
IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 6, NOVEMBER/DECEMBER 2023 4345

Offloading Dependent Tasks in Edge Computing
With Unknown System-Side Information

Xingxia Dai , Zhu Xiao , Senior Member, IEEE, Hongbo Jiang , Senior Member, IEEE, Ming Lei,
Geyong Min , Member, IEEE, Jiangchuan Liu , Fellow, IEEE, and Schahram Dustdar , Fellow, IEEE

Abstract—We consider the problem of dependent task offloading
in edge computing with unknown system-side information (e.g.,
edge transmission rate and computation resources). In this prob-
lem, tasks have complicated dependency relationships and have
no prior knowledge of system-side information to assist offloading
decision-making. Although existing learning-based approaches can
help to address unknown system-side information, the impact of in-
herent task dependency on such approaches has not been formally
explored. To bridge the gap, we first use a breadth-first-search
(BFS) method to decouple task dependency, and then leverage
the Lyapunov optimization technique to transfer the long-term of-
floading problem to an online optimization problem. Furthermore,
we employ the multi-armed bandit (MAB) theory to develop the
online learning-based dependent task offloading algorithm, called
OL-DTO. The algorithm can address the unknown system-side
information and is augmented with task dependency awareness. We
present a rigorous theoretical analysis to evaluate the performance
of this algorithm in terms of application delay and UD energy con-
sumption. Our extensive experimental results demonstrate that the
OL-DTO algorithm significantly reduces application delay while
satisfying the long-term energy budget constraint of the UD.

Index Terms—Unknown system-side information, task depen-
dency, concurrent-enhanced offloading, learning-based offloading,
multi-armed bandit theory.

Manuscript received 30 January 2023; revised 9 July 2023; accepted 25
September 2023. Date of publication 29 September 2023; date of current version
13 December 2023. This work was supported in part by the National Natural
Science Foundation of China under Grants 62272152, 62372161, U20A20181,
and 62102142, in part by the National Key R&D Program of China under
Grant 2022YFE0137700, in part by Hunan Provincial Natural Science Foun-
dation under Grants 2020JJ4211, 2020JJ5089, and 2022JJ40878, in part by the
Science and Technology Innovation Program of Hunan Province under Grant
2021RC4023, and in part by the Key Research and Development Program of
Hunan Province under Grant 2021WK2001. Recommended for acceptance by
C.A. Ardagna. (Corresponding authors: Zhu Xiao; Hongbo Jiang.)

Xingxia Dai, Zhu Xiao, and Hongbo Jiang are with the College of Com-
puter Science and Electronic Engineering, Hunan University, Changsha, Hu-
nan 410082, China, and also with the Shenzhen Research Institute, Hunan
University, Shenzhen 518055, China (e-mail: xingxdai718@gmail.com; zhx-
iao@hnu.edu.cn; hongbojiang2004@gmail.com).

Ming Lei is with Unicom Digital Technology Company, Ltd., Beijing 100033,
China (e-mail: minglei@chinaunicom.cn).

Geyong Min is with the Department of Computer Science, College of Engi-
neering, Mathematics, and Physical Sciences, University of Exeter, EX4 4QF
Exeter, U.K. (e-mail: G.Min@exeter.ac.uk).

Jiangchuan Liu is with the School of Computing Science, Simon Fraser
University, Burnaby, BC V5A 1S6, Canada, and also with Jiangxing Intelligent
R&D Department Inc., Nanjing 210000, China (e-mail: jcliu@sfu.ca).

Schahram Dustdar is with TU Wien, 1040 Vienna, Austria (e-mail: dust-
dar@infosys.tuwien.ac.at).

Digital Object Identifier 10.1109/TSC.2023.3320674

I. INTRODUCTION

EDGE computing pushes plentiful computation resources
(e.g., CPU, memory, and storage) from the centralized

cloud to the network edge, which enables densely deployed edge
servers to provide computation services for computing-intensive
applications [1], [2], [3], [4], [5]. The applications, such as aug-
mented reality and face recognition [6], [7], can be partitioned
into multiple tasks [8], [9], [10]. On this basis, task offloading
with fine-granularity in edge computing has been extensively
studied [11], [12], [13], [14], [15], [16], [17], [18], where the
tasks are offloaded from the resource-limited user devices (UDs)
to powerful edge servers for low application delay and energy
consumption.

To better reap the benefits of edge computing, the UD makes
offloading decisions based on current edge offloading perfor-
mance, which can be obtained by the system-side information
(e.g., edge transmission rate and computation resources). In
practical edge computing scenarios, however, the system-side
information is generally unknown to UDs [19], [20], [21]. For
example, complicated wireless networks impede the acquisition
and prediction of edge transmission rate [22]; besides, an edge
computing system involves multiple edge service providers, and
the system-side information is usually undisclosed to UDs across
different service providers [23]. Facing the unknown system-
side information, several works [24], [25], [26] implement task
offloading through continuously learning historical observations
of edge offloading performance.

Despite the efforts, the existing learning-based approaches
neglect the impact of inherent dependency on task offloading
and cannot be applied to dependent task offloading directly. Task
dependency refers to logical precedence and data transfer. In
dependent task offloading, a UD makes offloading decisions to
determine which edge servers should be selected for processing
the current tasks, then the outputs from the preceding tasks need
to be transferred to the selected edge servers for triggering the
current tasks [27]. Based on the data issued by Alibaba [28],
more than 75% of tasks exhibit dependency.

However, many prior studies mostly focus on independent
task offloading [29], [30], [31], [32], [33]. Such offloading,
due to unreasonable processing compositor, may be trapped by
unexpected processing delay and large transfer traffic overhead
in practice. Considering that, several works study task offloading
with sequential dependency [34] or concurrent dependency [35].
Since these studies greatly simplified complicated generalized
dependencies, they cannot reflect practical general dependent

1939-1374 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 03,2024 at 09:58:54 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5540-9418
https://orcid.org/0000-0001-5645-160X
https://orcid.org/0000-0001-7372-2539
https://orcid.org/0000-0003-1395-7314
https://orcid.org/0000-0001-6592-1984
https://orcid.org/0000-0001-6872-8821
mailto:xingxdai718@gmail.com
mailto:zhxiao@hnu.edu.cn
mailto:zhxiao@hnu.edu.cn
mailto:hongbojiang2004@gmail.com
mailto:minglei@chinaunicom.cn
mailto:G.Min@exeter.ac.uk
mailto:jcliu@sfu.ca
mailto:dustdar@infosys.tuwien.ac.at
mailto:dustdar@infosys.tuwien.ac.at

4346 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 6, NOVEMBER/DECEMBER 2023

traits. Furthermore, few works use directed acyclic graphs
(DAGs) to construct general task dependency [8], [36], [37].
Unfortunately, these works consider dependent task offloading
under deterministic system-side information, which is hard to
implement in the real world where the system-side information
is difficult to obtain.

To achieve efficient dependent task offloading in edge com-
puting with the unknown system-side information, there remain
three key challenges. First, task dependency causes the require-
ments of the logical precedence and data transfer among tasks,
which highly couples offloading decision-making and leads to
NP-hard dependent task offloading. Second, dependent task
offloading incurs additional transmission energy consumption
for the UD, but the UD’s energy consumption needs to follow
the long-term energy budget constraint. If the UD consumes
massive energy for current task offloading, the remaining energy
for offloading subsequent tasks will be less. Such long-term
local energy constraint restricts the short-term dependent task
offloading decisions. Third, the unknown system-side informa-
tion demands learning-based offloading, while task dependency
incapacitates the existing learning-based works as the works
fail to consider the impact of inherent task dependency on
learning-based offloading.

In this article, we investigate the extremely compelling but
much less studied problem of dependent task offloading in
edge computing with the unknown system-side information.
Our goal is to achieve the minimum application delay under
the long-term energy budget constraints of the UD. To address
the above-mentioned challenges, we first adopt a breadth-first-
search (BFS) method to decouple task dependency. To further
reduce the application delay, we optimize the BFS-based method
to categorize dependent tasks as different start ranks and end
ranks. Tasks in the same start rank have identical logical prece-
dence and can be offloaded concurrently. Then, we leverage a
Lyapunov optimization technique to construct a virtual energy
deficit queue, transferring the long-term dependent task offload-
ing problem to the online optimization problem. On this basis,
we propose a multi-armed bandit (MAB)-based learning algo-
rithm for dependent task offloading. The algorithm continuously
learns previously observed edge offloading performance for each
start rank and maintains the learning efficiency of tasks in the
same end rank. In this way, the algorithm enables to address
the unknown system-side information while emphasizing task
dependency in the learning-based task offloading.

The main contributions of this article are as follows:
� We investigate the dependent task offloading problem with

unknown system-side information. This problem accounts
for generalized task dependencies and unknown prior
knowledge of the system-side information, which is a rep-
resentative offloading scenario in practical edge comput-
ing. Then, we formalize the problem as a decision-making
optimization problem, where dependent tasks make of-
floading decisions to minimize application delay while
staying within the long-term UD’s energy budget.

� We propose a novel online learning-based dependent
task offloading algorithm, called OL-DTO. The algo-
rithm develops a breadth-first-search (BFS) method to

decouple task dependency and then leverages Lyapunov
optimization technique to transform the long-term offload-
ing decision-making problem into an online optimization
problem. In the online problem, the OL-DTO algorithm
utilizes multi-armed bandit (MAB) theory to address un-
known system-side information. With OL-DTO, depen-
dent tasks can be effectively offloaded to edge servers with-
out requiring system-side information, thereby achieving
low application delay under the long-term UD’s energy
constraints.

� We conduct a rigorous theoretical analysis of the OL-DTO
algorithm and presented an upper bound on its perfor-
mance. Furthermore, we conduct extensive experiments
across multiple offloading scenarios using real-world ap-
plications and measurements. The results demonstrate that
the proposed algorithm outperforms other algorithms in
terms of application delay, local energy consumption, and
learning regret, under varying task delays and learning
times.

The remainder of this article is organized as follows. Section II
presents the related works. Section III presents the system mod-
els and problem formulation, followed by the online learning-
based algorithm for dependent task offloading in Section IV. In
Section V, we present the performance evaluation, followed by
the conclusion in Section VI.

II. RELATED WORKS

Task offloading is a central theme in edge computing. Many
prior studies [13], [14], [15], [16], [38], [39], [40], [41], [42],
[43], [44], [45], [46] have considered when/how to offload
computing-intensive tasks from local UDs to powerful edge
servers, with the goal of minimizing the task delay, energy
consumption and so forth. These works generally rely on de-
terministic system-side information to make offloading deci-
sions. However, the information is difficult to obtain due to
complicated wireless networks and multiple service providers
in practical edge computing scenarios.

To address the unknown system-side information, several
works have proposed learning-based approaches [19], [29],
[47], [48], [49], [50], [51], [52]. The learning-based approaches
construct satisfactory offloading strategies through continuous
observations, learning and update. Considering unknown server
processing speed and cellular data rate, the authors in [19] design
a decentralized user-initiated task offloading approach, where
users make offloading decisions based on historical observation
of edge offloading performance to optimize user rewards in
dynamic task placement scenario. In [29], the authors inves-
tigate a deep reinforcement learning method to minimize the
energy consumption under task delay constraints by optimizing
computing resources, power, and subcarrier allocation under an
unknown offloading environment. In [47], the authors develop
a decentralized calibrated contextual bandit learning algorithm.
The algorithm enables users to learn task computational delay
and make offloading decisions without peer-to-peer information
exchange among micro base stations, aiming at minimizing the
long-term average task delay of all users. In [48], the authors

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 03,2024 at 09:58:54 UTC from IEEE Xplore. Restrictions apply.

DAI et al.: OFFLOADING DEPENDENT TASKS IN EDGE COMPUTING WITH UNKNOWN SYSTEM-SIDE INFORMATION 4347

propose the deep reinforcement learning-based algorithm to
cope with a dynamic-channel single-user multiedge-server MEC
system, which achieves a near-optimal offloading solution after
enough learning by jointly optimizing transmission duration and
computation workloads. In [49], the authors take into account
time-varying network dynamics and derive deep reinforcement
learning-based solutions for edge server selection, cooperative
offloading, and handover cost, with the goal of minimizing the
computation task delay cost. The authors in [50] investigate an
auction-based cluster federated learning approach in a mobile
edge computing system, where data owners enable to conduct
model training without sending their raw data to third-party
servers. In this way, data privacy in an edge computing sys-
tem can be greatly enhanced. The authors in [51] study a
reinforcement learning-based task offloading scheme for edge-
enable sensor networks. This scheme utilizes reinforcement
learning to solve task-offloading problems, so as to minimize
latency and energy consumption. The authors in [52] design a
blockchain-based framework for ensuring secure task offloading
in MEC systems, while staying low execution delay and energy
consumption. In the framework, a deep reinforcement learning-
based algorithm is proposed to find out the close-optimal task
offloading decision.

Unfortunately, the learning-based approaches cannot be ap-
plied to dependent task offloading directly as the inherent task
dependency is neglected in the approaches. Task dependency
refers to logical precedence and data transfer among tasks,
which can be divided into three categories, i.e., sequential de-
pendency, concurrent dependency, and general dependency [1].
The former two dependencies as a special case, greatly simplify
the impact of task dependency on offloading and hence are
adopted in many works. For example, the authors in [34], [53]
consider sequential task dependency, where one task is assumed
to have only one preceding task and one subsequent task; and
the authors in [35], [54] consider concurrent task dependency,
where tasks are assumed to have no data transfer and can be
processed simultaneously. Since real-world applications mostly
have complicated general dependency, few works [8], [9], [10],
[36], [37] leverage DAGs to construct the task dependency. The
authors in [8] propose a dependent task offloading framework
for multiple applications in a cloud-edge collaborative system.
In this framework, the terminal user aims to improve the user ex-
perience quality by adaptively offloading computation tasks with
generalized dependency constraints to cloud or edge computing
servers for processing. The authors in [36] construct a DAG for
all current dependent tasks and propose the optimization goal
of minimizing the task deadline violation rate. Based on this
optimization goal, they designed a task scheduling algorithm
that supports multiple priorities. This algorithm determines the
optimal execution order of tasks by introducing multiple task
priority indicators to prioritize task collaboration. The authors
in [37] design a task dependency model by integrating task
offloading decisions and data transmission relationships. Based
on the generalized dependency relationship between tasks, they
propose an optimization problem with task offloading, drone
trajectory, and resource allocation decisions as variables. By de-
coupling the above optimization problem into two sub-problems

Fig. 1. System illustration. A UD makes offloading decisions to determine
which edge servers should be selected for dependent task processing in edge
computing with unknown system-side information.

and solving them separately, low-energy dependent task offload-
ing is achieved.

The authors in [9] consider a dependent task offloading prob-
lem to minimize the overall application execution cost. The au-
thors in [10] propose an energy-efficient dependent computation
offloading problem for the minimum energy consumption. Yet,
the above-mentioned works consider task dependency as a con-
straint in their optimization problems but do not derive a solution
to decouple the dependency. Furthermore, these works rely on
deterministic system-side information to assist the offloading
decision-making and hence are hard to implement in practical
edge computing scenarios where the system-side information is
difficult to obtain.

Different from the existing studies, this work considers a
problem of dependent task offloading in edge computing with
unknown system-side information, and we propose innovative
solutions to the unique problem. To the best of our knowledge,
this problem has not been studied in the existing literature.

III. SYSTEM MODELS AND PROBLEM FORMULATION

We consider an edge computing system that consists of a
set of edge servers M = {1, ...,M} and a UD, as presented
in Fig. 1. The UD operates computing-intensive applications,
and each application can be partitioned into multiple dependent
tasks N = {1, ..., N}. In the edge computing system with the
unknown system-side information, the UD makes offloading
decisions to determine which edge servers should be selected
for processing the tasks, aiming at minimizing the application
delay under the long-term energy budget of the UD. Due to
the heterogeneous nature of edge servers [55], the delay and
energy consumption of the same task vary on different edge
servers. Note that the first task (i.e., task 0) and the last task (i.e.,
task N + 1) are typically processed on the local UD to trigger
the application and receive the computation results [9]. Such
local processing is irrelevant to the offloading decision-making,
and hence we do not consider the impact on task delay and
energy consumpton in this article. Main notations are illustrated
in Table I.

A. Task Dependency Model

Task dependency refers to the logical precedence and data
transfer among tasks, i.e., a task requires the outputs from the

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 03,2024 at 09:58:54 UTC from IEEE Xplore. Restrictions apply.

4348 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 6, NOVEMBER/DECEMBER 2023

TABLE I
MAIN NOTATIONS

preceding tasks, and its output needs to be fed into multiple
subsequent tasks [9], [27]. For example, the “classification”
tasks in a face recognition application rely on the outputs of the
“feature extraction” tasks to complete classification. To illustrate
such task dependency, we introduce a DAG [56], where N
denotes the task set, and (Vi, n) represents the directed edge set.
The directed edge set indicates that taskn ∈ N can be processed
after completing its preceding tasks ∀i ∈ Vi; besides, when task
n and task i are offloaded to different edge servers, the output
of task i needs to be transferred to the edge server selected by
task n. Without loss of generality, we assume that the tasks from
the same application have the dependency, while the tasks from
different applications are independent of each other [10].

B. Delay Model

1) Transmission Delay: It is comprised of transfer delay and
access delay. On the one hand, the outputs of preceding tasks
are transferred to the edge server m that is selected by the
current taskn through edge-to-edge connections (e.g., local-area
network). The transfer incurs the transfer delay of T trf

m,n, which
relies on the hop distance along the shortest communication
path [24]. Note that there is no transfer delay when the same edge
server is selected by the current task and its preceding tasks. On
the other hand, dependent task offloading produces access delay,
which is determined by the task size and wireless transmission
rate. When task n is offloaded from the UD to edge serverm, the
access delay is given by T acc

m,n = bn/rm, where bn indicates the
task size (in bits) and rm denotes transmission rate (in Mbps)
of edge server m. The transmission rate is dependent on the
signal to interference plus noise power ratio (SINR) between the
UD and the selected edge server, rm = Bm log2(1 + SINR),
where Bm represents the bandwidth of edge server m, SINR is
primarily determined by various factors such as the transmission
rate, channel bandwidth, channel gain, transmission power, and
noise power between the UD and edge server m, respectively.

We assume that the processes of the data transfer and ac-
cess are concurrent, then the transmission delay is denoted as
T trans
m,n = max{T trf

m,n, T
acc
m,n}.

2) Processing Delay: After a task has been transmitted to
the selected edge server, the server will process the task with a
specified processing speed. The processing delay is decided by
task computation workload and edge processing speed. Let cn
denote the computation workload (in required CPU cycles) of
task n, and fm denotes the processing speed (in CPU frequency)
of edge server m. Accordingly, the processing delay of task n is
expressed as T pro

m,n = cn/fm.
Combining the transmission delay and processing delay, we

obtain the total delay of task n, which is given by:

T (n) = T trans
m,n + T pro

m,n. (1)

Note that the system-side information, such as the transmission
rate of rm and the processing speed of fm, is unknown to the UD
in dependent task offloading [19]. Thus, the UD is incapable of
obtaining the transmission delay and the processing delay. As a
result, the task delay in (1) is unsolved. Without the delay, the
UD has no prior knowledge of which edge server performs best
(with the minimum task delay). Accordingly, an edge server
with poor offloading performance (i.e., large task delay) may
be selected. To address the issue, we propose to learn the edge
offloading performance (e.g., task delay) to facilitate dependent
task offloading in edge computing with the unknown system-side
information (see details in Section IV).

C. Problem Formulation

Given a set of edge servers and dependent tasks, we denote a
binary variable xn

m ∈ {0, 1} as the offloading decision of task n.
When xn

m = 1, task n is offloaded to edge server m; otherwise,
edge server m is not selected by task n. A feasible offloading
solution needs to satisfy the following constraints.

1) Task Dependency Constraint: Recall the DAG defined in
Section III-A, a task can be processed after its overall preceding
tasks are completed. On this basis, we specify the start time of
each task before making offloading decisions. Denote T start

n as
the start time of task n, requiring

T start
n = max

i∈Vi

{T start
i + T (i)}, n ∈ N . (2)

2) Long-Term Local Energy Budget: When a UD offloads
task n to the selected edge server, it consumes energy for
transmission, denoted as E(n). This energy consumption is
determined by both the transmission power and access delay.
Specifically, when taskn is offloaded from the UD to edge server
m, the transmission energy consumption can be expressed as
E(n) = Pm,nT

acc
m,n, wherePm,n denotes the transmission power

required for offloading task n to edge server m. Constrained by
the UD’s long-term energy budget ofE, the transmission energy
consumption needs to satisfy:∑

n∈N
E(n) ≤ E. (3)

3) Limited Edge Computation Resources: Suppose that task
n consumes cn edge computation resources for processing, the
computation resources Um of edge server m should satisfy:∑

n∈Nm

cn ≤ Um,m ∈ M. (4)

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 03,2024 at 09:58:54 UTC from IEEE Xplore. Restrictions apply.

DAI et al.: OFFLOADING DEPENDENT TASKS IN EDGE COMPUTING WITH UNKNOWN SYSTEM-SIDE INFORMATION 4349

where Nm is the task set selecting edge server m concurrently.
4) Offloading Decision Constraint: To maintain task conti-

nuity [24], each task can only be offloaded to exactly one edge
server for processing. Thus,∑

m∈M
xn
m = 1, n ∈ N . (5)

Under the constraints of (2) through (5), the UD makes task
offloading decisions to determine which edge servers should
be selected for processing the current tasks, aiming at the
minimum application delay. Let xxx = {xn

m, ∀n ∈ N ,m ∈ M}
represent the offloading decisions of overall tasks, and denote
the application delay as T = maxn∈N {T start

n + T (n)}. Due to
the unknown system-side information, the UD can only observe
i.i.d. random application delay [19]. As such, we formulate the
dependent task offloading problem as follows:

P1 : min
xxx

E{T}, (6)

s.t. (2)−(5).

It is non-trivial to solve P1 directly. The reasons are that
i) the offloading decision-making is highly coupled with task
dependency. Such dependent task offloading has been proved
to be NP-hard even in simplified scenarios [56]; ii) the long-
term energy constraint of the UD restricts the short-term task
offloading decisions. iii) the unknown system-side information
demands learning-based offloading, while task dependency hin-
ders continuous learning and thus incapacitates the existing
learning-based algorithms. To tame these challenges, we design
an efficient online learning-based algorithm by jointly consid-
ering task dependency and unknown system-side information
under the long-term energy budget constraint of the UD. In the
following section, we will present our algorithm in detail.

IV. ONLINE LEARNING-BASED ALGORITHM FOR DEPENDENT

TASK OFFLOADING

In this section, we first adopt a BFS method to decouple task
dependency, then we transfer the long-term offloading problem
to an online optimization problem via leveraging the Lyapunov
optimization technique. On this basis, we propose the OL-DTO
algorithm based on the MAB theory. The algorithm enables to
address the unknown system-side information and is augmented
by task dependency awareness. At last, we derive the perfor-
mance results for the proposed algorithm.

A. Decouple Task Dependency

We decouple task dependency based on the DAG. Taking a
real-world Gaussian elimination application [56] as an instance,
its DAG with four matrixes is depicted in Fig. 2(a). Each circle
represents a task, and the directed edges reflect the logical
precedence and the data transfer among tasks (i.e., dependency).
In the DAG, tasks 1 to 7 need to be traversed exactly once
under the task dependency constraints. Note that task 0 and
task 8 are the first and last tasks that are processed on local
UD and we do not account for them. These features enable
the accommodation of breadth-first-search (BFS) algorithm over

Fig. 2. Task dependency.

Fig. 3. Concurrent-enhanced task offloading.

the DAG [54], so that we can retrieve the task offloading order
by recording the search path. In this way, task dependency is
decoupled as a sequential relationship as shown in Fig. 2(b).
Such a relationship is straightforward as one task is assumed
to have only one preceding task and one subsequent task. In the
sequential task offloading, we obtain the GE application’s delay,
i.e., the total delay of all tasks.

To further reduce the application delay, we optimize the BFS
method and propose a concurrent-enhanced dependency decou-
ple algorithm, as presented in Algorithm 1. In the algorithm, we
determine start ranks and end ranks for tasks in the application,
so that we can ascertain at which ranks the tasks can be processed
and need to be completed. To achieve this, we first recognize the
tasks with zero preceding tasks currently as the same start rank
for the guarantee of logical precedence across ranks. The results
are presented in Fig. 3(a). Yet, we observe from Fig. 3(a) that
task 4 can be processed after tasks 1, 2, and 3 are all completed,
while task 4 is independent of tasks 2 and 3 as shown in Fig. 2(a).
Thus, we then need to determine the tasks’ end ranks to further
enhance concurrent task offloading. To this end, we adjust the
rank order for the tasks that have no dependency on the tasks
in their subsequent ranks. Such adjustment does not change the
number of ranks. The corresponding results are presented in
Fig. 3(b). Note that the results indicate the maximum end ranks
as the tasks may be completed before the ranks. Combining
Fig. 3(a) and (b), we summarize the start rank and the maximum
end rank of tasks in the GE application with four matrixes in
Table II.

Aiming to ascertaining the actual end ranks for tasks, we
introduce rank delay as follows. Note that end ranks refers to
the actual end ranks in our work. For a specific rank α ∈ A,
its delay is determined by two aspects. One aspect is the delay
performed by the tasks of which the start ranks and end ranks

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 03,2024 at 09:58:54 UTC from IEEE Xplore. Restrictions apply.

4350 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 6, NOVEMBER/DECEMBER 2023

TABLE II
START AND END RANKS OF TASKS IN THE GE APPLICATION

are both the same as rank α. Thus, the tasks can be completed
in the single rank, and we denote the delay as T one

α . The other
aspect is the delay conducted by the tasks of which the start
ranks are different with rank α while the end ranks are the same
as rank α. In this case, the tasks are processed across multiple
ranks, and we denote the delay as Tmul

α . Furthermore, we define
the remaining ranks (not the start and end ranks) that tasks go
through as the middle ranks of the tasks. For example, rank 2
is the middle rank of task 3 in Table II. If the delay of a task
is smaller than all the ranks’ delay between the start rank and a
middle rank, the middle rank will be replaced by the task’s end
rank. Guided by this, we enable the acquisition of start ranks
and (actual) end ranks for all tasks. Then, we denote the tasks of
which the start ranks, middle ranks and end ranks are rank α as
N sta

α , Nmid
α , and N end

α , respectively. Let αs
n represent the start

rank of task n. Thus, we have

T one
α = max{T (n), ∀n ∈ N sta

α &n ∈ N end
α }, (7)

Tmul
α = max{T (n)−

α−1∑
i=αs

n

T (i), ∀n /∈ N sta
α &n ∈ N end

α }.

(8)

Accordingly, we obtain the delay of rank α as

T (α) = max{T one
α , Tmul

α }. (9)

Tasks make offloading decisions in the start ranks, denoting
xαααm as the offloading decision set of tasks which start ranks are
rank α. Guided by Algorithm 1, we obtain the application delay
that is the total delay of overall ranks, i.e.,T =

∑A
α=1 E{T (α)}.

We decouple P1 as follows:

P2 : min
xααα
m

1

A

A∑
α=1

E{T (α)}, (10)

s.t. (2)−(5).

A major challenge for solving P2 is that the long-term energy
constraint of the UD shown in (3) hinders the derivation of
offloading decisions.

Computational complexity. Finding out the task with zero
preceding task in line 5 incurs O(N) computational complexity.
After adding these tasks to the start rank queue, we need to
update the dependency by deleting the directed edges of the
tasks in the start rank queue. The corresponding computational
complexity of the update is O(Ve), where Ve is the number of
directed edges in the DAG. Additionally, finding out the tasks
that are independent with the overall tasks in the subsequent
start ranks in line 11 incurs O(N2) computational complex-
ity. Then, we need to adjust and update the end rank for the

Algorithm 1: Concurrent-Enhanced Dependency Decouple
Algorithm.

Input: DAG.
Output: Rank queue.
1: Phase 1: Initialization
2: Set a start rank queue as zero.
3: Set an end rank queue as zero.
4: Determine the dependency and the number of preceding

tasks for each task based on the DAG.
5: Phase 2: Start Rank Determination
6: Find out the tasks with zero preceding task.
7: Add the tasks to the start rank queue.
8: Update the task dependency and number of preceding

tasks.
9: Back to line 5 for iteration until each task can be found

in the start rank queue.
10: Phase 3: End Rank Determination
11: Find out the tasks that are independent with the overall

tasks in the subsequent start ranks.
12: Update the end ranks of the tasks by moving the tasks

from their start ranks to the subsequent ranks.
13: Back to line 11 for iteration until the tasks have

dependency with at least one tasks in the subsequent
end ranks.

14: Compare the task delay and rank delay between the
start rank and the middle rank.

15: Replace the middle ranks as the end ranks when the
task delay is smaller than the rank delay.

tasks, which incursO(N) computational complexity. At last, the
comparison between task delay and rank delay incurs O(NA)
computational complexity, where A =| A | is the number of
ranks. Therefore, the computational complexity of Algorithm 1
is O(Ve +N2 +NA).

B. Online Problem Transformation

To address the long-term energy constraint, we leverage the
Lyapunov optimization technique [57] to transfer P2 to an online
optimization problem. To achieve this, we construct a virtual
energy deficit queue, representing a historical measurement of
the exceeded UD’s energy consumption. The energy deficit
queue of rank α is defined as:

Q(α) = max{Q(α− 1) + E(α)− Ē(α), 0}, (11)

where E(α) =
∑

n∈N sta
α

E(n) represents the energy consump-
tion of rank α as tasks are transmitted to edge servers in the start
ranks, Ē(α) = ENsta

α /N is the UD’s energy budget of rank
α, where Nsta

α =| N sta
α | is the number of tasks of which start

ranks are rank α. Additionally, the initial deficit queue Q(0) is
set as zero.

Combining the energy deficit queue with P2, we utilize the
Lyapunov drift-plus-penalty framework to formulate the follow-
ing online dependent task offloading problem:

P3 : min
xααα
m

V T (α) + E(α)Q(α), (12)

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 03,2024 at 09:58:54 UTC from IEEE Xplore. Restrictions apply.

DAI et al.: OFFLOADING DEPENDENT TASKS IN EDGE COMPUTING WITH UNKNOWN SYSTEM-SIDE INFORMATION 4351

Algorithm 2: Online Transformation Algorithm.

s.t. (2), (4), (5),

where V is a positive control parameter to balance the applica-
tion delay and local energy consumption, and Q(α) guides the
real-time local energy consumption. A larger deficit queueQ(α)
indicates less remaining local energy, the UD then intends to
reduce its energy consumption. By this means, an online energy
adjustment can be realized in P3. For ease of exposition, we
define Φ(α) � V T (α) + E(α)Q(α).

An online problem transformation algorithm is presented in
Algorithm 2, which transfers the long-term offloading problem
P2 to an online optimization problem P3. However, we empha-
size that even with the proposed Algorithm 2, solving P3 is still
not straightforward as the system-side information is unknown,
making it difficult to acquire T (α) and energy consumption
E(α) for different offloading decisions. Therefore, we need to
explore learning-based solutions to develop an online algorithm
that can efficiently solve this problem. In the next subsection,
we will discuss this approach in more detail.

C. Learning-Based Solutions

In this subsection, we propose a learning-based solution to
address the unknown system-side information. To achieve this,
we formulate P3 as an MAB problem [58], where a UD acts
as the “gambler,” and edge servers perform as “arms.” The UD
makes offloading decisions based on the historical observations
of edge offloading performance. In such offloading, the UD
selects either a new edge server (i.e., exploration) or the optimal
edge server up to now (i.e., exploitation) for processing subse-
quent tasks. It is crucial for learning-based algorithms to achieve
the balance between exploration and exploitation. The reasons
are that excessive exploration slows down the convergence and
causes degraded offloading performance, while exaggerated ex-
ploitation inevitably abandons potential better edge servers and
is easily trapped by poor offloading decisions.

Although the existing MAB algorithms (e.g., UCB [58])
achieve well-balanced exploration and exploitation through con-
tinuous learning, the algorithms cannot be directly applied to
dependent task offloading. Recall Section IV-A, where depen-
dent tasks are categorized into different ranks. On the one

hand, tasks in the same start rank are offloaded concurrently
and cannot learn the edge offloading performance from each
other’s offloading. This hence hampers continuous learning
for tasks in learning-based algorithms. On the other hand, if
we implement a learning-based algorithm for each start rank,
continuous learning can be satisfied but the learning efficiency
will be greatly impaired. This is because the start rank cannot
reflect the end ranks of tasks, impeding the update of edge
offloading performance in time. Despite taking end ranks into
account, the UD has to randomly select a task in the end rank
for the update, while the update neglects the effects of most
tasks’ offloading in the same end rank on the learning efficiency.
Furthermore, when tasks are offloaded to different edge servers,
the preceding tasks’ outputs will be transferred between the
neighboring ranks. Large transfer data adversely impacts the
application delay. In this case, the learning-based algorithm
demands exploitation rather than exploration to speed up the al-
gorithm’s convergence. Since the existing MAB algorithms fail
to properly tackle the above-mentioned issues, the exploration-
exploitation problem will be exacerbated in dependent task
offloading.

Motivated by the limitations of the existing algorithms, we
propose the OL-DTO algorithm, as presented in Algorithm 3.
The algorithm enables to address the unknown system-side
information and is augmented by task dependency awareness.
Specifically, tasks are offloaded to the edge servers based on the
historical edge offloading performance observations of start rank
α, the edge offloading performance in rank α is then updated ac-
cording to the offloading decisions of overall tasks of which the
end rank is rankα. In this way, the OL-DTO algorithm maintains
continuous learning for each start rank while emphasizing the
learning efficiency of tasks in the same end rank. Moreover,
we introduce a dependency factor into the algorithm to avoid
unnecessary exploration. Overall, the OL-DTO algorithm is
extremely different from the existing algorithms and is capable
of dependent task offloading.

The OL-DTO algorithm consists of two phases, i.e., the
initialization phase (lines 1−3) and the learning while offloading
phase (lines 4−22). In the initialization phase, we set the initial
task delay, energy consumption, and energy deficit queue as zero.
Besides, we denote Kα

m as the selected times of edge server m
up to rank α and define Φ̄α

m =
∑i=α

i=1 Φ(α)/Kα
m. Both Kα

m and
Φ̄α

m are defaulted as zero when ‘learning while offloading’ is
not implemented. In the ‘learning while offloading’ phase, we
first decouple task dependency through Algorithm 1. Then, we
transfer the long-term offloading problem to the online optimiza-
tion problem via Algorithm 2. Following that, the UD makes
offloading decisions for dependent tasks based on the previously
observed edge offloading performance. Let ξnα represent the
selected edge server for processing task n in start rank α. Each
edge server will be selected at least once to observe its offload-
ing performance (i.e., lines 7−10). Note that only noisy edge
offloading performance can be observed due to the complicated
wireless environment and varying computation workloads [19],
[22]. For this reason, we introduce an index function to estimate
the edge offloading performance after each edge server has been
selected once. Given task n in start rank α, the index function

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 03,2024 at 09:58:54 UTC from IEEE Xplore. Restrictions apply.

4352 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 6, NOVEMBER/DECEMBER 2023

Algorithm 3: OL-DTO Algorithm.

of edge server m is presented as:

Ψn
m = Φ̄α−1

m −
√

β(1− õn) lnα

(1− δm)Kα−1
m

, (13)

where parameter β is used to adjust the weight of exploration.
The dependency factor of õn ∈ [0, 1] is the normalized trans-
ferred data of task n. A larger dependency factor facilitates ex-
ploitation to avoid large transfer delay. Additionally, we denote
δm ∈ (0, 1) as the observation variance of edge server m, which
can be reasonably inferred based on historical measurements
and experimental results [26], [59]. A larger variance indicates
larger offloading uncertainties and thus needs more exploration.
We assume that the variance is no less than the dependency factor
as the variance affects both the application delay and the local
energy consumption.

Accordingly, task n in start rank α is offloaded to edge server
ξnα based on the index-based minimum value research:

ξnα = arg min
m∈M

Ψn
m. (14)

When overall tasks in start rank α are offloaded to the selected
edge servers, we update Φ̄α

m based on the tasks of which the end
ranks are α:

Φ̄α
m =

∑
n∈N end

α

Φ̄α−1
m Kα−1

m +Φn
m

Kα−1
m + I{ξnα = m} ,m = 1, ...,M, (15)

where I{x} is an indicator function. When event x is true,
I{x} = 1; otherwise, I{x} = 0. Recall the task offloading deci-
sion of xn

m in Section III-C, Φn
m = V T (xn

m) + E(xn
m)Q(xn

m).
Correspondingly, we update the selected times of edge server m
up to rank α as follows:

Kα
m = Kα−1

m +
∑

n∈N end
α

I{ξnα = m},m = 1, ...,M. (16)

Note that the OL-DTO algorithm is augmented by task de-
pendency awareness. Specifically, guided by the tasks’ start
ranks and end ranks, it maintains continuous learning for each
start rank while emphasizing the learning efficiency of tasks in
the same end rank; besides, the dependency factor speeds up
the algorithm’s convergence. Thus, the algorithm achieves the
balance between exploration and exploitation in learning-based
dependent task offloading.

Computational complexity. Line 14 calculates the index value
for edge servers, the computational complexity is O(M). Line
15 shows a minimum value-seeking problem, occupyingO(M).
The update behaviors, such as line 18 and 19, have a computa-
tional complexity O(1). Therefore, we conclude that the com-
putational complexity of Algorithm 3 is O(M) for processing
a single task. Based on this, we obtain the total computational
complexity is O(NM).

D. Performance Analysis

In this subsection, we analyze the performance of OL-DTO
algorithm on application delay and local energy consumption.

We first derive the following theorem to illustrate the perfor-
mance gap of Algorithm 1.

Theorem 1. Let xαααdd be the concurrent-enhanced dependency-
decoupled offloading decisions of tasks in rank α, which is
performed by Algorithm 1. We obtain:

1

A

A∑
α=1

E{T (xαααdd)} ≤ T opt
p1

+Aε, (17)

where T opt
p1

denotes the optimal task delay of P1, and ε is the
maximum delay gap among tasks in a single end rank.

Proof. Algorithm 1 decouples task dependency by determin-
ing the tasks’ start ranks and end ranks. Specifically, the tasks
are transmitted to edge servers in the start rank and need to be
completed in the end rank. Guided by this, the application delay
can be presented by the sum of end ranks’ delay. For a specific
end rank, the delay is the maximum delay of tasks in the end
rank. Since the tasks in the end rank may not be completed
simultaneously, we denote ε as the maximum delay gap among
the tasks for a single end rank. Thus, we acquire the delay gap
for A ranks between P1 and P2 is Aε.

Furthermore, the tasks are transmitted to edge servers in start
ranks and generate local transmission energy consumption. For
a specific start rank, the energy consumption is the sum energy
consumption of tasks in the start rank, which is irrelevant to the
rank partition. Therefore, there is no energy consumption gap
between P1 and P2.

We then analyze learning regret. Denote the learning regret
of edge server m as θm = νm − ν∗, where νm = E{Φn

m} and

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 03,2024 at 09:58:54 UTC from IEEE Xplore. Restrictions apply.

DAI et al.: OFFLOADING DEPENDENT TASKS IN EDGE COMPUTING WITH UNKNOWN SYSTEM-SIDE INFORMATION 4353

ν∗ = min{νm, ∀m ∈ M}. As such, the total learning regret for
A ranks is expressed as:

Θ =

M∑
m=1

KA
mθm, (18)

of which the upper bound is presented in the following theorems.
Theorem 2. The upper bound of the learning regret performed

by the OL-DTO algorithm is:

Θ ≤
M∑

m=1

(
8 lnA

θm
+ θm +

θm
3
π2

)
. (19)

Proof. Based on the analysis in [58], we derive the learning
regret of the OL-DTO Algorithm by bounding KA

m. To this end,
we define that each edge server has been selected once after Mr

ranks. Suppose τ is a positive integer, we obtain

KA
m = 1 +

A∑
α=Mr

xαααm ≤ τ +

A∑
α=Mr

{xαααm,Kα−1
m ≥ τ}

≤ τ +
A∑

α=Mr

{
Φ̄Kα−1∗∗ −

√
β(1− õn) ln (α− 1)

(1− δm)Kα−1∗

≥ Φ̄Kα−1
m

m −
√

β(1− õn) ln (α− 1)

(1− δm)Kα−1
m

,Kα−1
m ≥ τ

}

≤ τ +

A∑
α=Mr

{
max
0<s<α

Φ̄s
∗ −

√
β(1− õn) ln (α− 1)

(1− δm)s

≥ min
τ≤sm≤α

Φ̄sm
m −

√
β(1− õn) ln (α− 1)

(1− δm)sm

}

≤ τ +

∞∑
α=1

α−1∑
s=1

α−1∑
sm=τ

{
Φ̄s

∗ −
√

β(1− õn) lnα

(1− δm)s

≥ Φ̄sm
m −

√
β(1− õn) lnα

(1− δm)sm

}
. (20)

When Φ̄s
∗ −

√
β(1−õn) lnα
(1−δm)s ≥ Φ̄sm

m −
√

β(1−õn) lnα
(1−δm)sm

is satisfied,
at least one of the following inequalities must hold [58]:

Φ̄s
∗ ≥ ν∗ +

√
β(1− õn) lnα

(1− δm)s
, (21)

Φ̄sm
m ≤ νm −

√
β(1− õn) lnα

(1− δm)sm
, (22)

ν∗ > νm − 2

√
β(1− õn) lnα

(1− δm)sm
. (23)

On this basis, we investigate the rationality of In (21) through
(23). From (23), we derive that sm < 4β(1−õn) lnα

(1−δm)(θm)2 . Additionally,
we noticed that τ ≤ sm < αbased on the definition of (20). If we
arbitrarily give ∀τ = � 4β(1−õn) lnα

(1−δm)(θm)2 	, then sm ≥ 4β(1−õn) lnα
(1−δm)(θm)2 .

Clearly, the conclusion contradicts the former one from (23). As
such, we recognize that the (23) is illegal.

Next, we analysis the expressions (21) and (22) based on
Chernoff-Hoeffding bound.

P

{
Φ̄s

∗ ≥ ν∗ +

√
β(1− õn) lnα

(1− δm)s

}
≤ α−β2(1−̃on

1−δm
)2 . (24)

P

{
Φ̄sm

m ≤ νm −
√

β(1− õn) lnα

(1− δm)sm

}
≤ α−β2(1−̃on

1−δm
)2 . (25)

Given β = 2, based on the above analysis, we obtain:

E(KA
m) ≤ � 8(1− õn) lnA

(1− δm)(θm)2
	+

∞∑
α=1

α−1∑
s=1

α−1∑
sm=τ

2α−4(1−̃on
1−δm

)2 .

≤ 8(1− õn) lnA

(1− δm)(θm)2
+ 1 +

∞∑
α=1

α∑
s=1

α∑
sm=1

2α−4

≤ 8 lnA

(θm)2
+ 1 +

π2

3
. (26)

Above all, we obtain the upper bound of the learning regret,
which is denoted as follows:

Θ ≤
M∑

m=1

(
8 lnA

θm
+ θm +

θm
3
π2

)
. (27)

Based on the bound, we further analyze the performance of
the OL-DTO algorithm on the application delay and local energy
consumption under the Lyapunov framework.

Theorem 3. Let xαααol be online learning-based offloading de-
cisions of tasks in rank α, which is performed by Algorithm 3.
Given a positive control parameter V , we obtain:

1

A

A∑
α=1

E{T (xαααol)} ≤ T opt +
1

V

(
Q+

Θ

A
+ ε

)
, (28)

1

A

A∑
α=1

E{Q(xαααol)} ≤ 1

η

(
V (Tmax

sys − T opt) +Q+
Θ

A

)
,

(29)

where T opt = 1
A

∑A
α=1 E{T (xααα∗)} denotes the delay under the

optimal solution of xααα∗ to P2. However, the optimal solution
is hard to obtain in practical edge computing since it relies on
the deterministic system-side information and long-term UD’s
energy consumption. Additionally, Q = 1

2 (E
max − Ē(α))2,

Emax and Tmax
sys are the maximum local energy consumption

and delay that tasks in a rank can tolerate, respectively.
Proof. We introduce a quadratic Lyapunov function to mea-

sure the “size” of an energy deficit queue [57], which is defined
asL(Q(α)) � 1

2Q
2(α). A larger function reflects less remaining

UD’s energy for subsequent ranks. Then, we introduce a one-slot

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 03,2024 at 09:58:54 UTC from IEEE Xplore. Restrictions apply.

4354 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 6, NOVEMBER/DECEMBER 2023

conditional Lyapunov drift as

Δ(Q(α)) � E{L(Q(α+ 1))− L(Q(α))}

≤ E{1
2
Q2(α+ 1)− 1

2
Q2(α)}

≤ E{Q(α)(E(α)− Ē(α))}+Q, (30)

Based on Theorem 4.5 in [57], we present the two lemmas:
Lemma 1. Give an arbitrary positive parameter λ, there is a

stationary and randomized offloading decision set xαααΠ for P2,

E{T (xαααΠ)} ≤ T opt + λ, (31)

E{E(xαααΠ)− Ē(xαααΠ)} ≤ λ. (32)

Lemma 2. Exist a positive parameter η, there is a offloading
decision set xαααγ for P2 that satisfies the following expressions:

E{T (xαααγ)} = χ(η), (33)

E{E(xαααγ)− Ē(xαααγ)} ≤ −η. (34)

Based on Lemma 1, we derive the following inequalities:

Δ(Q(xαααol)) + V E{T (xαααol)} ≤ V (T opt + λ) +Q+Θα + ε,
(35)

where Θα is the learning regret of rank α. Then, we obtain the
optimality gap on the application delay by summing (35) overall
ranks, dividing V A on each side, and letting λ go to zero. We
have

1

A

A∑
α=1

E{T (xαααol)} ≤ T opt +
1

V

(
Q+

Θ

A
+ ε

)
. (36)

Following this, we bound the long-term energy deficit queue
of the UD. Based on Lemma 2, we derive:

Δ(Q(xαααol)) + V E{T (xαααol)} ≤ V χ(η)− ηQ(xαααol) +Q+Θα.
(37)

We sum the above (37) over α ∈ {1, ..., A} and divides Aη
on each side. We obtain

1

A

A∑
α=1

E{Q(xαααol)} ≤ 1

η

(
V (Tmax

sys − T opt) +Q+
Θ

A

)
.

(38)
From Theorem 3, we find that an [O(1/V), O(V)] trade-off

exists between the application delay and the local energy con-
sumption. When V tends to ∞, the minimum application delay
can be achieved at the price of a large UD’s energy violation.
By rationally adjusting the control parameter V , the OL-DTO
algorithm can realize the well-balanced application delay and
local energy consumption.

V. PERFORMANCE EVALUATION

The simulation experiments are run on Dev-C++ 5.11 and
Matlab R2014a hosted by a PC with an Intel i7 2.5 GHz
CPU, and 16 GB RAM. We evaluate the performance of our
proposed algorithm using real-world applications (from [56])
and real measurements (from [60]) under varying task number,
DAG structures, online control parameters, and online learning
factors.

TABLE III
PARAMETERS SETTING

A. Evaluation Setup

We consider an MEC network consisting of 10 edge servers,
with several UDs generating dependent tasks, and the number of
tasksn varies between 30 and 220 [6]. We use the GE application
and Fast Fourier Transform (FFT) application to generate the
real-world DAG structures [56]. Based on real measurements
in [60], the task size of bn is distributed in [500, 1500] Kb,
and the required CPU cycles of cn are drawn from [0.5, 1.5]
GHz; the edge processing speed of fm is distributed in [4, 8]
GHz, and the data transmission rate of rm is drawn from [9,
11] Mbps in 4G networks. Note that fm and rm are not prior
knowledge for UDs in edge computing with unknown system-
side information. A UD offloads its tasks to edge servers with
100 mW transmission power. Each task consumes un ∈ [0.5, 1]
computation resources for processing, and edge server m has
Um ∈ [2, 5] computation resources [19]. The transfer delay is
in (50, 100) ms. Additionally, we assume that the observation
variance of an edge server is distributed in [0.2, 0.3], and the
dependency factor is set in [0.1, 0.2]. The key parameters used
in the simulations are listed in Table III.

We further compare the performance of our proposed OL-
DTO algorithm with the following baselines:
� Local algorithm: Overall tasks are processed on the

resource-limited UD sequentially. The parameters (e.g.,
local processing capabilities) are set based on [9].

� Sequential algorithm: It is proposed in [26], where tasks are
assumed to have a sequential relationship and are offloaded
successively in the learning-based algorithm.

� Energy-myopic algorithm: A hard single-rank energy con-
straint is imposed for dependent task offloading, rather
than following the long-term energy budget constraint of
the UD. The Energy-myopic algorithm is widely used in
literature such as [61], [62] to perform as a baseline.

� UCB-D algorithm: It randomly chooses a task and updates
the rank’s edge offloading performance based on the se-
lected task’s offloading. The UCB-D algorithm formulates
the offloading decision-making problem as the index-based
minimum value research, and the index function is defined
as Φ̄α−1

m −√
β lnα/Kα−1

m [58].
� Optimal policy: It is performed by an omniscient oracle

with the deterministic system-side information and long-
term energy consumption [59]. The policy serves as an
ideal performance benchmark for our proposed algorithm.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 03,2024 at 09:58:54 UTC from IEEE Xplore. Restrictions apply.

DAI et al.: OFFLOADING DEPENDENT TASKS IN EDGE COMPUTING WITH UNKNOWN SYSTEM-SIDE INFORMATION 4355

Fig. 4. Application delay under the (a) GE and (b) FFT.

Fig. 5. Local energy consumption under the (a) GE and (b) FFT.

B. Performance of Dependent Task Offloading

Fig. 4 depicts the application delay under the two DAG
structures, i.e., GE and FFT. Compared with GE, FFT has fewer
ranks for the same number of tasks (see [56] for more details).
Thus, more tasks in FFT can be processed concurrently, and
the application delay of FFT is smaller than that of GE. For
example, when there are 100 tasks, the application delay of
GE is 4.588, 6.639, 5.289, and 4.212 seconds performed by
the OL-DTO, Energy-myopic, UCB-D, and Optimal algorithms,
respectively; while the application delay of FFT is 3.931 4.866,
4.481, 3.421 seconds under the OL-DTO, Energy-myopic, UCB-
D, and Optimal algorithms, respectively. Besides, for 100 tasks,
it can be found that the proposed OL-DTO algorithm decreases
the application delay in GE by 96.71%, 80.76%, 30.89%, and
13.26% compared with the Local, Sequential, Energy-myopic,
and UCB-D algorithms, respectively. Fig. 5 depicts the local
energy consumption under the DAG structures of GE and FFT.
Particularly, when there are 100 tasks for the UCB-D algorithm,
its energy consumption in FFT is increased by 4.14% compared
to that in GE; while 0.74% under the Energy-myopic algorithm.
The reason is that the UCB-D algorithm has no dependency
awareness and demands more tasks to explore better edge
servers, while the Energy-myopic algorithm keeps low energy
consumption at the price of large application delay. Additionally,
tasks are processed sequentially under the Local and Sequential
algorithms, so that different DAG structures have no impact on

Fig. 6. Application delay and energy consumption.

Fig. 7. Application delay and learning regret of four algorithms.

their processing. The Optimal algorithm achieves low applica-
tion delay and energy consumption, but the algorithm is hard to
implement in the real world.

Fig. 6 presents the application delay and local energy con-
sumption when the UD operates both GE and FFT applications.
Here, the task number changes from 40 to 220. As shown in
Fig. 6, the OL-DTO algorithm achieves low application delay
and energy consumption. For example, with 200 tasks, the
OL-DTO algorithm reduces energy consumption by 97.79%,
86.71%, 26.50%, and 6.02% compared with the Local, Sequen-
tial, Energy-myopic, and UCB-D algorithms, respectively.

C. The Comparison of Learning-based Algorithms

Fig. 7 illustrates the application delay and learning regret of
the different learning-based algorithms. With the task number
increasing, all algorithms have increasing application delay
and learning regret. For the Sequential algorithm, its learning
times are equal to the task number, facilitating the algorithm’s
convergence; but the sequential offloading produces large appli-
cation delay in dependent task offloading. The Energy-myopic
algorithm follows the restricted single-rank energy constraint
and causes prolonged application delay. The UCB-D algorithm
is incapable of task dependency awareness and hence demands
more learning times to realize well-balanced exploration and
exploitation. It can be found that, when there are 100 tasks, the
OL-DTO algorithm decreases the application delay by about
34.10%, 16.92% and 4.07% compared with the Sequential,
Energy-myopic, and UCB-D algorithms, respectively; mean-
while the OL-DTO algorithm reduces the learning regret by

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 03,2024 at 09:58:54 UTC from IEEE Xplore. Restrictions apply.

4356 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 6, NOVEMBER/DECEMBER 2023

Fig. 8. Impact of energy queue.

Fig. 9. Impact of parameter V .

about 82.31% and 82.64% compared with the Energy-myopic
and UCB-D algorithms, respectively.

D. The Impact of Different Parameters

1) Energy Deficit Queue: Fig. 8 depicts the impact of the
energy deficit queue on the average energy consumption. A
larger queue reflects more local energy violations. From the
6th to the 12th ranks, the UD consumes substantial amounts
of energy and enlarges the energy deficit queue. At the 14th
rank, the deficit queue adds up to 1.379 J. Guided by the queue,
the UD reduces energy consumption in the following ranks. In
this way, the energy deficit queue realizes online adjustments to
UD’s energy consumption, so that the long-term energy budget
can be guaranteed in dependent task offloading.

2) The Parameter V : Fig. 9 displays the average energy
deficit and application delay of the OL-DTO algorithm under
different values ofV . The results show that increasingV leads to
a reduction in application delay but an increase in energy deficit.
The control parameter V plays a crucial role in the Lyapunov
drift-plus-penalty framework by weighting the application de-
lay, which transforms the long-term optimization problem P2
into an online optimization problem P3. A higher value of
V indicates that the weighted sum of application delay and
control parameter V carries more weight in P3, leading to lower
application delay. Conversely, a lower value of V means that
energy consumption holds a higher proportion in P3, resulting
in less UD’s energy consumption but more application delay.
The simulation results of average application latency and energy
deficiency queue under different control parameter V align with
Theorem 3.

3) The Parameter β: Fig. 10 illustrates the impact of β on
application delay and learning regret. The parameter β is a
weighted factor of exploration in the online learning optimiza-
tion problem. A higher value of β is beneficial in avoiding
local optima but may slow down the offloading convergence.

Fig. 10. Impact of parameter β on the application delay and learning regret.

Conversely, a lower value of β leads to less exploration, which
can result in quick convergence but may overlook better edge
servers and lead to poor offloading decisions. Therefore, it is
crucial to strike a balance between exploration and exploitation
in learning-based algorithms. According to the simulation re-
sults, we can find that the OL-DTO algorithm tends to exploit
the optimal edge server without necessary exploration when
β = 0. This leads to higher application delay and learning regret.
Therefore, β is generally set as a positive value to explore
possible better edge servers. However, excessive exploration can
slow down the algorithm’s convergence and impairs offloading
efficiency. For example, β = 2× 10−2 produces more applica-
tion delay and learning regret than those of β = 2× 10−5. In our
simulation, we find that small explorations facilitate offloading
decision-making solutions.

VI. CONCLUSION

In this article, we have studied dependent task offloading
in edge computing with the unknown system-side information.
We have proposed an effective online learning-based algorithm
for dependent task offloading, which enables to address the
unknown system-side information and is augmented by task
dependency awareness. We have derived rigorous theoretical
analysis to demonstrate the algorithm’s performance. Extensive
experimental results demonstrate that the proposed algorithm
can significantly reduce application delay while satisfying the
long-term UD’s energy constraint. There are a few limitations
that will be studied in our future work. First, we consider the
impact of offloading decisions on the UD’s energy consumption,
while neglecting the effect of UD’s transmission power. In our
future work, we plan to explore the joint impact of offloading
decisions and transmission energy consumption, and design
energy adjustment schemes based on task offloading decisions
to further reduce the UD’s energy consumption under long-term
energy constraints. Second, we assume that the UD’s location is
quasi-static and ignores the impact of mobility on task offload-
ing. In our future work, we intend to incorporate the impact of
a UD’s mobility into the optimization problem and extend our
research to mobile scenarios.

REFERENCES

[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile
edge computing: The communication perspective,” IEEE Commun. Surv.
Tut., vol. 19, no. 4, pp. 2322–2358, Fourth Quarter 2017.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 03,2024 at 09:58:54 UTC from IEEE Xplore. Restrictions apply.

DAI et al.: OFFLOADING DEPENDENT TASKS IN EDGE COMPUTING WITH UNKNOWN SYSTEM-SIDE INFORMATION 4357

[2] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas, “Joint
service placement and request routing in multi-cell mobile edge computing
networks,” in Proc. IEEE Conf. Comput. Commun., 2019, pp. 10–18.

[3] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading for
mobile edge computing in dense networks,” in Proc. IEEE Conf. Comput.
Commun., 2018, pp. 207–215.

[4] Z. Hu et al., “An efficient online computation offloading approach for
large-scale mobile edge computing via deep reinforcement learning,” IEEE
Trans. Services Comput., vol. 15, no. 2, pp. 669–683, Mar./Apr. 2022.

[5] S. Ghanavati, J. Abawajy, and D. Izadi, “An energy aware task schedul-
ing model using ant-mating optimization in fog computing environ-
ment,” IEEE Trans. Services Comput., vol. 15, no. 4, pp. 2007–2017,
Jul./Aug. 2022.

[6] G. Zhao, H. Xu, Y. Zhao, C. Qiao, and L. Huang, “Offloading dependent
tasks in mobile edge computing with service caching,” in Proc. IEEE Conf.
Comput. Commun., 2020, pp. 1997–2006.

[7] L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object detection for
mobile augmented reality,” in Proc. 25th Annu. Int. Conf. Mobile Comput.
Netw., New York, NY, USA, 2019, doi: 10.1145/3300061.3300116.

[8] J. Liu, J. Ren, Y. Zhang, X. Peng, Y. Zhang, and Y. Yang, “Efficient
dependent task offloading for multiple applications in MEC-cloud system,”
IEEE Trans. Mobile Comput., vol. 22, no. 4, pp. 2147–2162, Apr. 2023.

[9] S. Sundar and B. Liang, “Offloading dependent tasks with communication
delay and deadline constraint,” in Proc. IEEE Conf. Comput. Commun.,
2018, pp. 37–45.

[10] Y. Geng, Y. Yang, and G. Cao, “Energy-efficient computation offloading
for multicore-based mobile devices,” in Proc. IEEE Conf. Comput. Com-
mun., 2018, pp. 46–54.

[11] M. Tang and V. W. Wong, “Deep reinforcement learning for task offloading
in mobile edge computing systems,” IEEE Trans. Mobile Comput., vol. 21,
no. 6, pp. 1985–1997, Jun. 2022.

[12] H. Wang and J. Xie, “User preference based energy-aware mobile AR
system with edge computing,” in Proc. IEEE Conf. Comput. Commun.,
2020, pp. 1379–1388.

[13] Q. Li, S. Wang, A. Zhou, X. Ma, F. Yang, and A. X. Liu, “QoS driven task
offloading with statistical guarantee in mobile edge computing,” IEEE
Trans. Mobile Comput., vol. 21, no. 1, pp. 278–290, Jan. 2022.

[14] K. Guo and T. Q. S. Quek, “On the asynchrony of computation offloading
in multi-user MEC systems,” IEEE Trans. Commun., vol. 68, no. 12,
pp. 7746–7761, Dec. 2020.

[15] S. Tong, Y. Liu, J. Mišić, X. Chang, Z. Zhang, and C. Wang, “Joint task
offloading and resource allocation for fog-based intelligent transportation
systems: A UAV-enabled multi-hop collaboration paradigm,” IEEE Trans.
Intell. Transp. Syst., to be published, doi: 10.1109/TITS.2022.3163804.

[16] F. Wu, S. Leng, S. Maharjan, X. Huang, and Y. Zhang, “Joint power control
and computation offloading for energy-efficient mobile edge networks,”
IEEE Trans. Wireless Commun., vol. 21, no. 6, pp. 4522–4534, Jun. 2022.

[17] Q. Luo, C. Li, T. H. Luan, and W. Shi, “Minimizing the delay and cost
of computation offloading for vehicular edge computing,” IEEE Trans.
Services Comput., vol. 15, no. 5, pp. 2897–2909, May 2022.

[18] Y. Du, J. Li, L. Shi, T. Liu, F. Shu, and Z. Han, “Two-tier matching game
in small cell networks for mobile edge computing,” IEEE Trans. Services
Comput., vol. 15, no. 1, pp. 254–265, Jan./Feb. 2022.

[19] X. Wang, J. Ye, and J. C. Lui, “Decentralized task offloading in edge
computing: A multi-user multi-armed bandit approach,” in Proc. IEEE
Conf. Comput. Commun., 2022, pp. 1199–1208.

[20] H. Wang, K. Wu, J. Wang, and G. Tang, “Rldish: Edge-assisted QoE
optimization of HTTP live streaming with reinforcement learning,” in
Proc. IEEE Conf. Comput. Commun., 2020, pp. 706–715.

[21] L. Chen and J. Xu, “Task replication for vehicular cloud: Contextual
combinatorial bandit with delayed feedback,” in Proc. IEEE Conf. Comput.
Commun., 2019, pp. 748–756.

[22] Y. Sun et al., “Adaptive learning-based task offloading for vehicular edge
computing systems,” IEEE Trans. Veh. Technol., vol. 68, no. 4, pp. 3061–
3074, Apr. 2019.

[23] J. Ren et al., “An efficient two-layer task offloading scheme for MEC
system with multiple services providers,” in Proc. IEEE Conf. Comput.
Commun., 2022, pp. 1519–1528.

[24] T. Ouyang, R. Li, X. Chen, Z. Zhou, and X. Tang, “Adaptive user-managed
service placement for mobile edge computing: An online learning ap-
proach,” in Proc. IEEE Conf. Comput. Commun., 2019, pp. 1468–1476.

[25] Z. Zhou et al., “Learning-based URLLC-aware task offloading for internet
of health things,” IEEE J. Sel. Areas Commun., vol. 39, no. 2, pp. 396–410,
Feb. 2021.

[26] Y. Sun, S. Zhou, and J. Xu, “EMM: Energy-aware mobility management
for mobile edge computing in ultra dense networks,” IEEE J. Sel. Areas
Commun., vol. 35, no. 11, pp. 2637–2646, Nov. 2017.

[27] C. Hu and B. Li, “Distributed inference with deep learning models across
heterogeneous edge devices,” in Proc. IEEE Conf. Comput. Commun.,
2022, pp. 330–339.

[28] Alibaba trace, Available:, 2019. [Online]. Available: https://github.com/
alibaba/clusterdata

[29] L. Tan, Z. Kuang, L. Zhao, and A. Liu, “Energy-efficient joint task
offloading and resource allocation in OFDMA-based collaborative edge
computing,” IEEE Trans. Wireless Commun., vol. 21, no. 3, pp. 1960–1972,
Mar. 2022.

[30] Z. Nan, S. Zhou, Y. Jia, and Z. Niu, “Joint task offloading
and resource allocation for vehicular edge computing with result
feedback delay,” IEEE Trans. Wireless Commun., to be published,
doi: 10.1109/TWC.2023.3244391.

[31] J. Zhang, B. Gong, M. Waqas, S. Tu, and Z. Han, “A hybrid many-objective
optimization algorithm for task offloading and resource allocation in multi-
server mobile edge computing networks,” IEEE Trans. Services Comput.,
to be published, doi: 10.1109/TSC.2023.3268990.

[32] W. Jiang, D. Feng, Y. Sun, G. Feng, Z. Wang, and X.-G. Xia, “Joint com-
putation offloading and resource allocation for D2D-assisted mobile edge
computing,” IEEE Trans. Services Comput., vol. 16, no. 3, pp. 1949–1963,
May/Jun. 2023.

[33] G. Cui et al., “OL-EUA: Online user allocation for NOMA-based mobile
edge computing,” IEEE Trans. Mobile Comput., vol. 22, no. 4, pp. 2295–
2306, Apr. 2023.

[34] X. An, R. Fan, H. Hu, N. Zhang, S. Atapattu, and T. A. Tsiftsis, “Joint task
offloading and resource allocation for IoT edge computing with sequential
task dependency,” IEEE Internet Things J., vol. 9, no. 23, pp. 24009–
24029, Dec. 2022.

[35] Z. Xiao et al., “Multi-objective parallel task offloading and content caching
in D2D-aided MEC networks,” IEEE Trans. Mobile Comput., vol. 22,
no. 11, pp. 6599–6615, 2023.

[36] S. Liu et al., “Dependent task scheduling and offloading for minimizing
deadline violation ratio in mobile edge computing networks,” IEEE J. Sel.
Areas Commun., vol. 41, no. 2, pp. 538–554, Feb. 2023.

[37] B. Xu, Z. Kuang, J. Gao, L. Zhao, and C. Wu, “Joint offloading decision and
trajectory design for UAV-enabled edge computing with task dependency,”
IEEE Trans. Wireless Commun., vol. 22, no. 8, pp. 5043–5055, Aug. 2023.

[38] H. Jiang, X. Dai, Z. Xiao, and A. K. Iyengar, “Joint task offloading and
resource allocation for energy-constrained mobile edge computing,” IEEE
Trans. Mobile Comput., vol. 22, no. 7, pp. 4000–4015, Jul. 2023.

[39] J. Li et al., “Maximizing user service satisfaction for delay-sensitive
IoT applications in edge computing,” IEEE Trans. Parallel Distrib. Syst.,
vol. 33, no. 5, pp. 1199–1212, May 2022.

[40] Y. Chen, J. Zhao, Y. Wu, J. Huang, and X. S. Shen, “QoE-aware decentral-
ized task offloading and resource allocation for end-edge-cloud systems: A
game-theoretical approach,” IEEE Trans. Mobile Comput., to be published,
doi: 10.1109/TMC.2022.3223119.

[41] L. Ma, X. Wang, X. Wang, L. Wang, Y. Shi, and M. Huang, “TCDA:
Truthful combinatorial double auctions for mobile edge computing in
industrial internet of things,” IEEE Trans. Mobile Comput., vol. 21, no. 11,
pp. 4125–4138, Nov. 2022.

[42] Z. Ma et al., “Towards revenue-driven multi-user online task offloading
in edge computing,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 5,
pp. 1185–1198, May 2022.

[43] X. Wang, Z. Ning, L. Guo, S. Guo, X. Gao, and G. Wang, “Online learning
for distributed computation offloading in wireless powered mobile edge
computing networks,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 8,
pp. 1841–1855, Aug. 2022.

[44] K. Zhang, X. Gui, D. Ren, and D. Li, “Energy–latency tradeoff for com-
putation offloading in UAV-assisted multiaccess edge computing system,”
IEEE Internet Things J., vol. 8, no. 8, pp. 6709–6719, Apr. 2021.

[45] W. Zhang, R. Yadav, Y.-C. Tian, S. K. S. Tyagi, I. A. Elgendy, and O.
Kaiwartya, “Two-phase industrial manufacturing service management for
energy efficiency of data centers,” IEEE Trans. Ind. Inform., vol. 18, no. 11,
pp. 7525–7536, Nov. 2022.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 03,2024 at 09:58:54 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1145/3300061.3300116
https://dx.doi.org/10.1109/TITS.2022.3163804
https://github.com/alibaba/clusterdata
https://github.com/alibaba/clusterdata
https://dx.doi.org/10.1109/TWC.2023.3244391
https://dx.doi.org/10.1109/TSC.2023.3268990
https://dx.doi.org/10.1109/TMC.2022.3223119

4358 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 6, NOVEMBER/DECEMBER 2023

[46] R. Yadav, W. Zhang, O. Kaiwartya, H. Song, and S. Yu, “Energy-latency
tradeoff for dynamic computation offloading in vehicular fog computing,”
IEEE Trans. Veh. Technol., vol. 69, no. 12, pp. 14198–14211, Dec. 2020.

[47] R. Zhang, P. Cheng, Z. Chen, S. Liu, B. Vucetic, and Y. Li, “Calibrated
bandit learning for decentralized task offloading in ultra-dense networks,”
IEEE Trans. Commun., vol. 70, no. 4, pp. 2547–2560, Apr. 2022.

[48] B. Zhu, K. Chi, J. Liu, K. Yu, and S. Mumtaz, “Efficient offloading
for minimizing task computation delay of NOMA-based multiaccess
edge computing,” IEEE Trans. Commun., vol. 70, no. 5, pp. 3186–3203,
May 2022.

[49] T. M. Ho and K.-K. Nguyen, “Joint server selection, cooperative offloading
and handover in multi-access edge computing wireless network: A deep
reinforcement learning approach,” IEEE Trans. Mobile Comput., vol. 21,
no. 7, pp. 2421–2435, Jul. 2022.

[50] R. Lu et al., “Auction-based cluster federated learning in mobile edge
computing systems,” IEEE Trans. Parallel Distrib. Syst., vol. 34, no. 4,
pp. 1145–1158, Apr. 2023.

[51] R. Yadav et al., “Smart healthcare: RL-based task offloading scheme for
edge-enable sensor networks,” IEEE Sensors J., vol. 21, no. 22, pp. 24910–
24918, Nov. 2021.

[52] A. Samy, I. A. Elgendy, H. Yu, W. Zhang, and H. Zhang, “Secure task
offloading in blockchain-enabled mobile edge computing with deep rein-
forcement learning,” IEEE Trans. Netw. Service Manag., vol. 19, no. 4,
pp. 4872–4887, Dec. 2022.

[53] X. Dai et al., “A learning-based approach for vehicle-to-vehicle computa-
tion offloading,” IEEE Internet Things J., vol. 10, no. 8, pp. 7244–7258,
Apr. 2023.

[54] M. Goudarzi, H. Wu, M. Palaniswami, and R. Buyya, “An application
placement technique for concurrent IoT applications in edge and fog
computing environments,” IEEE Trans. Mobile Comput., vol. 20, no. 4,
pp. 1298–1311, Apr. 2021.

[55] L. Pan, L. Wang, S. Chen, and F. Liu, “Retention-aware container caching
for serverless edge computing,” in Proc. IEEE Conf. Comput. Commun.,
2022, pp. 1069–1078.

[56] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and low-
complexity task scheduling for heterogeneous computing,” IEEE Trans.
Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274, Mar. 2002.

[57] M. Neel, Stochastic Network Optimization with Application to Communi-
cation and Queueing Systems. San Rafael, CA, USA: Morgan Claypool,
2012.

[58] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Mach. Learn., vol. 47, no. 2/3, pp. 235–256,
2002.

[59] N. Eshraghi and B. Liang, “Joint offloading decision and resource allo-
cation with uncertain task computing requirement,” in Proc. IEEE Conf.
Comput. Commun., 2019, pp. 1414–1422.

[60] J. Kwak, Y. Kim, J. Lee, and S. Chong, “DREAM: Dynamic re-
source and task allocation for energy minimization in mobile cloud
systems,” IEEE J. Sel. Areas Commun., vol. 33, no. 12, pp. 2510–2523,
Dec. 2015.

[61] L. Chen, S. Zhou, and J. Xu, “Computation peer offloading for energy-
constrained mobile edge computing in small-cell networks,” IEEE/ACM
Trans. Netw., vol. 26, no. 4, pp. 1619–1632, Aug. 2018.

[62] C. Wang, S. Zhang, Y. Chen, Z. Qian, J. Wu, and M. Xiao, “Joint
configuration adaptation and bandwidth allocation for edge-based real-
time video analytics,” in Proc. IEEE Conf. Comput. Commun., 2020,
pp. 257–266.

Xingxia Dai received the BS degree in communica-
tion engineering from Xiangtan University, Xiangtan,
China, in 2018. She is currently working toward the
PhD degree in computer science and technology with
the Hunan University, Changsha, China. Her current
research interests include internet of vehicles and
mobile edge computing.

Zhu Xiao (Senior Member, IEEE) received the MS
and PhD degrees in communication and information
system from Xidian University, China, in 2007 and
2009, respectively. From 2010 to 2012, he was a
research fellow with the Department of Computer
Science and Technology, University of Bedfordshire,
U.K. He is currently a full professor with the College
of Computer Science and Electronic Engineering,
Hunan University, China. His research interests in-
clude mobile communications, wireless localization,
Internet of Vehicles, and trajectory data mining.

Hongbo Jiang (Senior Member, IEEE) received the
PhD degree from Case Western Reserve University,
in 2008. He is currently a full professor with the
College of Computer Science and Electronic Engi-
neering, Hunan University. He was a professor with
the Huazhong University of Science and Technology,
China. His research concerns computer networking,
especially algorithms and protocols for wireless and
mobile networks. He was the editor of IEEE/ACM
Transactions on Networking, the associate editor for
IEEE Transactions on Mobile Computing, and the

associate technical editor for IEEE Communications Magazine. He is an elected
member of Academia Europaea, fellow of IET, fellow of BCS, and fellow of
AAIA.

Ming Lei received the MS degree in 2000. He is
currently a member of the Communist Party of China,
a senior engineer, winner of China Unicom’s “Out-
standing Party Member” and “Hunan Provincial May
1st Labor Medal”, an outstanding management talent
for the digital transformation of the group company,
an exceptional manager of Hunan Unicom, and an
advanced individual. His current research interests
include wireless communication and mobile commu-
nication.

Geyong Min (Member, IEEE) received the BSc de-
gree in computer science from the Huazhong Univer-
sity of Science and Technology, China, in 1995 and
the PhD degree in computing science from the Uni-
versity of Glasgow, U.K., in 2003. He is a professor of
high performance computing and networking in the
Department of Computer Science within the College
of Engineering, Mathematics and Physical Sciences
with the University of Exeter, United Kingdom. His
research interests include future internet, computer
networks, wireless communications, multimedia sys-

tems, information security, high performance computing, ubiquitous computing,
modelling and performance engineering.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 03,2024 at 09:58:54 UTC from IEEE Xplore. Restrictions apply.

DAI et al.: OFFLOADING DEPENDENT TASKS IN EDGE COMPUTING WITH UNKNOWN SYSTEM-SIDE INFORMATION 4359

Jiangchuan Liu (Fellow, IEEE) received the BEng
degree (cum laude) from Tsinghua University, Bei-
jing, China, in 1999, and the PhD degree from the
Hong Kong University of Science and Technology,
in 2003, both in computer science. He is a university
professor in the School of Computing Science, Simon
Fraser University, British Columbia, Canada. He is
a fellow of the Canadian Academy of Engineering
and an NSERC E.W.R. Steacie Memorial fellow. He
was an EMC Endowed visiting chair professor of
Tsinghua University (2013–2016). In the past, he

worked as an assistant professor with the Chinese University of Hong Kong
and as a research fellow with Microsoft Research Asia. He is a corecipient
of the inaugural Test of Time Paper Award of IEEE INFOCOM (2015), ACM
SIGMM TOMCCAP Nicolas D. Georganas Best Paper Award (2013), and ACM
Multimedia Best Paper Award (2012). His research interests include multimedia
systems and networks, cloud and edge computing, social networking, online
gaming, and Internet of things/RFID/backscatter. He has served on the editorial
boards of IEEE/ACM Transactions on Networking, IEEE Transactions on Big
Data, IEEE Transactions on Multimedia, IEEE Communications Surveys and
Tutorials, and IEEE Internet of Things Journal. He is a steering committee
member of IEEE Transactions on Mobile Computing and Steering Committee
Chair of IEEE/ACM IWQoS (2015-2017). He is TPC Co-Chair of IEEE INFO-
COM’2021.

Schahram Dustdar (Fellow, IEEE) received the PhD
degree in business informatics from the University of
Linz, Austria, in 1992. He is currently a full professor
of computer science (informatics) with a focus on in-
ternet technologies heading the Distributed Systems
Group, TU Wien, Wein, Austria. He has been the
Chairman of the Informatics Section of the Academia
Europaea, since 2016. Since 2013, he has been the
member of Academia Europaea: The Academy of
Europe, Informatics Section, Section Committee of
Informatics of the Academia Europaea, since 2015,

and IEEE Conference Activities Committee (CAC), since 2016.. He was a
recipient of the ACM Distinguished Scientist Award, in 2009 and the IBM
Faculty Award, in 2012. He is an associate editor of the IEEE Transactions on
Services Computing, ACM Transactions on the Web, and ACM Transactions on
Internet Technology. He is on the editorial board of IEEE.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 03,2024 at 09:58:54 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

