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Abstract— Urban region heat refers to the extent of which
people congregate in various regions when they travel to and
stay in a specified place. Predicting urban region heat facilitates
broad applications ranging from location-based services to intel-
ligent transportation management. The region heat is essentially
characterized by the ‘arrive-stay-leave (ASL)’ behaviors, while
it is a challenging task to well capture the spatial-temporal
evolution of region heat since the following issues remain: i) ASL
behaviors of private cars is usually heterogeneous resulting
in a hierarchical distribution of region heat. ii) Urban region
heat contains complex spatial-temporal correlations hidden in
ASL behaviors and how to collaboratively integrate them is
challenging. To address these challenges, we propose a Hierar-
chical Spatial-Temporal Network (HierSTNet) to forecast urban
region heat, which contains two representations, namely, grid
region from micro perspective and node region from macro
perspective. For the grids, three-dimension spatial and temporal
convolutional network (3D-STCNN) is proposed to model multi-
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scale properties in temporal dimension of ASL behaviors. For the
nodes, multi-head graph attention networks are utilized to model
the periodicity and spatial heterogeneity among macro region.
Hierarchical structures are designed for multi-view modeling
spatial-temporal distribution of ASL behaviors, by which they
capture small-scale features in micro regions and embeds the
global representation into graph propagation. Finally, we design
an interaction decoder layer to integrate the external factors
and aggregate spatial-temporal information across hierarchical
structures. Extensive experiments based on real-world private car
trajectory dataset demonstrate the superiority and effectiveness
of proposed framework.

Index Terms— Urban region heat, private cars, arrive-stay-
leave behaviors, trajectory data, hierarchical spatial-temporal
network.

I. INTRODUCTION

URBAN region heat refers to the extent of which people
congregate in various regions when they travel to and

stay in a specified place [1], taking some time to perform
their daily activities. With strong spatial and temporal charac-
teristics, the distribution of region heat reveals how people’s
travels reflect the formation and disappearance of urban hot
zones. As such, predicting urban region heat is an intriguing
problem from both researchers and policymakers since it ben-
efits broad applications ranging from location-based services
to Internet of Vehicles (IoVs) and intelligent transportation
management [2], [3], [4], [5].

The region heat is essentially characterized by human
mobility, more precisely, the ‘arrive-stay-leave (ASL)’ behav-
ior. To fulfill daily travel demands, people always arrive at
a specified region, stay for a certain period participating in
their activities, and then leave to next destination. Intuitively,
a lot of people from many different parts of city move to and
stay in several regions; indeed, their ASL behaviors are tightly
connected with the spatial-temporal evolution of urban region
heat. The ASL behaviors can be retrieved from various types
of trajectory data, for instance, the smart card data1 [6], taxi
trajectory data [7], [8], mobile App data [9], [10], and private
car trajectory data [11], [12], [13].

Specifically, we capitalize that the ASL behaviors retrieved
from private cars are well suited to characterize the

1The smart card data is used to investigate passenger behavior and the
demand characteristics of public transport, such as bus and subway.
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spatial-temporal distribution of urban region heat. This asser-
tion is explained as follows. For the smart card data, which
records the trajectory of public transportation such as bus
and subway, the travel routes and staying spots (e.g., the bus
stations) are usually fixed, resulting in sparse recordings and
not necessarily indicating passengers’ staying destination and
stay time. For the taxi trajectory data, taxi’s routes are of
randomness and their ‘stay’ in ASL behaviors are short for
just pick-up or drop-off passengers. Mobile App data mainly
collect the check-in information, which has no idea to record
stay and leave behavior. Overall, these trajectory retrieved
from public transportation, taxi and Mobile App data, are
unable to collect complete ASL behaviors, thereby leading to
unsatisfied performance on modeling urban region heat.

In comparison, the private car trajectory data provides
individual travel preferences [14] and complete information of
ASL behaviors [15], [16]. For example, people drive private
cars and arrive at the destinations such as working places or
leisure centers, staying for a certain amount of time to conduct
activities and then leave to the next destination. Apparently,
the essential components of ASL behavior, which includes the
travel origin/destination and stay time, are explicitly recorded.
More than that, the ownership of private cars has surged for
years, which contributes the main body participating in urban
automobiles. According to [17], nearly 88.6 % of the urban
automobiles (223 millions) are private cars in China (and more
than 76.6% in the European Union [18]). In this sense, large
numbers of private cars travel across urban regions, their ASL
behaviors lead to the formation and dissipation of urban region
heat. In other words, the ASL behaviors obtained from private
car trajectory data best reflect the spatial-temporal distribution
of urban region heat [19]. As such, learning the latent temporal
and spatial characteristics of ASL behaviors will provide a
promising way to understand urban region heat.

In this work, we strive to predict urban region heat via
learning ASL behaviors of private cars. Recent advances in
deep learning networks can be applied to predict its spatial-
temporal evolution. Recurrent Neural Networks (RNN) are
usually used to model the temporal dependencies. For instance,
Yang et al. [20] utilize long short-term memory (LSTM) net-
works to model time-series prediction problems. Li et al. [21]
employ gated recurrent unit (GRU) networks to capture long-
range sequential correlations. Convolution Neural Networks
(CNN) are widely developed to build spatial topology of regu-
lar gird-based division [22]. After that, researchers model data
as spatial-temporal graphs and utilize Graph neural networks
(GNN) to deal with non-Euclidean correlations and extract
spatial-temporal correlations. Despite the inspiring results, it is
not straightforward to apply recent advances in deep learning
to foresee urban region heat since following technical issues
remain:

• Hierarchical distribution of region heat. People’s congre-
gation are heterogeneously distributed in terms of ASL
behaviors [23]. The evolution pattern of ASL behaviors in
urban hot zones obviously differ among areas at different
time granularity. In other words, the distribution of urban
region heat is hierarchical, where the feature and infor-
mation in such structure play a vital role in predicting

urban region heat. However, the current methods ignore
the hierarchical representations and seldom utilize these
information.

• Complex spatial-temporal correlations in region heat.
For modeling the spatial dependencies, region heat is
mutually correlated since the sum of heat streaming
into a region is usually composed with the outflow
nearby. For the temporal correlations, region heat changes
dynamically over the time of a day, which are heavily
influenced by ASL behavior and other external factors
(e.g., meteorological conditions and event information)
How to synchronously integrate the spatial correlations
with temporal correlations for precise reference is still
challenging.

To address these challenges, we propose a Hierarchical
Spatial-Temporal Network (HierSTNet) for urban region heat
prediction. First, aiming to acquire the hierarchical represen-
tations, the urban region construction block is designed to
model the grid region and node region, which are used to
explore the characteristics of region heat in micro and macro
view, respectively. Moreover, we propose a three-dimension
spatial and temporal convolutional network (3D-STCNN) in
grid region. We divide the temporal properties into closeness,
period and trend and capture the spatial dependencies at
different time granularity. For the node region, we design
a spatial-temporal graph network combined with multi-head
attention to model the periodicity and spatial heterogeneity
in global perspectives. Finally, we add an interaction decoder
layer to integrate the external factors and aggregate spatial-
temporal information across hierarchical structures. The main
contributions in this paper are summarized as follows:

• We propose a Hierarchical Spatial-Temporal Network
to predict urban region heat through capturing spatial-
temporal correlations of ASL behaviors.

• We design a 3D-STCNN in grid region to capture spatial
dependencies at different time granularity. On top of that,
we employ a multi-head attention graph network to model
the periodicity and spatial heterogeneity synchronously.

• We design an interaction decoder layer to integrate the
external factors and aggregate spatial-temporal informa-
tion across hierarchical structures.

• Extensive experiments are conducted based on real-
world private car trajectory dataset. Experimental results
demonstrate that our proposed HierSTNet outperforms
the baselines with a roughly 7%-10% improvement.

The remainder of this paper is organized as follows.
Section II presents the related works. In Section III, we intro-
duce notations and preliminaries used in this paper, and then
we formalize the problem of region heat forecasting. The
details of the proposed model are presented in Section IV.
Section V presents experimental results based on the real-
world trajectory dataset. Finally, we conclude the paper in
Section VI.

II. RELATED WORKS

Along with the rapid development of urbanization, a huge
volumes of traffic data from urban areas related to human
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Fig. 1. The proposed HierSTNet for region heat prediction.

mobility have been increasingly collected and mined, which
benefits broad application from location-based services to
intelligent transportation management, such as traffic flow
analysis and (Point of Interest) POI recommendation [2], [3].

Facing various applications and scenarios, continuous
researches have paid much attention on mining spatial-
temporal characteristic by using various types of trajectory
data. Zhao et al. [6] used the bus transaction data to dis-
cover the patterns of passenger travel distribution and detect
the abnormal passengers based on the empirical knowledge.
Yu and He [24] used smart card data and revealed the spatial-
temporal patterns of bus travel demand. Wang et al. [7]
extracted pick-up and drop-off location points based on taxi
data, and uses them as a basis to analyze the popular areas
of passengers’ trips. Yuan et al. [25] combined the trajec-
tory data of Beijing’s taxi car and POI data to analyze the
transfer pattern and human mobility in region-scale. More-
over, researchers utilized the taxi data for next destination
prediction. For instance, Rossi et al. [26] modeled the taxi
drivers’ behavior and encoded the semantics of visited loca-
tions by using geographical information. Zhang et al. [8]
proposed a novel data embedding method for time-related
feature pre-processing. Based on check-in data of location-
based social apps, Li et al. [10] made recommendations of next
POI for check-in users. Yang et al. [9] enriched the check-
in data with potential visitors for check-in time prediction.
Long et al. [13] investigated the problem of stay location
prediction and explore travel regularity and preference for
individual vehicles. Xiao et al. [27] derived the attractiveness
of different urban areas to citizens by modeling the spatial
distribution of the points of stop based on private car tra-
jectory data. Liu et al. [15] attempted to predict private car

flows in urban functional regions by exploiting spatiotemporal
correlations of arrive-stay-leave (ASL) behaviors of private car
users.

In the early stage, lots of efforts have been made in model-
ing the spatial-temporal characteristics of traffic trajectories.
The statistical analysis method based on time series is an
technical route, such as Autoregressive Integrated Moving
Average model (ARIMA) and its variants [28], [29]. These
methods rely on strong assumptions of linearity, which ignore
the spatial dependencies among real traffic situation. Later,
machine learning of data-driven models have been employed,
such as K-nearest Neighbor (KNN) [30] and Support Vector
Machine (SVR) [31] to handle nonlinearity in traffic data.
However, these hand-crafted features are often shallow in
structure with limited performance.

In recent years, deep neural networks provide a promising
way to learn the spatial and temporal correlations. Existing
deep-learning methods usually construct hybrid networks by
combining different architectures to capture the hidden depen-
dencies. Li et al. [22] utilized CNN to capture the spatial
characteristics in grid region. Stepdeep [32] incorporate spatial
and temporal filters into a 3D-CNN to predict spatial-temporal
events. Although CNN excels at traffic data of regular division,
it fail to model complex spatial topology structure. After that,
graph neural networks [33] step into stage and break the
restrictions which are more flexible and mightful to capture
spatial correlation in Non-Euclidean data. Researchers model
data as spatial-temporal graphs. Feng et al. [34] utilized graph
convolutional network (GCN) to extract the spatial dependen-
cies in graph frames. For modeling the temporal dependencies,
RNN is powerful in capturing sequential information in time
dimensions [35]. For instance, Yang et al. [20] used LSTM
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networks to learn the regularity and preference hidden in
traffic data. Li et al. [21] employed GRU to capture long-range
sequential correlations.

In addition to CNN, GNN and RNN, attention mech-
anism networks are also introduced into extracting spatial
and temporal features. Graph attention network (GAT) [36]
is proposed for preserving hidden spatial dependencies and
modeling the dynamics in traffic, which combines the self-
attention with graph structures. To incorporate more informa-
tion, Feng et al. [37] proposed RNN with attention mechanism
to capture periodicity and preference based on distant hidden
states. Guo et al. [38] designed a novel attention-based model,
which combines the spatial-temporal attention mechanism
with convolution operations.

Most frameworks stack two separate module to capture
spatial and temporal information, respectively. Researchers are
constantly trying to find ways to handle these correlations,
simultaneously. Zhang et al. [39] constructed a CNN-based
architecture and stacked it with residual network (ResNet) to
jointly capture the spatiotemporal correlations. Yao et al. [40]
combined CNN and LSTM to jointly model the nonlinear
spatial-temporal correlations relations and capture the dynam-
ics in traffic demand prediction tasks. Wu et al. [41] designed
an adaptive graph structure together with gate mechanism
for spatial-temporal modeling, which integrate diffusion graph
convolution with 1-D dilated convolution. Zhang et al. [42]
proposed a multitasak deep learning (MDL) framework to
predict the node flow and edge flow, simultaneously. Moreover,
rich contextual factors, such as weather, POI information
and traffic events are included into modeling the forecasting
tasks [43], [44]. Wang et al. [45] integrated GRU with Trans-
formers to capture the local and global temporal dependencies,
in which they proposed a position-wise attention to embed
the external feature as auxiliary information. Yao et al. [46]
proposed a semantics-enriched recurrent model to jointly learn
the embeddings of multiple factors in a unified framework.
Zhang et al. [47] embedded the semantic information into
temporal modeling and propose a multi-graph convolution
network for traffic demand forecasting.

Summarizing, existing methods ignore the hierarchical
structures in urban traffic system. In addition, these methods
for urban region heat prediction overlook the human travel
behaviors of private cars, particularly the ASL behaviors.
To resolve those issues, we construct a hierarchical structure
to capture the spatial-temporal evolution of urban region heat
via learning ASL behaviors of private cars.

III. PRELIMINARIES

In this section, we introduce the basic definitions and
present on the problem statement.

A. Definitions

Definition 1 (Urban Region): Urban region is divided
into grid region and node region. In the grids, the city map
is equally divided into N = I × J sub-regions according
to the longitude and latitude. Each grid is denoted by rn
(n ∈ [1, · · · , N ]). For the nodes, firstly, we retrieve the

Fig. 2. The representation of ASL behavior in one region, which can be
decomposed into following: 1)in/out flows, 2) those staying cars and 3) those
cars are still driving in this region during the observed time window are also
deemed as staying.

historical private car trajectory into the grid map and extract
the (Points of staying) PoSs information on the basis of
grids divided. Secondly, the PoSs are clustered by spatial
temporal-clustering of applications with noise (ST-DBSCAN)
algorithm according to its density distribution. Each node can
be regarded as a global region rk

i (k ∈ [1, · · · , K ]), which
stands for the i-th grid belongs to the k-th node region.

Definition 2 (ASL Behavior): From the private car trajec-
tory T r = {g1, g2 · · · , gT } of dataset P , the process of ASL
behavior can be observed at a sequence of time intervals τ =

{t1, t2 · · · , tT }, which contains consecutive spatial-temporal
points gi = (loni , lati , ti ). Here (loni , lati ) denotes geospatial
coordinates. As shown in Fig. 2, the ASL behavior in one
region can be decomposed into: i) in/out flows, ii) staying
cars and iii) those cars are driving in this region during the
observed time window. Let sin

t,n , sout
t,n , sdrive

t,n , and sstay
t,n denotes

the amount of arrive (inflow) and leave (outflow), drive and
stay in the region, respectively. These compositions from ASL
behaviors are formulated as:

sin
t,n =

∑
T r∈P

|{k > 1 | gt−1 /∈ (rn) ∧ gt ∈ (rn)}| , (1)

sout
t,n =

∑
T r∈P

|{k ≥ 1 | gt−1 ∈ (rn) ∧ gt /∈ (rn)}| , (2)

sdrive
t,n =

∑
T r∈P

|{k ≥ 1 | gt−1 ∈ (rn) ∧ gt ∈ (rn)}| , (3)

sstay
t,n =

∑
T r∈P

|{k ≥ 1 | gt−1 ∈ (rn) ∧ gt = gt−1}| , (4)

where t denotes time interval, gk ∈ (rn) denotes the trajectory
points located in the region rn .

Definition 3 (Region Heat): In this work, we strive to quan-
tify the region-level heat by learning ASL behaviors from two
perspectives, namely, the grid region and the node region.
In the grids, as stated in previous definition, region heat
is denoted as a time-ordered sequence of tensors, Ht ={
ht,1, · · · , ht,N

}
, Ht ∈ RI×J . Let ht,n denote the quantified

representation of region heat at timestamp t from ASL behav-
iors, which can be expressed by:

ht,n = sin
t,n − sout

t,n + sdrive
t,n + sstay

t,n , (5)
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TABLE I
SAMPLE OF TRIP DATA IN PRIVATE CARS DATASET

TABLE II
MAIN NOTATIONS AND DEFINITIONS

Then, we design a three-order tensor matrix to symbolize
it at the past T time periods, where H = {H1, · · · , HT },
H ∈ RT ×I×J . In the node region, we cluster the grid input
and define the node representation as Hc =

{
Hc,1, · · · , Hc,T

}
,

Hc ∈ RT ×K , which is the total of its grids.

B. Problem Statement

Given a sequence of historical grid input matrices H and
node matrices Hc over the past T time slices, our goal is to
learn a model Pre, accompanied with external feature He to
collaboratively predict ĤT +t in the future.

IV. METHODOLOGY

In this section, we introduce the proposed model in detail.
The overall framework of HierSTNet is shown in Fig. 1,
which mainly contains four parts: i) urban region construction;
ii) 3D-STCNN on grid region; iii) spatial-temporal graph
network on node region; iv) fusion and forecasting.

A. Urban Region Construction

1) Preprocessing: Region heat is largely quantified by ASL
behaviors that are extracted from the private car trajectory
data. The private car trajectory dataset [11] is collected from
real-world urban scenarios via using vehicle positioning tech-
nologies [48], [49], [50]. As shown in Table I, the collected
trajectory data are stored in individual trips, which contains the
user ID, the start and stop time, the start and stop locations,
etc. As for analyzing ASL behavior of one trip, the arrive
matches the stop point and the leave denotes the start point
of next trip, respectively. The stay behavior is reflected by the

Fig. 3. Grid representation of region heat.

arrival time, the PoS (e.g., the arrival point), and the duration
of stay time. For example, Table I presents the user arrived
at a specified place at 11:51 then leave at 12:33, stayed for
42 minutes probably in a restaurant. The next ASL behavior
lasts 88 minutes, maybe home for a naps. Each arrive and
leave behavior both cause the heat change in corresponding
region. In this work, the start and stop points of one ASL
behavior are collectively deemed as the PoS to quantify the
region heat. Considering the meaningless data, it is required
to screen out the real and effective PoSs from private car
trajectory since there will be traffic jams and other special
circumstances during the driving process. Supplemented with
time and speed thresholds, we find the PoSs of each ASL
behavior in the trajectory and use the relative distance at the
previous moment as the threshold, where the PoSs with a
distance of less than 10 meters will be regarded as error value.

2) Grid Region Modeling: The city-wide area is equally
divided into N grids, and each grid could be viewed as a
snapshot of time-varying spatial map. Region heat can be
detected by ASL behaviors generated by private cars. For a
grid, the ASL behavior can be represented within a certain time
interval of 1) arrive in the gird, 2) stay in the gird, 3) leave
the grid and 4) those have not stayed or left are still driving in
the grid. Accordingly, region heat in grids has been quantified
by their amount, which is denoted as a time-ordered sequence
of tensors. In details, the grid matrix is shown in Fig. 3.

3) Node Region Modeling: As shown in Fig. 4, node region
is a wider representation that consists of several grids with
same color. The modeling process is reported as follows:

First, we extract the PoSs from the private car trajectory,
in which the PoSs set is denoted as S = {s1, · · · , sn} , si =

(loni , lati , ti ). Then, we employ an improved ST-DBSCAN
algorithm to cluster the density based on spatial-temporal
distribution of real PoSs. After that, the grids are partitioned
according to the density classification. In details, this method
finds the grid corresponding to each staying point by its real
geographic location and classifies the grid according to the
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Fig. 4. Node region modeling.

staying point’s density distribution. For example, if the grid
ri has the only staying point s j , which is classified with k,
we attribute ri to be a sub-element of set vk . Furthermore,
if the grid has multiple PoSs, we select the largest proportion
of classification as the result.

Moreover, we construct a connectivity-based graph G =

(V, E, A), where each clustered region is a vertex in G. The
edges indicate the connectivity between node regions. The
edge set E indicates the connectivity between two nodes, that
is, an edge is created if there exits heat transfer starts from
region i/j and to region j/ i . The mathematical representation
of connectivity graph is denoted by the adjacent matrix A.

B. 3D-STCNN on Grid Region

According to the grid region modeling, region heat at each
grid in the certain time interval can be represented as the
tensor H . For the short-term dependencies, region heat is
easily affected by random event, like big sales in store, causing
a sudden increase of the corresponding region’s heat. For
the long-term, region heat reveals similarity and periodicity.
For instance, the morning and evening traffic congestion in
rush hours tend to be similar on working days and it will
be gradually severer as the seasonal winter comes. As such,
Zhang et al. [51] intercepted three time series segments of
the close, period and trend component along the time axis,
which select different key frames to predict the time interval t .
Inspired by this, we divide the temporal properties into close-
ness, period and trend and capture the spatial dependencies at
different time granularity, which is defined as Hclose, Hperiod ,
Htrend , respectively.

As shown in Fig. 5, we leverage a 3D spatial-temporal
convolution-based network to process the historical grid heat
tensor. To specify, 1D convolution is used to extract the
time dependence, and 2D convolution can extract the spatial
dependence. Compared with them, 3D convolution is more
appropriate to capture the spatial and temporal correlation of
ASL behavior. In such 3D network, we stack multiple 3D
convolution units to combine the spatial and temporal infor-
mation. In particular, we conduct three 3D convolution kernels
to extract the spatial-temporal dependencies synchronously,

Fig. 5. The architecture of 3D-STCNN.

which includes time sensitive kernels, spatial sensitive kernels,
and spatial-temporal kernels. The optimal amount of 3D
convolution units is set to 64 (see experiment in Fig. 8(a) for
details). In this way, we use 3D convolution kernel to connect
multiple 2D tensors from the previous layer of the network
and performs feature mapping operation. Formally, we obtain
the (x, y, z) element dx,y,z

i, j of the convolution neuron matrix
as follows, which is on j-th channel and generated by the i-th
convolutional filter:

dx,y,z
i, j =(

∑
m

Ei −1∑
e=0

Fi −1∑
f =0

Gi −1∑
g=0

d(x+e),(y+ f ),(z+g)

m(i−1) × w
e, f,g
i, j,m ) + bi, j ,

(6)

where Ei , Fi , Gi is the size of the input feature in different
dimension of i layer, w

e, f,g
i, j,m is the weight value of the m-th

feature channel mapped with (e, f, g) element in i − 1 layer
and bi, j denotes the bias term. After that, we take padding
operation to keep the size of the output feature tensor matching
the input.

To capture the temporal dependencies of different scales,
the historical data of closeness, period and trend are fed into
3D-STCNN, which are denoted as Hclose, Hperiod , Htrend ,
respectively. We propose using a parametric-matrix-based
fusion to merge the spatial-temporal features:

Hg = Hclose ⊙ Wc + Hperiod ⊙ Wp + Htrend ⊙ Wt . (7)

Here ⊙ denotes an element-wise multiplication operator, Wc,
Wp, Wt are learnable parameters to represent the degree of
adjustment affected by the different time dimensions.

C. Spatial-Temporal Graph Network on Node Region

After clustering the grids into node region, we convert
the data into graph structures to capture the spatial-temporal
dependencies in global perspectives. Accordingly, each node
can be deemed a broader but irregular region division.
In order to learn the depth representation among macro
region, we adopts a spatial-temporal graph network with multi-
attention to model the periodicity and spatial heterogeneity.

1) Capture Spatial Dependencies: Graph convolutional net-
work (GCN) is the basic operation of extracting node features
given its prior knowledge which has achieved great success
in graph representing learning [34]. To propagate the spatial
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location information among node regions, we carry out con-
volution on topological graph G, which achieves the process
of filter in the frequency domain as follows,

gθ ∗ Gx = gθ (L)x = gθ

(
U3T U

)
x = Ugθ (3)U T x, (8)

where L = U3T U is the graph Laplacian matrix and 3 =

diag ([λ1, . . . , λN ]) ∈ RN×N . U is Fourier transform basis of
G and gθ is the convolution kernel. To simplify notations,
we summarize the convolutional operation fg as below:

H l+1
c = fg(A, H l

c), (9)

where H l
c and H l+1

c are the correlation matrix in layers l
and l + 1, respectively. A is the adjacency matrix, which is
crucial in the aggregation of nodes and their neighbors in graph
propagation.

2) Capture Temporal Dependencies: Gating mechanisms
are excellent in controlling information flow through lay-
ers [21], [52]. Motivated by this, we combine GCN with gated
recurrent units to capture the spatial-temporal dependencies.
Specially, the internal structure of GRU includes a reset gate
r (t) that helps to forget dispensable information and an update
gate z(t) determines the hidden state passed by the previous
node and the input of the current node. At the time step t ,
Let Hc

(t) be the input and H (t−1)
d be the hidden states from

previous step, we conduct GCN operation for both of them as
below,

H̃c
(t)

= fg

(
A, Hc

(t)
)

, (10)

H̃ (t−1)
d = fg

(
A, H (t−1)

d

)
. (11)

For each node vi at time step t , its hidden states will
be applied to control the flow of information saved at the
next moment [53]. Each node performs the GRU operation
independently and its learnable parameters are globally shared
for all node regions. Then, the calculating of GRU can be
expressed:

z(t)
= σ

(
H̃ (t)

c [i, :], H̃ (t)
d [i, :]

)
, (12)

r (t)
= σ

(
H̃ (t)

c [i, :], H̃ (t)
d [i, :]

)
, (13)

H̃ (t)
d [i, :] = σ

(
H̃ (t)

c [i, :], r (t)
⊙ H̃ (t)

d [i, :]
)

, (14)

H (t)
d [i, :] =

(
1 − z(t)

)
H̃ (t)

d [i, :] + z(t)
⊙ H̃ (t)

d [i, :], (15)

where H (t)
d [i, :] is the output at time step t . The activation

function σ(x, y) = tanh(W x + U y + b) and W, U, b are the
learnable parameters.

3) Multi-Head Attention: Multi-head attention is widely
adopted to integrate the sequence information from differ-
ent representation dimensions [54]. For node vi , the output
sequence H (i)

d =

{
H (1)

d [i. :], . . . , H (t)
d [i. :]

}
from GRU

units is the input for the multi-attention. We first integrate
multiple self-attention mechanisms and project the input into
them with learnable parameters WQ, WK , WV ∈ RI×J×d .

Then, the scaled dot-product attention can be computed as:

H (i)
n = Softmax


(

H (i)
d WQ

) (
H (i)

d WK

)T

√
dk

H (i)
d WV

 , (16)

where H (i)
n is the output matrix and scale dk is used to

avoid the saturation of standardized function. We use multi-
head attention to jointly learn the dependencies from diverse
dimensions. In details, we have:

Hn = FC
(

Concat
(

H (1)
n , H (2)

n , . . . , H (i)
n

))
. (17)

We concatenate multiple outputs and perform linear trans-
formation through a fully-connected layer. With the multi-
attention mechanism, each input token can be related to
the tokens at other time steps. Finally, we generate the
output as Hn .

D. Fusion and Forecasting

1) Interaction Decoder Module: Aiming to correspond the
grid representations to the nodes, we propose a decoder layer
to realize the interaction between grid and node region. First,
we construct a transformation matrix Q ∈ RN×K to obtain the
mapping between N grid and K node regions. If the grid i
belongs to the node j , the corresponding element is set to 1.
Formally,

Qi, j =

{
1, if ri ∈ v j

0, else ,
(18)

where ri denotes the i-th grid and v j is the j-th clustered
node. Moreover, given the weight matrix Qc column-wisely
normalized by Q, the grid’s feature can be flattened into one
dimension:

H ′
= Qc

T
· Flatten(H), (19)

where H ∈ RN denotes the grid representation and
H ′

∈ RK is the converted node representation. Here we
multiply it Qc to obtain corresponding node representation
H ′

∈ RK . Furthermore, we define a novel transfer matrix Q∗

as follows,

Q∗

i, j =


0, if ri /∈ v j
hi

h′

j
, else, (20)

where hi is the heat value in the i-th grid and h′ is the total
in the j-th node. Then, for the node feature Hn ∈ RK×T , the
transfer feature can be formulated as follows,

H ′
n = reshape(Q∗

· Hn), (21)

where the node transfer feature H ′
n ∈ RN×T . We reshape it

to match the grid feature Hg . In this way, the representations
of region heat learned by CNN and GCN are both integrated
into one network.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 09,2023 at 11:23:37 UTC from IEEE Xplore.  Restrictions apply. 



10850 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 10, OCTOBER 2023

2) Fusion Module: External factors such meteorological
conditions and event information may have great impact on
traffic condition [55], [56] For example, during the Chinese
Spring Festival, the traffic flows in the city will have a cliff-
like decline. Founded on this analysis, weather conditions,
temperature and holiday are considered as external factors
for region heat prediction. To reflect the different degrees of
influences, weather conditions are categorized into 16 types
(i.e., sunny, windy, storm and snowy) and each type is con-
verted into a one-hot vector. Moreover, We empirically divide
the temperature into 10 grades and the temperature difference
of each grade is 5 ◦C since tiny changes (e.g., 1◦C∼2◦C) have
little influence on people’s activities and are overlooked. The
categories of holiday are encoded into a binary vector. Finally,
all the external factors are concatenated into a one dimensional
tensor He.

In this part, we design a fusion module to capture the influ-
ences of external factors and fuse them with spatial-temporal
dependencies of region heat in hierarchical structures. First,
we fuse the grid feature Hg with the node transfer feature H ′

n .
The fusion is formulated as:

Hheat = Wg ⊙ Hg + Wr ⊙ H ′
n, (22)

where Hheat is the concatenation representation of region heat
with spatial-temporal dependencies. Wg, Wr are both learnable
weights. Then, we embed the spatial-temporal feature Hheat
and external factors He, generating a MLP with T anh acti-
vation function to fuse external factors with spatial-temporal
data. Finally, the information for layers of different depth are
passed for the output prediction Ĥ t+1:

Ĥ t+1
= Tanh (Hheat + We ⊙ He) , (23)

where We is learnable parameter in MLP layer.
3) Loss Function: In the training process, our goal is to

minimize the error between the predicted value Ĥi and the
ground truth Hi . The loss function can be represented as:

M AE =
1
N

N∑
i=1

∣∣∣Hi − Ĥi

∣∣∣ . (24)

V. EXPERIMENTS AND DISCUSSIONS

A. Dataset

In this section, we conduct the experiments based on the
real-world private car trajectory dataset collected in Shenzhen,
China. Table I details the sample of trip data, of which the
data is collected from July to September 2018, containing
561,534 trips. After removing the incomplete and abnormal
data, we retrieve the trajectory data between longitude of
(113.48-114.49) and latitude of (22.45-22.84). We make use
of location information and trip recordings of private cars
to construct the topological graph. To protect user informa-
tion and prevent privacy leakage, we have desensitized the
sensitive information from the raw trajectories. We make
the trajectory dataset used in this paper publicly avail-
able: https://github.com/HunanUniversityZhuXiao/PrivateCar
TrajectoryData.

B. Baselines

We compare the proposed HierSTNet with the following
baselines, of which the parameters have been fine-tuned from
the original settings.

• HA: Historical Average is a classical approach using the
average of historical data as the forecast output.

• SARIMA [29]: Seasonal ARIMA is a variant of ARIMA
based on seasonal periodic improvement.

• ConvLSTM [40]: A classic deep learning combinatorial
method, which utilize convolutional neural networks and
long short-term memory networks to capture the spatial
and temporal dependencies of data, respectively.

• STGNN [45]: A fine model integrates GCN and GRU,
in which GCN is used to capture the spatial correlation
and GRU is used to capture the temporal dependence of
traffic data.

• ASTGCN [38]: A novel attention based model, which
combines the spatial-temporal attention mechanism and
the spatial-temporal convolution, simultaneously.

• StepDeep [32]: StepDeep utilizes the network based on
CNN uses 3D convolution kernel to extract the spatiotem-
poral dependence.

• MDL [42]: A multitask deep-learning framework simul-
taneously predicts the node flow and edge flow through-
out a spatial-temporal network.

• GWNET [41]: A spatial-temporal graph convolutional
network, which integrates diffusion graph convolutions
with 1-D dilated convolutions and develops a novel
adaptive dependency matrix through node embedding.

C. Setting and Metrics

In the experiments, the setups are presented as follows.
• Region division. We first retrieve the location informa-

tion from private car trajectory dataset and match them
into city map. The Shenzhen city is equally divided into
32 × 32 grids. After that, we use ST-DBSCAN clustering
algorithm to obtain corresponding node division. We set
the spatial threshold as 800 meters, the time threshold
as 30 minutes, and the minimum sample value Min Pts
as 5. Finally, we obtain 96 node regions after clustering.

• GRU. In the graph network, we employ the GRU to
extract temporal correlations and stack the GRU units
with GCN to capture spatial-temporal dependencies,
simultaneously. We set the GRU hidden units to 64.

• Time segment length. With the reference to the common
demand of time series forecasting, the time segment
length 1τ is set to 30min and 60min. It indicates that we
divide the day into 24 and 48 time slices, respectively.

• Training methods. We employ Adam function to opti-
mize the model and perform all weight updated during
the training process. We set the initial learning rate to
0.005 and the batch size to 32. Moreover, the training
iteration is set to 200. We adopt Min-Max normalization
to process the data. Each dataset is splitted into 80%
for training, 10% for testing and 10% for testing with
chronological order. We train models in the training-set
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TABLE III
PERFORMANCE COMPARISON OF DIFFERENT MODELS

and test the model on the test-set according to the optimal
parameters of the validation-set.

The experiments are conducted based on the MindSpore
framework platform. The performance of each method is
measured by Mean Absolute Error (MAE), Root Mean Square
Error (RMSE) and Mean Absolute Percentage Error (MAPE).
The MAE is expressed in Eq. (24). Given predicted value ŷi
and corresponding ground truth yi , the calculations of RMSE
and MAPE can be formulated as follows:

RM SE =

√√√√ 1
N

N∑
i=1

(
yi − ŷi

)2
, (25)

M AP E =
1
N

N∑
i=1

∣∣yi − ŷi
∣∣

yi
. (26)

D. Experiment Results

1) Prediction Results: For the overall performance of region
heat prediction, we conduct a numerical comparison by using
various metrics in terms of MAE, RMSE and MAPE, includ-
ing the forecasting of next 30 minutes and 60 minutes in
Shenzhen dataset. The evaluation is reported in Table III,
where the best is marked in bold.

The performance of naive HA and SARIMA methods is
worse as they only consider assumptions of linear correlations
over time series while ignoring the spatial dependencies among
real traffic situation. Compared with traditional methods,
deep learning-based models achieve better performance, which
demonstrates their superior capacity on learning the nonlinear
spatial-temporal correlations. Methods such as ConvLSTM
and StepDeep have limited performance since they fail to cap-
ture the non-Euclidean correlations among complex regions.
STGNN and ASTGCN highly rely on predefined graph which
leads to a bad performance. More recent baselines MDL
and GWNET obtain competitive results. These methods are
inferior to our proposed model due to the following reasons.
For the former, it benefits from the strategies for multi-task
learning to capture spatial-temporal correlations, in which
such training strategy can alleviate the error propagation. The
GWNET method benefits from that it designs an adaptive

Fig. 6. Ablation study.

graph to model relationships between nodes and construct
different components to model temporal and spatial corre-
lations respectively. However, they only consider the nearest
time steps for capturing local correlations, while the long-term
correlations and external factors are omitted. The proposed
HierSTNet achieves the best results and verifies its superiority
based on the following reasons. First, the design of hierarchical
modeling helps our model capture the subtler correlations in
both micro and macro perspective. Second, it applies a more
effective strategy in hierarchical structure to mine the temporal
characteristics, in which we model three temporal properties
in 3D-STCNN and combine multi-head attention mechanism
in graph frames to integrate the sequence information from
diverse dimensions. Moreover, we incorporate the external fac-
tors into prediction, which boosts the prediction performance.

2) Ablation Study: To estimate the effect of hierarchi-
cal structure, we design two variants: HierSTNet-m and
HierSTNet-n:

• HierSTNet-m: In this variant, we remove the multi-head
attention block to verify the performance of attention for
capturing global temporal dependencies.

• HierSTNet-n: In this variant, we remove the whole node
block and interaction decoder module, i.e., only employ-
ing grid region module to demonstrate the importance of
hierarchical structure.

We randomly choose a grid region from Shenzhen dataset
to conduct the ablation analysis. Fig. 6 presents the predicted
results of HierSTNet and its variant against ground truth from
9/12/2018 to 9/18/2018. It can be observed that the compo-
nents of hierarchical structure are effective as HierSTNet is
strongly accurate in tracing the ground truth curves, while
HierSTNet-m is slightly worse. There is a large deviation
between HierSTNet-n toward the ground truth since the spatial
correlations among single network cannot generate a fine-
grained prediction for a specified grid. Moreover, neither of
these two variants that removed the multi-head attention seem
to be sensitive to heat changes in the weekend (see the curve
with a blue box), in which they cannot accurately predict the
heat change over the weekend.
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TABLE IV
PERFORMANCE COMPARISON OF ABLATION VARIANTS

TABLE V
THE COMPARISON OF COMPUTATION TIME

In addition, we compare the overall performance including
the prediction of 30 minutes and 60 minutes. Compared to
HierSTNet-n, HierSTNet-m achieves better prediction results.
This indicates the importance and effectiveness of hierarchical
structures. The lack of a multi-headed attention component
degrades prediction performance, but not nearly as bad as the
ablation of hierarchical components.

3) Computation Time: In addition, we compare the com-
putation time of StepDeep, MDL, ASTGCN and GWNET
with HierSTNet to analyze the time complexity. The results
are shown in Table V. We can find out, although HierSTNet
is slower than StepDeep, ASTGCN and slightly slower than
HierSTNet-f, it has far better accuracy than those models.
Compared to the methods with single structures, HierSTNet
models region heat in hierarchical structure expressed as grids
and nodes, by which the corresponding training cost is higher
but the performance is correspondingly more outstanding.
Compared with the latest methods, like GWNET and MDL,
HierSTNet is nearly two times faster. The reason behind is
the calculation and training of multitask learning in MDL
and adaptive learning in GWNET are more complicated,
which proves the superiority of hierarchical components with
a balanced overhead and the cost of hierarchical components
is deserved.

4) Hyper-Parameter Sensitivity: We conduct the sensitivity
study to discuss how different choices of parameters affect the
performance of the proposed HierSTNet. We report the impact
of the number of 3d convolution units and the number of GRU
units using RMSE. Moreover, we examine the influence of
different prediction time steps from 1 to 12. Each time step
denotes 30 minutes. We summarize the results and have the
following observations:

• Fig. 8(a) shows that the resulting RMSE decreases with
the increase of the number of layers as the number of

Fig. 7. Parameter sensitivity on Shenzhen dataset.

Fig. 8. Performance comparison under different prediction time steps.

layers is within 3 layers. When the number of layers
exceeds 3, the RMSE increases instead of decreasing
caused by the overfitting of networks. This is suggested
that the optimal number of layers for 3D spatial-temporal
convolution is 3.

• Fig. 8(b) shows that the performance only achieves minor
improvement or even degraded gradually when the num-
ber of GRU units is larger than 64. It indicates that the
optical value of GRU units is around 64.

• We compare the multi-step prediction performance of
HierSTNet against baseline models as depicted in Fig. 8.
It can be seen that, as wide the prediction horizon
achieves, the corresponding difficulty of prediction is
becoming greater and the prediction performance is
gradually worsen. HierSTNet achieves the start-of-the-art
performance whether long-term or short-term prediction,
where the reason behind is that our method has great
generalization ability to exploit long-interval context.

5) Case Study: To better understand HierSTNet, we carry
out a case study to interpret how does HierSTNet handle
the spatial-temporal dependencies in hierarchical structures
compared with several competitive baselines. We discuss the
predicted results as follows.

First, we conduct analysis on the region heat comparison.
Fig. 9 illustrates the 2D heat map comparison between the
predicted value and the real value of the region heat in
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Fig. 9. Region heat at 11:00 on August 23, 2018 (2D view).

Fig. 10. Region heat at 19:00 on August 23, 2018 (3D view).

Shenzhen dataset during the morning rush hours of 11:00 on
August 23, 2018. In 2D map, we conduct spatial analysis
among 32 × 32 grids, in which the horizontal and vertical
coordinates are the index number. As depicted in Fig. 10(a),
there are four congregated hot zones marked in green circular.
The darker the color, the higher the congregation degree and
accordingly larger the region heat values in corresponding grid.
Fig. 10(b) and Fig. 10(c) present the results of ConvLSTM
and STGNN, respectively. It can be seen these results are
over-predicting. As depicted in Fig. 10(e) and Fig. 10(d),
StepDeep and ASTGCN cannot fully predict the hot zones

occur during the selected time period. These models with
single structure lack of global consideration, failing to fully
capture the spatial distribution of region heat. MDL and
GWNET obtain relatively better results. Compared with them,
the proposed HierSTNet generates a smoother prediction and
its spatial distribution of region heat is most similar to ground
truth.

Second, we choose 10 × 10 grids near Nanshan Dis-
trict, Shenzhen to conduct spatial analysis in 3D point of
view, where many high-technology enterprises are located in
selected region. In 3D map, Fig. 11(a) presents the ground
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Fig. 11. Prediction of grid (16, 12) in Nanshan District, Shenzhen dataset.

truth at 19:00 on August 23, in which the black rectangu-
lar area denotes heat aggregation center. When the off-duty
hour is approaching, most office employees are leaving work
and the heat is spreading from the office building to the
surrounding area. As such, we can observe the peak arising
in the aggregation center and potential peaks around. From
the 3D visualization of Fig. 11(b), Fig. 11(c) and Fig. 11(d),
ConvLSTM, STGNN and ASTGCN completely predicted the
wrong location of aggregation region. Compared to these
methods, StepDeep behaves slightly better but its predicted
peaks regions are still not so accurate as shown in Fig. 11(e).
As depicted in Fig. 11(g) and Fig. 11(f), GWNET ignores the
potential peaks in upper left and the prediction around peaks
in MDL has a deviation against true values. Compared with
these methods, the shape of aggregation peaks in HierSTNet
best match the real condition since the peak value and those
potential peaks are the closest to the ground truth.

Moreover, we choose a specific grid (16, 12) of Nan-
shan District from Shenzhen dataset. We present the predic-
tion results and true values for a more straightforward loss
comparison. Fig. 11 depicts the comparisons starting from
August 24 for the next two days. Specifically, we observe
there exist several heat changes, i.e., the plunge of heat in
the early morning hours and the rise in the commute and
off-work rush. MDL and ASTGCN cannot properly capture
temporal dependencies, thereby leading to a degraded per-
formance. GWNET performs slightly better than MDL and
ASTGCN.

To comprehensively evaluate our model, we conduct exper-
iments based on the trajectory data from different scenario.
Specifically, we retrieve the trajectory data from the Chang-
sha dataset, i.e., the trajectory data ranging from longi-
tude of (112.95-113.18) and latitude of (28.01-28.22), which
is collected from July to September 2018, Changsha City.
All the dividing and training strategies remain unchanged
and after clustering, 149 node regions were obtained in the

Fig. 12. Prediction of grid (10, 22) in Furong District, Changsha dataset.

Changsha dataset. Fig. 12 shows the predictions of the chosen
grid (10, 22) near Changsha Railway Station from August
24 to August 26. The selected grid in Changsha has similar
trend of region heat change, in which the peak values are a
little higher than that in Shenzhen dataset. In both scenarios,
HierSTNet are strongly accurate in tracing the ground truth
curves, profiting from the design of hierarchical networks to
extract the temporal feature from different perspectives of grid
region and node region.

VI. CONCLUSION

In this paper, we investigate urban region heat via learn-
ing arrive-stay-leave (ASL) behavior of private cars. Specif-
ically, we propose a Hierarchical Spatial-Temporal Network
(HierSTNet) to forecast urban region heat, which contains
two representations, namely, grid region and node region.
For the grid region, the 3DSTCNN is proposed to model
multi-scale properties in temporal dimension of ASL behav-
ior. For the other, multi-head graph attention networks are
utilized to model the periodicity and spatial heterogeneity
among node regions. Benefiting from the design of interaction
decoder layer, we integrate the external factors and aggre-
gate spatial-temporal information across hierarchical struc-
tures. The proposed HierSTNet is evaluated on a real-world
private car trajectory dataset to demonstrate its superiority and
effectiveness.

Notably, the property of function areas in the city directly
affect people’s willingness to travel. In the future, we will
consider a series of transportation factors and strive to collect
sufficient multisource data such as regions of interests (ROIs),
which will provide an important complementary in exploring
the aggregation effect. Besides, we will study its impact on the
distribution of region heat. Moreover, it is promising to mine
the latent spatial relationship between regions under complex
and giant traffic systems.
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