditional 

machine learning-based classifiers are implemented on 
the extracted features to identify the faulty statuses of the 
devices. The proposed method is implemented on two rotat-
ing machinery datasets for further evaluation.

In summary, a fault diagnosis method based on feature 
extraction via an unsupervised graph neural network is 
proposed in this paper. The contributions of the proposed 
method are listed as follows:

1. In this paper, the proposed fault diagnosis method mod-
els a signal into a graph that considers the information of 
samples and the relationship between them; thus, more 
information can be mined from the signals.

2. The proposed fault diagnosis method trains a supervised 
model in an unsupervised way that does not need the aid 
of labeled data, and the learned features are more com-
prehensive and can be combined with many machine 
learning methods.

3. The proposed fault diagnosis method is able to achieve 
an accurate diagnosis even when only a few labeled sam-
ples are available.

The rest of the paper is structured as follows: Section 2 
summarizes the related work of the proposed method. Sec-
tion 3 introduces the theoretical principle of GraphSAGE. 
Section 4 demonstrates a feature extraction method based on 
unsupervised GraphSAGE. Section 5 details the procedure 
of the proposed fault diagnosis method. Section 6 presents 
the results and discusses two cases. Finally, a conclusion of 
the paper is given in Section 7.

2  Related work

2.1  Signal analysis‑based feature extraction in fault 
diagnosis

In fault diagnosis, feature extraction is a key process respon-
sible for extracting relevant information from raw signals. 
Signal analysis is a typical method for extracting features 
from signals and has been used for decades. Specifically, time 
domain features, such as the standard deviation, skewness, and 
root mean square (RMS) value, and frequency domain fea-
tures, such as the spectral mean, spectral crest factor, spectral 
entropy, roll-off and energies, can be obtained to describe the 
characteristics of the signals. Furthermore, time–frequency 
analysis, which is able to represent the energy or strength 
of signals in both time and frequency, is adopted for feature 
extraction. For example, Chen et al. [14] proposed a rolling 
bearing fault diagnosis method in which wavelet threshold-
ing denoising is used to reduce noise in vibration signals, and 
the method named CEEMDAN which is complete ensemble 
empirical mode decomposition with adaptive noise energy 
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entropy, is used to extract features from the denoised signals. 
Finally, features are input into the particle swarm optimiza-
tion least squares support vector machine (PSO-LSSVM) to 
achieve fault identification. Boztas and Tuncer [15] combined 
the discrete wavelet transform (DWT) with an improved one-
dimensional local binary method (DC-1D-LABP) to extract 
signal features, which were then fed into traditional machine 
learning models for fault diagnosis. Although the improved 
one-dimensional local binary method (DC-1D-LABP) has the 
advantage of low computational complexity, it only considers 
local information, which is one-sided. Overall, signal analysis-
based methods are often unable to extract signal features, and 
they are normally treated as preprocessing methods. In addi-
tion, in the face of various types of signal analysis methods, 
the result of fault diagnosis is highly related to the feature 
selection phase.

2.2  Entropy‑based feature extraction in fault 
diagnosis

Moreover, entropy-based feature extraction is widespread 
in fault diagnosis. Compared with signal-based methods, 
entropy-based methods are statistical calculations on signals; 
thus, they are robust to noise. Many papers have been pub-
lished in this field. For example, multiscale entropy is widely 
adopted in extracting fault features. Zhang et al. [16] pro-
posed a two-stage fault diagnosis method that feeds multi-
scale entropy features to an optimized support vector machine 
(SVM). But when there are lost in a signal, multiscale entropy 
has a poor stability of the fault feature. To solve the problem, 
some improved entropy-based methods, such as multi-scale 
permutation entropy [17, 18] and hierarchical multiscale per-
mutation entropy [19], have proposed to improve the stability 
of fault feature extraction. Except for multiscale entropy, there 
are many other entropy-based indicators. For example, Leite 
et al. [20] discussed the performance of the 12 entropy-based 
features for the monitoring and detection of bearing faults, 
such as power spectrum entropy (PSE), permutation entropy 
(PE), wavelet entropy (WE). Therefore, the scale of such intui-
tive feature indicators is large, and deciding which kind of 
feature should be chosen is a difficult task. Moreover, such 
methods are unable to fully mine information from signals.

2.3  Deep learning‑based feature extraction in fault 
diagnosis

Furthermore, a deep learning method can be adopted to learn 
features from data. Compared with the two types of methods 
mentioned above, deep learning-based methods can capture 
more complex and high-level features. For example, Liu et al. 
[21] proposed a motor fault diagnosis method by combining 
a deep sparse network (DSF) with improved logistic regres-
sion. However, deep sparse network is hard to train due to its 

sparse connection. Then autoencoder and its improved models 
are widely applied to fault feature extraction. For example, Li 
et al. [22] integrated an autoencoder structure with K-means 
clustering to develop an unsupervised fault diagnosis of rotat-
ing machinery. Xiao et al. [23] integrated a modified stacking 
denoising autoencoder (SDA) with a transfer component anal-
ysis (TCA)-based dimensionality reduction method to build a 
diagnostic model. Xia et al. [24] learned representative features 
of faulty data by applying a denoising autoencoder in an unsu-
pervised manner. Luo et al. [25] introduced transfer learning 
into an improved stacked autoencoder based on convolutional 
shortcuts and a domain fusion strategy to achieve domain fea-
ture fusion for rolling bearing fault diagnosis. In this case, fault 
sample information may not be mined adequately. Although 
such deep representation learning methods can achieve feature 
extraction without the aid of labeled data, they consider only 
each signal sample and not the complex relationship between 
the samples, which may cause insufficient mining outcomes.

2.4  Graph neural network‑based fault diagnosis

Typical graph neural network algorithms, such as the graph 
convolutional neural network (GCN) [11], GraphSAGE [13], 
and GAT [26], have already achieved outstanding performance 
in many fields. In particular, GraphSAGE has been proven to 
be a powerful tool for node embedding learning. In the method, 
node embedding is learned by sampling and aggregating the 
features of its neighboring nodes. In recent years, an increas-
ing number of researchers have paid attention to applying 
graph neural networks to fault diagnosis [27]. For example, 
Gao et al. [28] proposed a rotating machinery fault diagnosis 
method based on a GCN. In this paper, a graph is constructed 
by implementing KNN on the FFT feature of the signals. 
Then, a semisupervised graph convolutional neural network is 
adopted to identify the fault status of each sample. Kavianpour 
et al. [29] proposed an approach that introduces ARMA to a 
GCN for structure information extraction. Combined with mul-
tilayer multikernel local maximum mean discrepancy, a method 
is proposed to solve the missing data and changing operation 
condition problem in fault diagnosis. However, compared with 
the GCN, GraphSAGE is more scalable. When acquiring the 
embedding of a new node, a GCN needs all nodes to participate 
in training, but GraphSAGE only needs to obtain a subgraph for 
each node by the sampling technique. Therefore, we proposed 
a fault diagnosis method based on GraphSAGE in this paper.

3  Basic theoretical knowledge 
of GraphSAGE

The graph sample and aggregate (GraphSAGE) framework is 
an inductive learning framework for the generation of node 
embedding by adopting the attribute information of nodes. 
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The key idea of GraphSAGE is to generate a node embed-
ding by learning a function of aggregating the representa-
tion of its neighbor nodes. As the name implies, neighbor 
sampling and feature aggregation are the two most important 
steps of the method. Figure 1 demonstrates the neighbor 
sampling and feature aggregation steps of GraphSAGE, and 
the details of the two phases are illustrated as follows:

Neighbor sampling Neighbors are randomly sampled with 
a fixed size layer by layer. Taking the embedding calcu-
lation of a node si (the circle node shown in Fig. 1) as 
an example, the first-order neighbors N1

(

si
)

 (the square 
nodes) and the second-order neighbors N2

(

si
)

 (the triangle 
nodes) are considered with the sampling scale, which is set 
to k = 10 and k = 5 , respectively, in this paper. Then, the 
total number of first-order neighbors N1

(

si
)

 sampled can-
not exceed 10. The total number of second-order neighbors 
N2

(

si
)

 sampled cannot exceed 10 × 5 = 50. Therefore, the 
circle node si can be expressed by a two-layer subgraph (the 
combination of the circle node, square nodes and triangle 
nodes) with a limited node number, which is able to save 
computational costs.

Feature aggregation When a subgraph is obtained, the 
aggregation operation propagates in the opposite direction 
of neighbor sample, which is from the second-order neigh-
bors N2

(

si
)

 to the first-order neighbors N1
(

si
)

 and then to 
the target node si . To be specific, Eqs. (1–4) illustrate the 
progress of feature aggregation. Suppose the target node si 
stands for any sample, n1 is any first-order neighbor of si and 
n2 is any first-order neighbor of n1 . First, the representation 
vector of any first-order neighbor zn1 can be calculated by 
Eq. (1) and Eq. (2). In the equation, mean aggregation is 
adopted to acquire hn1 , which is the average feature of n2 cor-
responding to n1 . Then, a nonlinear transformation (ReLU) 
is performed to generate the representation of the first-order 
neighbors zn1 by concatenating the feature of any first-order 
neighbor node n1 and its corresponding mean aggregation 

feature value hn1 . In the same way, embedding of the target 
node si , set as zsi , can be calculated by Eq. (3) and Eq. (4). 
When the representation of any first-order neighbors zn1 is 
obtained, the mean aggregation feature hsi can be acquired, 
and then the embedding of the target node zsi can be calcu-
lated by concatenating the feature of si with its first-order 
neighbor representation hsi.

In summary, as illustrated above, the embedding of node 
si can be learned by aggregating the node attributes based on 
the graph structure, which integrates both feature informa-
tion and the structure information.

4  Feature extraction based on unsupervised 
GraphSAGE

In the fault diagnosis scenario, sensors are installed to mon-
itor the running states of rotating machinery. In different 
states, signals are collected from sensors. The variation in 
the signals reflects the different states of the device. Thus, 
fault features can be extracted by mining the signals. In this 
paper, a feature extraction method based on unsupervised 
GraphSAGE is proposed for fault diagnosis. First, a fault 
graph is constructed from fault samples by K-nearest neigh-
bor (KNN) [30]. Then, an unsupervised GraphSAGE model 
is utilized to learn node embeddings from the fault graph 

(1)hn1 = mean
({

feature
(

n2
)

, n2 ∈ N1
(

n1
)})

, n1 ∈ N1
(

si
)

(2)
zn1 = Re LU

(

W2 ⋅ concat
(

hn1 , feature
(

n1
)))

, n1 ∈ N1
(

si
)

(3)hsi = mean
(

zn1 , n1 ∈ N1
(

si
))

(4)zsi = Re LU
(

W1 ⋅ concat
(

hsi , feature
(

si
)))

Fig. 1  The sampling and aggregation process of GraphSAGE
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to achieve feature extraction of the signals. Finally, some 
traditional classifiers are implemented on the learned feature 
to identify various faulty states. The details of each step are 
shown below.

4.1  Constructing a graph from signals based 
on K‑nearest neighbor

In the fault diagnosis case, uniform sampling is continuously 
implemented on signals to generate samples of each fault 
state. As nodes and edges are two important elements in a 
graph, signal samples are set as nodes, and the similarities 
between the samples are set as edges. In this paper, K-nearest 
neighbor is adopted to construct a graph from the signal 
samples. Figure 2 demonstrates the progress of constructing 
a fault graph of l fault states FS =

{

FS1,FS2,… ,FSl
}

 , and 
s =

{

s1, s2,… , sn
}

 , where n is the number of fault samples 
and stands for all signal samples. As shown in the figure, 
the fast Fourier transform (FFT) is used to analyze the fre-
quency domain characteristics of each fault sample. Then, 
K-nearest neighbor (KNN) is adopted to construct a fault 
graph G(V ,E) , with fault samples s set as nodes V , frequency 
domain characteristics FFT(s) set as node attributes and the 
similarity between any fault sample pair Sim

(

si, sj
)

 set as the 
edge E , where i = 1, 2,… , n and j = 1, 2,… , n.

For every fault sample si , the Euclidean distance between 
the sample and any other fault sample sj is calculated by 
Eq. (5).

Then, fault samples sj are ranked by similarity, and the 
top K fault samples are selected as neighbors of si . In other 
words, edges between si and the top K fault samples are con-
structed. By analogy, every fault sample is connected with 
its K nearest neighbors to form a fault graph. As shown in 
Fig. 2, the constructed fault graph is able to convey not only 
the frequency feature of fault samples but also the relation-
ship between the fault samples. The relationship is able to 
aid the method in better understanding the fault samples; 
thus, more accurate fault identification can be achieved.

4.2  Learning node embedding by training 
unsupervised GraphSAGE

In this paper, GraphSAGE is applied to the constructed fault 
graph to learn the features of each signal sample. Based on 
the node embedding learning process illustrated in Sect. 3, 
the feature of a signal sample can be learned by aggregat-
ing the FFT feature of its neighbor samples layer by layer, 

(5)Sim
(

si, sj
)

=

√

∑n

i=1

∑n

j=1

(

FFT
(

si
)

− FFT
(

sj
))2

Fig. 2  Constructing a fault graph from the signals by KNN
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which combines both node frequency feature information 
and structure information. As shown in Eq. (2) and Eq. (4), 
in the established GraphSAGE network, W1 and W2 are the 
network parameters that need to be trained to obtain a bet-
ter node representation. Thus, labeled samples are normally 
necessary to aid the training process. However, the acqui-
sition of the labeled sample is difficult and costly in fault 
diagnosis scenarios. Therefore, GraphSAGE is trained in an 
unsupervised manner. Figure 3 demonstrates the progress 
of learning node embedding by unsupervised GraphSAGE.

As shown in the figure, a node pairwise prediction model 
is constructed to provide the labels for training the Graph-
SAGE model. First, uniform random walks are implemented 
on the fault graph to generate a random walk. Then, node 
pairs are selected from these random walks and are marked 
with positive labels. Then, node pairs without connections 
that are considered to have negative labels are randomly 
sampled from the fault graph with equal numbers of posi-
tive ones. Next, embeddings of those selected node pairs can 
be acquired by concatenating the node embeddings that can 
be learned by GraphSAGE. Finally, the embeddings of the 
selected positive and negative node pairs are fed into a dense 
layer for node pair label prediction.

In summary, an unsupervised GraphSAGE model is 
mainly constructed by a two-layer GraphSAGE and node 
pair classification model. Specifically, GraphSAGE layers 
provide a mechanism to learn the node embeddings, and the 
node pair classification model intuitively adopts the informa-
tion of edge existence to construct the training process of the 
unsupervised model. In the model, binary cross entropy is 
adopted as the loss function, as shown in Eq. (6), where N 
is the number of selected node pairs, yi is the positive label 

and p
(

yi
)

 is the probability of positive affinity, as shown in 
Fig. 3. During training, the Adam operator is adopted to 
optimize the model.

In this paper, with the above mechanism, after training 
for several epochs, 30 is chosen, and then features of fault 
samples are extracted. Several important hyperparameters 
are set as follows: the numbers of sampled neighbors in the 
two layers of GraphSAGE are set as 10 and 5, the number 
of hidden nodes in the classification layer is set as 128, the 
learning rate is set as 0.001, the walk length of the random 
walk is set as 100, and the batch size is set as 50.

5  Fault diagnosis based on feature 
extraction via an unsupervised 
GraphSAGE model

By implementing unsupervised GraphSAGE on the con-
structed fault graph, the features of fault samples are 
obtained. Based on the features, several traditional classi-
fiers, such as logistic regression, decision tree, random for-
est, SVM, MLP, KNN, Gaussian NB, and AdaBoost, are 
implemented on the extracted features to identify the fault 
type. Table 1 presents the general introduction and param-
eter settings of these classifiers in this paper.

In conclusion, the pipeline of fault diagnosis based on 
feature extraction via an unsupervised GraphSAGE model 
is shown in Fig. 4. The procedure of the proposed fault diag-
nosis method is shown in detail as follows.

(6)
Loss = −1∕N

∑N

i=1
yilog

(

�

(

p
(

yi
)))

+
(

1 − yi
)

log
(

�

(

1 − p
(

yi
)))

Fig. 3  Learing node embedding by GraphSAGE in an unsupervised way
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Data processing First, vibration acceleration signals 
of various fault states are obtained. Then, signal sam-
ples s =

{

s1, s2,… , sn
}

 can be acquired by uniform sam-
pling to form the dataset S . Second, FFT is implemented 
on each signal sample to obtain their frequency feature 
FFT(s) =

{

FFT
(

s1
)

,FFT
(

s2
)

,… ,FFT
(

sn
)}

.

Graph construction The Euclidian distance between all 
signal samples is calculated based on the FFT feature. For 
each signal sample sj , K nearest fault samples are selected 
as neighbors. Then, all signal samples are set as nodes with 
corresponding FFT features as node attributes, and each sig-
nal sample and its K nearest neighbors are connected to form 
edges. Then, a fault graph is constructed.

Unsupervised GraphSAGE model construction Based on the 
constructed fault graph, a two-layer GraphSAGE model with 
node sampling and feature aggregation is established to learn 
node embeddings. Then, a random walk is implemented on the 
fault graph, and connected node pairs (edges) are selected from 
the random walk and marked as positive. Then, unconnected 
node pairs are randomly selected from the graph with equal 
size and marked an negative. The embedding of positive and 
negative node pairs is calculated by concatenation based on the 
node embeddings. Then, they are fed into a dense layer to ful-
fill link prediction. With the aid of link labels, GraphSAGE can 
be trained in an unsupervised way. Finally, the feature of each 
signal sample can be extracted by training the proposed model.

Fault type identification A traditional classifier is imple-
mented on the extracted features, which are split into train-
ing and testing sets to perform the fault identification task.

6  Experiments and data analysis

In this paper, we adopt two datasets to assess the proposed 
fault diagnosis method. First, a public dataset of rolling bear-
ing fault diagnosis collected by the University of Paderborn, 
named the PU dataset [31], is adopted to evaluate the pro-
posed method. Second, a fault diagnosis dataset collected by 
the constructed ZHS-2 motor rotor system, named the motor 
rotor dataset in this paper, is used as the assessment dataset. 
All the experiments are performed in the following environ-
ment: Windows 10, Intel Core i5-7300 @2.50 GHz. All the 
methods mentioned below are implemented in Python 3.7 
and PyTorch 1.9.1.

6.1  Case 1: PU dataset

6.1.1  Data description

The PU dataset is a condition monitoring (CM) experimen-
tal rolling bearing dataset based on vibration and motor 
current signals. It adopts rolling bearings of Model 6023 
manufactured by FAG, MTK and IBU to conduct malfunc-
tion tests. Table 2 demonstrates the PU dataset adopted 
in this paper. To be specific, three fault types, the normal 
operating conditions, outer ring faults and inner ring faults, 
are considered in this paper. Accordingly, they are speci-
fied in turn with label 0, label 1 and label 2. In this paper, 
an outer ring fault and an inner ring fault are real damage 
faults that are generated by accelerated life tests. The table 
lists the selected 16 groups of vibration signals, which are 
divided by fault type into three categories. The sampling 

Table 1  The parameter settings of the classifiers

Classifier General Introduction Core Parameter Settings

Logistic Regression It is a predictive analysis technique based on probability. It is used to predict 
the likelihood of classification dependent variables

Optimizer algorithm: 
solver = "lbfgs"(quasi-Newton method)

Decision Tree It is the process of classifying instances based on a feature The maximum depth of the decision tree:
max_depth = None

Random Forest It is an algorithm that integrates multiple trees through the idea of ensemble 
learning

The number of decision trees:
n_estimators = 20

SVM It is a kind of generalized linear classifier for classification of data according to 
supervised learning

Kernel function: kernel = ’rbf’

MLP It is an artificial neural network with a forward structure, and a back propaga-
tion algorithm is generally used to train the multilayer perceptron

Optimizer algorithm: adam
Iteration: max_iter = 1000

KNN It is a nearest neighbor classification algorithm. All samples of known catego-
ries are taken as references to judge the category of unknown samples

Number of neighbors:
n_neighbors = 5

GaussianNB It is a generation method and is to directly find the joint distribution of the 
output and feature

-

AdaBoost It is a boosting algorithm that combines multiple weak classifiers to create a 
strong ensemble classifier

Cycle index of the base classifier:
n_estimators = 50,
Learning rate:
learning_rate = 0.001
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frequency of the vibration signals is 64 kHz. All the sig-
nals are measured under the conditions of a driving system 
speed of 1500 RPM, a load torque of 0.7 nm and a radial 
force of 1000 N.

As shown in the table, the damage is mainly caused by 
fatigue and plastic deformation, which are presented as pit-
ting and indentations, respectively, on the outer ring and 
inner ring of a rolling bearing. Furthermore, it can be seen 
that the same damage has different damage characteristics, 
damage combinations, damage arrangements and damage 
extents, and the details are shown in the table. It can be 
seen from the table that a total of 16 signals are selected in 
this paper. They are grouped into three categories: 5 signals 
under normal operating conditions, 5 signals under condi-
tions of outer ring faults and 6 signals under conditions of 
inner ring faults.

In this paper, uniform sampling is adopted to collect the 
signal samples. Specifically, every 400 data points are con-
sidered a sample, and 500 samples are selected from each 
category. That is, a dataset with a total of 500 × 3 = 1500 
fault samples is obtained. Then, the dataset is prepared by 
splitting it into a training set, validation set and test set in a 
certain proportion for further experiments.

6.1.2  Evaluation of feature extraction

In this section, we evaluate the feature extraction perfor-
mance of unsupervised GraphSAGE in the fault diagnosis 
case on PU data. After implementing unsupervised Graph-
SAGE, signal samples are transformed into feature vectors. 
Then, t-SNE is adopted for visualization. Moreover, we com-
pare our proposed method with two other feature extraction 
methods, FFT and an autoencoder. In detail, the frequency 
feature is obtained by implementing a FFT on each signal 
sample. The autoencoder we adopted for comparison is con-
structed with four linear layers in the encoder and decoder. 
Figure 5 demonstrates the t-SNE visualization of features 
extracted by the three methods: a) t-SNE is applied on the 
feature learned by the proposed method; b) t-SNE is directly 
applied on the frequency feature of the fault samples; c) 
t-SNE is applied on the feature learned by the autoencoder.

As shown in the figures, although the clusters of the 
three fault types contain a small number of mixed data 
points, the three clusters are independently separated. 
Thus, the feature learned by unsupervised GraphSAGE 
has a high degree of fault identification. In contrast, 
the three clusters in both Fig. 5(b) and Fig. 5(c) overlap 

Fig. 4  Pipeline of fault diagnosis based on feature extraction via an unsupervised GraphSAGE model
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to some extent. It can be concluded that the features 
extracted by the two comparative methods present weaker 
fault identification abilities.

6.1.3  Fault diagnosis accuracy

As illustrated in Sect. 3, traditional classifiers are imple-
mented on the extracted feature for further fault diagnosis. 

As shown in Table 3, unsupervised GraphSAGE is com-
bined with 8 classifiers: logistic regression, decision tree, 
random forest, SVM, MLP, KNN, Gaussian NB and Ada-
Boost classifiers.

All eight methods are tested under the same conditions. 
Specifically, signal samples of the PU dataset are split 
into training and testing sets, and the rate of the training 
set decreases from 0.9 to 0.1; accordingly, the rate of the 

Table 2  Description of the PU dataset

Damage: 1. fatigue: pitting; 2. plastic deform: Indentations
Characteristic of damage: 1. single point; 2. distributed
Combination: 1. single damage: A single component of a rolling bearing is affected by a single damaged area; 2. repetitive damage: A single 
component of a rolling bearing is affected by a single damages area and the same damage symptoms are repeated in several places of the same 
bearing part; 3. multiple damage: Different breakage symptoms occur on different parts of the same bearing
Arrangement: 1. no repetition: The breach occurred only once; 2. Random: Damage symptoms are distributed in a random fashion across the 
components
Extent of damage: 1. Limit for a bearing is less than or equal to 2 mm; 2. Limit for a bearing is more than 2 mm;3. Limit for a bearing is more 
than 4.5 mm

Normal operat-
ing condition
(Label 0)

Outer ring fault
(Label 1)

Inner ring fault
(Label 2)

K001 KA04 Damage fatigue: pitting KI04 Damage fatigue: pitting
Characteristic of damage single point Characteristic of damage single point
Combination single damage Combination multiple damage
Arrangement no repetition Arrangement no repetition
Extent of damage 1 Extent of damage 1

K002 KA15 Damage plastic deform: Indentations KI14 Damage fatigue: pitting
Characteristic of damage single point Characteristic of damage single point
Combination single damage Combination multiple damage
Arrangement no repetition Arrangement no repetition
Extent of damage 1 Extent of damage 1

K003 KA16 Damage fatigue: pitting KI16 Damage fatigue: pitting
Characteristic of damage repetitive damage Characteristic of damage single point
Combination no repetition Combination single damage
Arrangement random Arrangement no repetition
Extent of damage 2 Extent of damage 3

K004 KA22 Damage fatigue: pitting KI17 Damage fatigue: pitting
Characteristic of damage single point Characteristic of damage single point
Combination single damage Combination repetitive damage
Arrangement no repetition Arrangement random
Extent of damage 1 Extent of damage 1

K005 KA30 Damage plastic deform: Indentations KI18 Damage fatigue: pitting
Characteristic of damage distributed Characteristic of damage single point
Combination repetitive damage Combination single damage
Arrangement random Arrangement no repetition
Extent of damage 1 Extent of damage 2

––- ––- KI21 Damage fatigue: pitting
Characteristic of damage single point
Combination single damage
Arrangement no repetition
Extent of damage 1



21220 J. Feng et al.

1 3

testing set increases from 0.1 to 0.9. The fault diagnosis 
accuracies of eight methods on the PU dataset are given in 
the table. As shown in the table, except for the AdaBoost-
based method, the accuracy of all the other methods is 
above 90% for all combinations of training and testing 
sets. Moreover, for the remaining 7 methods, the accu-
racy of the decision tree classifier is approximately 2 ~ 3% 
lower than that of the other methods. When the rate of 

the training set is decreased, the accuracies of the random 
forest and GaussianNB classifiers are slightly reduced. 
Thus, it can be concluded that logistic regression, SVM, 
MLP and KNN have equally good performance on the fault 
diagnosis of PU data.

Moreover, to further verify the performance of the pro-
posed fault diagnosis method, the proposed method is com-
pared with some related traditional fault diagnosis methods: a 

Fig. 5  Feature visualization of the PU dataset. a Unsupervised GraphSAGE, b FFT, c Autoencoder

Table 3  Fault diagnosis accuracy on the PU dataset based on unsupervised GraphSAGE combined with different classifiers

Train_rate Test_rate Unsupervised GraphSAGE
 + Logistic Regression

Unsupervised GraphSAGE
 + Decision
Tree

Unsupervised GraphSAGE
 + Random
Forest

Unsupervised GraphSAGE
 + SVM

0.9 0.1 0.9791 0.9509 0.9738 0.9787
0.8 0.2 0.9758 0.9493 0.9756 0.9763
0.7 0.3 0.9759 0.9513 0.9742 0.9783
0.6 0.4 0.9741 0.9463 0.9737 0.9804
0.5 0.5 0.9756 0.9427 0.9729 0.9799
0.4 0.6 0.9748 0.9411 0.9709 0.9768
0.3 0.7 0.9750 0.9400 0.9703 0.9730
0.2 0.8 0.9738 0.9297 0.9681 0.9729
0.1 0.9 0.9737 0.9182 0.9679 0.9746
Train_rate Test_rate Unsupervised GraphSAGE

 + MLP
Unsupervised GraphSAGE
 + KNN

Unsupervised GraphSAGE
 + GaussianNB

Unsupervised GraphSAGE
 + AdaBoost

0.9 0.1 0.9711 0.9778 0.9831 0.7684
0.8 0.2 0.9736 0.9733 0.9743 0.7727
0.7 0.3 0.9719 0.9754 0.9747 0.7856
0.6 0.4 0.9757 0.9769 0.9763 0.7248
0.5 0.5 0.9749 0.9774 0.9780 0.7587
0.4 0.6 0.9745 0.9748 0.9753 0.7837
0.3 0.7 0.9716 0.9706 0.9678 0.7713
0.2 0.8 0.9712 0.9708 0.9690 0.7825
0.1 0.9 0.9724 0.9714 0.9691 0.8204
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convolutional neural network (1D_CNN), a graph convolutional 
network (GCN) [24], long short-term memory (LSTM) and an 
autoencoder combined with an MLP classifier (AE + MLP). 
Table 4 demonstrates the parameter settings of the four com-
parison methods. Specifically, 1D_CNN is constructed with 
three combination layers, and each layer consists of a convolu-
tional layer, a max pooling layer and a ReLU layer. The GCN 
has the same structure as as that in [28]. LSTM consists of 
four layers, and the dimension of the hidden layer is set as 100. 
The autoencoder is the same as that in the last experiment with 
four linear layers in the encoder and decoder. 1D_CNN, LSTM 
and the autoencoder are directly implemented on the signal 
samples. The GCN is implemented on the fault graph, which 
is constructed in the same way as that used by the proposed 
method, and the number of neighbors is set as 5.

Table  5 demonstrates the comparison results of the 
models in terms of accuracy. Similarly, signal samples are 
split into training and test sets, and the rates of both sets 
vary in the same way as in the last experiment. As shown 
in the table, the proposed method (unsupervised Graph-
SAGE + MLP) outperforms the other four methods. In par-
ticular, when few labeled data are available, the accuracy 
of the other four methods decreases more or less, but the 
accuracy of the proposed method remains at a steady level.

6.1.4  Parameter evaluation

Graph construction is a key process in the proposed method. 
In this paper, KNN is adopted to construct the graph, and K, 
which stands for the number of neighbors, is an important 

parameter. In this section, we evaluate the proposed method 
with different values of K when the rate of the training set is 
0.9 and the test set is 0.1. As seen from the chart, K increases 
from 1 to 10. The triangle curve shows the results on the 
PU data. It can be concluded that the accuracy is relatively 
stable when the parameter is between 2 and 10, but when 
K = 5, the proposed method achieves the best result (Fig. 6).

6.2  Case 2: Motor rotor dataset

6.2.1  Data description

In this paper, a ZHS-2 motor rotor system is adopted to collect 
the motor rotor dataset. As shown in Fig. 7, a ZHS-2 motor 
rotor system with a flexible rotor is adopted as a test bench. 
In the system, 8 sensors are installed at different positions on 
the test bench to collect vibration acceleration signals. The 
HG-8902 data collection box is responsible for transmitting 
the collected signals. In this paper, 7 typical faults are con-
sidered: normal operation ( F1 ), loose fan rotor base ( F2 ), rotor 
imbalance I ( F3 ), rotor imbalance III ( F4 ), rotor imbalance V 
( F5 ), rotor imbalance VII ( F6 ) and broken blade ( F7 ). Four 
kinds of rotor imbalance faults can be simulated by install-
ing different numbers of screws on the rotor. For example, 
installing three screws simulates the rotor unbalance III fault.

When running the test bench, the rotor speed is 1500 
r/m, the sampling frequency is 1280 Hz, the fundamental 
frequency 1X is 25 Hz, and the n-octave nX (n = 1,2,3) is 
(n × 25) Hz. The faults cause abnormal vibration of the 
motor rotor, which is manifested in large or small changes 

Table 4  Parameter settings of 
the compared methods

Methods Hyperparameters

1D_CNN learning_rate = 0.001, epochs = 100, n_layer = 3, kernel_size = 2
GCN neighbors = 5, learning_rate = 0.001, epochs = 100, hidden_layer = 200, n_layer = 2
LSTM learning_rate = 0.001, epochs = 100, n_layer = 4, hidden_dim = 100, batch_size = 50
AE + MLP learning_rate = 0.001, epochs = 1000, n_layer = 4

Table 5  Comparison of fault 
diagnosis methods on the PU 
dataset

The bold entries means the best diagnosis accuracy

Train_rate Test_rate Unsupervised 
GraphSAGE
 + MLP

1D_CNN LSTM AE + MLP GCN

0.9 0.1 0.9711 0.9733 0.9733 0.9467 0.9667
0.8 0.2 0.9736 0.9667 0.9667 0.9567 0.9600
0.7 0.3 0.9719 0.9644 0.9633 0.9600 0.9689
0.6 0.4 0.9757 0.9467 0.9533 0.9633 0.9533
0.5 0.5 0.9749 0.9467 0.9633 0.9653 0.9453
0.4 0.6 0.9745 0.9567 0.9640 0.9656 0.9522
0.3 0.7 0.9716 0.9467 0.9644 0.9590 0.9562
0.2 0.8 0.9712 0.9408 0.9495 0.9625 0.9542
0.1 0.9 0.9724 0.9311 0.9442 0.9548 0.9452
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in the vibration amplitude of the signals. Therefore, the FFT 
is adopted to extract the frequency feature of the signals. To 
conclude, 300 fault samples are sampled for each fault, and 
a total of 300 × 7 = 2100 fault samples are obtained. For each 
fault sample, the amplitude of the 1X ~ 3X octave is extracted 
as a feature, and a total of 3 × 8 = 24 features are acquired. 
Therefore, fault data with 2100 × 24 are obtained, and then 
a fault graph with 2100 nodes can be constructed with fault 
samples as nodes and the FFT features as node attributes. 
Similar to the PU dataset, the proposed method is evaluated 
on the motor rotor dataset from three aspects.

6.2.2  Evaluation of feature extraction

Similarly, we evaluate the feature extraction ability of 
the proposed method by applying t-SNE to visualize the 
embedding of the fault samples in this section. Figure 8 
demonstrates the t-SNE visualization of features extracted 

by the proposed method and two other comparison meth-
ods: a) t-SNE is applied on the feature learned by the 
proposed method; b) t-SNE is directly applied on the 
FFT feature of the fault samples; and c) t-SNE is applied 
on the feature learned by the autoencoder. For all three 
figures, the seven fault types are represented by differ-
ent colors. Obviously, the result of the FFT is far from 
acceptable, as there is a certain mixture area in the fig-
ure. By observing the figures of the proposed method and 
the autoencoder, although there are mixed points on both 
figures, the five clusters in Fig. 8(a) are slightly more 
divergent than those in Fig. 8(c).

6.2.3  Fault diagnosis accuracy

In this section, experiments on the motor rotor dataset are 
set in the same way as those on the PU dataset. Compared 

Fig. 6  Evaluation of K in the 
KNN graph

Fig. 7  ZHS-2 motor rotor system
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with the PU dataset, the motor rotor dataset has more fault 
types. The increase in the class number is a kind of chal-
lenge for some classifiers. Table 6 lists the fault diagno-
sis accuracy of the motor rotor dataset with unsupervised 
GraphSAGE combined with eight different classifiers. The 
results in the table show that AdaBoost does not work in the 
case of fault diagnosis on the motor rotor dataset. Moreover, 

the accuracy of the decision tree-based method is lower than 
that of the other six methods. In particular, when there are 
fewer training data, its accuracy decreases to approximately 
80%. Furthermore, the logistic regression, random forest, 
SVM, and KNN-based methods have equal fault diagnosis 
performance on the motor rotor dataset. Finally, it can be 
concluded that the MLP-based fault diagnosis method has 

Fig. 8  Feature visualization of the motor rotor dataset. a Unsupervised GraphSAGE, b FFT, c Autoencoder

Table 6  Fault diagnosis accuracy of the motor rotor dataset with unsupervised GraphSAGE combined with different classifiers

Train_rate Test_rate Unsupervised GraphSAGE
 + Logistic Regression

Unsupervised GraphSAGE
 + Decision
Tree

Unsupervised GraphSAGE
 + Random
Forest

Unsupervised GraphSAGE
 + SVM

0.9 0.1 0.9576 0.9258 0.9668 0.9682
0.8 0.2 0.9603 0.9265 0.9631 0.9704
0.7 0.3 0.9603 0.9215 0.9610 0.9683
0.6 0.4 0.9563 0.9169 0.9591 0.9687
0.5 0.5 0.9527 0.9112 0.9560 0.9602
0.4 0.6 0.9500 0.8976 0.9540 0.9445
0.3 0.7 0.9427 0.8832 0.9504 0.9445
0.2 0.8 0.9358 0.8669 0.9420 0.9352
0.1 0.9 0.9163 0.8146 0.9175 0.9295
Train_rate Test_rate Unsupervised GraphSAGE

 + MLP
Unsupervised GraphSAGE
 + KNN

Unsupervised GraphSAGE
 + GaussianNB

Unsupervised GraphSAGE
 + AdaBoost

0.9 0.1 0.9830 0.9636 0.9188 0.4661
0.8 0.2 0.9869 0.9669 0.9212 0.4531
0.7 0.3 0.9859 0.9658 0.9233 0.4273
0.6 0.4 0.9811 0.9619 0.9175 0.4374
0.5 0.5 0.9790 0.9573 0.9187 0.4198
0.4 0.6 0.9711 0.9476 0.9107 0.4663
0.3 0.7 0.9684 0.9462 0.9126 0.4518
0.2 0.8 0.9546 0.9284 0.9081 0.4663
0.1 0.9 0.9401 0.9019 0.8998 0.4762
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distinct advantages, achieving the best accuracy at all train-
ing set rates.

Table 7 displays the accuracy of the comparison fault 
diagnosis methods on the motor rotor dataset. From the 
table, we can see that the proposed method (unsupervised 
GraphSAGE + MLP) outperforms the other four deep 
learning-based methods for all training and testing set 
rates. In particular, when few labeled data are available, the 
proposed method can still reach a precise diagnosis result.

6.2.4  Parameter evaluation

The parameter K of KNN for graph construction is also eval-
uated for the motor rotor data. As shown in Fig. 6, the dot 
curve shows the results on the motor rotor data. In the curve, 
K increases from 1 to 10, and the accuracy is relatively stable 
in the whole parameter range. However, when K = 5, the 
accuracy is slightly higher than at the other values.

7  Conclusions

In this paper, a fault diagnosis method based on feature 
extraction via an unsupervised graph neural network is 
proposed. First, signal samples of various fault types are 
obtained by applying uniform sampling to the collected vibra-
tion signals. Then, the FFT is implemented on each sample to 
extract frequency features. Based on all signal samples and 
their frequency features, KNN is adopted to construct a fault 
graph that conveys both feature and relation information of 
signal samples. Then, GraphSAGE is implemented on the 
graph in an unsupervised way to achieve feature extraction; 
thus, features of each signal sample can be obtained. Finally, 
some traditional classifiers are used to identify fault states 
by analyzing the learned features. Compared with some tra-
ditional deep learning-based methods, such as CNN, LSTM, 

GCN and autoencoder methods, the proposed method can 
acquire better identification accuracy. Typically, when only 
a few labeled samples are available, the proposed method 
can still achieve an accurate fault diagnosis result. Moreo-
ver, graph construction plays a crucial role in the proposed 
model. The K-nearest neighbor algorithm is implemented 
on the FFT feature to construct a graph in this paper, which 
requires a large amount of computation and may suffer from 
high-dimensional problems. In future work, a more efficient 
graph construction method can be researched.
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