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Abstract—Spatial Crowdsourcing (SC) has been an indispensable Location-based Service where the SC server assigns tasks to
workers based on the locations of task requesters and workers, raising strong privacy concerns. Limited by the computational and time
complexity, existing works prefer differential privacy-based methods to protect location privacy. However, most differential
privacy-based works ignore the road network, perturbing locations on two-dimensional plane, resulting in more failures in tasks and
moreover extensive privacy disclosure in practice. This paper aims to implement a multi-task assignment with both high utility and
efficiency while protecting the location privacy of both task requesters and workers on road networks. Specifically, we design a Road
Network-aware Exponential Mechanism and propose an Obfuscated Locations Selection algorithm to guarantee location privacy of all
participants and extensive privacy. Then, we propose region distance. Based on this, we further formulate multi-task assignment as a
Binary Linear Programming problem and a utility-aware optimization problem. We solve the first problem to obtain optimal efficiency
and then propose a utility-aware optimization algorithm for the second problem to improve the utility. Our experiments demonstrate
sufficient and stable privacy guarantee and the well-performance on both utility and efficiency of our framework.

Index Terms—Spatial Crowdsourcing, Location privacy, Road network, Multi-task assignment.
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1 INTRODUCTION

W ITH the development of mobile devices and GPS
positioning, Spatial Crowdsourcing (SC) [1–16] has

become an indispensable Location-based Service in people’s
lives, such as ride-hailing services (e.g., Uber, Didi), food
delivery (e.g., Grubhub, Meituan) [17, 18]. In the SC system,
multiple tasks containing locations are sent to the SC server
by task requesters. Then, based on workers’ locations, the
SC server assigns these tasks to multiple suitable workers
and these assigned workers need to complete corresponding
tasks on time.

However, the information exchange in SC can lead to
the leakage of participants’ (including task requesters and
workers) location information [12–16], which poses severe
threats to their privacy and security. Specifically, 1) The SC
server may leak participants’ exact locations to advertisers
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or vicious companies. 2) Malicious workers may acquire
tasks’ exact locations even though without being assigned,
which threatens the location privacy of task requesters.

The existing works concerning location privacy protec-
tion in SC can be primarily classified into differential privacy-
based frameworks [1, 2, 12–15, 17] and cryptography-based
frameworks [3, 19–22]. Limited by the computational and
time complexity in multi-task assignment, these existing
works prefer the differential privacy-based algorithms to
those based on cryptography. However, most of the differen-
tial privacy-based works [1, 2, 12–15, 17] perturb locations
based on the Euclidean distances on the two-dimensional
plane rather than the distances on road networks, and thus
the behavior of perturbing data results in more failures of tasks
and extensive privacy disclosure (e.g., personality traits far
beyond location privacy) [23]. Several differential privacy-
based works [1, 17], considering the distances on road
networks, ignored the location privacy of task requesters, and
moreover cannot guarantee the location privacy of workers in
worker-dense areas and the data utility in the remote areas as the
perturbed locations are significantly far from the exacted ones in
the remote suburb.

To address these problems above, we design a differen-
tial privacy-based framework that perturbs locations based
on the distances on road networks, protecting both the
location privacy of task requesters and workers. Moreover,
it preserves the behavior of perturbing locations and thereby
the extensive privacy. Our main idea is that the locations of
task requesters and workers are perturbed locally, and on
the basis of the perturbed locations, the SC server obtains
a well-performed multi-task assignment on both efficiency
(i.e., average travel distance) and utility (i.e., assignment
success rate). Though the basic idea sounds straightforward,
we are facing the following challenges.
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1) It is nontrivial to design a differential privacy-based
mechanism for location privacy of both task requesters and
workers on road networks, since the topology of road net-
works is irregular rather than a continuous two-dimensional
plane. To this end, we propose a location obfuscation
scheme on road networks. It first samples the road network
into discrete locations. Then, based on that, it specially
defines ϵ-RN-differential privacy. After that, it utilizes a
Road Network-aware Exponential Mechanism (RNEM), we
proposed, to perturb real locations of task requesters and
workers on road networks, which is theoretically proved
to be subordinate to ϵ-differential privacy. Furthermore,
perturbed locations of task requesters and workers are well
restricted to road networks by our mechanism, based on
which their behaviors of perturbing data are also preserved
from disclosure.

2) It is hard to implement the multi-task assignment on
perturbed locations of both task requesters and workers,
as there are significant errors between distances among
perturbed locations and distances among real locations for
tasks requesters and workers. For that, we propose the
region distance based on Bayesian inference to replace
the distance among perturbed locations. Furthermore, we
formulate the multi-task assignment on region distances
as a Binary Linear Programming (0-1 LP) problem, based
on which we can obtain the assignment with the minimal
average travel distance (ATD).

3) It is complicated to implement a multi-task assign-
ment with both high utility and efficiency, since minimal
ATD does not promise high assignment success rate (ASR).
Therefore, we attempt to exchange workers’ tasks to im-
prove ASR. Yet, task exchange will break out the assignment
for the minimal ATD, where there will be a increase in ATD.
For that, we first set an upper threshold ητ for the increase
rate η of ATD compared to minimal ATD, and then formu-
late a task exchange problem to increase ASR while keeping
the increase of ATD within ητ . To solve this problem, we
propose the ASR-aware Optimization algorithm to improve
assignment success rate, where the increase rate of ATD
η ≤ ητ .

In addition, we conduct extensive experiments on the
real taxi dataset from the Roma [24] and set several represen-
tative frameworks [17, 18, 25] as baselines to investigate the
location privacy, efficiency and utility of multi-task assign-
ment, compared with our framework. The experimental re-
sults indicate that our framework can provide sufficient and
stable location privacy protection for both task requesters
and workers on road networks, whether downtown or
in a remote suburb. Compared to the state-of-the-art, our
framework performs much better on average travel dis-
tance, where ATD < 1.0km downtown and ATD < 3.75km
in a remote suburb. Furthermore, our framework achieves
both high efficiency and utility in multi-task assignment.
Specifically, in extreme cases, our framework can increase
the ASR (i.e., utility) by 17.2% while keeping the ATD (i.e.,
efficiency) growth less than 5%.

The rest of this paper is organized as follows. We demon-
strate the related work in Section. 2. Then, we introduce pre-
liminaries in Section. 3 and raise the problem statement of
our framework in Section. 4. An overview of our framework
is demonstrated in Section. 5 and then, we present details

of privacy protection in our framework in Section 6 and
multi-task assignment on obfuscated locations in Section 7.
Thereafter, we evaluate the performance of our framework
in Section. 8. Finally, we draw the conclusion in Section. 9.

2 RELATED WORK

In this section, we briefly review the related work.

2.1 Cryptography-based Frameworks
To protect location privacy in SC, several methods based on
cryptography have been developed to encrypt location in-
formation while implementing multi-task assignment. Shu
et al. [22] proposed a non-interactive privacy-preserving
task recommendation framework (PPTR), where the loca-
tions of both task requesters and workers were encrypted to
protect their location privacy, and multiple task requesters
would be matched with multiple workers. In 2019, Yuan
et al. [21] proposed an efficient task assignment algorithm
(PriRadar), aiming at improving the assigned time by in-
stantly assigning tasks to nearby workers while protecting
the data of tasks and workers. Based on encrypted locations,
iTAM [3], proposed by Zhao et al., focused on minimizing
travel distance of workers. Li et al. [19] designed a grid-
based privacy-preserving framework for online SC (GPSC)
to obtain a trade-off between efficiency and security con-
sidering the preferences of task requesters. According to
investigated interests of workers, Song et al. [20] proposed
a privacy-preserving task matching framework (PPTM) to
achieve efficient task matching, meanwhile, protect the
privacy of locations and interests of task requesters and
workers.

These cryptography-based works achieve reliable loca-
tion privacy protection by encrypting the locations of task
requesters and workers. However, constrained by the com-
putational and communication complexity, cryptography-
based frameworks are difficult to be implemented in prac-
tice. Therefore, differential privacy-based frameworks are
more preferred in Spatial Crowdsourcing.

2.2 Differential Privacy-based Frameworks
In SC, locations of task requesters and workers are involved
in multi-task assignment, in which location privacy of task
requesters and workers may be disclosed to adversaries.
Based on differential privacy and geocasting, To et al. [26]
assumed a trusted Cell Service Provider (CSP) to provide
location privacy for workers, which is the first work focused
on location privacy issues in SC. After that, to improve
the overhead of the assignment, To et al. [2] improved the
framework [26] by factoring the geocast system overhead.
Nevertheless, the trusted third parties were not practical.
For that, Wang et al. [12, 18] focused on protecting workers’
location privacy without involving any trusted third parties
while achieving the optimal task assignment with minimal
travel distance. Unfortunately, the location privacy of task
requesters has not been protected in [2, 12, 18, 26]. Wei
et al. [15] proposed a differential privacy-based location
protection framework (DPLP), aiming to achieve the trade-
off between utility and system overhead while protecting
the location privacy of both task requesters and workers.
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Fig. 1. A part of road networks abstracted from real city traffic map.

Tao et al. [13] designed a novel privacy mechanism based
on Hierarchically Well-Separated Trees to minimize the total
distance for the SC system. However, all these works above
perturbed locations on the two-dimensional plane and ig-
nored the road network, which might lead to the disclosure
of the behavior of perturbing locations. Furthermore, due to
ignoring the road network, there would be more workers
unable to complete tasks because detour results in more
failures tasks. Qiu et al. [1, 17] considered road networks
and designed a differential privacy-based framework to
protect workers’ location privacy. But it was a pity that
they ignored the location privacy of task requesters, and
moreover could not guarantee the data utility in remote
areas.

To tackle these problems above, our framework takes
into account the road networks and designs a differential
privacy-based mechanism to protect the location privacy of
both task requesters and workers, while achieving a high
assignment success rate and a low average travel distance.
Moreover, with perturbed locations constrained to the road
network, participants’ behaviors of perturbing locations are
completely preserved from disclosure.

3 PRELIMINARIES
In this section, we first demonstrate the road network model
adopted in our privacy-preserving framework. Then, we in-
troduce the de facto standard ϵ-differential privacy. Finally,
several metrics represent the location privacy, the efficiency
and the utility of multi-task assignment.

3.1 Road Network Model

With reference to the related work [6, 27], we use directed
weighted graph to process the information of the road net-
work. As shown in Fig. 1, we extract the city’s road networks
structure from the real city traffic map, which consists of
critical locations and roads. We represent the road networks
by directed weighted graph G = (V, E), where locations and
roads are represented by the set of vertices V and the set of
edges E , respectively. Each edge and vertex are presented
by ei,j ∈ E and vi ∈ V respectively, where vi denotes the
vertex numbered i and ei,j denotes the edge connected by
vi and vj . For example, in Fig. 1, V = {v1, v2, ..., v12} and
E = {e1,2, e1,3, e2,1, ..., e12,9}, which be worth noting that
e1,2 and e2,1 are considered as different edges in directed
weighted graph. We assume that both task requesters and
workers are located in the road networks G, where lti and

lwi denote the task requester and the worker’s locations
respectively.

It is hard to abstract road networks as a directed
weighted graph from the real city traffic map. Thanks to
OpenStreetMap 1 and igraph 2, we overcome this compli-
cated problem and easily build the road network model for
our framework.

3.2 ϵ-Differential Privacy
ϵ-differential privacy [28, 29], as we know, has been a
de facto standard privacy-preserving conception in recent
years, which can provide a provable privacy guarantee.
Specifically, if a mechanism satisfies ϵ-differential privacy,
with two inputs of adjacent datasets, the outputs can not be
distinguished by an adversary with side information.
Definition 1 (ϵ-Differential Privacy). Given two adjacent

datasets D, D′
and ϵ > 0, a privacy mechanism K

satisfies ϵ-differential privacy iff for different records x
and x

′
:

Pr[K(x ∈ D) = y]

Pr[K(x′ ∈ D′) = y]
≤ eϵ , y ∈ W , (1)

where K(x ∈ D) and K(x
′ ∈ D′

) differ in an individual
record of inputs, ϵ is the privacy budget, the smaller ϵ,
the higher privacy.

3.3 Performance Metrics
In SC, the obfuscated locations of task requesters and
workers guarantee location privacy. However, it causes the
dilemma that noisy locations do harmful to multi-task as-
signment. With this, we need to consider two aspects of
our work, location privacy (i.e., Expected Estimation Error
(E3) [25, 30, 31]) and multi-task assignment, which is evalu-
ated with two metrics, the efficiency (i.e., Average Travel
Distance (ATD) [2, 18]) and the utility (i.e., Assignment
Success Rate (ASR) [2, 18]).

3.3.1 Location Privacy
The standard metric to measure location privacy is Expected
Estimation Error, which represents the distance between
the real location and the location inferred by adversaries.
More specifically, we assume that adversaries have the side
information about an obfuscated location lo, and the side
information can be expressed by a prior probability distri-
bution on possible locations Wp. Pr(wi) is the probability
assign to the possible location wi ∈ Wp. Pr(lo|wi) is the
probability that the reported location lo is converted from
wi. Based on Bayesian inference [25, 28, 32], the posterior
probability model of the victim’s real location can be calcu-
lated as follows:

Pr(wi|lo) =
Pr(lo|wi)Pr(wi)∑

wj∈Wp Pr(lo|wj)Pr(wj)
, wi ∈ Wp . (2)

Then, based on the posterior probability model, the adver-
sary strives to estimate the real location with the largest
posterior probability wmax = argmaxwi∈W Pr(wi|lo). Ex-
pected Estimation Error is defined as follows:

1. https://www.openstreetmap.org/
2. https://igraph.org/
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Definition 2 (Expected Estimation Error (E3)). We define the
Expected Estimation Error as the distance between wmax

and the real location lr on road networks.

E3 = d(wmax, lr) , (3)

where d(·) denotes the Euclidean distance between two
locations, and the higher degree of E3 achieved, the
higher location privacy guaranteed.

3.3.2 Efficiency of Multi-task Assignment

In Spatial Crowdsourcing, Average Travel Distance (ATD)
is a common metric used to measure the efficiency of task
assignment [2, 18]). A worker’s travel distance represents
the distance between the assigned worker’s true location
and the task requester’s true location, while the average
travel distance is defined as follows:

Definition 3 (Average Travel Distance (ATD)). Assume there
are N tasks in an assignment, ATD is the average value
of multiple travel distances.

ATD =
1

N

N∑
i=1

dr(l
t
i , l

w
i ) , (4)

where dr(l
t
i , l

w
i ) denotes the shortest distance between

task requester’s location lti and worker’s location lwi . The
lower degree of ATD denotes better efficiency of multi-
task assignment.

3.3.3 Utility of Multi-task Assignment

In the multi-task assignment, workers who fail in their tasks
also need to be cared about. In more details, assume there
are five tasks with several travel distances 3.1km, 2.4km,
1.3km, 8.2km, 0.8km, where ATD = 3.16km. dr = 8.2km
means that the assigned worker is far away from the task
requester and could not complete the task on time. Hence,
we introduce Assignment Success Rate (ASR) to represent
the utility of multi-task assignment. We define a success as-
signment as dr(lti , l

w
i ) ≤ dwτ , where dwτ denotes the threshold

of workers’ acceptable distance.

Definition 4 (Assignment Success Rate (ASR)). ASR indi-
cates the percentage of success assignments in all assign-
ments:

ASR =
The number of success assignments

The total number of assignments
, (5)

where we always want to obtain ASR as high as possible,
while keeping the increase of ATD tolerable.

4 PROBLEM STATEMENT

In this section, we first describe the attack model. Then, we
present the goal of our framework.

4.1 Attack Model

In Spatial Crowdsourcing, we consider locations of both
task requesters and workers as private information, which
needs to be protected. The potential privacy disclosure is
composed of two kinds of entities, Semi-honest SC server and
Curious-but-honest workers.

Semi-honest SC Server. As the existing works [11, 14, 33,
34], we consider the SC server is semi-honest. That is, the
SC server will strictly execute its functions, i.e., honestly
transmitting information and implementing multi-task as-
signment. But it may attempt to disclose task requesters
and workers’ location privacy. More specifically, the SC
server can access the location information of all participants
throughout the entire Spatial Crowdsourcing and may leak
their locations to advertisers or even evil companies, who
may abuse the location information of task requesters and
workers. That seriously threatens task requesters and work-
ers’ location privacy.

Curious-but-honest Workers. As the existing works [14, 15],
we consider workers in SC are curious-but-honest. Loca-
tions of tasks may be disclosed to the adversary by some
specific workers. If a mass of workers has access to the exact
locations of tasks, the location privacy of task requesters will
be seriously threatened.

4.2 Goals of Our Framework

Goals of our framework consists of Privacy Goal and Goal of
Multi-task assignment on Obfuscated Locations.

Privacy Goal: There are three privacy goals of our frame-
work. The first privacy goal is that the simi-honest server
cannot determine the real location of each participant. In
particular, each location of participant will be perturbed
locally before sent to the server, preventing the server from
the real location. The second privacy goal is that anyone
of the workers is not allowed to access the exact location
of a task requester until one of them is assigned, where we
consider the assigned worker is trusted. In order to preserve
the behavior of perturbing locations, we give the third
privacy goal that no one can identify whether a participant’s
location is a perturbed location.

Goal of Multi-task Assignment on Obfuscated Locations: Ob-
fuscated locations result in many difficulties in multi-task
assignment. Our goal is to implement a multi-task assign-
ment with both high utility and efficiency. That is a high
ASR and a low ATD.

5 OVERVIEW OF OUR FRAMEWORK

As shown in Fig. 2, our framework is composed of Location
Obfuscation on Road Networks and Multi-task Assignment on
Obfuscated Locations.

Location Obfuscation on Road Networks: In order to achieve
the privacy goal (introduced in Section. 4.2), we first need to
sample the road network to generate the set W of possible
obfuscated locations. Thereby, we propose the Obfuscated
Locations Selection Algorithm 1 to generate W on partici-
pants’ devices utilizing their real locations (cf. Section. 6.2).
Then, we adopt W as the basis of our privacy-preserving
mechanism and design the Road Network-aware Exponen-
tial Mechanism (RNEM) to locally perturb locations of task
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Location Obfuscation on Road Networks
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Fig. 2. Overview of RoPriv.

requesters and workers, satisfying ϵ-differential privacy (cf.
Section. 6.1).

Multi-task Assignment on Obfuscated Locations: There are
significant errors on distances among obfuscated locations,
making it hard to obtain a well-performed multi-task as-
signment on the SC server. For that, in Section. 7.1, we
design region distances to replace these distances among
obfuscated locations and propose a protocol to calculate
region distances utilizing workers’ real locations without
disclosing their location privacy. Then, to obtain high utility
and efficiency, we decompose Multi-task Assignment on
Obfuscated Locations into two relevant problems, Multi-
task Assignment on Region Distances (P1) in Section. 7.2
and Utility-aware Optimization (P2) in Section. 7.3. Firstly,
to solve P1, we formulate it into a Binary Linear Program-
ming (0-1 LP) problem based on region distances and adopt
the Hungarian algorithm to obtain the assignment with
minimum ATD. Since improving ASR may increase ATD,
we formulate this problem to maximize ASR subject to the
increase threshold ητ of ATD. To solve P2, we propose the
ASR-aware Optimization Algorithm 3 to exchange tasks
between failed workers and successful assigned workers
to improve ASR while keeping the increase rate η of ATD
within the threshold ητ .

6 LOCATION OBFUSCATION ON ROAD NETWORKS

To protect location privacy on road networks in SC, we
need to consider two issues. First, the irregular topology
of road networks makes it difficult to design a privacy-
preserving mechanism satisfying ϵ-differential privacy on
road networks. Second, this mechanism needs to guarantee
the location privacy of both task requesters and workers.
Motivated by several related works [25, 35, 36], we employ
exponential mechanism and replace the road network with
discrete locations to solve the first issue in Section. 6.1.
Then, in Section. 6.2, we propose the Obfuscated Locations
Selection Algorithm 1 to select discrete locations locally
based on participants’ locations without considering any
external parameter, which solves the second issue.

6.1 Road Network-aware Exponential Mechanism
With a set W of discrete locations abstracted from the road
network, we consider W as the set of possible obfuscated

locations of task requesters and workers. Then, we give the
definition of differential privacy on road networks concisely.

Definition 5 (ϵ-RN-differential privacy). A mechanism K
satisfies ϵ-RN-differential privacy iff for all lx, l

′

x:

Pr[K(lx) = ly] ≤ exp(ϵdr(lx, l
′

x)/∆dr)Pr[K(l
′

x) = ly] ,
(6)

where ly ∈ W , dr(·) represent the shortest distance
between two locations lx, l

′

x and ∆dr denotes the sen-
sitivity of dr(·), defined as maxwi(dr(lx, wi)), wi ∈ W .

Corollary 1. If a mechanism K satisfies ϵ-RN-differential
privacy, K must also satisfy ϵ-differential privacy [29].

Proof 1. Assume a mechanism K satisfying ϵ-RN-
differential privacy (cf. Eq. (6)). We know that ∆dr ≥
dr(·), which contribute to ϵdr(lx, l

′

x)/∆dr ≤ 1. Then,
exp(ϵdr(lx, l

′

x)/∆dr) ≤ exp(ϵ) is proved. After that, the
mechanism K satisfies as follows:

Pr[K(lx) = ly] ≤ exp(ϵ)Pr[K(l
′

x) = ly] . (7)

Therefore, the mechanism K satisfies ϵ-differential pri-
vacy.

With the set of discrete possible obfuscated locations
W , it is straightforward to utilize exponential mecha-
nism [37, 38] to perturb task requesters and workers’ real lo-
cations. Considering the distance between locations on road
networks, we design the Road Network-aware Exponential
Mechanism as follows.

Definition 6 (Road Network-aware Exponential Mechanism
(RNEM)). For an input location lx and output location
ly ∈ W , the exponential mechanism K randomly selects
ly as follows:

Pr[K(lx) = ly] =
exp(ϵdr(lx, ly)/2∆dr)∑

ly,i∈W exp(ϵdr(lx, ly,i)/2∆dr)
,

(8)
where dr(lx, ly) denotes the shortest distance between lx
and ly on road networks G.

Corollary 2. RNEM satisfies ϵ-RN-differential privacy and
ϵ-differential privacy.

Proof 2. With the real location lx and the obfuscated lo-
cation l

′

x as inputs, we can obtain two probabilities
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Pr[K(lx) = ly] and Pr[K(l
′

x) = ly] on a output lo-
cation ly , respectively. Let’s divide Pr[K(lx) = ly] by
Pr[K(l

′

x) = ly]:

Pr[K(lx) = ly]

Pr[K(l′x) = ly]
=

exp(ϵ
dr(lx,ly)
2∆dr

)

exp(ϵ
dr(l

′
x,ly)

2∆dr
)︸ ︷︷ ︸

Part A

∑
ly,i∈W exp(ϵ

dr(l
′
x,ly,i)

2∆dr
)∑

ly,i∈W exp(ϵ
dr(lx,ly,i)

2∆dr
)︸ ︷︷ ︸

Part B

.

The part A can be calculated as follows:

Part A = exp(ϵ
dr(lx, ly)− dr(l

′

x, ly)

2∆dr
) .

By the triangular inequality, dr(lx, ly) − dr(l
′

x, ly) ≤
dr(lx, l

′

x). Then, we obtain

Part A ≤ exp(ϵdr(lx, l
′

x)/2∆dr) .

Then, we assume Part B ≤ exp(ϵdr(lx, l
′

x)/2∆dr).∑
ly,i∈W exp(ϵ

dr(l
′
x,ly,i)

2∆dr
)∑

ly,i∈W exp(ϵ
dr(lx,ly,i)

2∆dr
)
≤ exp(ϵdr(lx, l

′

x)/2∆dr) ,

∑
ly,i∈W

exp(ϵ
dr(l

′
x,ly,i)

2∆dr
)

exp(ϵ
dr(lx,l

′
x)

2∆dr
)︸ ︷︷ ︸

Left

≤
∑

ly,i∈W

exp(ϵ
dr(lx, ly,i)

2∆dr
) . (9)

If Eq. (9) is true, we can confirm our assumption of Part
B. Hereby, we deduce the Left of Eq. (9) as follows:

Left =
∑

ly,i∈W

exp(ϵ(dr(l
′

x, ly,i)− dr(lx, l
′

x))/2∆dr) .

(10)
By the triangular inequality, dr(l

′

x, ly,i) − dr(lx, l
′

x) ≤
dr(lx, ly,i), the Eq. (10) is deduced as follows:

Left ≤
∑

ly,i∈W

exp(ϵdr(lx, ly,i)/2∆dr) .

Therefore, our assumption of Part B is confirmed and we
multiple Part A and Part B to obtain the inequation as
follows:

Part A · Part B ≤ exp(ϵ
dr(lx, l

′

x)

2∆dr
) · exp(ϵdr(lx, l

′

x)

2∆dr
) ,

Pr[K(lx) = ly] ≤ exp(ϵdr(lx, l
′

x)/∆dr)Pr[K(l
′

x) = ly] .

Therefore, RNEM satisfies ϵ-RN-differential privacy. Fur-
thermore, RNEM satisfies ϵ-differential privacy due to
Corollary 1.

6.2 Generating W for RNEM
In related works [1, 17, 35], there are two methods to
generate the set W of possible obfuscated locations. The
first method [35] simply employs vertices of road networks
nearby the real locations to represent W . However, vertices
may be reused, which will cause extensive privacy disclo-
sure [23] (i.e., the behavior of perturbing locations). The sec-
ond method [1, 17] employs locations uploaded by a certain
range of workers to represent W . Based on this method, the
effect of location privacy protection is heavily affected by

Algorithm 1: Obfuscated Locations Selection
(OLS).

Input : G = (V, E), v ∈ V , dtemp, Va, W
1 if v not in Va and dtemp ≤ dτr then
2 Add v into Va ;
3 Vn = adjacent(G, v) ;
4 Remove vertices in Va from Vn ;
5 dtail = dtemp mod δ ;
6 for vi in Vn do
7 Nvi,v = (dr(vi, v)− dtail) / δ ;
8 for k = 1 to Nvi,v do
9 Select lok based on Eq. (11) ;

10 if dr(v, lok) + dtemp ≤ dτr then
11 Add lok into W ;
12 end
13 end
14 OLS(G, vi, dtemp + dr(vi, v), Va, W) ;
15 end
16 end

the density of workers. Furthermore, this method cannot be
applied to the location privacy protection of task requesters.

For that, to generate possible obfuscated locations W ,
Obfuscated Locations Selection algorithm, we proposed,
equably selects discrete locations based on participants’ lo-
cations and their other settings (i.e., the maximum distance
threshold dτr (m), the sample interval δ = dτr/10 (m)), as
shown in Algorithm 1.

Algorithm 2: Initial of OLS.

Input : G = (V, E), lr ∈ V
Output: W

1 Initialize dtemp, Va, W = 0, ∅, ∅ ;
2 OLS(G, lr , dtemp, Va, W) ;
3 Return W ;

Initial of OLS. Before performing OLS, some variables
need to be predefined. As shown in Algorithm 2, we first
initialize the variable dtemp and two lists Va, where dtemp is
used to record the current distance between real location lr
and the current vertex, Va is used to store the vertices in the
road network model G visited by Algorithm 1. Thereafter,
we execute Algorithm 1 with the input composed of G, lr ,
dtemp, Va and W . lr denotes the real location, which has
been embedded in G as a vertex.

Algorithm 1 is a recursive algorithm. In line 1, the
algorithm determines whether the current vertex v has been
visited and whether dtemp exceeds the distance threshold
dτr . If v has not been visited and dtemp ≤ dτr , the algorithm
continues to execute lines 2-16. Then, the algorithm records
the current vertex as a visited vertex by adding this vertex v
into Va. Based on the current vertex v and the road network
G, the algorithm obtains adjacent vertices vi ∈ Vn in line
3 and removes the visited vertices from Vn in line 4. In
addition, the algorithm obtains dtail by taking the remainder
of dtemp divided by δ in line 5, where dtail is used to
keep the distance between the first selected location on the
current edge and the previous location equal to δ. Thereafter,
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the algorithm is ready to select locations in this recursion.
Based on the adjacent vertex vi, the algorithm tries to extract
locations on the edge of v and vi in lines 7-13. Firstly, the
algorithm obtains the number Nvi,v of locations by dividing
this edge as Nvi,v = (dr(vi, v) − dtail) / δ. Then, there are
Nvi,v locations on this edge generated as follows:

α = (dtail + k × dτr ) / dr(vi, v) ,
xk = α(xvi − xv) + xv ,
yk = α(yvi − yv) + yv ,

(11)

where x and y denote the latitude and longitude, k ∈
{1, ..., Nvi,v}. After that, in line 10, the algorithm needs to
detect if these locations are out of the distance threshold
dτr . If not, the algorithm adds locations into W as possible
obfuscated locations. Finally, the algorithm updates the
current distance dtemp by dtemp + dr(vi, v) and reset the
current vertex by vi, and then performs recursion with the
latest input. The algorithm will perform recursion until all
suitable locations are selected, which compose the set W of
possible obfuscated locations.

The time complexity of OLS. We assume that each recursion
has N adjacent vertices on average and the depth of OLS is
M . In OLS, the time complexity mainly includes recursion
(the time complexity is O(NM )) and locations selection
on adjacent vertices in lines 6-13 (the time complexity up-
per to O(N × Nvi,v)). Therefore, the time complexity is
O((N ×Nvi,v)

M ). Fortunately, M is at most 10 in practice,
limited by the distance threshold dτr and sample interval
δ = dτr/10. Moreover, the relationship between Nvi,v and
M is inversely proportional. That is, the larger the M, the
smaller the Nvi,v , when M is 10, Nvi,v is basically 1. In
addition, in the road network G, N is 4 at most, 0 at min-
imum, and 1.5 on average. Therefore, in practice, the time
complexity is less than O(410), and the average complexity
is O(1.510), which is a small time cost.

7 MULTI-TASK ASSIGNMENT ON OBFUSCATED
LOCATIONS

With obfuscated locations of task requesters and workers, it
is complicated to perform well on the multi-task assignment
as far as to obtain high utility and efficiency. Most of existing
works assume trusted third parties [2, 26] or the real location
of the task requester accessible [1, 17, 18], which is not
practical in real life. To implement a multi-task assignment
on obfuscated locations, we design the region distance and
propose a protocol to calculate it with the help of Bayesian
inference (in Section. 7.1). Then, we formulate the multi-
task assignment as two relevant problems. The first problem
is a Binary Linear Programming problem solved by the
Hungarian algorithm to obtain the assignment with optimal
efficiency (in Section. 7.2). The second problem is formu-
lated to improve ASR while keeping the increase of ATD
within a threshold, solved by the ASR-aware Optimization
algorithm proposed by us (in Section. 7.3).

7.1 Region Distance Model

Travel distance (introduced in Section. 3.3) plays an im-
portant role in multi-task assignment [1, 2, 12–15, 17, 18].
However, there are significant errors on distances among

obfuscated locations compared to distances among real lo-
cations. To solve this problem, we design region distance
as the distance between a worker’s real location and a task
requester’s obfuscated location to better implement multi-
task assignment. We firstly define as follows:
Definition 7 (Region Distance (I)). Given the real location

probability distribution πi of a task requester lto,i and
the real location lwr,j of a worker, where πi consists of
possible real locations lt,pr,i,1, lt,pr,i,2,..., lt,pr,i,|πi| and their
corresponding probabilities Prpr,i,1, Prpr,i,2,..., Prpr,i,|πi|,
we define the region distance Ii,j as the weighted dis-
tance between the real location lwr,j of the worker and the
probability distribution πi of the task requester lto,i:

Ii,j =
N∑

k=1

Pr
′

i,kdr(l
w
r,j , l

′

i,k) , (12)

where dr(l
w
r,j , l

′

i,k) denotes the shortest distance between
lwr,j and l

′

i,k on road networks G, πi is generated by
Bayesian inference and the calculation of region dis-
tances is arranged on workers’ device, where workers’
real locations can be adopted without disclosing their
location privacy.

Assume there are M unoccupied workers lwr,1, lwr,2,..., lwr,M
and N tasks waiting for assignment lto,1, lto,2,..., lto,N , where
M ≥ N . Then, we design a protocol to calculate region dis-
tance without disclose workers’ location privacy as follows.

1) The SC server calculates real location probability
distribution π1, π2, ..., πN based on each real loca-
tion of task requesters.

2) The SC server sends π1, π2, ..., πN to M workers.
3) Each worker generates a region distance vector

Ij=[I1,j , I2,j , ..., IN,j ]
T , 1 ≤ j ≤ M based on

Eq. (12) and its real location.
4) Each worker sends its region distance vector to the

SC server.

Therefore, our protocol preserves the location privacy of
workers while employing their real locations to calculate
region distances. Finally, the SC server obtains M region
distance vectors constructed as follows:

I =



I1,1 I1,2 · · · I1,j · · · I1,M
I2,1 I2,2 · · · I2,j · · · I2,M

...
...

. . .
...

. . .
...

Ii,1 Ii,2 · · · Ii,j · · · Ii,M
...

...
. . .

...
. . .

...
IN,1 IN,2 · · · IN,j · · · IN,M


, (13)

where I denotes the region distance model organized for
multi-task assignment.

Real Location Probability Distribution: In generating region
distance, it is essential to prepare the probability distribution
πi of each task’s possible real location in advance, which
consists of two processes.

Firstly, the SC server needs to determine possible real
locations of the task requester. To handle this issue, we en-
able several critical parameters of the task requester public
to the SC server, that is, privacy budget ϵ, distance threshold
dτr and sample interval δ, where even though ϵ is public, the
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location privacy of the task requester can be still guaranteed
by ϵ-differential privacy [28, 32]. Holding these parameters
with the obfuscated location lto,i, the SC server executes OLS
to generate possible real locations Wp.

Thereafter, based on Wp, the SC server employs
Bayesian inference (explained in Section. 3.3) to calculate the
probability of a possible real location lt,pr,i,k in Wp as follows:

Pr(lt,pr,i,k|l
t
o,i) =

Pr(lto,i|l
t,p
r,i,k)Pr(l

t,p
r,i,k)∑

lt,pr,i,q∈Wp Pr(lto,i|l
t,p
r,i,q)Pr(l

t,p
r,i,q)

, (14)

where Pr(lt,pr,i,k|lto,i) and lt,pr,i,k ∈ Wp construct the probability
distribution πi of the obfuscated location lto,i of a task
requester.

7.2 Multi-task Assignment on Region Distance

Multi-task assignment on obfuscated locations is composed
of two relevant problems, in which the first problem is
multi-task assignment on region distance, aiming at min-
imizing ATD without considering ASR. Note that travel
distances have been replaced by region distances, and we can
observe that minimizing the total region distances is equivalent
to minimizing average region distance. In addition, in Spatial
Crowdsourcing, a task can be assigned to only one worker,
and a worker can only accept a task at a time. Assume there
are M workers and N task requesters at a time, and we
formulated Problem 1 as a Linear Programming problem.

min
A

∑N
i=1

∑M
j=1Ii,jAi,j

subject to Ai,j = 0 or 1 ,∑M
j=1Ai,j = 1 ,∑N
i=1Ai,j ≤ 1 ,

where A is a N×M matrix, Ai,j = 0 or 1 means that the task
lti is assigned to (Ai,j = 1) or not assigned to (Ai,j = 0) the
worker lwj ,

∑M
j=1Ai,j = 1 constrains a task assigned to only

one worker, and
∑N

i=1Ai,j ≤ 1 means that a worker can
only accept at most one task. Hence, if a constrained matrix
contributes to the minimum value of

∑N
i=1

∑M
j=1Ii,jAi,j ,

this matrix is the assignment with minimum average region
distance to assign multiple tasks.

However, for the constraint Ai,j = 0 or 1, we observe
that Problem 1 is a Binary Linear Programming (0-1 LP)
problem, where Ai,j is constrained to have components
equal to zero or one. This problem is not a convex problem,
even though an optimal solution must exist. If adopting
enumeration, we can find that even though the feasible set
is finite, the computation complexity is O(2N×M ). Here, we
implement the classic algorithm (i.e., Hungarian algorithm)
to solve Problem 1 within polynomial-time (O(n3)). The
algorithm is composed of four steps:

Step 1: The problem is needed to be balanced by adding
M−N dummy rows (Ii,j , N < i ≤ M − N ) into I . There-
fore, the problem is transferred as min

∑M
i=1

∑M
j=1Ii,jAi,j

and the constrain item
∑N

i=1Ai,j ≤ 1 is reformed as∑M
i=1Ai,j = 1;
Step 2: In each row of I , the algorithm derive the

minimum region distance min(Ii) and subtract it from all

the elements in this row. Homoplastically, after alteration of
rows, the algorithm subtract min(Ij) from all the elements
in each column;

Step 3: The algorithm tries to cover all the zero entries
(Ik,q = 0) by recording multiple rows and columns with the
minimum number of records and then determines whether
the number of records is equal to M , if so, the optimal
assignment A∗ is completed, otherwise, the algorithm con-
tinues;

Step 4: The algorithm marks each row without records
and then marks each column with records intersected by
marked rows and finally marks rows with records inter-
sected by marked columns. After that, the algorithm sub-
tracts the minimum entry from all the entries intersected
by marked rows and unmarked columns and adds this
minimum entry to each entry intersected by unmarked rows
and marked columns. Finally, back to Step 3.

Thereafter, we can obtain the optimal solution A∗ of
Problem 1 by minimizing total region distances.

7.3 Utility-aware Optimization

In order to both high utility and efficiency, we formulate
Problem 2 as a utility-aware optimization problem to opti-
mize the assignment A∗ of minimum ATD in Problem 1.
We have introduced the constraint that the increase rate
of average region distance should be less than ητ when
increasing ASR. Thereby, assume C denotes total region dis-
tance with A∗, Problem 2 aims at maximizing ASR subjected
to (C+ − C)/C ≤ ητ , where C+ denotes the total region
distances after the optimization of A∗.

This is not a standardized mathematical problem, and
not easy to obtain an optimal solution. Therefore, we
propose the Algorithm 3 called ASR-aware Optimization
(ASROpt) to resolve this complicated problem. The main
idea of ASROpt is to exchange tasks between failed work-
ers (i.e., workers unable to complete tasks on time.) and
successful assigned workers while considering the rate of
increase of the average region distance. More specifically,
Assume that there are several workers and task requesters,
as shown in Fig. 3. Based on Problem 1, the SC server obtains
the assignment A∗={{lt1, lw3 , 3.1}, {lt2, lw2 , 2.4}, {lt3, lw1 , 1.3},
{lt4, lw5 , 8.2}, {lt5, lw4 , 0.8}} with the minimum total region
distance equal to 15.8km. However, with dwτ = 8.0km and
I2,5 = 8.2km, the worker lw5 can not complete the task lt4
on time for I2,5 > dwτ . Hence, lw5 is a failed worker, and the
ASR=80%. To improve ASR, we want to exchange the task
of the failed worker with other successful assigned workers,
where we observe that there is just one worker lw3 that can
exchange its task lt1 with failed worker lw4 and the region
distance I4,3 = 6.0km is within 8.0km. Thereafter, the as-
signment A∗ is optimized as A∗={{lt1, lw5 , 6.2}, {lt2, lw2 , 2.4},
{lt3, lw1 , 1.3}, {lt4, lw3 , 6.0}, {lt5, lw4 , 0.8}} with total region dis-
tance equal to 16.7km (the increasing rate η∗=5.7%), while
ASR has been increased to 100%.

There is only one failed worker in Fig. 3. However, we
constantly suffer from situations where multiple workers
fail on their tasks on time in practice. Therefore, we need to
consider several issues. 1) We need to set reasonable metrics
to select successful assigned workers for task exchange. 2)
We need to formulate task exchange into a mathematical
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Algorithm 3: ASR-aware Optimization (AS-
ROpt).

Input : A∗, I , dwτ , η
Output: A∗

+

1 Lw,t
f , Lw,t

s = ∅, ∅ ;
2 A∗

t = sort(A∗, lt) ;
3 A∗

w = sort(A∗, lw) ;
4 for i = 1 to M do
5 if IA∗

w(lwi ),i > dwτ,i then
6 Add lwi into Lw,t

f ;
7 for j = 1 to N do
8 if Ij,i < dwτ,i, IA∗

w(lwi ),A∗
t (l

t
j)

< dwτ,i then
9 Add A∗

t (l
t
j) into Lw,t

s ;
10 end
11 end
12 end
13 end
14 S is a |Lw,t

s | × |Lw,t
f | empty matrix ;

15 for j = 1 to |Lw,t
f | do

16 for i = 1 to |Lw,t
s | do

17 if {lwf,j , lws,i} satisfies Eq. (15) then
18 ∆If

j,i = IA∗
w(lws,i),l

w
f,j

- IA∗
w(lwf,j),l

w
f,j

;
19 ∆Is

j,i = IA∗
w(lwf,j),l

w
s,i

- IA∗
w(lws,i),l

w
s,i

;

20 Slws,j ,l
w
f,i

= ∆If
j,i + ∆Is

j,i ;
21 end
22 else
23 Slws,j ,l

w
f,i

= 0 ;
24 end
25 end
26 end

27 # max
∑|Lw,t

s |
i=1

∑|Lw,t
f |

j=1 Si,jUi,j ;

28 U∗ = Hungarian(
∑|Lw,t

s |
i=1

∑|Lw,t
f |

j=1 Si,jUi,j) ;
29 Obtain cost C+ based on U∗ and A∗ ;
30 U∗

c = Sort(U∗, S(U∗)) ;
31 for i = 1 to |U∗

c | do
32 if (C+ − C)/C > ητ then
33 Delete U∗

c,i from U∗
c ;

34 end
35 else
36 Break ;
37 end
38 Obtain cost C+ based on U∗

c and A∗ ;
39 end
40 A∗

+ = Adjust(A∗,U∗
c ) ;

41 Return A∗
+.

expression for optimization. 3) We should adjust task ex-
change to keep the increase rate of total region distance
within the threshold ητ . Hereby, we design the ASR-aware
Optimization algorithm (as shown in Algorithm 3, compris-
ing three processes to resolve these three issues: Initialization
(issue 1 resolved in Eq. (15)), Problem Formulation (issue 2
resolved in Eq. (20)) and Exchange Adjustment (issue 3).

Initialization (Lines 1-26): Firstly, Lw,t
f and Lw,t

s is ini-
tialized to two empty lists. Then, we set A∗

t and A∗
w as

task-order assignment and worker-order assignment. For

𝒍𝟏𝒘 𝒍𝟐𝒘 𝒍𝟑𝒘 𝒍𝟒𝒘 𝒍𝟓
𝒘

𝒍𝟏𝒕 8.1 ∞ 3.1 ∞ 6.2

𝒍𝟐𝒕 ∞ 2.4 ∞ 4.5 10.4

𝒍𝟑𝒕 1.3 ∞ ∞ 10.2 ∞

𝒍𝟒𝒕 ∞ 5.7 6.0 ∞ 8.2

𝒍𝟓
𝒕 5.8 ∞ ∞ 0.8 ∞

𝒍𝟏𝒘 𝒍𝟐𝒘 𝒍𝟑𝒘 𝒍𝟒𝒘 𝒍𝟓
𝒘

𝒍𝟏𝒕 8.1 ∞ 3.1 ∞ 6.2

𝒍𝟐𝒕 ∞ 2.4 ∞ 4.5 10.4

𝒍𝟑𝒕 1.3 ∞ ∞ 10.2 ∞

𝒍𝟒𝒕 ∞ 5.7 6.0 ∞ 8.2

𝒍𝟓
𝒕 5.8 ∞ ∞ 0.8 ∞

tasks exchange

Fig. 3. Task exchange on the optimal solution of Problem 1.

example, A∗ = {{lt1, lw3 }, {lt3, lw2 }, {lt2, lw1 }} contributes to
A∗

t = {{lt1 : lw3 }, {lt2 : lw1 }, {lt3 : lw2 }} and A∗
w = {{lw1 :

lt2}, {lw2 : lt3}, {lw3 : lt1}}. Thereafter, based on workers’
acceptable distance dwτ , we select failed worker-task pairs
vf{lwf , ltf} and then filter successful assigned worker-task
pairs vs{lws , lts} on the basis of optimal assignment A∗,
where the selection of vs{lws , lts} needs to subject to two
constrains:

Ilts,j ,lwf,i ≤ dwτ,lwf,i , Iltf,j ,lws,i ≤ dwτ,lws,i . (15)

These constraints mean that lwf,i and lws,j can successfully
carry out each other’s tasks. We store vf{lwf , ltf} and
vs{lws , lts} in Lw,t

f and Lw,t
s , respectively. Finally, we set a

|Lw,t
f | × |Lw,t

s | matrix S to store the degree of difference by
exchanging tasks of each lwf and each lws . We define Si,j as
follows:

Definition 8 (Region Distance Change Si,j). Assume lwf,j and
lws,i exchange their task A∗

w(l
w
f,j), A∗

w(l
w
s,i), we define Si,j

as the total change of their region distances of lwf,j and
lws,i.

Si,j =

{
∆If

i,j +∆Is
i,j , if satisfy Eq. (15) ,

0, otherwise ,
(16)

∆If
i,j = IA∗

w(lwf,i),l
w
s,j

− IA∗
w(lwf,i),l

w
f,i

, (17)

∆Is
i,j = IA∗

w(lwf,i),l
w
s,j

− IA∗
w(lws,j),l

w
s,j

, (18)

1 ≤ i ≤ |Lw,t
f |, 1 ≤ j ≤ |Lw,t

s | , (19)

where ∆If
i,j and ∆Is

i,j represent the difference of lwf,i
and lws,j ’s region distances after the exchange, respec-
tively.

Problem formulation (Lines 27,28): After initialization, the
algorithm obtains the region distance change matrix S . We
need to hold the principle to increase ASR by absorbing a
certain degree of deficiency on the total region distance C .
Therefore, we formalize this conception as a maximization
problem to increase ASR as follows:

max
U

∑|Lw,t
s |

i=1

∑|Lw,t
f |

j=1 Si,jUi,j

subject to Ui,j = 0 or 1 ,∑|Lw,t
f |

j=1 Ui,j = 1 ,∑|Lw,t
s |

i=1 Ui,j ≤ 1 .

In order to solve it, we reformulate this problem as follows:
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min
U

∑|Lw,t
s |

i=1

∑|Lw,t
f |

j=1 (max(S)− Si,j)Ui,j . (20)

In addition, when the successful assigned workers is fewer
than the failed workers, we can simply adjust the constrains

to
∑|Lw,t

f |
j=1 Ui,j ≤ 1 and

∑|Lw,t
s |

i=1 Ui,j = 1. Then, with the help
of Hungarian algorithm, we obtain the optimal exchange
U∗.

Exchange adjustment (Lines 29-41): We have obtained the
optimal exchange U∗ so that ASR is closest to 100%. How-
ever, the total region distance C+ of the latest assignment,
generated based on U∗ and A∗, may exceed the threshold
ητ , where the SC system accepts the increase on C satisfying
(C+ − C)/C ≤ ητ . The algorithm firstly sorts U∗ from
largest to smallest based on region distance changes. Then,
the algorithm loops through the optimal exchange U∗

c and
determines whether the latest region distance C+ is out of
range (i.e., (C+ − C)/C > ητ ). If so, the exchange with
the largest change will be deleted from U∗

c and generates
the latest region distance C+. Otherwise it jumps out of the
loop and gets the final task exchange U∗

c . Thereafter, based
on U∗

c , we adjust A∗ and obtain the final assignment A∗
+.

8 PERFORMANCE EVALUATION
In this section, we conduct extensive experiments on a real-
world dataset to evaluate the performance of our frame-
work. We first provide details of our experiment setup
consisting of the dataset, baselines, and metrics. Then, the
performance of our framework is analyzed regarding sev-
eral critical parameters.

8.1 Experimental Setup

These simulations are implemented on a taxi trajectory
dataset in Roma [24] in Python 3.8 platform and performed
on macOS with an 8-core Apple M1 CPU, 8GB memory.

8.1.1 Dataset
The dataset is collected in Roma, containing 21817851 GPS
records of 316 taxis collected over 30 days from February
1st, 2014, to March 2nd, 2014. In our experiments, we
extract most records (approximate 95%) from the dataset
and divide the coverage area of these records into 8 × 8
regions as shown in Fig. 4. Then, we count the record pro-
portion of each region and select region A (59.8%), region
B (1.5%), region C (4.7%), and region D (5.1%) to show the
performance downtown (i.e., the worker-dense region A)
and in suburbs (i.e., worker-sparse regions B, C, and D).

8.1.2 Baselines
We introduce three representative differential privacy-based
frameworks as baselines:

• GO Function (CG) [17]. CG only focuses on the
location privacy of workers and considers the
road network in SC by involving a Linear pro-
gramming problem to maximize expected estima-
tion error subject to minimum ATD and geo-
indistinguishability [25].

A

B

D

C

Fig. 4. Heat map of GPS records over Roma.

• Framework on 2D (BD) [18]. BD protects workers’
location privacy by perturbing locations on two di-
mensions in SC.

• Laplacian Mechanism and Multi-task Assign-
ment. Laplacian mechanism is a de facto classic
privacy-preserving mechanism for location privacy
on two dimensions. To compare with our framework,
we design this framework as the combination of
Laplacian mechanism and our procedure of the
multi-task assignment demonstrated in Section. 7.2.

8.1.3 Metrics
We need to evaluate three aspects: location privacy, effi-
ciency and utility of multi-task assignment.

• Location Privacy. Expected Estimation Error (E3) rep-
resents the location privacy of task requesters and
workers in SC, defined as the distance between real
locations and locations inferred by adversaries in
Section. 3.3.1. The higher the E3, the better the lo-
cation privacy.

• Efficiency of Multi-task Assignment. Average Travel
Distance (ATD) represents the efficiency of multi-
task assignments, defined as the average value of
multiple distances from assigned workers to corre-
sponding task requesters in Section. 3.3.2. The lower
the ATD, the better efficiency.

• Utility of Multi-task Assignment. Assignment Success
Rate (ASR) represents the utility of multi-task assign-
ments, defined as the percentage of success assign-
ments in all assignments in Section. 3.3.3. The higher
the ASR, the better utility.

8.1.4 Parameter Settings
In experiments, we need to consider the impact of several
parameters: privacy budget ϵ and the number of tasks N . To
evaluate location privacy, we set reasonable privacy budget
ϵ ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3}. To evaluate the efficiency
and utility of multi-task assignment, we set privacy budget
ϵ and the number of tasks N ∈ {20, 30, 40, 50, 60} (There are
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TABLE 1
The Rate of Disclosure of Perturbing Behaviors.

Region A Region B Region C Region D

RoPriv 0.00% 0.00% 0.00% 0.00%

CG 0.00% 0.00% 0.00% 0.00%

BD 1.90% 71.4% 11.8% 30.9%

Laplacian 2.10% 68.3% 12.1% 28.6%

only approximately 80 taxis work on average in each day).
We set the default value of distance threshold dτr = 500m,
explained in Section. 8.2.2. In addition, we set ητ = 5% as
the increase threshold of ATD, which is a marginal increase.

8.2 Experimental Results
In our experiments, we simulate the taxi dispatch system
based on this dataset. The system starts at 8:00 and ends
at 20:00 every day, in which a multi-task assignment is
implemented every half hour. Thus, there are 25 multi-task
assignments each day and 750 times totally. We use the
average value of participants’ ATDs and ASRs in each multi-
task assignment to represent the performance of this multi-
task assignment. Furthermore, we employ the average value
of all participants’ E3s in 30 days to show the performance
in location privacy protection.

8.2.1 Effect of Privacy Protection
Location Privacy. As shown in Fig. 5, to evaluate location
privacy, we set four experiments conducted on regions A,
B, C, and D corresponding to a record-dense region (i.e.,
downtown) and three record-sparse regions (i.e., suburb).
In addition, we set the range of W of our framework as
dτr = 500m (called RoPriv-500) and dτr = 1500m (called
RoPriv-1500), which represent the general location privacy
protection and the strong location privacy protection, re-
spectively. Considering that CG and BD can not provide
privacy protection for task requesters, we adopt workers’
location privacy of CG and BD.

Figs. 5(a), 5(b), 5(c), and 5(d) show the impact of privacy
budget ϵ on location privacy E3 in region A, B, C, and
D, respectively. In these experimental results, we can first
observe that with the increase of privacy budget ϵ, the loca-
tion privacy E3 decreases in all the frameworks. Therefore,
if a participant needs strong location privacy protection,
setting a small privacy budget is better. As shown in Fig. 5,
under different ϵ, RoPriv-1500 performs best than any other
frameworks in all the regions, where all the E3 of RoPriv-
1500 exceed 800m. It means that the location, inferred by
the adversary with side information, is more than 800m
away from the real location of the participant with the
help of RoPriv-1500. Moreover, even though with the set
dτr = 500m, E3 achieved by RoPriv-500 is still more than
300m, which is able to guarantee the location privacy for all
participants. Hence, our framework can provide sufficient
location privacy protection for task requesters and workers
in SC with considering road networks.

By comparing the performance in record-dense re-
gion and record-sparse region, we find that our privacy-
preserving frameworks (i.e., RoPriv-500 and RoPriv-1500)

provide stable location privacy protection regardless of
the density of records. For example, RoPriv-1500 achieves
E3 in the range of 800m-900m, whether downtown or in
suburbs. However, CG cannot provide stable and proper
location privacy protection considering the road network.
E3 achieved by CG is less than 100m downtown in Fig. 5(a),
which can not guarantee the location privacy of workers. In
the remote suburb (i.e., region B), E3 achieved by CG even
exceeds 800m in Fig. 5(b). The unstable performance of CG
results from the density of workers, which heavily influ-
ences the location privacy protection of CG. Our framework
just consider settings (i.e., dτr and δ) of participants without
involving any external factors. Thus, location privacy can be
stably guaranteed with the help of our framework.

The Extensive Privacy. In addition to protect the location
privacy of participants, the behavior of perturbing loca-
tions is needed to be preserved for protecting the extensive
privacy of task requesters and workers. By investigating,
we know that GPS-enabled mobile devices are typically
accurate to within 4.9m under open sky [39]. Hereby, we
assume that a participant will be considered perturbing its
location if its location obtained by the SC server is 20m
away from road networks or lies in a river or forest. We
conduct several experiments on different regions to eval-
uate the effect of preserving the perturbing behavior, and
use the rate of disclosure of perturbing behaviors to show
the effectiveness of our framework, as shown in Tab. 1.
It is obvious that our framework RoPriv well preserves
the behavior of perturbing locations and moreover protects
the extensive privacy. Even though in the remote suburb,
the rate of disclosure of perturbing behaviors is still 0.0%.
However, based on these frameworks without considering
the road network (i.e., BD and Laplacian), participants suffer
from potential extensive privacy disclosure, especially in
the remote suburb with nearly 70% probability of being
recognized. The experimental results verify the effect of our
road network-aware framework for preserving the perturb-
ing behaviors.

Therefore, our framework can provide sufficient and
stable location privacy protection for task requesters and
workers, whether downtown or in suburbs. Furthermore,
our framework effectively preserves the behavior of per-
turbing locations for each participant.

8.2.2 Efficiency of Multi-task Assignment
To evaluate the efficiency of multi-task assignment, we set
the optimal assignment (called Optimal) by implementing
multi-task assignment on real locations. We conduct our
experiments downtown (i.e., region A) and in the remote
suburb (i.e., region B). Considering the impact of the privacy
budget ϵ and the number of tasks N , we obtain the experi-
mental result as shown in Fig. 6, where RoPriv and RoPriv+
denote our framework without considering utility (i.e., ASR)
and our framework after improving utility, respectively.

In Fig. 6, it is obvious that ATD follows Optimal <
RoPriv ≈ RoPriv+ < CG < BD < Laplacian, where
RoPriv performs best than baselines no matter downtown
(ATD < 1.0km) or in the remote suburb (ATD < 3.75km).
Moreover, we can observe that the ATD achieved by these
road network-aware frameworks (i.e., RoPriv, RoPriv+, and
CG) is lower than the ATD achieved by BD and Laplacian,
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(a) In region A (downtown).

0.1 0.3 0.5 0.7 0.9 1.1 1.3
Privacy budget ϵ

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ca
tio

n 
Pr
iv
ac
y:
 E
3 

(k
m

)

RoPriv-1500
RoPriv-500
CG
BD
Laplacian

(b) In region B (remote suburb).
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(c) In region C (suburb).
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(d) In region D (suburb).

Fig. 5. The impact of ϵ on location privacy downtown and in suburbs.
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(b) In the remote suburb.
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Fig. 6. a) and b) The impact of ϵ on efficiency of multi-task assignment with dτr = 500m and N = 30. c) and d) The impact of the number of tasks
N on efficiency of multi-task assignment with dτr = 500m and ϵ = 0.9.
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Fig. 7. The impact of dτr on location privacy and multi-task assignment
with ϵ = 0.9, N = 30.

which proves the increase in efficiency by considering the
road network. Especially, the ATD achieved by RoPriv is
closed to the optimal ATD, and the difference between them
is no more than 100m in most cases. Even though efficiency
has been weakened for improving utility in RoPriv+, the
performance of RoPriv+ is still extremely closed to RoPriv,
indicating that the increase rate of ATD is constrained well
by η = 5% in Utility-aware Optimization.

In addition, we find that the ATD in Figs. 6(b), 6(d) is
typically higher than the ATD in Figs. 6(a), 6(c). That is
because most taxis are concentrated downtown (i.e., region
A), and most workers downtown have to travel a long
distance for completing tasks in the remote suburb (i.e.,
region B).

Impact of privacy budget ϵ. Figs. 6(a) and 6(b) present
the impact of privacy budget ϵ on the efficiency of multi-
task assignment, where as ϵ increases, the ATD generally
decreases. In addition, the ATD in ϵ = 0.1 ∼ 0.7 decreases
more than the ATD in ϵ > 0.9. We have known that
the lower ATD represents the high efficiency of multi-task

assignment. Thus, we set ϵ = 0.9 as default value in our
experiments.

Impact of the number of tasks N . Figs. 6(c) and 6(d) present
the impact of the number of tasks N on the efficiency
of multi-task assignment, where as N increases, the ATD
significantly increases. That indicates N has a large negative
impact on the efficiency of multi-task assignment. Compar-
ing to the ATD in N = 30 ∼ 60, the ATD increases more
slowly in N = 20 ∼ 30. Furthermore, with RoPriv and
N = 30, ATD ≈ 800m downtown and ATD ≈ 3600m in
the remote suburb are acceptable distances for workers. For
that, we choose N = 30 as default value in our experiments.

Impact of the range of W dτr . We set dτr = {100m, 300m,
500m, 700m, 900m, 1100m 1300m, 1500m} and conduct
multiple experiments. As shown in Fig. 7, we consider dτr
as horizontal axis, set location privacy (E3) and efficiency
(ATD) as vertical axes to demonstrate the impact of dτr on
location privacy and multi-tasks assignment downtown (cf.
Fig. 7(a)) and in the remote suburb (cf. Fig. 7(b)). Intuitively,
we find that as dτr raising, E3 increases and ATD increases,
which indicates the improvement on location privacy and
reduction on efficiency. Hence, to balance the location pri-
vacy and efficiency, we need to determine a value of dτr as
the default value in our experiments. We can observe that
with dτr > 500m, ATD increases dramatically downtown
and in the remote suburb. Moreover, when dτr = 500m,
RoPriv provides sufficient location privacy exceeding than
all the baselines downtown (cf. Fig. 5(a)). Therefore, we
consider the default value of dτr as 500m.

8.2.3 Utility of Multi-task Assignment
To evaluate the performance on improving utility of multi-
task assignment, we conduct experiments downtown (cf.
Fig. 8) and in the remote suburb (cf. Fig. 9), in which we
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Fig. 8. a) The impact of ϵ on utility of multi-task assignment downtown with dτr = 500m and N = 30. b) The impact of the number of tasks N on
utility of multi-task assignment downtown with with dτr = 500m and ϵ = 0.9.
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Fig. 9. a) The impact of ϵ on utility of multi-task assignment in the remote suburb with dτr = 500m and N = 30. b) The impact of the number of
tasks N on utility of multi-task assignment in the remote suburb with with dτr = 500m and ϵ = 0.9.

set dwτ = 800m downtown and dwτ = 3600m in the remote
suburb.

As shown in Figs. 8 and 9, RoPriv+ achieves the highest
ASR whether downtown or in the remote suburb. More
specifically, the ASR achieved by RoPriv+ is in the range of
83.1%-96.3% downtown (cf. Fig. 8), in which the maximum
ASR is closed to 100%. In the remote suburb (cf. Fig. 9), the
range of ASR of RoPriv+ is 32.8%-78.3%. Even though there
are 60 tasks in the remote suburb waiting for assignment,
RoPriv+ still guarantees 32.8% task completed. Comparing
to baselines, the ASR achieved by RoPriv+ is able to exceed
baselines by up to 26.7% (in Fig. 9(a), ϵ = 0.3). Hence, Ro-
Priv+ performs well on the utility of multi-task assignment.

Comparing to the performance on utility between Ro-
Priv+ and RoPriv, we can find that the ASR has been signifi-
cantly improved after Utility-aware Optimization. Based on
RoPriv+, the improvement rate of ASR ranges from 1.2%
(in Fig. 8(b), N = 20) to 17.2% (in Fig. 9(a), ϵ = 0.3).
This indicates that our framework enables 17.2% workers
to complete tasks on time after Utility-aware Optimization
in the best case. Furthermore, we have demonstrated that
there are no obvious increase in ATD of our framework
after Utility-aware Optimization in Section. 8.2.2. Thus, our
Utility-aware Optimization indeed improves the utility of

multi-task assignment while keepging the efficiency tolera-
ble.

In addition, we notice that the ASR downtown is im-
proved better than the ASR in the remote suburb. Signif-
icantly, the maximum improvement rate of ASR is 6.2%
downtown, and the minimum improvement rate of ASR is
7.5% in the remote suburb. That is because the ASR is a high
degree of RoPriv downtown.

8.2.4 Negative Impact on Efficiency from Improvement in
Utility

We have known that the improvement of ASR will in-
evitably reduce the efficiency of the multi-task assignment
and our goal of the multi-task assignment is to obtain both
high utility and efficiency. Therefore, we analyze representa-
tive experiments composed of experiments downtown and
in the remote suburb (ϵ = 0.9, N = 30).

As shown in Fig. 10(a), we take the improvement ∆ASR
of utility as the horizontal axis and take the increase rate of
ATD as the vertical axis to show the relationship between
∆ASR and η. Moreover, we show the relationship between
∆ASR and the increase distance of ATD in Fig. 10(b). In
Fig. 10(a), we can observe that the increase rate of ATD is
well restricted by the increase threshold ητ = 5%. Even
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Fig. 10. Analysis on experimental results of ATD and ASR with ϵ = 0.9,
N = 30.

though there are 40% workers who are enabled to complete
tasks by our Utility-aware Optimization, the increase rate of
ATD is less than 3%, which is a minor increase. Furthermore,
we can see plenty of assignments improved with η ≈ 0%,
which indicates that our Utility-aware Optimization signifi-
cantly improves the utility while just raising little influence
on the efficiency of multi-task assignment. That is the trade-
off between utility and efficiency.

Comparing the experiment results downtown and in
the remote suburb, we find that most ∆ASRs range from
3% to 10% downtown, and ∆ASRs in the remote suburb
are mainly distributed between 10% and 30%, which in-
dicates that our Utility-aware Optimization performs well
in the remote suburb. In Fig. 10(b), the experimental results
downtown present that the improvement of ASR downtown
cause the distance increase of ATD less than 40m in most
cases. In the remote suburb, the distance increase of ATD
is less than 160m, which is not a large value compared to
dwτ = 3600m.

In summary, our framework can provide stable and
sufficient location privacy protection (cf. Fig. 5) for both task
requesters and workers regardless of regions (e.g., down-
town, in the remote suburb), meanwhile, protect their per-
turbing behaviors from disclosure (cf. Tab. 1). In multi-task
assignment, our framework can obtain both high efficiency
(i.e., low ATD) and utility (i.e., high ASR) by maximizing
utility on the basis of ensuring a minor increase in efficiency
(cf. Fig. 10).

9 CONCLUSION

In this paper, we proposed a road network-aware privacy-
preserving framework to implement a multi-task assign-
ment with both high utility and efficiency while protecting
the location privacy of both task requesters and workers
on road networks in Spatial Crowdsourcing. We firstly
abstracted the road network into discrete locations and
proposed an Obfuscated Locations Selection algorithm to
generate possible obfuscated locations based on partici-
pants’ real locations without disclosing their location pri-
vacy. Then, we designed a Road Network-aware Exponen-
tial Mechanism to perturb locations of task requesters and
workers on the road network, in which the behavior of
perturbing locations had been preserved. Based on obfus-
cated locations, we proposed region distance to replace the
distance among obfuscated locations to implement multi-
task assignments. Thereafter, with the basis of region dis-
tance, we decomposed multi-task assignment into a Binary

Linear Programming problem and a Utility-aware Opti-
mization problem to both high utility and efficiency. Our
experimental results on real trajectory dataset indicated that
our framework could provide sufficient and stable location
privacy protection for both task requesters and workers
downtown and in the remote suburb. Furthermore, our
framework obtains both high utility and efficiency in multi-
task assignments.
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