
Multi-Objective Parallel Task Offloading and
Content Caching in D2D-Aided MEC Networks

Zhu Xiao , Senior Member, IEEE, Jinmei Shu, Hongbo Jiang , Senior Member, IEEE,

John C. S. Lui , Fellow, IEEE, Geyong Min ,

Jiangchuan Liu , Fellow, IEEE, and Schahram Dustdar , Fellow, IEEE

Abstract—In device to device (D2D) aidedmobile edge computing (MEC) networks, by implementing content caching andD2D links, the

edge server and nearbymobile devices can provide task offloading platforms. For parallel tasks, proper decisions on content caching and

task offloading help reduce delay and energy consumption. However, what is often ignored in the previousworks is the joint optimization

of parallel task offloading and content caching. In this paper, we aim to find optimal content caching and parallel task offloading strategies,

so as tominimize task delay and energy consumption. Theminimization problem is formulated as amulti-objective optimization problem,

concerning both content caching and parallel taskoffloading. The content caching is formulated as an integer knapsack problem (IKP). To

solve the IKP problem, an enhanced Binary Particle SwarmOptimization algorithm is proposed. The parallel task offloading problem is

formulated as a constrainedmulti-objective optimization problem, an improvedmulti-objective bat algorithm is proposed to address the

problem. Experimental results show that our algorithm can decrease delay and energy cost by at most 45%and 56%, respectively. In

addition, the parallel task offloading ratio remains over 91% evenwith large number of mobile devices (MDs).

Index Terms—Mobile edge computing, D2D communication, parallel task offloading, content caching, multi-objective optimization

Ç

1 INTRODUCTION

DEVICE to device (D2D) aided mobile edge computing
(MEC) networks provide a promising paradigm to

accommodate the massive amount of task demands [1]. By
implementing content caching and D2D links, the mobile
devices (MDs) can assist their neighbouring MDs in task off-
loading. For example, a tourist is visiting the museum and
using the augmented reality (AR) kit, he can help to compute
the offloaded classification task of AR from his nearby MDs.
As such, in the D2D-aided MEC networks, the resource-lim-
ited MD can offload its computation-intensive tasks (e.g.,

object recognition) to the resource-rich edge server or nearby
MDs with idle computing resources [2]. Such a task migra-
tion helps reduce computation delay and energy cost, espe-
cially when the edge server handles lots of task offloading
demands, thereby offeringmore opportunities to fully utilize
the available resources in the network.

A successful task execution in D2D-aidedMEC network is
bound up with proper decisions on task offloading and con-
tent caching [3]. As illustrated in Fig. 1, there are a remote
cloud, an edge server with considerable resources, a group
of tasks demanded by MDs in parallel. Caching contents
improperly in the edge server could cause high delay and
energy consumption. The top right-hand image of Fig. 1
shows the overall completion delay of the parallel tasks. For
example, if the edge server caches contents of type C, D (sup-
pose the contents in Fig. 1 are of the same size), only 2 out of
6 tasks can be executed at the edge. Instead, with type A, B
and C contents being cached, it is possible for the edge server
to process tasks offloaded fromMD2 toMD6. OnlyMD1 has
to seek task offloading from the cloud. However, offloading
all the parallel tasks demanded by MD2, MD3, MD4, MD5

andMD6 to the edge server is not feasible. As the edge server
is occupied with multiple tasks simultaneously, its comput-
ing resources are running low. In such case, offloading exces-
sive parallel tasks to the edge server runs the risk of
unacceptable waiting delay [4]. Say ifMD6 offload its task to
the edge server, the waiting delay for MD6 would be large,
the task completion time for the parallel tasks is then pro-
longed. Optionally, by exploring D2D links, MD5 provides
task offloading platform along with the content required for
MD6, thereby declining the task completion delay.

Considerable efforts have been made towards content
caching and parallel task offloading. For instance, the authors

� Zhu Xiao, Jinmei Shu, and Hongbo Jiang are with the College of Computer
Science and Electronic Engineering, Hunan University, Changsha, Hunan
410012, China.
E-mail: {zhxiao, jinmeishu}@hnu.edu.cn, hongbojiang2004@gmail.com.

� John C. S. Lui is with the Computer Science and Engineering Department,
The Chinese University of Hong Kong, Hong Kong.
E-mail: cslui@cse.cuhk.edu.hk.

� Geyong Min is with the Department ofMathematics and Computer Science,
University of Exeter, EX4 4PY Exeter, U.K. E-mail: G.Min@exeter.ac.uk.

� Jiangchuan Liu is with the School of Computing Science, Simon Fraser
University, Burnaby, BC V5A 1S6, Canada. E-mail: jcliu@sfu.ca.

� Schahram Dustdar is with TU Wien, 1040 Vienna, Austria.
E-mail: dustdar@infosys.tuwien.ac.at.

Manuscript received 16 January 2022; revised 6 June 2022; accepted 15 August
2022. Date of publication 18 August 2022; date of current version 3 October
2023.
This work was supported in part by the National Natural Science Foundation of
China under Grants 62202148 and U20A20181, in part by the Key Research
and Development Projects of Hunan Province of China under Grants
2022GK2020 and 2021WK2001, in part by the Hunan Natural Science Foun-
dation of China under Grant 2022JJ30171, in part by the Funding Projects of
Zhejiang under Grant 2021LC0AB05, and in part by the Open Research Fund
from Guangdong Laboratory of Artificial Intelligence and Digital Economy
under Grants GML-KF-22-22 and GML-KF-22-23.
(Corresponding author: Hongbo Jiang.)
Digital Object Identifier no. 10.1109/TMC.2022.3199876

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 11, NOVEMBER 2023 6599

1536-1233 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 09,2023 at 14:28:22 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5645-160X
https://orcid.org/0000-0001-5645-160X
https://orcid.org/0000-0001-5645-160X
https://orcid.org/0000-0001-5645-160X
https://orcid.org/0000-0001-5645-160X
https://orcid.org/0000-0001-7372-2539
https://orcid.org/0000-0001-7372-2539
https://orcid.org/0000-0001-7372-2539
https://orcid.org/0000-0001-7372-2539
https://orcid.org/0000-0001-7372-2539
https://orcid.org/0000-0001-7466-0384
https://orcid.org/0000-0001-7466-0384
https://orcid.org/0000-0001-7466-0384
https://orcid.org/0000-0001-7466-0384
https://orcid.org/0000-0001-7466-0384
https://orcid.org/0000-0003-1395-7314
https://orcid.org/0000-0003-1395-7314
https://orcid.org/0000-0003-1395-7314
https://orcid.org/0000-0003-1395-7314
https://orcid.org/0000-0003-1395-7314
https://orcid.org/0000-0001-6592-1984
https://orcid.org/0000-0001-6592-1984
https://orcid.org/0000-0001-6592-1984
https://orcid.org/0000-0001-6592-1984
https://orcid.org/0000-0001-6592-1984
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
mailto:zhxiao@hnu.edu.cn
mailto:jinmeishu@hnu.edu.cn
mailto:hongbojiang2004@gmail.com
mailto:cslui@cse.cuhk.edu.hk
mailto:G.Min@exeter.ac.uk
mailto:jcliu@sfu.ca
mailto:dustdar@infosys.tuwien.ac.at

in [5], [6] and [7] maximize the overall cached popularity for
content caching while balancing cached content sizes and the
edge server’s storage space. For parallel task offloading in
MEC networks, the authors in [8], [9] and [10] focus on the
task delay minimization. With the goal of minimizing task
completion delay, the authors in [11] propose a joint content
caching and offloading problem, where parallel task execu-
tion scenarios are included. Themost related work [12] jointly
optimizes content caching, task offloading and resource allo-
cation. Yet, the optimization is made only towards a single
user, the available computing resources of nearby MDs are
underutilized. Besides, the optimization of parallel tasks
remains an open topic in [12]. Despite their inspiring results,
existing works neglect to form a joint view considering con-
tent caching and task offloading in the D2D-aided MEC net-
works, while the former is inseparable from the latter.
Besides, equal importance has to be attached to the latency
and and energy cost, both of which are critical for enhancing
user quality of experience (QoE).

Coming with the optimization goal of content caching
and parallel task offloading are double challenges. First, the
trade-off between content popularity and content size
should be well balanced for content caching at the edge. As
can be seen in Fig. 1, due to the constrained cache size, the
edge server is not able to store all the contents. While con-
tents vary in both size and popularity, additional costs
would be incurred if contents are placed improperly. For
example, if contents of type D and E are placed in the edge
server instead of type-A, B and C contents, the number of
its served MDs reduces from 3 to 1, additional delay and
energy consumption are caused (assume that the attributes
of tasks are identical except for the content requirements).
Second, parallel tasks call for properly scheduling among
heterogeneous computing nodes (i.e., MDs and the edge
server), so as to decline both latency and energy consump-
tion. Although the edge server surpasses the MDs in com-
puting capability, the computing resource demands of
parallel tasks could outrun the edge server’s capacity.
Scheduling parallel task inappropriately leads to additional
delay and energy costs. For example, if MD2, MD3, MD4

and MD5 migrate their tasks to the edge server simulta-
neously, the delay would increase due to the constrained
computing capacity of the edge server. Or ifMD4 offloads its
task to the nearby MD5 with poor computing resources, the
delay and energy costs for computation are incurred [13]. In
this paper, to address the aforementioned challenges, we
propose a multi-objective optimization approach in D2D-
aided MEC networks, aiming at jointly minimizing delay
and energy consumption for parallel tasks. To that end, we
formulate a multi-objective optimization problem (denoted
as problem P0), which is twofold in terms of content caching
and task offloading. Specifically, Problem P0 is solved by
means of decomposing it into two subproblems. To find a
balance between content popularity and content size, we
model the content caching subproblem (denoted as P1) as an
integer knapsack problem (IKP). To resolve the NP-hardness
of IKP, an enhanced binary particle swarm optimization
(BPSO) is proposed. To fix the issue of possibly being stuck
in the local optimum, we introduce an inertia weight and
besides, we reinitialize the solution once it reaches the global
best value. With the subproblem P1 fixed, problem P0 is
transferred to the task offloading subproblem P2. To mini-
mize both task delay and energy consumption, an improved
multi-objective bat (iMOB) algorithm is designed. The
improvements are as follows. First, to reduce search com-
plexity, we categorize the MDs based on their battery level,
and choose MDs with sufficient energy level for solution ini-
tialization. Second, to maintain the diversity of our two-
dimensional solutions, we replace the one-dimensional dis-
tance used in the original bat algorithm with euclidean met-
ric. To sum up, our workmakes the following contributions.

� A multi-objective optimization (denoted as problem
P0) scheme is carried out to jointly minimize task
completion delay and energy consumption. Problem
P0 contains two subproblems, i.e., the content cach-
ing subproblem P1 and the parallel task offloading
subproblem P2.

� We model the content caching subproblem P1 as
IKP, which turns out to be nonconvex and NP-hard.
An enhanced BPSO algorithm is proposed to solve
IKP problem. The enhanced BPSO shows its effi-
ciency in finding optimal content caching solutions.

� With the subproblem P1 fixed, the original problem
P0 is transferred to P2. We consider a joint delay and
energy consumption optimization in parallel task
offloading, under the constraints of CPU resource,
battery level and contents. We design an iMOB algo-
rithm to solve P2. The proposed iMOB shows its
advantages over the benchmarks in finding a set of
high-quality optimal solutions.

� Extensive simulations are carried out to evaluate the
performance of the proposed algorithm, the results
demonstrate that our algorithm outperforms existing
ones. Specifically, our algorithm decreases delay and
energy cost by at most 45% and 56%, respectively,
compared to the benchmarks. The offloading ratio
remains above 91% in parallel offloading, which
keeps the highest value in comparison.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the literature, Sections 3 and 4 give system

Fig. 1. Parallel task offloading and content caching in D2D-aided MEC
networks. Tasks are generated in parallel. Each color represents a type
of content, task execution demands the specific content and adequate
computing resources.

6600 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 11, NOVEMBER 2023

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 09,2023 at 14:28:22 UTC from IEEE Xplore. Restrictions apply.

model and problem formulation, respectively. Our solu-
tions are presented in Section 5. In Section 6, we provide
experimental results with respect to the performance of the
proposed algorithm. Finally, we conclude this paper in
Section 7.

2 RELATED WORK

In this section, we briefly review the literature addressing
the content caching and task offloading in MEC networks.

Many content caching approaches concern content popu-
larity. M€uller et al. [14] propose a context-aware proactive
caching algorithm,taking both content popularity and users’
preferences into consideration. Zhang et al. [15] develop a
greedy algorithm, based on the stochastic information of
network topology, traffic distribution, channel quality, and
file popularity, in order to jointly optimize content place-
ment, SBS clustering, and bandwidth allocation. In order to
to minimize the average task latency, the authors in [16]
propose an intelligent task caching strategy according to
task size and computing amount. Content popularity is yet
as critical as content size when it comes to content caching
at the edge. Zhang et al. [5] use web mining techniques so
as to increase the edge server content cache hit ratio, both
content size and popularity are considered in their scheme.
HAO et al. [6] present a joint task caching and offloading
scheme, factoring in task popularity, size of contents and
the required computation capacity of tasks. Lan et al. [7]
design an optimal data caching policy to maximize the total
size of offloaded data in cellular networks, in which both
content popularity and size are considered.

Besides content caching, considerable efforts have been
devoted to task offloading. Bozorgchenani et al. [17] formu-
late task offloading in MEC as a constrained multi-objective
optimization problem, an evolutionary algorithm is thus
developed to minimize both the energy consumption and
task processing delay of the MDs. Guo et al. [18] develop an
online learning based computation offloading scheme in
dynamic MEC networks. To address the problem of task
arrival dynamics, edge node heterogeneity and computa-
tion-communication delay tradeoff, Ma et al. [19] present a
water-filling based dynamic task scheduling algorithm
while satisfying the constraint of resource budget. In [20],
Wang et al. devise a reinforcement learning based algo-
rithm, aiming to minimize both response delay and execu-
tion consumption. As a matter of fact, processing tasks
requires the availability of contents in computing nodes,
which is not a focus point in all these works.

There are extensive works that accentuate content cach-
ing and task offloading simultaneously. Liu et al. [21] model
content caching and computation offloading as an optimiza-
tion problem under the restrictions of probabilistic backhaul
and delay. Xu et al. [22] propose an online algorithm to deal
with dynamic service caching and task offloading optimiza-
tion in MEC-enable dense cellular networks. The issue of
cooperative service caching and workload scheduling is for-
mulated as a mixed integer nonlinear programming prob-
lem in [23]. The authors in [11] focus on offloading
dependent tasks with service caching, a convex program-
ming based algorithm is then introduced to solve this prob-
lem. In [3], Chen et al. integrate a task caching mechanism

into computation offloading technique, which allows the
MEC server proactively cache some tasks, as well as users
to offload their tasks to the MEC server. In [12], the authors
optimize content caching, task offloading jointly for an indi-
vidual user. The optimization problem is formulated as a
mixed integer nonlinear problem, and is solved by trans-
forming the problem into an equivalent pure 0-1 integer lin-
ear programming.

However, the case when tasks are generated in parallel is
not considered in all the works mentioned above. Parallel
task offloading problem demands for wisely conducting
communication and computation operations under the con-
straint of computing resource. Liu et al. [8] develop a distrib-
uted task offloading algorithm based on generalized Nash
equilibrium, which is able to map multiple tasks with the
goal ofminimizing each task’s service delay. Lee et al. [9] pro-
pose an online optimization framework to intelligently dis-
tribute tasks among fog nodes and the cloud, with the aim of
minimizing the maximum communication and computation
delay. Guo et al. [10] fixate on parallel computing, a data off-
loading and task allocation scheme is proposed so as to mini-
mize the average task execution delay in fog radio access
network. Unfortunately, although these works aim at mini-
mizing the latency of parallel task offloading, they do not con-
sider the energy consumption, which is also an important
factor for MDs. Moreover, task offloading operations should
be conducted under the constraint of content caching, other-
wise it would lead to to infeasible offloading solutions.

In this paper, we not only investigate the content caching
problem, but also explore the task offloading scheme, where
parallel offloading scenarios are considered. For content
caching strategy, we aim to find the balance between con-
tent popularity and content size, under the stringent con-
straint of the edge server’s storage capacity. For parallel
task offloading problem, our intention is to jointly minimize
the task completion delay and energy consumption, while
considering the heterogeneity of the computing nodes. To
the best of authors’ knowledge, this work is first attempt to
optimize parallel task offloading and content caching in a
synergistic way, while jointly reducing task latency and
energy consumption.

3 SYSTEM MODEL

3.1 D2D-Aided MEC Network

We consider a D2D-aided MEC network consists of a remote
cloudR, M geographically closeMDs that are within the cov-
erage of an edge server C. It is worth noting that the edge
server is characterized bymore storage space and higher com-
puting capacity compared to the MDs [24]. Let M=
{1; . . . ; i; . . . ;M} be the set of MDs, with heterogeneous com-
puting capacities and battery levels. Each MD i can be
described by a tuple {fi;bi}, where fi and bi denote the com-
puting capacity andbattery level ofMD i, respectively. Table 1
presents themain notations and definitions in this paper.

Each MD has a task request, tasks are generated either
serially or simultaneously. Let G ¼ f1; . . . ; i; . . . ;Mg repre-
sent the set of tasks. According to the generation time, tasks
are divided into two sets, i.e., the set of sequential tasks S
and the set of parallel tasks P. Note that each task in G is
matched with one and only one MD in M. Task i is

XIAO ETAL.: MULTI-OBJECTIVE PARALLELTASKOFFLOADING AND CONTENTCACHING IN D2D-AIDED MEC NETWORKS 6601

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 09,2023 at 14:28:22 UTC from IEEE Xplore. Restrictions apply.

characterized as a tuple {xi; wi; ri}, where xi, wi and ri
denote the traffic size, computation intensity and delay
requirement, respectively. The storage capacity of the edge
server C is defined as C. Since the edge server has con-
strained resources, let fc denote the upper bound of the
edge server’s CPU cycle frequency. Due to the limited phys-
ical size, MDs have restricted computing resources and
energy levels. we assume that each MD can only process at
most one task at a time, in another word, computing several
tasks simultaneously is not allowed for MDs. Task execu-
tion asks for the support of specific contents, with the con-
tents available, the task can be processed locally, offloaded
to other MDs or the edge server. If neither the MDs nor the
edge server has the specific content stored, or if they are all
running out of computing resources, the task will be out-
sourced to the remote cloud.

3.2 Content Caching

Assume that there are J contents in the content catalog,
indexed by J={1; . . . ; j; . . . ; J}. Each content j in J can be
measured by {rj; zj}, where rj, zj are the content popularity

and content size, respectively. We assume that the task pop-
ularity follows the Zipf distribution [25]. Compared to the
remote cloud, where all the contents are cached there, the
edge server has limited storage space. Therefore, it can only
cache a subset of the contents. On one hand, as popular con-
tents may be demanded by different MDs frequently, it is
beneficial for the edge server to cache as many popular
tasks as popular. While on the other, edge server should
also consider content size when deciding what to cache
because of its stringent resource budget. Besides the edge
server, MDs can cache a few contents as well. MDs are het-
erogeneous with regards to their storage capacities. For
example, tablets and laptops (e.g., MD3 and MD5) have
larger storage than cellphones (e.g, MD2). We assume that
the reserved content caching space of mobile phones, tablets
and laptops are Cp, Ct and Cl, respectively. Each MD can
selectively cache contents based on their own needs.

Based on the above premises, we define the integer con-
tent caching variable as aj 2 f0; 1g (j 2 J), where aj ¼ 1
means that the jth content is placed in the edge server and
vice versa. Thus we have

aj 2 0; 1f g; 8j 2 J : (1)

Note that the content caching strategy should be popu-
larity-aware, so that frequently-asked contents are stored.
Moreover, the overall size of cached contents is capped by
the edge server’s storage capacity C, which is given by

X
j2J

ajzj � C: (2)

3.3 Parallel Task Offloading

Parallel task offloading refers to processing the simulta-
neously generated tasks of different MDs in parallel. These
tasks can be outsourced to multiple computation nodes such
as nearbyMDs and the edge server. The edge server can also
accommodate tasks from multiple MDs at the same time.
The tacit offloading method of most related works, such
as [17], is serial task offloading, where tasks have to be proc-
essed one by one. However, the serial task offloading scheme
leads to a low resource utilization and prolonged task execu-
tion delay, which is not applicable to the parallel tasks. Paral-
lel task offloading scheme enables scheduling multiple tasks
at the same time, on the premise of following the resource
constraints. In so doing, the task completion delay is short-
ened and the system’s efficiency is enhanced.

If task i is routed to MD i, it means the task is processed
locally without data transmission, delay and energy costs
depend solely on the computation process. Otherwise, trans-
mission delay and energy consumption are incurred as well.

We assume that each MD can process at most one off-
loaded task, since their physical sizes are constrained. As for
tasks offloaded to the edge server in parallel, we suppose
that the edge server can process several tasks simultaneously
as long as its resource constraint is ensured. The execution
time for these parallel tasks may overlap, as indicated in the
small image in Fig. 1. Let Ti;start and Ti;end denote the execu-
tion start time and end time of parallel task i in P, respec-
tively. The overall task completion time for the set of parallel
tasksP is computed asmaxðTi;endÞ �minðTi;startÞ; i 2 P.

TABLE 1
Main Notations and Definitions

Notations Definitions

M Set of MDs within the server’s range
M The number of MDs (i.e., tasks)
fc Computational capability of the server
C Storage capacity of the server
fi Computational capability of MD i
bi Battery level of MD i
G Set of tasks
xi Traffic size of task i
wi Computational intensity of task i
ri Delay requirement of task i
S Set of sequential tasks
P Set of parallel tasks
J Set of contents
J The number of contents
rj Popularity of content j
zj Size of content j
aj Caching decision for content j
o Indicator of offloading mode
bi;o Offloading decision of MD i
Ti;start Execution start time of task i
Ti;end Execution end time of task i

dtri;o Transmission delay of task i

etri;o Transmission energy cost of task i

dli Computation delay of MD i under local computing mode

dmi Computation delay of MD i under D2D computing mode

dsi Computation delay of MD i under edge computing mode

emi;k Energy cost of MD k for computing task i

eli Energy cost of MD i for local computing
Di Completion delay of task i
Ei Energy cost of task i
D Completion delay of G
E Energy cost of G
Ds Completion delay of S
Dp Completion delay of P
aaaaaaa Content caching strategy
bbbbbbb Offloading solution
B Set of offloading solution vectors
NPareto The number of Pareto front solutions

6602 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 11, NOVEMBER 2023

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 09,2023 at 14:28:22 UTC from IEEE Xplore. Restrictions apply.

3.3.1 Communication Model

When a task is offloaded, the data traffic will first be trans-
ferred to, and then calculated by the edge server or other
MDs. The offloading mode indicator is defined as o 2
fl;m; s; cg, where fl;m; s; cg are the local computing, D2D
computing, edge computing and cloud computing modes,
respectively. We assume that the delay for transmitting task
i to the remote cloud is fixed, which is denoted by dtri;o; o 2
fcg [26]. The energy spent on transmitting the data traffic to
the remote cloud is expressed as

etri;o ¼ pid
tr
i;o; 8i 2 G; 8o 2 cf g; (3)

where pi is the transmit power of MD i. Without loss of gen-
erality, we assume that our D2D-aided MEC architecture is
based on orthogonal frequency division multiple-access
(OFDMA) technique, which means that users do not inter-
fere with one another when the data is being transmitted,
and each MD is allocated with identical bandwidth B. We
express MD’s transmit power and channel gain as pi, hi;o

ði 2 M; o 2 fm; sgÞ. The transmission rate is expressed as
follows

ri;o ¼ Blog2ð1þ pihi;o

s2
Þ; 8i 2 M; 8o 2 m; sf g; (4)

where B is the bandwidth, s2 is the background noise.
Therefore, the transmission delay caused by transmitting
task i is calculated as

dtri;o ¼
xi

ri;o
; 8i 2 M; o 2 m; sf g; (5)

and the corresponding energy consumption for transmitting
task i is obtained by

etri;o ¼ pid
tr
i;o; 8i 2 G; o 2 m; sf g: (6)

3.3.2 Computation Model

Without loss of generality, we assume that each task is indi-
visible. To this end, we denote the computing modes as
bi;o 2 f0; 1g (i 2 G, o 2 fl;m; c; rg), where bi;l ¼ 1, bi;m ¼ 1,
bi;s ¼ 1, bi;c ¼ 1 indicate that task is executed in the local
device, other device, edge server, remote cloud, respec-
tively. Hence, the following constraints

bi;o 2 0; 1f g; 8i 2 G; o 2 l;m; s; cf g (7)X
o2 l;m;s;cf g

bi;o ¼ 1; 8i 2 G; (8)

should be fulfilled to make sure that only one computing
node is selected to process task .

A task can be generated alone, or demanded in parallel
with other tasks. S and P are the set of sequential and paral-
lel tasks, respectively, then we have

S [P ¼ G: (9)

D2D Computing. With available resources, other MDs in
the vicinity are able to execute tasks. Correspondingly, the
latency for D2D computing is calculated as

dmi ¼ xiwi

fk
; 8i 2 G; 8k 2 M; i 6¼ k: (10)

For MD kðk 6¼ iÞ that executes task , the energy consumed
by MD k is as follows

emi;k ¼ c1ðfkÞ2 þ c2

h i
dmi ; 8i 2 G; 8k 2 M; i 6¼ k; (11)

where the term c1ðfkÞ2 þ c2 is the energy consumption of
the MD’s CPU per second, fk is the CPU cycle frequency of
MD k, c1 is the parameter dependent upon the CPU fre-
quency, which reflects the power consumed by the logic
gate switching at frequency fk. c2 is independent from the
CPU frequency and reflects the power originating from
leakage effects [27].

Edge Computing. The edge server can compute offloaded
tasks as well. The computing delay spent on edge comput-
ing is calculated as

dsi ¼
xiwi

fc
; 8i 2 G: (12)

Cloud Computing. There are no other choices left than to
offload the task to the remote cloud, if neither MDs nor the
edge server has the required content cached, or if the com-
puting resources are not available. The remote cloud has
ample computing power, and the delay of computation is
negligible compared to that of transmission. We hence take
no consideration of computing delay for remote offloading.

Local Computing. Tasks can be processed without offload-
ing, if the content is stored locally and the computing
resources are sufficient. To process xi bits computation task,
the following computing time and energy consumption are
required

dli ¼
xiwi

fi
; 8i 2 G (13)

eli ¼ c1ðfiÞ2 þ c2

h i
dli; 8i 2 G; (14)

where fi is the CPU cycle frequency of MD i.

4 PROBLEM FORMULATION

The overall completion delay is comprised of transmis-
sion delay and computing delay. For serial tasks, the
overall task completion delay is the sum of all tasks’
latency. For parallel tasks, the completion delay depends
on the earliest start time and the latest finish time among
all parallel tasks. Let Ti and Ei denote the completion
delay and the corresponding energy consumption for
task iði 2 SÞ. The overall task completion delay D can be
calculated as

D ¼ Ds þDp; (15)

Ds is the completion time of the sequential tasks

Ds ¼
X

Di; 8i 2 S; (16)

XIAO ETAL.: MULTI-OBJECTIVE PARALLELTASKOFFLOADING AND CONTENTCACHING IN D2D-AIDED MEC NETWORKS 6603

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 09,2023 at 14:28:22 UTC from IEEE Xplore. Restrictions apply.

whereDi is denoted by

Di ¼ bi;ldi;l þ bi;mðdmi þ dtri;mÞ þ bi;cðdci þ dtri;cÞ þ bi;rd
tr
i;r;8i 2 G; (17)

andDp is the completion time of the parallel tasks

Dp ¼ maxðTi;endÞ �minðTi;startÞ; 8i 2 P: (18)

The energy consumption E is given by

E ¼
X

Ei; 8i 2 G; (19)

where Ei is denoted by

Ei ¼ bi;le
l
i þ bi;m etri;k þ emi;k

� �
þ bi;ce

tr
i;c þ bi;re

tr
i;r;

8k 2 M; i 6¼ k: (20)

In order to jointly minimize task completion delay and
energy consumption under the constraints of resources, we
need to make optimal content caching and task offloading
decisions. The constrained multi-objective optimization
problem is formulated as follows:

P0 :min
a;ba;ba;ba;ba;ba;ba;b

D;E (21)

s:t:

bi;kxiwi � fkri; 8i 2 S; k 2 M (21a)

bi;cxiwi � fcri; 8i 2 S (21b)X
i2P

bi;cxiwi � fcri (21c)

X
i2M

bk;ie
tr
k;i þ bk;ce

tr
k;c

� �

þ
X
i2G

bi;ke
m
i;k þ bk;le

l
k � bk � "; 8k 2 M (21d)

pi � pmax
i ; 8i 2 M

Constraintsð1Þð2Þð7Þð8Þ: (21e)

Problem P0 centers upon minimizing task completion delay
and MDs’ energy consumption in a synergistic way. Con-
straints (21a) and (21b) make sure that the computing capa-
bilities of heterogeneous computing nodes are constrained
when processing the serial tasks. Constraint (21c) represents
the computing resource restriction when parallel tasks are
offloaded to the edge server. Constraint (21d) denotes that
the energy consumption can not surpass the lowest battery
level, where bk 2 M is the battery level of MD k and " is a
positive decimal that ensures the battery would not be run
out. Constraint 21(e) means that the transmit power of MD i
can not exceed its maximum power budget. Constraints (1)
and (7) mean that both content caching variable and task off-
loading variable are binary-valued. Constraint (2) ensures
the overall sizes of cached contents do not surpass the
edge server’s storage capability. Constraint (8) guaran-
tees that each task is executed on one and only one com-
puting node.

5 SOLUTIONS

Problem P0 is twofold with respect to both content caching
and task offloading. Problem P0 is solved through decoupling

the two subproblems, i.e., P1 and P2. P1 is a content caching
problem, which aims at placing as many popular contents in
the edge server as possible. P2 is a multiple constraints multi-
objective problem, where the task scheduling decision is
desired tominimize the delay and energy cost.

Proposition 1. Solving P1 and P2 respectively is equal to solv-
ing problem P0.

Proof. For one thing, a close observation of problem P0
shows that the binary content caching variable aaaaaaa is not
related to the offloading variable bbbbbbb, i.e., the computation
of tasks has no impact on which contents to be cached in
the edge. For another thing, the optimal offloading deci-
sion b�b�b�b�b�b�b� is based on the premise of getting the optimal con-
tent caching strategy a�a�a�a�a�a�a�. Given the optimal content
caching strategy a�a�a�a�a�a�a� derived from solving problem P2, the
set of contents that serves the uppermost number of tasks
are placed in the edge server. In this case, most of the
computationally intensive tasks are able to be offloaded
to the edge, which cuts down the transmission delay and
energy cost compared to offloading to the cloud, and
offers more computing resources than seeking offloading
services from MDs. With a�a�a�a�a�a�a� settled, the optimal offload-
ing decision b�b�b�b�b�b�b� with minimal delay and energy cost is
derived by solving problem P2. Solving problem P1 is the
prerequisite of achieving the optimization goal of P0,
solving problem P2 is the final step to minimize D and E.
Hence, solving problem P0 is equivalent to solving P1
and P2 in sequence. This completes the proof. tu
The reason we take the decomposition methodology is

two-fold. First, solving problem P0 directly lacks decision
maker’s preference. Solving problem P1 and P2 allows the
system user to specify the trade-off between the objectives.
For example, if the user is a content provider, he/she has to
count in the monetary cost for caching the contents in the
edge server, and can adjust the optimization goal of prob-
lem P1 to enhance the system’s quality of service (QoS),
meanwhile, the optimization objective of problem P2 can be
preserved to ensure mobile users’ quality of experience
(QoE). Second, finding Pareto optima solution of problem
P0 on convex regions is difficult. Problem P0 is an integer
multi-objective optimization problem. In P0, the Pareto
dominance determines whether the solution is good or not.
Any point in the feasible region of P0 defines a solution
(aaaaaaa; bbbbbbb) having two objective function valuesD and E. To opti-
mize P0 is to find a hyper-lane (a line for two objective func-
tions) with a fixed orientation in the feasible region, and an
optimal solution is the point where the hyper-plane has a
common tangent with the feasible space boundary. A collec-
tion of such points comprises the Pareto front. However, the
method is not only computationally expensive, but also
there is a major difficulty in finding the Pareto front in the
convex regions. Decomposing P0 enables finding a�a�a�a�a�a�a� and b�b�b�b�b�b�b�

separately, the difficulty is reduced.
To cope with the subproblem of content caching, an

enhanced BPSO algorithm is proposed. With a given content
caching solution, the constrained multi-objective optimiza-
tion problemP0 is transferred to task offloading subproblem.
We then design an improvedmulti-objective bat algorithm to
solve the above problem.

6604 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 11, NOVEMBER 2023

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 09,2023 at 14:28:22 UTC from IEEE Xplore. Restrictions apply.

5.1 Content Caching Based on Enhanced BPSO

Content caching aims to cache as many popular contents as
possible, and meanwhile make the most of edge server’s
storage space. The content caching strategy for the edge
server is written as

P1 : max
aaaaaaa

X
j2J

ajpj

Constraintsð1Þð2Þ: (22)

Problem P1 is an integer knapsack problem (IKP), which is
proven to be non-convex and NP-hard. The edge server can
be seen as a knapsack,meanwhile there are J items, i.e., J con-
tents. Each content is characterized by a different size and
popularity, which equal to the weight and value of an item,
respectively. The goal is to find out a subset of items with
maximal popularity, and the total size of this subset should
not exceed the storage capacity of the edge server.While cach-
ing popular contents at the edge is beneficial for reducing task
latency and energy consumption, the trade-off between con-
tent popularity and content sizes should bewell balanced.

Proposition 2. The optimization problem in (19) is non-convex.

Proof. According to Eq. (1), the caching variable aj is
binary-valued, a content is either cached (aj ¼ 1) in the
edge server or not (aj ¼ 0). Besides, constraint (2) is a
non-negative storage constraint. Problem P1 is thus a
mixed integer nonlinear programming problem, which is
non-convex [28], [29]. tu

Proposition 3. The optimization problem in (19) is NP-hard.

Proof. Given J contents, each content has its weight zj and
value pj. To find the best caching solution for problem P1,
we need to compare all aj 2 J ðaj ¼ 0; 1Þ for J times, the
computation complexity of IKP can reach O(2n). There-
fore, problem P1 is NP-hard and cannot be well solved in
polynomial time. tu
As one of the approximate algorithms, binary particle

swarm optimization is able to approach theNP-completeness
for problem P1 with its fast convergence. In BPSO mecha-
nism, a group of particles forms a swarm,where each particle
represents a content caching solution for the edge server. The
concept of fitness value is introduced to evaluate each solu-
tion from the perspective of overall popularity of cached con-
tents. Each particle moves in the binary search space towards
the local optimal fitness and the global optimal fitness. BPSO
can be applied directly to the discrete content caching space
without requiring the relaxation of variable aaaaaaa, and come as
close as possible to the optimal solution in a reasonable
amount of time (usually polynomial time).

To enhance the ability of searching the global optimum,
we modify the BPSO algorithm from two aspects. In the
original BPSO scheme, the movement of each particle is
only influenced by fitness values, the solution can be easily
trapped in the local optimum once it arrives at the current
optimal position [30]. Different from the original BPSO algo-
rithm, we introduce inertia weight factors wd, c1 and c2 to
balance the trade-off between exploration and exploitation,
and each particle adjusts its position according to three val-
ues: pid, gid and its experience vid, as expressed in Eq. (23).

Furthermore, we reinitialize the particle once it reaches the
best global fitness value. The two modifications mentioned
above provide a more diversified search, and prevent the
BPSO algorithm from being stuck in the local optimum. The
enhanced BPSO algorithm combines the advantages of
relaxation-free, fast convergence and the ability to avoid
being stuck in the local optimum, which helps us solving
the NP-hard binary-valued content caching problem in an
acceptable amount of time.

The position adjustment of a particle can be expressed as

vtid ¼ wd � vt�1
id þ c1 � rand1 � ðpt�1

id � xt�1
id Þ

þ c2 � rand2 � ðgt�1
id � xt�1

id Þ (23)

xt
id ¼ xt�1

id þ vtid; (24)

where the enhanced velocity vid is updated according to the
velocity vt�1

id , the local optimum pt�1
id and the global opti-

mum gt�1
id at iteration t� 1. xt�1

id is the last position of the ith
particle. rand1 and rand2 are random numbers that follow
the uniform distribution between 0 and 1. wd is the fine tun-
ing inertia weight, c1 and c2 are both weighting factors.

Algorithm 1. Enhanced BPSO Based Content Caching
Algorithm

Require: Content index J and the corresponding parameters
({pj; zj})

Ensure: Content caching decision aaaaaaa
1: Initialize each particle with a random position xi and

velocity vi
2: while numbers of generations do
3: Compute the fitness value for each particle, record the

position of the particle with current best fitness value as gid
4: Set fitness value as 0 if particle xi violates the storage

capacity constraint
5: if fitness of any particle of the particle swarm is greater

than the current best fitness value then
6: Replace gid with position of this particle
7: end if
8: for i=1 to number of dimension of particle do
9: if Particle reaches local optimal fitness value then
10: Reinitialize the position of this particle to avoid being

trapped in the best position locally
11: end if
12: end for
13: Update velocity and position parameters for particles

according to Eqs. (23) and (24), respectively
14: if the stopping criterion is satisfied then
15: End the iteration and return the particle with the

optimal fitness as content caching decision aaaaaaa
16: end if
17: end while

5.2 Constrained Multi-Objective Task Offloading

The subproblem of content caching is solved with the imple-
mentation of BPSO algorithm. Based on the known content
types cached at the edge, problem P0 is then transferred to the
task scheduling subproblemP2, which can be rewritten as

P2 :min
bbbbbbb

D;E (25)

XIAO ETAL.: MULTI-OBJECTIVE PARALLELTASKOFFLOADING AND CONTENTCACHING IN D2D-AIDED MEC NETWORKS 6605

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 09,2023 at 14:28:22 UTC from IEEE Xplore. Restrictions apply.

Constraints (21a) (21b) (21c) (21 d) (21e) (7) (8).

Problem P2 is a constrained multi-objective optimization
problem, where the two objectives, i.e., latency and energy
consumption are minimized jointly. The problem can not be
solved simply by one single solution since there are multi-
ple criteria to evaluate the solutions. The concept of Pareto
front is further introduced to identify the set of high-quality
solutions. Let B ¼ fbbbbbbb1111111; bbbbbbb2222222; . . .; bbbbbbbZZZZZZZg be the set of solution vec-
tors, where bbbbbbbZZZZZZZ is a task scheduling solution vector and Z is
the total number of generated solutions. For a given minimi-
zation problem with k objectives, we use Uk to denote the
value of objective function k (8k 2 ½1; K�), the definition of
Pareto-dominance is given as follows:

Definition 1. The value of objective function k for solution bZ is
represented as UkðbbbbbbbÞ. Solution bbbbbbb1111111 is said to Pareto-dominate bbbbbbb2222222
(i.e., bbbbbbb1111111 � bbbbbbb2222222) if Ukðbbbbbbb1111111Þ � Ukðbbbbbbb2222222Þ for 8k 2 ½1; K� and 9k 2
½1; K� : Ukðbbbbbbb1111111Þ < Ukðbbbbbbb2222222Þ.
The solutions of the subproblem P2 is represented by a

set of non-dominated solutions, which is also called Pareto
front

S ¼ bbbbbbbiiiiiiijbbbbbbbjjjjjjj � bbbbbbbiiiiiii; 8i; j 2 ½1; Z�� �
: (26)

However, the Pareto front of P2 is not easy to obtain.
First, the algorithms that work well on the typical single-
objective optimization problem is not applicable to problem.
The nonlinear property of both the objective functions and
the constraints makes the true Pareto front not easy to
reach [31]. Second, the constraints divide the search space
into multiple scattered feasible regions. Consequently, the
Pareto front solution spreads on different constraint bound-
aries instead of being a continuous curve along a single
region, which is not easy to attain [32].

In order to get a good approximation of the true Pareto
front, an improved multi-objective bat (iMOB) algorithm is
proposed in order to find a diverse range of solutions that
approximate Pareto front. Specifically, iMOB discards the
low-battery MDs from the candidate computing nodes
before the initialization stage, so as to improve the quality
of Pareto front. At the searching stage, each bat goes for the
optimal solutions with minimum delay and energy costs.
The update of the bat population counts in both the random
walk and the current best position to provide a wide range
of diverse properties in Pareto front.

The proposed iMOB algorithm is presented in the follow-
ing subsection.

5.3 Improved Multi-Objective Bat Algorithm

The multi-objective bat algorithm was proposed based on
swarm intelligence optimization algorithms [33], [34].
Inspired by this approach, we design an improved multi-
objective bat algorithm to solve subproblem P2. Specifically,
we improve the basic bat algorithm from two aspects. For one
thing, instead of assigning random values to solutions, which
would increase search complexity, we strive to classify MDs
by their battery level and dismiss those with low energy, in
which way the randomness of solution searching is avoided,
and a set of Pareto front can be foundwith high efficiency. For
another, the original concept of one-dimensional distance,

used in the search space tomeasure the diversity of solutions,
can not be straightforwardly applied to our parallel task off-
loading scheme. To resolve this problem, motivated by [35],
we exploit the euclidean metric to maintain the diversity of
our two-dimensional solutions.

Definition 2. Given two N 	M matrices, say XN	M and
YN	M , the euclidean distance between the two matrices in the
same coordinate system can be described by the following equa-

tion:D ¼
ffiPM

j¼1

PN
i¼1ðxi;j � yi;jÞ2

q

The bat algorithm is based on the echolocation behavior
of micro bats. Micro bats are tiny bats that eat insects. To
detect the target, they use a sonar called echolocation. Dur-
ing the time of preying, micro bats will first emit a highly
pitched sound, the echo will then bounce back to micro bats’
ears and tell them the location, the size and the speed of the
target. Suppose there is a micro bat flying randomly, look-
ing for food. The search space (i.e., the optimization prob-
lem) is Db dimensional. In order to help the bat find the best
location (i.e., optimal solution) in a quick way, the following
rules should be obeyed when the ith bat updates its position
(solution) at each iteration t

fib ¼ fmin þ fmax � fminð Þbb (27)

V t
ib ¼ V t�1

ib þ bbbbbbbt�1
iiiiiii � bbbbbbb�

� �
fib (28)

bbbbbbbtiiiiiii ¼ bbbbbbbt�1
iiiiiii þ V t

ib; (29)

where fib is the frequency of the bat’s emitted pulse, fmin,
fmax are the minimum and maximum frequency of the
sound waves created by bats, respectively. bb is a random
number drawn from a uniform distribution in ½0; 1�. Ini-
tially, each bat i is assigned with a fixed frequency fib uni-
formly distributed in ½fmin; fmax�. At iteration t� 1, the ith
bat forages for prey with velocity V t�1

ib at position bbbbbbbt�1
iiiiiii . The

current global best location (solution) is denoted by bbbbbbb�. The
right-hand part bbbbbbbt�1

iiiiiii � bbbbbbb� in Eq. (28) is calculated using
euclidean distance. At next iteration t, according to Eqs. (28)
and (29), the velocity and position of the bat are adjusted to
V t
ib and bbbbbbbtiiiiiii, respectively.
For fitness function, a fine-tuning knob d is used to com-

bine the two optimization objectives, i.e., task completion
delay and energy consumption, into a single objective. We
represent the fitness value of each bat with theweighted sum

fðbbbbbbbiiiiiiiÞ ¼ dDðbbbbbbbiiiiiiiÞ þ ð1� dÞEðbbbbbbbiiiiiiiÞ; (30)

where fðbbbbbbbiiiiiiiÞ denotes the fitness function value of the ith
solution. DðbbbbbbbiiiiiiiÞ. EðbbbbbbbiiiiiiiÞ are the delay and energy consumption
for solution bbbbbbbiiiiiii, respectively. d is a dynamic parameter,
which is adjusted according to the following equation:

d ¼ n=NPareto; (31)

here NPareto is a constant that denotes the number of Pareto
fronts, n is an integer and increases from 1 to NPareto. Hence
we have

XNPareto

n¼1

dn ¼ 1: (32)

6606 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 11, NOVEMBER 2023

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 09,2023 at 14:28:22 UTC from IEEE Xplore. Restrictions apply.

To generate a new solution, the following policy is adopted:

bbbbbbbnewnewnewnewnewnewnew ¼ bbbbbbboldoldoldoldoldoldold þ "bA
t; (33)

where "b is a random number obeying a uniform distribu-
tion in ½�1; 1�, here At ¼ At

ib

	

represents the average loud-

ness of all the bats at iteration t.
As the iterations continue, the loudness Aib and the pulse

rate rib updates in accordance with the following equations:

Atþ1
ib ¼ abA

t
ib (34)

rtþ1
i ¼ rti½1þ expgt�; (35)

where ab and gb are constants (0 < ab < 1; gb > 0). At
ib is

the current loudness of bat i, and it changes into Atþ1
ib at

next time step according to Eq. (34), the adjustment of pulse
rate rti follows Eq. (35).

Different from the continuous real search domain, our
variable is binary-valued. Modifications towards the veloc-
ity and position updating policies are made in the discrete
binary search space. Sigmoid transfer function is introduced
to guarantee that the micro bats move in a binary space. The
transfer function is described as follows:

S V
kb
ib ðtÞ

� �
¼ 1

1þ e�V
kb
ib

ðtÞ
; (36)

where V
kb
ib ðtÞ is the velocity of the ith bat in the kbth dimen-

sion at iteration t. With the Sigmoid function calculated
above, the position updating rule is given as follows:

bbbbbbbkiiiiiii ðtÞ ¼
0 If rand < S V

kb
ib ðtÞ

� �

1 If rand
 S V
kb
ib ðtÞ

� �
8<
: ; (37)

where bi
kðtÞ and V

kb
i ðtÞ are the position and velocity of bat i

in dimension kb at time step t.
The proposed iMOB algorithm works as follows. First,

we classify MDs based on their remaining energy levels
using the method proposed in [17], and discard the MDs
with insufficient energy level. Second, we pick the energy-
sufficient computing nodes with the required contents
stored as candidate nodes, then initialize a set of solution
obeying the resource constraints. Third, we generate a set of
new solutions according to Eq. (33). Finally, to approximate
the Pareto fronts, we record the optimal solutions in each
iteration. The proposed iMOB algorithm is summarized in
Algorithm 2.

6 PERFORMANCE EVALUATION

6.1 Experiment Settings and Metrics

We consider a D2D-aidedMEC schemewith an edge server, a
cloud, and M=50 heterogeneous MDs in close proximity. The
edge server has a radius of 200 m and the MDs are scattered
over the coverage region [2], the distance between two MDs
are uniformly distributed in [1, 50] m [36]. The edge server is
equipped with multiple CPU cores and its total computation
capacity is fc=10GHz [21]. Besides, we assume the computing
capability of MDs follows a uniform distribution in [0.9, 1.5]
GHz, each MD is initially allocated with a random energy
level uniformly distributed in [30, 100] percent of battery

level. As the cloud is always equippedwith high-speedmulti-
core CPUs, the computing capacity of the cloud ismuch larger
than the edge node,we consider that the computation delay in
the cloud is negligible [23], [37]. The transmission delay from
MDs to the remote cloud is set as 0.5 s [26]. Each MD is allo-
cated with an equal bandwidth B=20 MHz and the transmit
power of allMDs is set to pi=0.1W. The parametersc1 andc2

are set as 0.34 and 0.35, respectively [27]. The positive decimal
" ensuring battery safety is 0.3. Thewhite Gaussian noise vari-
ance s2=2	 10�13, the channel gain is modeled as Hi;o ¼
127þ 30	 log di;o, where di;o is the the MD i and the comput-
ing node o [3].

Algorithm 2. Improved Multi-Objective Bat Algorithm

Require: Content caching decision aaaaaaa, task index G, MDs and the
edge server,

Ensure: Pareto fronts to task offloading problem
Step 1: MD Classification

1: Classify MDs by their remaining battery level using the
method proposed in [17], discard the MDs with low
remaining energy.
Step 2: Initialization

2: Initialize parameters Aib, ri, fmin, fmax, randomly initialize a
cached content in each MD

3: Pick candidate computing nodes for each MD, factoring in
content caching constraint and remaining energy restriction

4: Initialize population bbbbbbbiiiiiiiði ¼ 1; 2; . . .;NÞ based on candidate
nodes, calculate fitness function values according to Eq. (30),
record the optimal solution b�b�b�b�b�b�b�

5: while n � NPareto do
6: Form a fitness function according to Eqs. (30), (31) and (32)
Step 3: Solution Update

7: Update bat frequency fib according to Eq. (27)
8: Calculate the euclidean distance between current solution

and current best global best solution, then update bat
velocity Vib according to Eq. (28)

9: Update solution bbbbbbbiiiiiii according to Eqs. (36) and (37)
Step 4: New Solution Acceptance

10: if rand < Aib & fðbbbbbbbiiiiiiiÞ < fðb�b�b�b�b�b�b�Þ then
11: Accept the new solutions and update Aib, ri according to

Eqs. (34) and (35), respectively
12: end if
13: Calculate fitness and rank all the solutions, find the

current optimal solution b�b�b�b�b�b�b�

Step 5: Pareto Solution Selection
14: As the bats continue to search, the found optimal solution

set gradually approaches the Pareto front
15: Repeat Step 3 to Step 5 until the maximum number of

iterations is reached
16: end while

We assume there are J=100 contents, and the content
popularity follows Zipf distribution [38]. Specifically, rj ¼
ð1=ja1Þ=PJ

j¼1 1=j
a1 , here a1 is a constant value 0.56 [39], [40].

Besides, the content size are set within [50, 100] kb. The
caching capacities of heterogeneous MDs Cp, Ct and Cl are
set as 1000 Kb, 2000 Kb and 6000 Kb, respectively [24], [41].
The storage capacity of the edge server C is 2 Mb [42]. For
tasks, each MD generates a task demanded either serially or
simultaneously. For analytical simplicity, we assume that
the probability that a task is requested alone is 0.6, the prob-
ability that a task is demanded in parallel with other tasks is

XIAO ETAL.: MULTI-OBJECTIVE PARALLELTASKOFFLOADING AND CONTENTCACHING IN D2D-AIDED MEC NETWORKS 6607

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 09,2023 at 14:28:22 UTC from IEEE Xplore. Restrictions apply.

0.4. Task execution demands the specific contents. Since the
content with higher popularity may be demanded by tasks
many times, we assume that the task type follows identical
distribution with content popularity, i.e., Zipf distribution.
Besides, the traffic size of each task is drawn from the range
of [500, 1000] Kb, the computation intensity is set as 500
cycles/bit, the deadline of tasks is 2 ms [43].

The parameters considered in our algorithms are set as
follows. For the enhanced-BPSO based content caching
algorithm, w=0.8, c1=0.7, c2=0.7, the number of generations,
the maximum dimension are set as 100, 50, respectively. For
iMOB algorithm, the population size N is 10, and the maxi-
mum number of iterations is 1,000. We set fmin, fmin to 0, 2,
respectively. The initial loudness Aib, pulse rate ri, fre-
quency minimum fmin and the frequency maximum fmax

are 0.25, 0.5, 0 and 2, respectively. The number of Pareto
fronts NPareto is 40.

The performance evaluation is carried out based on the
following metrics.

1) The task completion delay, which describes the over-
all delay spending on data transmission and compu-
tation for all tasks.

2) The energy consumption, which represents the over-
all energy cost for transmitting and computing tasks.

3) The offloading ratio, which is the percentage of data
traffic being transmitted to other MDs or the edge
server.

To investigate the efficiency of our D2D-aided MEC off-
loading scheme, we compare our D2D-aided offloading
architecture with the following offloading schemes.

1) Nonoffloading scheme (NO), where tasks are han-
dled by mobile device locally, if the local device is
lack of resource or doe not cache the specific service,
the task will have no choice but to be outsourced to
the remote cloud [44].

2) D2D offloading scheme (DDO), where tasks can be
computed locally or by other MDs in the vicinity. If
neither of the two modes works, the data traffic is
transmitted to the remote cloud [44].

3) Nondelayed offloading scheme (NDO), where tasks
can be processed locally or at the edge, or offloaded
to the cloud [45].

To assess the performance of content caching, we com-
pare our algorithm with the scheme where there is no con-
tent is cached (W/O Caching) in the edge server [20]. In this
case, either MDs with the required contents cached or the
remote cloud is able to execute tasks. The comparison is
conducted based on three metrics, i.e., delay, energy cost
and offloading ratio.

We compare the caching schemes from two aspects. One
is the caching diversity, which is defined as the ratio of
cached content number to the total number of contents.
Another is the storage utilization, which is the ratio of the
occupied storage space of contents to the edge server’s stor-
age capacity.

6.2 Parallel Offloading Performance

We compare the serial task offloading scheme with the par-
allel task offloading architecture. The former one considers

only sequential tasks, while the latter includes parallel task
offloading as well. We introduce three benchmark algo-
rithms. Algorithm 1 is the Lyapunov Optimization-based
Dynamic Computation Offloading (LODCO) Based Greedy
Algorithm proposed in [43]. The LODCO-Based Greedy
algorithm always chooses the computation mode with mini-
mum energy cost for each task, it will not take the delay opti-
mization goal into consideration. Algorithm 2 is Simulated
Annealing (SA) algorithm designed in [46], taking the
weighted sum of delay and energy consumption as a joint
optimization target. In the SA scheme and the LODCO-based
system, neither the content caching method nor the D2D
communication is enabled. Algorithm 3 is the Non-domi-
nated Sorting Genetic Algorithm 2 (NSGA2) used in [17],
which aims at minimizing task completion delay and energy
consumption simultaneously in energy and delay con-
strained MEC environments. In the NSGA2 system, tasks
can be processed by nearby MDs, while offloading tasks to
the edge server is not allowed since the contents are not
cached in the server.

6.2.1 Computational Complexity

The computational complexity of the Greedy algorithm is
MlogM, whereM is the number of tasks. For iMOB, the clas-
sification stage takes constant time OðMÞ. The initialization
stage runs in time OðM2 þM þNMÞ, where N is the num-
ber of bats in each population, OðM2 þMÞ is the running
time of picking candidate nodes for each MD, OðNMÞ is the
time required for population initialization. The generation of
new solutions runs in time OðNParetoMNÞ, where NPareto is
the number of Pareto front solutions. Hence, the running
time of iMOB does not cross OðNParetoMNÞ in the worst case
scenario. Suppose there is a total number of Ks required to
achieve convergence for SA, the time complexity of the kth

iteration is T
jfðk�1Þ�fðkÞj j1� expðjfðk�1Þ�fðkÞj

T Þj, and the total run-

ning time of SA is
PKs

k¼1
T

jfðk�1Þ�fðkÞj j1� expðjfðk�1Þ�fðkÞj
T Þj. For

NSGA2, the time complexities for initialization, selection are
both OðNParetoMNÞ, and the complexities for reproduction
and population update are bothOðNParetoNÞ. Hence, NSGA2
runs in timeOðNParetoMNÞ.

Although Greedy algorithm runs in linearithmic time, the
algorithm does not guarantee the global optima. Both iMOB
and NSGA2 are polynomial algorithms. SA is the most time
consuming algorithm and requires exponential calculation
time.

6.2.2 Impacts of Content Caching and D2D

Communication

Figs. 2 and 3 show the overall task completion delay, energy
consumption and offloading ratiowith different task sequen-
ces. Specifically, the results in Fig. 2 are obtained under serial
task offloading scheme, Fig. 3 depicts the scenario where
tasks are sometimes generated in parallel.

As illustrated in Figs. 2a, 2b and Figs. 3a, 3b, the delay
cost and energy cost rise with the increase of MDs (compu-
tation tasks). The proposed iMOB algorithm can achieve the
lowest cost in most cases. For example, in Fig. 2a, when the
number of MDs reaches 50, the task completion delay for
sequential task offloading model under iMOB is 4.283, while

6608 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 11, NOVEMBER 2023

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 09,2023 at 14:28:22 UTC from IEEE Xplore. Restrictions apply.

rising to 7.859, 6.543 and 5.900 under Greedy, SA and
NSGA2, respectively, thereby decreasing the delay cost by
about 45%, 35% and 27% compared with Greegy, SA and
NSGA2, respectively. Similarly, as shown in Fig. 2b, the
energy consumption for serial tasks are cut down by 56%,
44% and 38% compared with Greegy, SA and NSGA2,
respectively. It can be observed that iMOB slightly outper-
forms the other three algorithms when the MD number is
small, i.e., less than 50. This is because, when the search
space is small, these algorithms incorporating the similar
idea of random walking are able to find the optimal solution
given the proper iteration number. The performance of
iMOB is stable when the number of MDs grows, i.e., greater
than 100. For example, in Fig. 2a, the delay and energy costs
are as low as 20 s and 2.6 J when the number of MDs is 200,
meaning that each MD only tasks about 1 s and 0.013 J to
finish the computationally intensive tasks. This is due to the
fact that, iMOB dismisses MDs with low battery level to
reduce the search complexity, and ranks the solutions
according to their fitness values in order to ensure the popu-
lation evolves after each generation.

The reduced delay and energy cost are also credited to
the content caching scheme and D2D communication. The
NSGA2 algorithm does not introduce the content caching
scheme, and the computing resources of the edge server
remain unexploited. Unlike NSGA2, the iMOB algorithm
enables content caching at the edge, the MD does not need
to offload the task to the remote cloud if the content is
unavailable locally or in nearby MDs. More resources are
provided for the computation tasks. The LODCO-based
Greedy algorithm adopt neither D2D communication nor

content caching scheme, the only way left for task process-
ing is to upload the data to the remote cloud, if the content
is not cached locally. Hence, higher delay and energy con-
sumption are incurred.

The combination of D2D communication and content
caching enables offloading tasks to nearby MDs and edge
server, thereby improving task offloading ratio. As shown
in Figs. 2c and 3c, the offloading ratio under iMOB is always
the highest of the four algorithms, and the parallel task off-
loading ratio under iMOB stabilizes at round 94%. This is
because, under the parallel task offloading scheme, the MDs
are unable to handle all the simultaneously generated tasks
locally, due to their limited computing resources and stor-
age capacities. In this case, few tasks are executed locally,
most tasks are offloaded to other computing nodes or the
cloud for lower costs.

6.2.3 Parallel Offloading and Serial Offloading

As presented in Figs. 2a and 3a, the delay with parallel task
offloading scheme is lower than that under sequential task
offloading model. For example, when the number of MDs is
100, the overall latency under Greedy, SA, NSGA, iMOB in
sequential cases are 14.72, 15.00, 10.26 and 10.20, respec-
tively, while those in parallel cases are 14.48, 13.41, 7.77 and
7.72, respectively. Thereby, the latency for parallel task off-
loading under Greedy, SA, NSGA, iMOB are declined by
1,6%, 10.6%, 23.8% and 24.3%, respectively.

The improvement of delay can be seen in Fig. 4. This is
because, parallel offloading scheme allows the computing
nodes to execute tasks simultaneously, thereby saving the

Fig. 2. Delay, energy consumption and offloading ratio in serial offloading scheme.

Fig. 3. Delay, energy consumption and offloading ratio in parallel offloading scheme.

XIAO ETAL.: MULTI-OBJECTIVE PARALLELTASKOFFLOADING AND CONTENTCACHING IN D2D-AIDED MEC NETWORKS 6609

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 09,2023 at 14:28:22 UTC from IEEE Xplore. Restrictions apply.

queuing delay. In the sequential offloading scheme, the
tasks have to be processed one by one, the delay is pro-
longed. However, as shown in Fig. 5, the impact of parallel
offloading on the system’s energy cost is little, this is due to
the fact that, the energy spent on uploading data and proc-
essing does not change, either under parallel task offloading
scheme or sequential task offloading scheme.

6.2.4 Evaluation of Offloading Schemes

Fig. 6 presents the results of delay, energy consumption and
offloading ratio with different offloading structures. Specifi-
cally, our D2D-aided MEC scheme is compared with NO,
DDO and NDO schemes.

Figs. 6a and 6b show that the delay and energy cost of
NO are much more higher than the other three schemes.
Associating the fact that local computing mode is inferior
since MDs choose to process tasks locally. Besides, as illus-
trated in Fig. 6a, the delay of DDO is lower than that of
NDO when the number of MDs is small. As the the number
of tasks continues to grow, NDO outperforms DDO in terms
of delay cost. This is due to the fact that, when task traffic
grows beyond the capacity of MDs, offloading tasks to the
edge shows its efficiency because of its considerable com-
puting resource. By comparison, iMOB scheme performs
better than the benchmark algorithms for decreasing task
completion latency.

As depicted in Fig. 6b, the energy cost of iMOB stays low-
est, while the energy consumption under NO grows drasti-
cally. To be precise, when the number of MDs increases from
60 to 80, the growth rates of energy cost under NO, DDO,
NDO and iMOB are 5.0%, 4.5%, 2.6% and 0.8%, respectively.
For slowing down the growth of energy cost, our D2D-aided
MEC offloading scheme is better than others.

The offloading ratio of NO is 0, while nearly 95% tasks are
offloaded in the other three schemes. This is because NO
adopts such amodel that offloading tasks to other computing
nodes is not allowed. Moreover, when the number of MDs
increases to 100, the offloading ratio is nearly 100%. This is
because offloading tasks can greatly reduce both delay cost
and energy consumptionwhen the data traffic is heavy.

6.2.5 Pareto Fronts

Since Pareto fronts are generated by both NSGA2 and
iMOB, we compare the two algorithms in this regard. Fig. 5

shows Pareto solutions of NSGA2 and iMOB when the
number of MDs increases from 50 to 100. To investigate the
impact of iterations on Pareto fronts, iterative simulations
are conducted for iMOB-based Pareto solutions.

Figs. 7a, 7b and 7c plot the Pareto solutions ofNSGA2 and
iMOB with 50 MDs, 75 MDs and 100 MDs, respectively. In
particular, to find Pareto optimum, the iMOB algorithm runs
for 100, 200 and 300 iterations, respectively. We fix the num-
ber ofNSGA2 iterations to 300. It is straightforward to see that
the values of energy consumption and task completion delay
increases with the growth in the number of MDs. Besides,
increasing the number of iterations helps finding better Pareto
solutions. Take the case with 100MDs as an example, the Par-
eto fronts move towards the original point when the number
of iterations increase from 100 to 200, and then to 300. The
iMOB algorithm shows lower values of delay and energy con-
sumption, compared to theNSGA2 approach.

6.3 Caching Performance

6.3.1 Evaluation of Caching Schemes

To assess the performance of our caching-at-the-edge
scheme, we compare our algorithm with the scheme in
which no content is cached in the edge server. Since proc-
essing tasks needs specific contents, if there is no content
cached in the edge, only MDs with the required contents
cached are capable of processing tasks. Besides, adequate
resources is needed as well. If neither of the requirements is
needed, the tasks will have to be outsourced to the cloud.

As shown in Figs. 8a and 8b, the latency, along with the
energy cost, is significantly reduced when contents are pro-
actively cached at the edge. The cost gap between the two
schemes is widened with the growth of MDs. For example,
the gaps in terms of delay and energy cost reach 7.05 s,
0.8203 J, respectively. This is attributed to the constrained
computation and storage resources in the MDs. In Fig. 8c,
the offloading ratio rises with the growth of MDs. It is
shown that the ratio under iMOB is considerably lower than
that under the no caching scheme in the beginning. This is
due to the fact that edge node is not available since it is not
configured with contents, many tasks have to be processed
locally. Besides, the ratio of iMOB keeps above 0.92, and
rises slowly to 100%. Our caching-at-the-edge scheme out-
performs the other caching modes when it comes to mini-
mizing task costs and maximizing offloading ratio.

Fig. 4. Completion delay with different offloading methods. Fig. 5. Energy cost with different offloading methods.

6610 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 11, NOVEMBER 2023

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 09,2023 at 14:28:22 UTC from IEEE Xplore. Restrictions apply.

6.3.2 Caching Efficiency

We evaluate the efficiency our content caching algorithm in
terms of storage utilization and convergence speed. Fig. 9
shows that when the total number of content reaches 100, the
algorithm converges fast at iteration 5. Moreover, the
resource utilization is up to 91%when J is 120. That’s because
during the iterations, each solution learns from the global
optimum and the local optimum, and accordingly updates
itself repeatedly. With the inertia weight introduced, the
solution converges fast towards the global best solution. The
global best solution guarantees the maximization of overall
content popularity, meanwhile fully utilizing the edge serv-
er’s storage capacity. As a result, the caching efficiency is sig-
nificantly enhanced.

6.4 Algorithm Improvement

6.4.1 Enhanced BPSO

Wecompare the proposed enhancedBPSOalgorithmwith the
baselines, i.e., the original BPSO algorithm and the modified
versions of BPSO presented in [47]. The modified versions of
BPSO algorithm are presented as follows. The velocity-modified
BPSO algorithm modifies the particle position equation, so
that the velocity of a particle is divided into three regions.
According to the current region of the particle’s velocity, the
state of the particle being 0, 1 or unchanged. Thismodification
aims at decreasing the probability of the algorithm falling
into a local optimum. The position-improved BPSO algorithm
updates the particle position such that part of the particles
move away from the so-far found global optima. The aim is to

Fig. 7. Pareto solutions with different MD numbers.

Fig. 6. Delay, energy consumption and offloading ratio in different MEC schemes.

Fig. 8. Delay, energy consumption and offloading ratio in different caching schemes.

XIAO ETAL.: MULTI-OBJECTIVE PARALLELTASKOFFLOADING AND CONTENTCACHING IN D2D-AIDED MEC NETWORKS 6611

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 09,2023 at 14:28:22 UTC from IEEE Xplore. Restrictions apply.

avoid falling into local optima and to enhance the search abil-
ity. The sigmoid-modified BPSO algorithm changes the sigmoid
function to improve the probabilities for large positive and
negative velocities. By doing so, each particle’s velocity value
is updated separately in the N-dimensional search space. The
weight-altered BPSO suggests an inertia weight equation that
prevents the original PSO from being prematurely trapped in
a local optimum.

As shown in Figs. 10a and 10b, the enhanced BPSO algo-
rithm is able to cache as many popular contents as possible,
and in the meantime make the most of the edge server’s stor-
age space within the minimum running time. The overall
popularity of the cached contents of the enhanced BPSO algo-
rithm is up to 61% in the fifth iteration. The storage utility of
the enhanced BPSO algorithm is close to 100%when the itera-
tion number reaches 15, indicating that the storage space of
the edge server is fully utilized, and the caching efficiency is
at the utmost level. As shown in Fig. 10c, the running time of
the enhanced BPSO algorithm remains at the lowest level of
the six BPSO algorithms, and does not exceed 1s even when
the number of contents increases to 200. The running time is
decreased by 87.2% compared to that of the velocity-modified
BPSO algorithm. Besides, the proposed enhanced BPSO algo-
rithm provides a reasonable caching strategy within the mini-
mum amount of time. This is because the proposed algorithm
has the self-adapting inertia weight to balance between explo-
ration and exploitation, and the current best particle goes
through a re-initialization process to avoid the stagnation of
evolution. Although the velocity-modified BPSO algorithm
and the position-improved BPSO algorithm outperform the

original BPSO in terms ofmoving away from the local optimal
particle, the running time is increased as well, because of the
complicated position update rules. The sigmoid-modified
BPSO algorithm and the weight-altered BPSO algorithm con-
sume less time compared to the original BPSO algorithm, yet
their capabilities of finding global optima are degraded in
comparison with the proposed algorithm and the velocity-
modified BPSO algorithm.

6.4.2 iMOB

We compare the proposed iMOB algorithm with other bat
algorithms (BAs), i.e., the original BA proposed in [48], the
modified BAs presented in [49]. The modifications are made
with regard to the parameters (e.g., loudness and pulse
emission), the weight factor and the update of solutions.
The parameter-updated BA utilizes the update strategies for
both pulse rate and loudness in order to improve the explo-
ration mechanism. Different from the original bat algorithm
using a constant inertia weight factor to balance local and
global search during velocity update, the weight-dynamic
BA proposes a dynamic inertia weight strategy to control
the magnitude of the velocity. Instead of depending on the
loudness, the velocity-based BA updates the solution based
on the velocity. The probability-introduced BA generates new
solutions with a given probability, and accepts the solution
if it is improved, or if the loudness of the bat is greater than
a random value.

As shown in Fig. 11a, the proposed iMOB is able to
schedule the computationally intensive tasks with the low-
est delay cost of 4.38 s, and the lowest energy cost of 0.211 J
within 260 iterations. Although the original bat algorithm
converges slightly faster within around 160 iterations, the
solution found by the original bat algorithm is inferior to
that of iMOB, and it takes more time to find the solution, as
shown in Fig. 11c. The parameter-updated bat algorithm
consumes more running time than iMOB. This is because,
the lack of MD classification enlarges the search space, and
degrades the solution quality. Instead, our proposed iMOB
discards the inferior solutions before the population
updates, thereby leading to the fast convergence. As shown
in Figs. 11a and 11b, compared to iMOB, the weight-
dynamic BA and the velocity-based BA schedule the tasks
with higher costs of 4.45 s and 0.3 J, 4.57 s and 0.475 J,
respectively. This is owing to the fact that, these algorithms
accept new solutions merely by a random value, without
considering the improvement of the fitness. Although the

Fig. 9. Resource utilization with different content numbers.

Fig. 10. Performance of the enhanced BPSO in comparison with different bat algorithms.

6612 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 11, NOVEMBER 2023

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 09,2023 at 14:28:22 UTC from IEEE Xplore. Restrictions apply.

capability of exploration is enhanced, these algorithms fail
to ensure the bats moving towards better positions. The
probability-introduced BA finds the offloading solution
with the delay cost of 4.4 s and the energy consumption of
0.28 J, which are greater than those of iMOB by 0.02 s and
0.069 J, respectively. For one thing, our proposed iMOB dis-
cards inferior solutions by classification before the solution
generation, and accepts a new solution if its fitness value is
better. This makes sure the population evolves. For another
thing, the proposed iMOB explores the search space by
accepting an inferior solution with the probability related to
its loudness, which enhances the algorithm’s capability of
moving towards the true Pareto front.

7 CONCLUSION

In this paper, we investigate a joint content caching and task
offloading problem in D2D-aided MEC networks, with the
goal of jointly optimizing task completion delay and energy
consumption. Both serial and parallel task offloading are
considered. To address the content caching subproblem, we
design an enhanced BPSO algorithm, which can effectively
find the global optimal caching strategy. To solve the task
offloading subproblem, an iMOB algorithm is proposed,
which can find a set of high-quality Pareto fronts. The experi-
mental results show that our algorithm outperforms bench-
marks in terms of finding optimal solutions. In the future, we
will devote to studying the collaboration between neighbor-
ing edge servers in the parallel task offloading.

REFERENCES

[1] R. Zhang, F. R. Yu, J. Liu, T. Huang, and Y. Liu, “Deep reinforce-
ment learning (DRL)-based device-to-device (D2D) caching with
blockchain and mobile edge computing,” IEEE Trans. Wireless
Commun., vol. 19, no. 10, pp. 6469–6485, Oct. 2020.

[2] J. Wu, J. Zhang, Y. Xiao, and Y. Ji, “Cooperative offloading in
D2D-enabled three-tier MEC networks for IoT,” Wireless Commun.
Mobile Comput., vol. 2021, pp. 1–13, Aug. 2021.

[3] Z. Chen and Z. Zhou, “Dynamic task caching and computation
offloading for mobile edge computing,” in Proc. IEEE Glob. Com-
mun. Conf., 2020, pp. 1–6.

[4] R. Fantacci and B. Picano, “Performance analysis of a delay con-
strained data offloading scheme in an integrated cloud-fog-edge
computing system,” IEEE Trans. Veh. Technol., vol. 69, no. 10,
pp. 12 004–12 014, Oct. 2020.

[5] Z. Zhang and W. Hao, “Development of a new cloudlet content
caching algorithm based on web mining,” in Proc. IEEE 8th Annu.
Comput. Commun. Workshop Conf., 2018, pp. 329–335.

[6] Y. Hao, M. Chen, L. Hu, M. S. Hossain, and A. Ghoneim, “Energy
efficient task caching and offloading for mobile edge computing,”
IEEE Access, vol. 6, pp. 11365–11373, 2018.

[7] Y. Lan, X. Wang, D. Wang, Z. Liu, and Y. Zhang, “Task caching,
offloading, and resource allocation in D2D-aided fog computing
networks,” IEEE Access, vol. 7, pp. 104 876–104 891, 2019.

[8] Z. Liu, Y. Yang, K. Wang, Z. Shao, and J. Zhang, “POST: Parallel
offloading of splittable tasks in heterogeneous fog networks,”
IEEE Internet Things J., vol. 7, no. 4, pp. 3170–3183, Apr. 2020.

[9] G. Lee, W. Saad, and M. Bennis, “An online optimization frame-
work for distributed fog network formation with minimal
latency,” IEEE Trans.Wireless Commun., vol. 18, no. 4, pp. 2244–2258,
Apr. 2019.

[10] K. Guo, M. Sheng, T. Q. S. Quek, and Z. Qiu, “Task offloading and
scheduling in fog RAN: A parallel communication and computa-
tion perspective,” IEEE Wireless Commun. Lett., vol. 9, no. 2,
pp. 215–218, Feb. 2020.

[11] G. Zhao, H. Xu, Y. Zhao, C. Qiao, and L. Huang, “Offloading
dependent tasks in mobile edge computing with service caching,”
in Proc. IEEE Conf. Comput. Commun., 2020, pp. 1997–2006.

[12] S. Bi, L. Huang, and Y.-J. A. Zhang, “Joint optimization of service
caching placement and computation offloading in mobile edge
computing systems,” IEEE Trans. Wireless Commun., vol. 19, no. 7,
pp. 4947–4963, Jul. 2020.

[13] S. Kim, E. Go, Y. Song, H. Cho, M. Rim, and C. G. Kang, “A study
on D2D caching systems with mobile helpers,” in Proc. 10th Int.
Conf. Ubiquitous Future Netw., 2018, pp. 630–633.

[14] S. M€uller, O. Atan, M. van der Schaar, and A. Klein, “Context-
aware proactive content caching with service differentiation in
wireless networks,” IEEE Trans. Wireless Commun., vol. 16, no. 2,
pp. 1024–1036, Feb. 2017.

[15] S. Zhang, P.He,K. Suto, P. Yang, L. Zhao, andX. Shen, “Cooperative
edge caching in user-centric clustered mobile networks,” IEEE
Trans.Mobile Comput., vol. 17, no. 8, pp. 1791–1805, Aug. 2018.

[16] Y. Miao, Y. Hao, M. Chen, H. Gharavi, and K. Hwang, “Intelligent
task caching in edge cloud via bandit learning,” IEEE Trans. Netw.
Sci. Eng., vol. 8, no. 1, pp. 625–637, Jan.–Mar. 2021.

[17] A. Bozorgchenani, F. Mashhadi, D. Tarchi, and S. A. S. Monroy,
“Multi-objective computation sharing in energy and delay con-
strained mobile edge computing environments,” IEEE Trans.
Mobile Comput., vol. 20, no. 10, pp. 2992–3005, Oct. 2021.

[18] K. Guo, R. Gao, W. Xia, and T. Q. S. Quek, “Online learning based
computation offloading in MEC systems with communication
and computation dynamics,” IEEE Trans. Commun., vol. 69, no. 2,
pp. 1147–1162, Feb. 2021.

[19] X. Ma, A. Zhou, S. Zhang, Q. Li, A. X. Liu, and S. Wang, “Dynamic
task scheduling in cloud-assisted mobile edge computing,” IEEE
Trans. Mobile Comput., early access, Sep. 24, 2021, doi: 10.1109/
TMC.2021.3115262.

[20] Y. Wang, K. Wang, H. Huang, T. Miyazaki, and S. Guo, “Traffic
and computation co-offloading with reinforcement learning in fog
computing for industrial applications,” IEEE Trans. Ind. Informat.,
vol. 15, no. 2, pp. 976–986, Feb. 2019.

[21] M. Liu, R. Yu, Y. Teng, and M. Song, “Computation offloading
and content caching in wireless blockchain networks with mobile
edge computing,” IEEE Trans. Veh. Technol., vol. 67, no. 11,
pp. 11 008–11 021, Nov. 2018.

[22] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task off-
loading for mobile edge computing in dense networks,” in Proc.
IEEE Conf. Comput. Commun., 2018, pp. 207–215.

[23] X. Ma, A. Zhou, S. Zhang, and S. Wang, “Cooperative service
caching and workload scheduling in mobile edge computing,” in
Proc. IEEE Conf. Comput. Commun., 2020, pp. 2076–2085.

Fig. 11. Performance of the iMOB in comparison with different bat algorithms.

XIAO ETAL.: MULTI-OBJECTIVE PARALLELTASKOFFLOADING AND CONTENTCACHING IN D2D-AIDED MEC NETWORKS 6613

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 09,2023 at 14:28:22 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1109/TMC.2021.3115262
https://doi.org/10.1109/TMC.2021.3115262

[24] Z. Chen and M. Kountouris, “D2D caching vs. small cell caching:
Where to cache content in a wireless network?,” in Proc. IEEE 17th
Int. Workshop Signal Process. Adv. Wireless Commun., 2016, pp. 1–6.

[25] W. Jiang, G. Feng, and S. Qin, “Optimal cooperative content caching
and delivery policy for heterogeneous cellular networks,” IEEE
Trans.Mobile Comput., vol. 16, no. 5, pp. 1382–1393,May 2017.

[26] L. Liu, Z. Chang, and X. Guo, “Socially aware dynamic computation
offloading scheme for fog computing systemwith energy harvesting
devices,” IEEE Internet Things J., vol. 5, no. 3, pp. 1869–1879,
Jun. 2018.

[27] M. Chen, S. Guo, K. Liu, X. Liao, and B. Xiao, “Robust computa-
tion offloading and resource scheduling in cloudlet-based mobile
cloud computing,” IEEE Trans. Mobile Comput., vol. 20, no. 5,
pp. 2025–2040, May 2021.

[28] H. Jiang, Z. Xiao, Z. Li, J. Xu, F. Zeng, and D. Wang, “An energy-
efficient framework for Internet of Things underlaying heteroge-
neous small cell networks,” IEEE Trans. Mobile Comput., vol. 21,
no. 1, pp. 31–43, Jan. 2022.

[29] Z. Xiao et al., “Spectrum resource sharing in heterogeneous vehic-
ular networks: A noncooperative game-theoretic approach with
correlated equilibrium,” IEEE Trans. Veh. Technol., vol. 67, no. 10,
pp. 9449–9458, Oct. 2018.

[30] J. Gupta and A. Mahajan, “BPSO optimized k-means clustering
approach for data analysis,” Int. J. Comput. Appl., vol. 133, pp. 9–14,
2016.

[31] X.-S. Yang, “Bat algorithm for multi-objective optimisation,” Int. J.
Bio-Inspired Comput., vol. 3, pp. 267–274, 2012.

[32] Z.-Z. Liu, B.-C. Wang, and K. Tang, “Handling constrained multi-
objective optimization problems via bidirectional coevolution,”
IEEE Trans. Cybern., early access, Apr. 06, 2021, doi: 10.1109/
TCYB.2021.3056176.

[33] X.-S. Yang, “Bat algorithm for multi-objective optimisation,” Int. J.
Bio-Inspired Comput., vol. 9, pp. 20 100–20 116, 2021.

[34] X. Ma and J.-S. Wang, “Optimized parameter settings of binary
bat algorithm for solving function optimization problems,” J.
Elect. Comput. Eng., vol. 9, pp. 267–274, 2018.

[35] L. Wei, “A simple way to compute minimum euclidean distance
for synchronous coded multiuser systems,” IEEE Commun. Lett.,
vol. 2, no. 5, pp. 120–121, May 1998.

[36] A. Akbar, R. Ahmad, W. Ahmed, M. Magarini, and M. Alam,
“Managing critical nodes in UAV assisted disaster networks,” in
Proc. 17th Biennial Baltic Electron. Conf., 2020, pp. 1–5.

[37] T. Liu, L. Fang, Y. Zhu, W. Tong, and Y. Yang, “A near-optimal
approach for online task offloading and resource allocation in
edge-cloud orchestrated computing,” IEEE Trans. Mobile Comput.,
vol. 21, no. 8, pp. 2687–2700, Aug. 2022.

[38] K. Poularakis, G. Iosifidis, V. Sourlas, and L. Tassiulas, “Exploiting
caching and multicast for 5G wireless networks,” IEEE Trans. Wire-
less Commun., vol. 15, no. 4, pp. 2995–3007, Apr. 2016.

[39] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Computation
offloading and resource allocation in wireless cellular networks
with mobile edge computing,” IEEE Trans. Wireless Commun.,
vol. 16, no. 8, pp. 4924–4938, Aug. 2017.

[40] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “FemtoCaching: Wireless content delivery through dis-
tributed caching helpers,” IEEE Trans. Inf. Theory, vol. 59, no. 12,
pp. 8402–8413, Dec. 2013.

[41] L. Li et al., “Deep reinforcement learning approaches for content
caching in cache-enabled D2D networks,” IEEE Internet Things J.,
vol. 7, no. 1, pp. 544–557, Jan. 2020.

[42] Q. Li, Y. Zhang, A. Pandharipande, Y. Xiao, and X. Ge, “Edge
caching in wireless infostation networks: Deployment and cache
content placement,” in Proc. IEEE Conf. Comput. Commun. Work-
shops, 2019, pp. 1–6.

[43] H. Zhao, W. Du, W. Liu, T. Lei, and Q. Lei, “QoE aware and cell
capacity enhanced computation offloading for multi-server
mobile edge computing systems with energy harvesting devices,”
in Proc. IEEE SmartWorld, Ubiquitous Intell. Comput., Adv. Trusted
Comput., Scalable Comput. Commun., Cloud Big Data Comput., Inter-
net People Smart City Innov., 2018, pp. 671–678.

[44] Y. He, M. Chen, B. Ge, and M. Guizani, “On WiFi offloading in
heterogeneous networks: Various incentives and trade-off strat-
egies,” IEEE Commun. Surveys Tuts., vol. 18, no. 4, pp. 2345–2385,
Oct.–Dec. 2016.

[45] M. H. Cheung and J. Huang, “DAWN: Delay-aware Wi-Fi offload-
ing and network selection,” IEEE J. Sel. Areas Commun., vol. 33,
no. 6, pp. 1214–1223, Jun. 2015.

[46] Y. Li, “Optimization of task offloading problem based on simu-
lated annealing algorithm in MEC,” in Proc. 9th Int. Conf. Intell.
Comput. Wireless Opt. Commun., 2021, pp. 47–52.

[47] M. Elbes, S. AlZu’bi, T. Kanan, A. Al-Fuqaha, and B. Hawashin, “A
survey on particle swarm optimizationwith emphasis on engineering
and network applications,” Evol. Intell., vol. 12, pp. 113–129, Jun. 2019.

[48] S. Mirjalili, S. M. Mirjalili, and X.-S. Yang, “Binary bat algorithm,”
Neural Comput. Appl., vol. 25, no. 3, pp. 663–681, Sep. 2014.
[Online]. Available: https://doi.org/10.1007/s00521–013-1525-5

[49] T. Agrawal and V. Chahar, “A systematic review on bat algo-
rithm: Theoretical foundation, variants, and applications,” Arch.
Comput. Methods Eng., vol. 29, pp. 2707–2736, Oct. 2021.

Zhu Xiao (Senior Member, IEEE) received the MS
and PhD degrees in communication and informa-
tion system from Xidian University, China, in 2007
and 2009, respectively. From 2010 to 2012, he was
a research fellowwith the Department of Computer
Science and Technology, University of Bedford-
shire, U.K. He is currently an associate professor
with the College of Computer Science and Elec-
tronic Engineering, Hunan University, China. His
research interests includemobile communications,
wireless localization, Internet of Vehicles, and tra-
jectory datamining.

Jinmei Shu received the BS degree in communi-
cation engineering from Jishou University, Jishou,
China, in 2021. She is currently working toward
the MS degree in information and communication
engineering with Hunan University, Changsha,
China. Her current research interests include
connected and autonomous vehicles and mobile
edge computing.

Hongbo Jiang (Senior Member, IEEE) received
the PhD degree from CaseWestern Reserve Uni-
versity, in 2008. He is currently a full professor
with the College of Computer Science and Elec-
tronic Engineering, Hunan University. He was a
professor with the Huazhong University of Sci-
ence and Technology. His research includes com-
puter networking, especially algorithms and
protocols for wireless and mobile networks. He
was the editor of IEEE/ACM Transactions on Net-
working, the associate editor for IEEE Transac-

tions on Mobile Computing, and the associate technical editor for IEEE
Communications Magazine. He is an elected member of Academia
Europaea, fellow of IET, fellow of BCS, and fellow of AAIA.

John C. S. Lui (Fellow, IEEE) received the PhD
degree in computer science from the University of
California, Los Angeles, California, in 1992. He is
currently the Choh-Ming Li professor with the
Department of Computer Science and Engineer-
ing, The Chinese University of Hong Kong (CUHK),
Hong Kong. He was the chairman of the depart-
ment from 2005 to 2011. His current research inter-
ests are in communication networks, network/
system security (e.g., cloud security, mobile secu-
rity, etc.), network economics, network sciences

(e.g., online social networks, information spreading, etc.), cloud computing,
large-scale distributed systems, and performance evaluation theory. He is
an electedmember of the IFIPWG7.3, a fellowof the Association for Com-
puting Machinery (ACM), a senior research fellow of the Croucher Founda-
tion, and was the chair of the ACM SIGMETRICS. He has been serving on
the editorial boards of the IEEE/ACM Transactions on Networking, IEEE
Transactions onComputers, IEEETransactions onParallel andDistributed
Systems, Performance Evaluation, and the International Journal of Net-
work Security. He received various departmental teaching awards and the
CUHKVice-ChancellorsExemplary TeachingAward.He is also a co-recipi-
ent of the Best Paper Award in the IFIP WG 7.3 Performance 2005, IEEE/
IFIP NOMS2006, and SIMPLEX 2013.

6614 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 11, NOVEMBER 2023

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 09,2023 at 14:28:22 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1109/TCYB.2021.3056176
https://doi.org/10.1109/TCYB.2021.3056176
https://doi.org/10.1007/s00521--013-1525-5

Geyong Min received the BSc degree in com-
puter science from the Huazhong University of
Science and Technology, China, in 1995, and the
PhD degree in computing science from theUniver-
sity of Glasgow, U.K., in 2003. He is a professor of
high performance computing and networking with
the Department of Computer Science, College of
Engineering, Mathematics and Physical Scien-
ces, University of Exeter, U.K. His research inter-
ests include future internet, computer networks,
wireless communications, multimedia systems,

information security, high performance computing, ubiquitous computing,
modelling and performance engineering.

Jiangchuan Liu (Fellow, IEEE) received the BEng
degree (cum laude) from Tsinghua University, Bei-
jing, China, in 1999, and the PhD degree from The
Hong Kong University of Science and Technology,
in 2003, both in computer science. He is a Univer-
sity professor with the School of Computing Sci-
ence, Simon Fraser University, British Columbia,
Canada. He is a fellow of The Canadian Academy
of Engineering, and an NSERC E.W.R. Steacie
Memorial fellow. He was an EMCEndowed visiting
chair professor of Tsinghua University (2013-

2016). In the past, he worked as an assistant professor with The Chinese
University of Hong Kong and as a research fellow with Microsoft Research
Asia. He is a corecipient of the inaugural Test of Time Paper Award of
IEEE INFOCOM (2015), ACM SIGMM TOMCCAP Nicolas D. Georganas
Best Paper Award (2013), and ACMMultimedia Best Paper Award (2012).
His research interests include multimedia systems and networks, cloud
and edge computing, social networking, online gaming, and Internet of
Things/RFID/backscatter. He has served on the editorial boards of IEEE/
ACM Transactions on Networking, IEEE Transactions on Big Data, IEEE
Transactions on Multimedia, IEEE Communications Surveys and Tutori-
als, and IEEE Internet of Things Journal. He is a steering committeemem-
ber of IEEE Transactions on Mobile Computing and steering committee
chair of IEEE/ACM IWQoS (2015-2017). He is TPC co-chair of IEEE
INFOCOM–2021.

Schahram Dustdar (Fellow, IEEE) received the
PhDdegree in business informatics from theUniver-
sity of Linz, Austria, in 1992.He is currently a full pro-
fessor of computer science heading the Research
Division of Distributed Systems, TU Wien, Austria.
He holds several honorary positions: University of
California (USC) at LosAngeles;MonashUniversity,
Melbourne; Shanghai University; Macquarie Univer-
sity, Sydney; University Pompeu Fabra, Barcelona,
Spain. From December 2016 to January 2017, he
was a visiting professor with theUniversity of Sevilla,

Spain, and from January to June 2017, he was a visiting professor with UC
Berkeley. He has an H-index of 78 with more than 36,000 citations. He is an
elected member of the Academia Europaea: The Academy of Europe,
where he is the chairperson of the Informatics Section. He is an Asia-Pacific
Artificial Intelligence Association (AAIA) fellow (2021). He was a recipient of
multiple awards, IEEE TCSVCOutstanding Leadership Award (2018), IEEE
TCSC Award for Excellence in Scalable Computing (2019), ACM distin-
guished scientist (2009), ACM distinguished speaker (2021), and IBM Fac-
ulty Award (2012). He is the founding co-editor-in-chief ofACMTransactions
on Internet of Things (ACM TIoT) aswell as the editor-in-chief ofComputing
(Springer). He is an associate editor of the IEEE Transactions on Services
Computing, IEEE Transactions on Cloud Computing, ACMComputing Sur-
veys, ACM Transactions on the Web, and ACM Transactions on Internet
Technology, as well as on the editorial board of IEEE Internet Computing
and IEEEComputer.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

XIAO ETAL.: MULTI-OBJECTIVE PARALLELTASKOFFLOADING AND CONTENTCACHING IN D2D-AIDED MEC NETWORKS 6615

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 09,2023 at 14:28:22 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

