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Computing is a critical driving force in the development of human civilization. In recent years, we have 
witnessed the emergence of intelligent computing, a new computing paradigm that is reshaping traditional 
computing and promoting digital revolution in the era of big data, artificial intelligence, and internet 
of things with new computing theories, architectures, methods, systems, and applications. Intelligent 
computing has greatly broadened the scope of computing, extending it from traditional computing on 
data to increasingly diverse computing paradigms such as perceptual intelligence, cognitive intelligence, 
autonomous intelligence, and human–computer fusion intelligence. Intelligence and computing have 
undergone paths of different evolution and development for a long time but have become increasingly 
intertwined in recent years: Intelligent computing is not only intelligence oriented but also intelligence driven. 
Such cross-fertilization has prompted the emergence and rapid advancement of intelligent computing. 
Intelligent computing is still in its infancy, and an abundance of innovations in the theories, systems, 
and applications of intelligent computing is expected to occur soon. We present the first comprehensive 
survey of literature on intelligent computing, covering its theory fundamentals, the technological fusion 
of intelligence and computing, important applications, challenges, and future perspectives. We believe 
that this survey is highly timely and will provide a comprehensive reference and cast valuable insights 
into intelligent computing for academic and industrial researchers and practitioners.

Introduction

Human society is ushering into an intelligent society from an 
information society, in which computing has become a key 
element in formulating and promoting the development of 
society. In the new era of digital civilization with the internet 
of all things, traditional computing on data is far from being 
able to meet the growing endeavor for a higher level of intelli-
gence by humans. The growing interest in intelligent comput-
ing, coupled with the development of computing science, the 

intelligent perception of the physical world, and the under-
standing of the cognitive mechanism of human consciousness, 
has collectively elevated the intelligence level of computing and 
accelerated the discovery and creation of knowledge.

Recent years have witnessed the rapid development of com-
puting and information technology (IT), from which artificial 
intelligence (AI) has been established as the frontier of human 
exploration of machine intelligence because of the unprece-
dented popularity and success of deep learning. Based on this, 
a series of breakthrough research results have been produced, 
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including the convolutional neural network (CNN) proposed 
by Yann LeCun and contributions by Yoshua Bengio in the area 
of causal inference in deep learning [1,2]. Geoffrey Hinton, one 
of the pioneers of AI, proposed the deep belief network model 
and the backward propagation optimization algorithm in 2006 
[3]. Jürgen Schmidhuber, another maked AI researcher, pro-
posed the most widely used recurrent neural network (RNN), 
long short-term memory (LSTM) [4]. It has been successfully 
applied in many fields to process entire sequences of data, such 
as speech, video, and time-series data. In March 2016, AlphaGo, 
an AI Go program launched by DeepMind, battled with Lee 
Sedol, the world’s top human Go master, and has attracted 
unprecedented worldwide attention. This epoch-making man–
machine battle ended with a crushing victory of AI and has 
become a catalyst to push the wave of AI to a whole new level.

Another significant promoter of AI is the emergence of large 
pretraining models that have started to be widely used in natural 
language and image processing to deal with a wide variety of 
applications with the assistance of transfer learning. For example, 
GPT-3 has demonstrated that a big model, with a high level of 
structural complexity and a huge number of parameters, can 
improve the performance of deep learning. Inspired by GPT-3, 
a host of large-scale deep learning models have emerged [5–7].

Computational capacity is one of the important elements 
underpinning intelligent computing. Given the astronomical 
data sources, heterogeneous hardware configurations, and changing 
computing requirements in our information society, intelligent 
computing mainly meets the computational capacity require-
ments of intelligent tasks through vertical and horizontal archi-
tectures. Vertical architectures, which feature homogeneous 
computing infrastructure, mainly boost the computational 
capacity by applying intelligent methods to improve resource 
utilization efficiency. In comparison, horizontal architecture 
coordinates and schedules heterogeneous and wide-area 
computing resources to maximize the effectiveness of collabo-
rative computing. For example, in April 2020,in response to the 
computing demands of coronavirus disease 2019 (COVID-19) 
research around the world, Folding@home achieved 2.5 Exaflops 
in computation by combining 400,000 computing volunteers in 
3 weeks, more than any supercomputer in the world [8]. It is a 
success of horizontal computing collaboration to achieve such 
a huge computational capacity.

Despite the great success that has been achieved in intelli-
gence and computing, we are still facing some major challenges 
in 2 respective areas, as follows.

Challenges in intelligence
AI using deep learning currently faces major challenges in 
interpretability, generality, evolvability, and autonomy. Most 
of the current AI technologies only work weakly compared to 
human intelligence and only work well in specific areas or 
tasks. Achieving strong and universal AI still has a long way to 
go. Finally, there are also major theoretical and technical chal-
lenges to upgrading from data-based intelligence to a more 
diverse form of intelligence, including perceptual intelligence, 
cognitive intelligence, autonomous intelligence, and human–
machine fusion intelligence, to name a few.

Challenges in computing
The wave of digitalization brings an unprecedented growth of 
applications, connections, terminals, and users, as well as the 

amount of data generated, all requiring enormous compu
tational capacity. For example, the computing power required 
for AI is doubling every 100 days and is projected to increase 
by more than a million times over the next 5 years. With the 
slowing down of Moore’s law, it becomes challenging to keep 
up with such a rapid increase in computational capacity re
quirements. In addition, the giant tasks in intelligent society 
rely on an efficient combination of various specific compu
ting resources. Moreover, traditional hardware modes can-
not fit intelligent algorithms well, which restricts software 
development.

To date, there is no universally accepted definition of intel-
ligent computing. Some researchers regard intelligent comput-
ing as the combination of AI and computing technology [9–11]. 
It marks 3 different milestones of intelligent computing systems 
according to the development of AI. This perspective limits the 
definition of intelligent computing within the field of AI while 
ignoring the inherent limitations of AI and the vital role of 
ternary interactions between humans, machines, and things. 
Another school of thought views intelligent computing as com-
putational intelligence. This area imitates human or biological 
intelligence to realize optimal algorithms to solve specific prob-
lems [12] and treats intelligent computing primarily as an algo-
rithmic innovation. However, it fails to consider the essential 
roles that the computing architecture and the internet of things 
(IoT) play in intelligent computing.

We present a new definition of intelligent computing from 
the perspective of solving complex scientific and societal prob-
lems considering the increasingly tight fusion of 3 fundamental 
spaces of the world, i.e., human society space, physical space, 
and information space.

Definition 1
(Intelligent Computing.) Intelligent computing is the area that 
encompasses the new computing theoretical methods, archi-
tecture systems, and technical capabilities in the era of digital 
civilization that supports the interconnection of all the world. 
Intelligent computing targets computational tasks with the 
minimum cost according to the specific actual needs, matching 
adequate computational power, invoking the finest algorithm, 
and obtaining optimal results.

The new definition of intelligent computing is proposed in 
response to the fast-growing computing needs of the triple 
integration of human society, the physical world, and informa-
tion space. Intelligent computing is human oriented and pur-
sues high computing capability, energy efficiency, intelligence, 
and security. Its goal is to provide universal, efficient, secure, 
autonomous, reliable, and transparent computing services to 
support large-scale and complex computational tasks. Figure 1 
shows the overall theoretical framework of intelligent comput-
ing, which embodies a wide variety of computing paradigms 
in support of human–physics–information integration.

First, intelligent computing is neither substitution nor a sim-
ple integration of the existing supercomputing, cloud comput-
ing, edge computing, and other computing technologies such 
as neuromorphic computing, optoelectronic computing, and 
quantum computing. Instead, it is a form of computing that 
solves practical problems by optimizing existing computing 
methods and resources systematically and holistically according 
to task requirements. In comparison, the major existing com-
puting disciplines, such as supercomputing, cloud computing, 
and edge computing, fall into different domains. Supercomputing 
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aims to achieve high computing power [13], cloud computing 
emphasizes cross-platform/device convenience [14], and edge 
computing pursues quality of service and transmission effi-
ciency. Intelligent computing dynamically coordinates the 
data storage, communication, and computation among edge 
computing, cloud computing, and supercomputing domains. 
It constructs various cross-domain intelligent computing systems 
to support end-to-end cloud collaboration, intercloud col-
laboration, and supercomputing interconnection. Intelligence 
computing should make good use of existing computing tech-
nologies and, more importantly, promote the formation of new 
intelligent computing theories, architectures, algorithms, and 
systems.

Second, intelligent computing is proposed to address prob-
lems in the future development of human–physics–information 
space integration. With the development of IT applications in 
the big data era, the boundaries between physical space, digital 
space, and human society have become increasingly blurred. 
The human world has evolved into a new space characterized 
by the tight fusion of humans, machines, and things. Our social 
system, information systems, and physical environment con-
stitute a large dynamically coupled system in which humans, 
machines, and things are integrated and interact in a highly 
complex manner, which promotes the development and inno-
vations of new computing technologies and application sce-
narios in the future.

We present the first comprehensive survey in the literature 
on intelligent computing, covering its theory fundamentals, the 
technological fusion of intelligence and computing, important 
applications, challenges, and future perspectives. To the best of 
our knowledge, this is the first review article to formally pro-
pose the definition of intelligent computing and its unified 
theoretical framework. We hope that this review will provide 
a comprehensive reference and cast valuable insights into intel-
ligent computing for academic and industrial researchers and 
practitioners. The remainder of this paper is organized as fol-
lows. The Fundamentals of Intelligent Computing section 
introduces the fundamentals of intelligent computing. The 
Computing by Intelligence section summarizes the computing 
methods empowered by various intelligence aspects to boost 
computing performance. The Computing for Intelligence sec-
tion describes the large computing systems, emerging computing 

architectures, and modes to satisfy the urgent need for com-
puting power from intelligent models. The Applications of 
Intelligent Computing section exhibits several important appli-
cations of intelligent computing in both the scientific and social 
domains. The Perspectives section presents perspectives to cast 
light on the future development of intelligent computing. 
Finally, the Conclusion section concludes the paper. Figure 2 
shows the main structure of the paper.

Fundamentals of Intelligent Computing
Intelligent computing is the general term for new computing 
theoretical methods, architectural systems, and technical capa-
bilities in the era of digital civilization that support the inter-
connection of all things. It explores innovations in many 
classical and cutting-edge research fields to solve complex 
scientific and social problems. The basic elements of intelligent 
computing include human intelligence, machine capabilities, 
and the physical world composed of all things. In this section, 
we introduce the intelligent abilities and computational capac-
ities expected of intelligent computing. We also describe the 
features of intelligent computing and how to combine intelli-
gence and computation in the human–physics–information 
world.

Intelligent abilities
In the theoretical framework, the human being is the core of 
intelligent computing and the source of wisdom, representing 
the original and inherent intelligence called “meta intelligence.” 
Meta intelligence includes advanced human abilities such as 
comprehension, expression, abstraction, inference, creation, 
and reflection, which contain the knowledge accumulated by 
human beings [15–21].

All intelligent systems are designed and built by humans. 
Therefore, in the theoretical system of intelligent computing, 
human wisdom is the source of intelligence, while computers 
are empowered by human intelligence. We call the intelligence 
of computers “generic intelligence.” Generic intelligence rep-
resents the ability of computers to solve complex problems with 
the wide extension, including natural language processing [22], 
image recognition [23], speech recognition [24], and target 
detection and tracking [25]. The relationship between meta 

Fig. 1. An overview of intelligent computing based on the fusion of human social space, physical space, and information space.
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intelligence and generic intelligence is shown in Fig. 3 and is 
detailed in the following parts.

Meta intelligence
Meta intelligence, also called natural intelligence, takes the 
carbon-based lives as the carrier and is produced by individuals 
and groups of organisms after millions of years of evolution. It 
includes biological embodied intelligence, brain intelligence 
(especially human brains), and swarm intelligence. Among 
them, biological embodied intelligence is widely obtained by 
organisms. They can receive the input of the environment to 
complete the specific tasks suitable for their physical form and 
perceive the changes in the environment to make the most 
advantageous intelligent behavior. Moreover, organisms may 
use tools and modify their environment to get a better chance 
of survival. The highest level of intelligence in nature is pos-
sessed by human beings, who have a solid ability not only to 
survive but also to feel and respond to the complex environ-
ment, for example, perceiving and identifying objects, express-
ing and acquiring knowledge, as well as complex reasoning and 
judgment. The intelligence of individual human beings is a 
comprehensive ability. More precisely,

• � They perform highly complex cognitive tasks.
• � They can accomplish difficult learning, understand abstract 

concepts, do logical reasoning, and extract meaningful 
patterns.

• � They can maximize the use and the transformation of the 
natural environment and can construct a cooperative of 
the order of millions of individuals.

• � They have self-awareness.

Second, it is brain intelligence. The human brain is a complex 
and dynamic giant neural network system composed of a huge 
number of neurons. Its mystery has not been completely 
revealed yet, which leads to a vague understanding of intelli-
gence. But in terms of the overall function, the intelligent per-
formance of the human brain is recognizable. Abilities such as 
learning, discovering, and creating are clear manifestations of 
intelligence. Further analysis finds that the intelligence of the 
human brain and its occurrence is visible at its psychological 
level, expressed by some psychological activities and thinking 
processes [26]. Thus, intelligence can be defined and studied on 
a macroscopic psychological level. We address the macro-
psychological level of human intelligence performance as brain 
intelligence. Different areas of our brain in charge of varying 
perceptions or thinking functions cooperate as a unified whole.

Third, it is swarm intelligence. Swarm intelligence is a kind 
of high-level intelligence that low-level intelligent insects or 
animals usually generate through aggregation, coordination, 
adaptation, and other simple behaviors. Beni and Wang [27] 
first proposed the definition of swarm intelligence. The swarm 
intelligence optimization algorithm simulates the division and 
cooperation during the migration of natural organisms, foraging, 

Fig. 2. Main structure of the paper.
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and evolution. It stimulates the points in search space as indi-
viduals in nature and the search and optimization process as 
individuals’ foraging or evolution process. The search and opti-
mization swarm intelligence algorithms with the feature of 
generation and verification, which iteratively replace the less 
feasible solution with the better one, are inspired by “survival 
of the fittest.”

Generic intelligence
Generic intelligence, also called machine intelligence, takes 
silicon-based facilities as the carrier and is produced by indi-
viduals and groups of computing devices. Biological intelligence 
can be transplanted to a computer on the following 4 levels: 
data intelligence, perceptual intelligence, cognitive intelligence, 
and autonomous intelligence. Data intelligence includes the 
ability of a computer to formalize, express, calculate, memorize, 
and store data quickly. Perceptual intelligence refers to acquiring 
information such as voice, images, and video through various 
sensors and input/output (I/O) devices. Cognitive intelligence 
is the ability to understand, think, reason, and explain. Autonomous 
intelligence stands for the ability of a machine to obtain a self-
driven ego and consciousness. The 4 types of intelligence usually 
cooperate in conducting complex tasks.

Data intelligence emphasizes the realization of biological 
internal intelligent behavior through computational methods, 
programming the law of nature [28]. It is mainly guided by 
the theory of computing and relies on the basic storage and 
computing capabilities of the computer hardware to realize 
the original intelligence of data [29]. Data intelligence uses 
the combination of 5 leading complementary technologies: 
symbolic and numerical computation for basic mathematical 
functions, fuzzy logic that enables computers to emulate 
human reasoning in linguistic terms, probabilistic methods 
based on big data and statistical law, artificial neural network 
construction that learns experiential data by models with a 
large number of parameters, and evolutionary computation 
inspired from nature for search and optimization. Integrating 
data intelligence into these relatively mature branches forms 
various scientific methods.

Perceptual intelligence indicates machines with perceptual 
abilities like sight, hearing, and touch to reach the external 
world. Signals from the physical world are mapped to the dig-
ital world via microphones, cameras, and other sensors, using 
speech and image recognition. Machines communicate and 
interact similarly to humans via structured multimodal real-
world data [30,31]. Perceptual intelligence completes the col-
lection of large-scale data and features extraction of images, 
videos, audio, and other data types to complete structured 
processing. Computers present the data more comfortably for 
the user-connected hardware and software. For example, auto-
matic driving utilizes light detection and ranging methods 
(lidars), other sensing devices, and AI algorithms for driving 
information computation. Face payment is a device through 
the perception of face data for identity confirmation.

Cognitive intelligence denotes machines with human-like 
logical thinking and cognition abilities, especially to actively 
learn, think, understand, summarize, interpret, plan, and apply 
knowledge [32]. The development of cognitive intelligence is 
composed of 3 levels. The first level is learning and understand-
ing, such as text parsing, automatic marking, and question 
understanding. The second level is analyzing and reasoning, 
such as logical connecting and connotation abstracting. The 
third level is thinking and creating.

Autonomous intelligence implies that the machine can act 
like a human being with a self-driven ego, emotion, and con-
sciousness. It frees machines from heavy data dependency 
and enables them to learn the learning skills and renew their 
problem-solving abilities according to the change of environ-
ment. The final target of autonomous intelligence realizes self-
learning, purposeful reasoning, and natural interaction with 
little or even any prior human programming.

Computational capabilities
Intelligent computing is faced with the challenges of big scenes, 
big data, big problems, and ubiquitous requirements. The algo-
rithmic models are becoming increasingly complex and require 
supercomputing power to support increasingly large model 
training. At present, computing resources have become a 

Fig. 3. Meta intelligence and generic intelligence.
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barrier to improving the level of computer intelligence research. 
With the development of intelligent algorithms, institutions 
rich in computing resources may form a systematic technolog-
ical monopoly. The classical supercomputer is unsuitable for 
AI’s demand for computing power. Although algorithm opti-
mization can reduce the need for computing power to a certain 
extent, it cannot fundamentally solve this problem. A complete 
optimization from multiple dimensions, such as architecture, 
acceleration module, integration mode, and software stack, is 
needed. In Fig. 4, computing capabilities include computing 
units, heterogeneous integration of systems, and wide-area 
collaboration of resources.

Computing units
The most intuitive and effective method of wide-area collabora-
tion is strengthening basic computing power through vertical 
lifting and horizontal expansion. At first, vertical improvement 
refers to the unit performance of computing components utiliz-
ing technological iteration, material innovation, and architectural 
design to increase the upper limit of the number of instructions 
a single chip can process per unit of time. Under the traditional 
von Neumann architecture, the performance limit is broken through 
technical means to meet the computational performance require-
ments for graphics rendering and deep learning training tasks. 
These chips have enough power to support the advanced deep 
learning algorithms and plug-and-play of the mainstream com-
puters of today.

As Moore’s law slows down, traditional von Neumann com-
puting models will soon face a performance ceiling. The end 
of Dennard’s scaling law will result in power consumption and 
heat dissipation problems becoming obstacles to processor 
frequency growth. Traditional storage devices cannot obtain 
high speed and high density simultaneously. The existing 
computing-centered von Neumann architectures rely on a hier-
archical storage structure composed of memory and storage to 
maintain a balance between computing performance and storage 
capacity. The structure needs to frequently deliver data between 
the processor and memory so that computing efficiency decreases 
and bandwidth is limited, causing the “storage wall” problem. 
Under such circumstances, memory computing becomes an 
effective measure to break through the bottleneck of the von 
Neumann system and improve overall computing efficiency.

To break through the limitations of traditional chip archi-
tecture, intelligent computing needs to explore new chips through 
horizontal expansion. Given the challenges faced by traditional 
electronic computing methods, the emergence of integrated 
photonics, which is built on multidisciplinary areas such as mate-
rials science, photonics, and electronics, is exciting. Based on 
the principle of quantum mechanics, quantum computing realizes 
quantum parallel computing by using quantum superposition, 
entanglement, and quantum coherence, which fundamentally 
changes the traditional computing concept. Biocomputing is 
developed based on the inherent information processing mech-
anism of biological systems. In contrast with traditional com-
puting systems, its structure is generally parallel and distributed.

Since the diversified computing power of data centers has 
become a trend, generalizing and specialized computing chips 
will develop in parallel. The traditional technology with central 
processing units (CPUs) and other general computing chips as 
the core is quite challenging to meet the requirements of mass 
data processing. The fusion of general technology and special 
technology has become a promising approach.

Heterogeneous integration of systems
Heterogeneous integration includes heterostructure integration 
and heteromaterial integration. Heterostructure integration 
mainly refers to encapsulating chips manufactured by multiple 
processing nodes into one package to enhance functionality and 
performance. It can encapsulate components manufactured by 
different processes, functions, and manufacturers. The progress 
of semiconductor technology has reached the physical limit, 
and the circuit has become more complex. The traditional way, 
which improves the computational capacity by increasing the 
CPU clock frequency and the core number, has met the heat 
dissipation and energy consumption bottleneck. Heterogeneous 
integration can solve the problem. Through heterostructure 
integration, different computing units adopt a hybrid computing 
architecture. Each computing unit performs its adequate task, 
effectively improving computing performance. Heterostructure 
integration can be divided into the chip level and system level. 
Chip-level heterostructure integration is a method to integrate 
different chips to improve the overall chip efficiency. Currently, 
the mainstream heterostructure integration technologies mainly 
include two-dimensional (2D)/3D packaging and Chiplet. 
System-level heterostructure integration provides various com-
puting types in the form of single-machine multiprocessor and 
multimachine, including single-machine multicomputing, single-
machine hybrid computing, homogeneous heterogeneous mul-
timachine, and heterogeneous multimachine.

Heteromaterial integration refers to the integration of 
semiconductor components of different materials for small size, 
good economy, high flexibility, and better system performance. 
It is considered an innovative exploration to use biological com-
ponents for information processing and computation through 
the integration of silicon and carbon. As a basic unit of biolog-
ical structure and function, a single cell is an independent and 
orderly system that can give feedback and self-regulate in 
response to external stimuli and environmental changes. Its 
operating mechanism has undergone long-term evolution and 
thus can meet its metabolic needs. As a natural storage carrier 
of genetic information, DNA in cells has high storage capacity 
and density characteristics. Over hundreds of millions of years 
of evolution, biological cells have also optimized their biochem-
ical processes to minimize the energy consumption of metabolic 
processes. Biological components show the potential for storage 
capacity, computational parallelism, and ultralow computing 
power consumption. The effective integration of carbon-based 
and conventional silicon-based chips is expected to reach 
new heights in computing power, storage density, and energy 
efficiency.

Wide-area collaboration of resources
The data in the human–machine–thing integration scenario of 
wide-area collaboration has the characteristics of wide geo-
graphical distribution, complete scene coverage, and enormous 
collective value. The real-time acquisition, perception, processing, 
and intelligent data analysis from the time dimension require 
the support of distributed parallel computing power available 
anywhere. Thus, wide-area collaboration is highly needed. 
Wide-area collaborative computing connects computing resources 
such as high-performance computing (HPC), cloud computing, 
fog computing, and edge computing cost-effectively. It achieves 
automated horizontal expansion of supply-side resources. 
Demand-side diversified tasks require a new computing 
infrastructure across management domains and on-demand 
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collaboration in a low-cost, efficient, and highly trusted way. 
Led by intelligent computing scenarios that support the inter-
connection of all things, wide-area collaborative computing 
supports vertical and horizontal convergence of resources in an 
autonomous and peer-to-peer manner. Significant challenges 
of intelligent matching, scheduling, and collaborating resources 
and tasks across domains exist in building a new infrastructure 
of secure and reliable intelligent computing.

Improving the computational capacity of wide-area collab-
oration mainly focuses on 2 scientific issues: the mechanism 
of the wide-area collaboration model and the realization of 
the wide-area collaboration system. The wide-area collabora-
tion model primarily emphasizes resource abstraction, decou-
pling, and encapsulation and building a software-defined 
programmable entity abstraction method to shield the heter-
ogeneity of device, computing, and data resources. It con-
structs a software-defined programmable collaboration model, 
rules, and processes based on interconnectivity and inter-
operability to support forming interaction orders of com-
puting, data, and devices across independent stakeholders. The 
wide-area collaboration system mainly focuses on the task 
decomposition and scheduling of diversified jobs on the 
demand side; cross-domain fusion and management of 
computing and data resources; data privacy protection, iden-
tity trust, and security protection in an open environment; 
multidimensional intelligent operation and maintenance 

monitoring crack the invisibility of resource distribution, use, 
and business execution.

Features of intelligent computing
In this subsection, we first introduce the major characteristics 
of intelligent computing development and then reveal the inno-
vation paths to obtain these critical characteristics.

Objective-oriented intelligent computing
As depicted in Fig. 5, intelligent computing has the follow-
ing characteristics: self-learning and evolvability in theo-
retical techniques, high computing capability and high 
energy efficiency in architecture, security and reliability 
in systematic methods, automation and precision in oper-
ational mechanisms, and collaboration and ubiquity in 
serviceability.

· Self-learning and evolvability. Inspired by brain neuro
science, intelligent computing develops several novel techniques, 
such as neuromorphic computing and biological computing, 
to achieve breakthroughs in the principles and models of von 
Neumann’s computer structure. Self-learning refers to obtaining 
experience by mining rules and knowledge from massive data 
and optimizing the calculation paths with usable results. At the 
same time, evolvability represents a heuristic self-optimization 

Fig. 4. Computational capacities of intelligence computing.
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ability that simulates the evolutionary process of organisms 
in nature, where the machines learn from the environment 
and subsequently make self-adjustments to adapt to the 
environment.

· High computing capability and high energy efficiency. 
Aiming to exceed the traditional von Neumann’s architecture, 
intelligent computing evolves to new computing architectures 
concerning processing-in-memory, heterogeneous integration, 
and wide-area collaboration. High computing power refers to the 
computing capability that meets the needs of an intelligent society 
and serves as infrastructures like water and electricity. Moreover, 
high energy efficiency aims to maximize computing efficiency and 
reduce energy consumption as much as possible to ensure efficient 
processing of big data with large-scale characteristics, complex 
structure, and sparse value.

· Security and reliability. Intelligent computing supports 
cross-domain trust and security protection for large-scale 
ubiquitous interconnected computing systems. It establishes 
independent and controllable trusted security technology 
and support systems, realizing data fusion, sharing, and opening. 
High trust refers to the trust of identity, data, computing 
process, and computing environment through trusted hardware, 
operating system, software, network, and private computing. 
Particularly, high security means network security, storage 
security, content security, and circulation security of computing 
systems that can be guaranteed by integrating various privacy 
protection technologies.

· Automation and precision. Intelligent computing is task 
oriented; it matches computing resources and realizes automatic 
demand calculation and precise system reconstruction. The 
system architecture is constantly adjusted to the task execution. 

Directed coupling reconstruction is performed at the software 
and hardware levels. Automation of the computing process 
includes automatic resource management and scheduling, 
automatic service creation and provision, and automatic 
management of the task life cycle, which is the key to evaluating 
the friendliness, availability, and service of intelligent 
computing. The precision of computing results anchors 
computing services; besides, it solves difficulties, including 
fast processing of computing tasks and timely matching of 
computing resources.

· Collaboration and ubiquity. Intelligent computing integrates 
existing technologies to promote the penetration and integration 
of the physical, information, and social space using the various 
perception ability of heterogeneous elements, complementary 
computational resources, and the collaboration and competition 
of computational node functions. Cooperation between humans 
and machines improves intelligence levels in intelligent tasks, 
and ubiquity enables computing to be conducted everywhere by 
combining intelligent computing theoretical methods, architectural 
systems, and technical approaches.

Fusion of intelligence and computation
Intelligent computing includes 2 essential aspects: intelligence 
and computation, which complement each other. Intelligence 
facilitates the development of computing technologies, while 
computation is the foundation of intelligence. The paradigm 
of high-level intelligence technologies that improve the perform
ance and efficiency of computing systems is “computing by 
intelligence.” The paradigm of efficient and powerful compu-
tational technologies that support the development of com-
puter intelligence is “computing for intelligence.” The 2 basic 
paradigms are innovated from 5 aspects to improve computing 
power, energy efficiency, data usage, knowledge expression, 
and algorithm capabilities and achieve ubiquitous, transparent, 
reliable, real-time, and automatic services.

· The paradigm of computing by intelligence. The computing 
power demand of complex models has exceeded that of 
general computers by 1 or 2 orders of magnitude. Moreover, 
there is a considerable gap between the underlying computing 
mechanism of traditional computers and the computing mode 
of intelligent models, resulting in low computing efficiency. 
The paradigm of computing by intelligence includes new 
models, support, paradigms, mechanisms, and synergy that 
utilize intelligent approaches to improve computing capability 
and efficiency.

Currently, intelligent systems can only handle specific tasks 
in a closed environment since they lack common sense, intui-
tion, and imagination. Research on neuromorphic computing, 
graph computing, biological computing, and other new com-
puting models is conducted to analyze the human brain, biolog-
ical, and knowledge computing mechanisms. These new models 
can effectively improve cognitive understanding and reasoning 
learning abilities, adaptability, and the generalization effect for 
intelligent algorithms.

Due to the limitations of computing system architecture and 
lack of end-to-end computational capacity, the computing and 
response speed of the current computing system needs further 
improvement. Intelligent computing can improve the real-time 
performance of the computing system by utilizing new computing 

Fig. 5. Features of intelligent computing.
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support technologies, e.g., processing-in-memory, edge com-
puting, and online learning. Moreover, new technologies, such 
as the fusion of perception and computation and processing 
localization, have also become promising research hotspots.

The deep integration of the triple space leads to the diversities 
of computing tasks, so the computing scenarios and data are 
more unstructured, and the solutions of the tasks are more com-
plex and challenging. Thus, the new computing paradigm ena-
bles the analysis and modeling of unstructured scenes and the 
adaptive processing of unstructured data. It achieves transpar-
ency computing through an automatic and intelligent process 
that concludes tasks understanding, decomposition, solving, 
and resource allocation.

Intelligent computing explores new computing mechanisms, 
such as hardware and software refactoring and cooperative 
evolution, to deal with different types of tasks. During the exe-
cution of intelligent processes, the new mechanism configures 
the hardware through the organization of computing resources 
with different granularity and functions. The new mechanism 
will form an automatic computing system with autonomous 
learning and evolutionary iteration applying intelligent tech-
nologies, including elasticity design of software and hardware, 
flexible cooperation of algorithms and models, and adaptive 
allocation of data and resources.

New synergy computing architectures, such as human–
computer interaction, swarm intelligence, and human-in-loop, 

Fig. 6. Technology architecture of graph computing.

Fig. 7. Structure of a typical neuron and structure of an artificial neuron.
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combine human perception and cognitive ability with the oper-
ation and storage ability of a computer. Such new architectures 
are effective in improving the sensing and reasoning ability of 
computers. Machines can have ultrahigh computing speed and 
accuracy and also efficiently obtain information from the phys-
ical environment through various sensors. However, they 
cannot independently analyze the information and execute 
complex tasks. Notably, humans can study the physical envi-
ronment at a higher level, recognize the laws of the physical 
world, and transfer knowledge to machines in human–computer 
interactions.

· The paradigm of computing for intelligence. The hetero
geneity and complexity of hardware architecture hinder 
computing capability integration and service quality improve
ment. The computing for intelligence paradigm designs new 
frameworks, methods, integration, architectures, and systems 
to improve the intelligence level and provide ubiquitous, 
transparent, automatic, real-time, and security of computing 
services.

Given the diversity of intelligent devices, the discretization 
of computing resources, and the complexity of network con-
nections, it becomes more difficult to integrate hardware and 
effectively improve intellectual computing power. The innova-
tion of the computing framework adopts a non-von Neumann 
structure, which contains memory processing, heterogeneous 
integration, and wide-area collaboration. Additionally, the ded-
icated hardware building blocks are designed. To meet the 
demand for high computing power, the computing structure 
of the chip and system senses, schedules, and computing resources 
management are optimized.

A new way to improve limited energy efficiency is to apply 
new computing methods, such as biocomputing and neuromor-
phic computing, to study low-power characteristics of living 
matter. With a power consumption of only 20 W, the learning 
procedure of the human brain is much more effective than any 
AI. By learning the computing methods of biological and human 
brains and designing new computing hardware and software, 
intelligent computing may dramatically increase computing 
efficiency and decrease the energy consumption of the comput-
ing process.

Intelligent computing promotes effective coordination and 
develops integration of human–machine–thing by improving 
machine intelligence, sensing ability, and response to emer-
gencies. Through the comprehensive connection of humans, 
machines, and things, intelligent computing creates a deeply 
integrated computing mode. The symbiotic integration, coop-
eration, and complementation of human–machine–thing pro-
vide more comprehensive, thoughtful, and accurate intelligent 
services for human beings.

The traditional cluster-centered computing architecture can-
not provide timely services for the edge terminal nodes and 
users. New distributed computing architectures such as end-to-
end cloud and wide-area collaboration are adopted to effectively 
integrate supercomputing, cloud computing, edge computing, 
and terminal computing resources. The problem of centralizing 
computing is solved through intelligent task decomposition to 
achieve efficient and ubiquitous computing services.

In a human–physical–information integrated computing 
environment, more malicious attack surfaces could be exploited, 
making the system more vulnerable. Meanwhile, the massive 
multi-heterogeneous information also brings data security and 

privacy problems. A new secure and trusted intelligent com-
puting system is established to tackle these problems by con-
structing endogenous secure methods and trusted computing 
mechanisms. It ensures the security and trust of the computing 
process, identity, data, and results.

Computing by Intelligence
In this section, we describe the 4 intelligent abilities of com-
puters and the mode of integrated intelligence. For each intel-
ligence, we present significant progress in typical research areas.

Data intelligence
Improving the universality of computing is critical for intelli-
gent computing. Problems in real-world scenarios, such as 
analog and graph, need various computations. Another critical 
point of intelligent computing is how to improve the intellectual 
level of computing. Empirically, we all need to learn from intel-
ligent creatures in nature with no exception for computation, 
such as the 3 classical intelligence methods: artificial neural 
network, fuzzy system, and evolutionary computing. The the-
ory of intelligent computing includes but is not limited to the 
above types of computing to achieve a high level of ubiquity 
and intelligence.

Analog computing
The simulated calculation model can have a wide range of com-
plexity, in which the slide rule and nomogram are the simplest 
types. In contrast, the naval gun control calculation and large-
scale hybrid digital/analog calculation are more complex 
[33,34]. Process control and protection relay system use analog 
calculations to control and protect. The simulated calculation 
is of various types according to different calculation methods 
and application fields [35–39].

Compared with common digital computing, analog comput-
ing has both advantages and disadvantages. It achieves real-time 
operation in both computation and analysis, which can operate 
multiple values at the same time. It has a simple hardware design 
with no sensor requirement to convert input/output to digital 
electronic form and less bandwidth consumption. Nevertheless, 
analog computing has poor transportability. An analog com-
puter can only solve a preset type of problem. Since the calcula-
tion is affected by environmental factors, it is usually challenging 
to obtain the exact solutions.

Graph computing
Mathematically, graph theory is the study of the graph, which 
is the mathematical structure used to model pairwise relation-
ships between objects as shown in Fig. 6. The graph is essential 
to mathematical theories such as algebra, geometry, group theory, 
and topology. Graph processing uses graphs as data models to 
express and solve problems, and it can completely depict the 
relationship between things. Graph computing architecture 
also shows excellent application value in mathematical and 
related fields such as dynamic systems and complexity com-
puting. In recent years, graph processing has focused on the 
field of large-scale graph data and aimed to achieve data storage, 
management, and efficient computing of large-scale graphs.

Traditional graph processing is based on graph theory. It 
investigates various questions, including search, mining, sta-
tistics, analysis, transformation, and other issues based on the 
fundamental properties of the graph structure. These questions 
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often take the query, traversal, sorting, and set operation of 
nodes or edges as basic operators to calculate the exact or opti-
mal approximate solution of the target result.

With the increase of graph data scale, the mainstream 
research direction combines graph processing with big data-
related technologies, such as distributed computing, parallel 
computing, stream computing, and incremental computing. Some 
node-centric parallel graph processing engines based on batch 
message processing have been designed to specifically handle 
parallel graph processing tasks, such as Pregel [40], Giraph [41], 
Graphx [42], GraphScope [43], and DepGraph [44]. In addition 
to the data volume expansion, some studies expanded the graph 
data model. Attributes, labels, probability, hierarchy, and other 
characteristics are introduced to address more complex appli-
cation requirements and modeling challenges. With the devel-
opment of database technology, graph databases have risen 
strongly with their comprehensive application scenarios and 
flexible model expression. They have become one of the 4 core 
members of the emerging NoSQL data family. The expansion 
of the graph model is reflected in tasks such as storing and man-
aging graph data. On the other hand, the connotation expansion 
of the model brings an increment in algorithm complexity for the 
algorithm evolution of various graph processing. Furthermore, 
it makes the results of computing problems more suitable for 
application in natural scenes.

In recent years, with the development of deep learning tech-
nology, graph data have been used as the input of the neural 
network models, and various types of graph neural network 
models and calculation methods have been derived. Graph 
neural networks, such as graph convolutional networks [45], 
RNNs [46], graph attention networks [47], and graph residual 
networks [48], evolve from the technical framework of deep 
learning. They transplant from structural data to semistructural 
data, retaining the characteristics of the structure and function 
of the model. At the same time, the core mathematical model 
is improved for the graph data structure to achieve good com-
putational results in classification, prediction, anomaly detec-
tion, and other issues.

Artificial neural network
Since the 1980s, engineering techniques have been used to sim-
ulate the structure and function of the human brain’s nervous 
system to construct artificial neural networks. The artificial 
neural network imitates the connection of brain neurons 
through many nonlinear processors as shown in Fig. 7. It sim-
ulates the signal transmission behavior between synapses with 
the input and output between computing nodes. W. S. McCulloch 
of psychology and W. Pitts of mathematical logic developed the 
neural network and mathematical model known as the MP 
model [49] in 1943. They suggested using the MP model as the 
basis for rigorous mathematical description and network struc-
ture for neurons. Artificial neural network research was founded 
on their discovery that a single neuron could carry out logical 
operations. The BP algorithm was created by Rumelhart et al. 
[50]. The back propagation of loss and the forward propagation 
of signals make up the BP algorithm. Because the multilayer 
feedforward network is often trained by the back propagation 
algorithm, multilayer feedforward networks are often referred 
to as BP networks.

After decades of development, nearly 40 artificial neural 
network models have been proposed, including backpropagation 
networks, perceptron, self-organizing maps, Hopfield networks, 

and Boltzmann machines. In recent years, many classical mod-
els, such as CNNs [51], RNNs [52], and LSTMs [53], have been 
widely used in various classification and prediction tasks in the 
fields of image, voice, text, graph, and so on. The training of 
artificial neural network models depends heavily on the amount 
of data. With the explosion of data volume and the deepening 
of model complexity, people began to separate the training and 
application of the model. Models are pretrained based on large 
offline datasets, saved, and then applied to the problems using 
the transfer learning technique for quick solutions. BERT, pro-
posed by Google AI Research Institute, and GPT-3, developed 
by OpenAI, are the 2 most well-known pretrained models 
[54,55]. They have achieved great success in natural language 
processing [56].

Artificial neural networks are key building blocks for deep 
learning systems, including deep reinforcement learning (DRL) 
systems. DRL systems use multilayer neural networks to solve 
Markov decision problems (MDPs) [57]. Both single-agent and 
multiagent DRL models are increasingly being used to solve a 
variety of computing problems (e.g., decision/control and 
prediction problems) intelligently, which would otherwise be 
infeasible to solve in a real-time manner.

Fuzzy systems
Lotfi Zadeh initially introduced the notion of fuzzy logic in 
1965 [58]. The fuzzy system is a technique of computing based 
on fuzzy logic of “degrees of truth” rather than the typical “true 
or false” (1 or 0) Boolean logic on which the contemporary 
computer is built. The absolute values of 0 and 1 do not provide 
a good analogy for natural language, nor do they adequately 
describe most other activities in life or the cosmos. Fuzzy logic 
might be regarded as the way thinking really operates, with 
binary or Boolean logic being a subset.

The word “system” refers to a group of interdependent parts 
interacting and having a clear structure [59]. Systems can be 
identified as a complex whole from the external environment. 
Inputs and outputs are the channels through which a system 
interacts with its surroundings. Fuzzy systems are information 
processing architectures built using fuzzy approaches when it is 
either impractical or difficult to use conventional set theory and 
binary logic [60]. Their primary feature is the representation of 
symbolic information as fuzzy conditional (if-then) rules.

The 4 functional building blocks, i.e., the fuzzifier, fuzzy 
inference engine, knowledge base, and defuzzifier, make up the 
conventional structure of a fuzzy system [60]. A fuzzy system 
may take both crisp data and linguistic values as inputs. If you 
are working with crisp data, you should focus on the fuzzifica-
tion stage rather than the inference phase, when the correspond-
ing fuzzy set is assigned to the nonfuzzy input. The appropriate 
approximation reasoning approach is used to translate the input 
values into the language values of the output variable. Fuzzy 
conditional rules are used to reflect the expert’s knowledge. 
When the fuzzy system requires numerical output information, 
the defuzzification methods are utilized to match the appropri-
ate dataset to the resulting fuzzy set.

Fuzzy systems have practical applications when there is a 
lack of comprehensive mathematical description or when it is 
very costly or difficult to use a precise (nonfuzzy) model. A 
fuzzy system is a great tool to process incomplete data, for 
example, for signal and image processing [61,62], system iden-
tification [63,64], decision support [65,66], and control pro-
cesses [67,68].
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Evolutionary computation
Evolutionary computation is a unique type of computing that 
takes its cues from the course of natural evolution. It is not 
unexpected that some computer scientists have looked to nat-
ural evolution for inspiration since the numerous organisms 
that make up our planet have all been specifically designed to 
thrive in their niches, which demonstrates the force of evolu-
tion in nature. A key point in evolutionary computing is to 
compare this potent natural development with a specific problem-
solving approach called trial-and-error (also known as gener-
ate-and-test). The value of potential solutions, or how effectively 
they address the issue, influences the likelihood that they will 
be retained and utilized as building blocks for developing other 
potential solutions. Later, descriptions of pertinent sections of 
genetics and evolutionary theory are provided.

In the 1940s, long before the invention of computers, there 
were already ideas of using Darwinian principles to automate 
problem-solving [69]. It was in 1948 that Turing coined the 
phrase “genetic or evolutionary search,” and by 1962, Bremermann 
had conducted computer tests on “optimization by evolution and 
recombination.” Throughout the 1960s, 3 different implementa-
tions of the core idea emerged. Holland named his approach 
genetic algorithms [70], while Fogel and colleagues presented 
evolutionary programming in the United States [71]. Rechenberg 
and Schwefel in Germany created evolution strategies for opti-
mization at the same time [72]. These fields evolved indepen
dently for roughly 15 years. Since the early 1990s, they have 
been considered as different technology dialects later known as 
evolutionary computing [73]. Early in the 1990s, a fourth stream, 
i.e., genetic programming, was promoted by Koza [74] following 
the main notions. According to the current terminology, evo-
lutionary computing (or evolutionary computation) refers to the 
entire field, the algorithms involved are known as evolutionary 
algorithms, and evolutionary programming, evolution strategies, 
genetic algorithms, and genetic programming are considered as 
subfields falling under the umbrella of the corresponding algo-
rithm variants.

Perceptual intelligence
An intelligent system first starts intelligent perception before it 
starts to work. Thus perceptual intelligence plays a vital role in 
all intelligent systems. Perceptual intelligence focuses on multi
modal perception, data fusion, smart signal extraction, and 
processing. Typical examples include smart city management, 
automatic diving system, smart defense system, and autonomous 
robots. A most consistent enthusiasm for perceptual intelligence 
is human-like 5-sense capabilities, including vision, hearing, 
smelling, tasting, and tactile. In addition, intelligent sensing 
covers temperature, pressure, humidity, height, speed, gravity, 
etc., whenever a significant effort in computing or data training 
is required to advance its performance.

Significant advances have emerged in machine vision during 
the last several decades, emphasizing the creation of devices 
that can see and understand their surroundings independently. 
The observation of industrial processes is no longer a challenge 
in manufacturing contexts due to the constrained range of 
states and clearly defined circumstances [75]. However, the 
situation becomes a significant challenge from industrial pro-
cesses to free surroundings perception in the real world. 
Because there are an unlimited number of situations and un
expected events that may occur at any time, it is still a challenge 
to handle these scenarios by a fully autonomous robot. On the 

contrary, even a toddler can effortlessly observe the world. Our 
brains possess the most effective circuits and processing sys-
tems, which allow us to process sensory data from millions of 
sensory receptors. Machine intelligence would undoubtedly 
undergo a revolution if these circuits and processes could be 
understood and implemented technically. Applications include 
safety and security monitoring in public and private structures 
as well as in the observation of the behavior and health of 
elderly or physically or psychologically impaired individuals 
in nursing homes and hospitals [76]. Additionally, it may enable 
seniors to remain in their homes for longer [77]. A model like 
this would also be highly helpful for autonomous robots that 
must traverse their surroundings and control things in them, 
as well as interactive environments that make users more com-
fortable by sensing their demands [78].

With the complete use of pattern recognition and deep 
learning technologies, machines have grown more perceptually 
intelligent than humans in recent years, making significant 
advances in voice, visual, and touch recognition. Because of 
their increasing importance and many possible applications, 
smart sensors have received a lot of attention. Ordinary sensors 
have become smart because of the integration of computers 
and IoT in manufacturing, allowing them to do intricate com-
putations with the data gathered [79]. Smart sensors have 
expanded in capability, size, and flexibility, transforming cum-
bersome machinery into high-tech intelligence. Smart sensors 
have evolved into objects with detection and self-awareness 
capabilities because they are fitted with signal conditioning, 
embedded algorithms, and digital interfaces [80]. These sensors 
are designed as IoT components that transform live data into 
digital data that can be sent to a gateway [81]. Process control 
and quality evaluation are only 2 of the many functions pro-
vided by these devices. Smart sensor data may also be used to 
minimize manufacturing costs via process optimization and 
predictive maintenance because of cloud-based analysis tools 
and AI. From supply management to global resource coordi-
nation, sensor data may be used in several ways once transmit-
ted online. Smart sensors come in various shapes and size to 
meet the needs of diverse applications, as shown in Fig. 8, and 
new and better models are always being developed. One of the 
most prevalent sensor types is a light sensor that measures the 
light intensity and color temperature. From large portfolio 
firms like TE Connectivity to more specialist vendors like 
Aceinna, there is a sensor type for almost any sort of process 
or environmental situation.

Smart sensors can also foresee, monitor, and immediately 
respond to remedy situations. The primary tasks of intelligent 
sensors include raw data collection, sensitivity, filtering adjust-
ments, motion detection, analysis, and communication [82]. 
For instance, one use of smart sensors is wireless sensor net-
works, whose nodes are coupled with one or more additional 
sensors and sensor hubs to create some communication tech-
nology. Additionally, data from several sensors may be used to 
draw inferences about a problem already present; for example, 
temperature and pressure sensor data might be used to predict 
the beginning of a mechanical breakdown.

Cognitive intelligence
Cognitive intelligence refers to machines having the capacity 
to logically understand and cognize like humans, especially 
the ability to think, comprehend, summarize, and actively 
apply knowledge. It describes the abilities and skills to process 
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complex facts and situations in the real environment, like inter-
pretation and planning. Data recognition is the core function 
of perceptual intelligence, which requires large-scale data col-
lecting and feature extraction of images, videos, sounds, and 
other types of data to complete structured processing. In con-
trast, cognitive intelligence requires understanding the rela-
tionship between data elements, analyzing the logic within the 
structured data, and responding based on the distilled knowl-
edge. Cognitive intelligent computing primarily studies the 
topics of natural language processing, causal inference, and 
knowledge reasoning of machines. Through heuristic research 
on the neurobiological process and cognitive mechanism of the 
human brain, a machine can improve its cognition level to 
assist, understand, make decisions, gain insight, and discover.

Natural language processing
Natural language processing converts human language into 
machine language so that machines can understand and calcu-
late. This research field has a very lengthy task link, from 
upstream information extraction, data cleaning, data retrieval, 
and pretraining [54,55], to downstream text classification, 
question-answering system, and automatic abstract. Natural 
language processing concentrates on 2 major tasks: natural 

language understanding (NLU) and natural language generation 
(NLG). NLU understands the meaning of a text to the extent that 
the word and structure must be grasped. The specific steps include 
lexical analysis, syntactic analysis, and semantic analysis.

Lexical analysis plays a key role in the word segmentation 
module of Chinese natural language processing [83]. The critical 
components of lexical analysis contain word segmentation, 
part-of-speech tagging, named entity recognition, and word 
sense disambiguation. Part-of-speech and semantic tagging are 
the primary functions of lexical analysis. Word disambiguation 
mainly addresses the issue of word meaning across various 
contexts because a word may have numerous meanings depend-
ing on contexts, and it is necessary to choose the most appro-
priate word meaning for the task context at hand. The primary 
goal of named entity recognition is to locate and annotate 
words with specific meanings in the context, such as names of 
people or places. The foundations of lexical analysis are con-
stituted by rules, statistics, and machine learning [84].

Determining the relationships between each component of a 
sentence (or its syntactic structure) is the primary goal of syn-
tactic analysis. Chomsky’s hierarchy of grammar is currently the 
prevalent context-free syntax model. It obtains the syntactic tree 
of a sentence through a complete set of analyses.

Fig. 8. A wide variety of sensor types used in the industry that need the connection to the IoT [358].
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Research on NLU mostly focuses on semantic analysis. It 
covers every stage of NLU. Semantic analysis refers to 3 primary 
tasks in several levels of granularity: sense disambiguating at the 
word level, semantic role labeling at the sentence level, and 
coreference digesting at the discourse level. As auxiliary means 
of semantic analysis, pragmatic analysis and affective analysis have 
also been extensively studied. The pragmatic analysis mainly 
studies the relationship between text and environment, includ-
ing speaker, receiver, and context. Sentiment analysis can obtain 
user preferences, emotions, and the potential tendency of 
speech. Earlier studies contributed by establishing an emotional 
dictionary [85,86]. In recent years, methods based on machine 
learning and deep learning have begun to analyze the emotional 
features of texts by constructing learning models [87,88].

NLG generates new text information from raw text, data, 
and images. The main applications are machine translation 
[89], question and answer system [90], automatic abstract 
[91], and cross-modal text generation [92]. The classic approach 
of NLG comes in 3 stages: first, identifying what goals should 
be established and deciding what should be included in the 
text; second, planning for how to achieve the goal by evalu-
ating the scenario and available communicative resources, 
such as text structuring, sentence aggregation, lexicalization, 
and referring expression generation; finally, generating text 
following the plan. In recent years, end-to-end approaches 
have attracted more attention with the advances in neural 
networks and increased complexity and specificity of tasks 
[93]. End-to-end methods construct models from input to 
output directly, iteratively enhance models based on the feed-
back of training task data, and form a procedure of a full 
closed-loop calculation [94].

Causal inference
Current machine learning relies heavily on associative models, 
leading to the poor interpretability of AI. It is difficult for 
machines to distinguish true or false causal associations in data. 
The key to solving this problem is to use causal inference instead 
of inference by association so that machines can use appropriate 
causal structures to model the inference world. Pearl uses 3 hier-
archical structures to categorize causal inference [95]. The first 
layer is the association, which involves data-defined statistical 
correlations. The second level is intervention, which involves 
what is visible and what will result from additional intervention 
or action. The third layer is counterfactual, which is the reflec-
tion and retroactivity of past events. It answers the question, 
“what would have been different if we had acted differently in 
the past”? The counterfactual layer is the most powerful level. 
If a model can answer counterfactual questions, it can also 
answer questions about intervention and observation.

Hume [96] offered a literal exposition and initially suggested 
discussing causality using a counterfactual framework. Lewis 
[97] gave a symbolic expression of the counterfactual frame-
work based on Hume’s research by combining the semantics 
of possible worlds with counter facts to characterize causal 
dependence. Verma et al. [98] learned from actual data to pre-
dict counterfactual results. Besserve et al. [99] proposed a non-
statistical framework. They revealed the modularization 
structure of the network by counterfactual reasoning, which 
consists of the entangled internal variables. Kaushik et al. [100] 
designed a human-in-loop system for the counterfactual oper-
ation of documents. They suggested eliminating misleading 
associations using feedback in the loop.

The potential outcomes framework is one of the most impor-
tant theoretical models in causal inference. The model was 
proposed by Rubin, a well-known statistician from Harvard 
University [101], and is also called the Rubin causal model. The 
core of the potential outcomes model is to compare the effects 
on the same subject with or without intervention. Whether a 
result appears or not for a target mainly depends on the assign-
ment mechanism. The fact that we can only see one outcome 
does not mean the other does not exist. Therefore, it is more 
reasonable to describe events regarding potential outcomes. 
Except for the potential outcome models, the structural causal 
model is one of the most widely used models in causal infer-
ence. The structural causal model can describe the causality of 
multiple variables. Pearl developed a formal expression method 
of causality based on external intervention and created a way 
to explore the causality and data generation mechanism from 
data [95]. Causal Network mines causal patterns from a large 
text corpus by gathering causal terms to determine causality 
[102]. Data-driven approaches, such as concept network, which 
manually collects information to encode causal events as com-
mon sense, derive causality from text [103,104]. Causal reason-
ing and natural language processing can be combined to extract 
causal relationships between terms or phrases from large textual 
corpora, capturing and comprehending the causal relationships 
between events and actions. Luo et al. [102] used a data-driven 
approach to solve the problem of common sense causal reason-
ing between short texts. They proposed a framework to auto-
matically collect causal relationships from an extensive network 
corpus, which can correctly model the strength of causal 
relationships between items. Dasgupta et al. [105] trained a 
recursive network with model-free reinforcement learning to 
overcome cause and effect problems. Recent advances in causal 
representation learning retrieve the real-world model without 
prior knowledge of manual partitioning [106].

Knowledge reasoning
Knowledge reasoning has always been a crucial component of 
cognitive intelligence. Traditional reasoning, which includes 
deductive and inductive reasoning, is derived from classical 
mathematical theory. Deductive reasoning starts from general 
premises and leads to specific statements or individual conclu-
sions [107]. Inductive reasoning is from the individual to the 
general. It derives generality principles and rules from concrete 
examples [108].

Knowledge reasoning builds the knowledge base using the 
graph data model or topology to integrate data, as shown in 
Fig. 9. It stores the semantic entities with free form (objects, 
events, situations, or abstract concepts) and their relation descrip-
tion. The research contains 7 aspects: knowledge acquisition, 
representation, storage, modeling, integration, understanding, 
and management.

As an effective way to express knowledge, a knowledge graph 
connects entities through rich semantic relations and constructs 
a systematic and semistructured knowledge base. Knowledge 
graphs have been widely used in vertical application fields such 
as medical care, e-commerce, finance, public security, transpor-
tation, and intelligent question-answering. Typical knowledge 
graphs include YAGO [109], DBpedia [110], Freebase [111], 
and Wikidata [112]. These knowledge graphs extract, organize, 
and manage knowledge from many data resources and then 
store and represent knowledge as triples. They help understand 
the semantics of search and provide accurate search answers.

D
ow

nloaded from
 https://spj.science.org at T

echnische U
niversitat W

ien, T
U

 W
IE

N
 on February 09, 2023

https://doi.org/10.34133/icomputing.0006


Zhu et al. 2023 | https://doi.org/10.34133/icomputing.0006 15

Knowledge reasoning based on knowledge graphs mainly 
focuses on relations, that is, inferring unknown facts or rela-
tions based on existing ones in the graph or identifying and 
correcting errors in existing entities, relations, and graph struc-
tures based on prior knowledge and experience. It includes 
reasoning based on rules, distributed representation, graphs, 
and neural networks.

Reasoning based on logical rules mainly uses first-order 
predicate logic, description logic, and probability logic to 
deduce new entity relations. Typical methods include ProPPR 
[113], TensorLog [114], and SRL [115].

Graph structure-based reasoning represented by path ranking 
algorithm [116] combines semistructured topological features 
of knowledge graphs with statistical criteria. This kind of method 
considers the path relation between entities, introduces statistical 
rules into the algorithm, and produces a strong inference effect.

Neural network-based reasoning uses deep learning mod-
els to infer knowledge. Neural tensor network (NTN) [117] 
constructs word vector average representation of entities. 
R-GCN [118] captures the information of adjacent entities by 
convolution networks. IRN uses RNN as the control unit to 
simulate the process of multistep reasoning and introduces an 
attention mechanism. DeepPath [119] initially introduces the 
reinforcement learning framework into the knowledge rea-
soning model.

Reasoning based on distributed representation learning 
learns fact tuples in the knowledge graph by representation 

model and obtains low dimensional vector representation of 
the knowledge graph. The inferential prediction is then con-
verted into a simple vector operation based on the representa-
tion model. Its core is to map the knowledge graph to continuous 
vector space and deduce implicitly through calculating the 
distributed representation of each element. Most representation 
learning approaches, including TransE [120] and RESCAL 
[121], build various learning models based on different spatial 
assumptions and use a single-step relationship, or a single triad, 
as their input and learning objective.

Autonomous intelligence
Two critical ingredients drive machines from passive output to 
active creation: a strongly generalized model and continuous 
interaction with the external environment. The development 
path of autonomous intelligence starts from learning a single 
task to learning by drawing inferences from one example, grad-
ually reaches active learning by dynamically interacting with 
the environment, and finally ends at the advanced intelligent 
goal of self-evolution. This subsection focuses on developing 
technical fields such as transfer learning, meta-learning, and 
autonomous learning to look at feasible paths for generating 
autonomous intelligence.

Transfer learning
The basic idea of transfer learning is to use the strategy of the 
solved problem to solve the new problem, that is, transfer the 

Fig. 9. Overview of knowledge reasoning.
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existing experience to the past. Currently, most neural net-
work methods are used to train the model as a branch of 
machine learning. The parameters of the trained model are 
usually used as a set of initial values to reduce the complexity 
of model training. Transfer learning focuses on training the 
base model in the sample space by optimizing a single overall 
task as a transfer source. The appropriate model is directly 
transferred to the target domain, and then the target model 
is fine-tuned using a small number of labeled samples. The 
original intention of transfer learning is to save the time of 
manually labeling so that the model can transfer from the 
existing labeled data (source domain data) to the unlabeled 
data (target domain data). It can make the most use of the 
obtained data and reduce the sample size requirements for 
machine learning.

In transfer learning, data are divided into the source and 
target data. The source data refer to other data not directly 
related to the unsolved task, usually with a large dataset. The 
target data are directly related to the task, which is of a small 
amount. Transfer learning aims to establish a mapping rela-
tionship from the source domain to the target domain with 
some additional data or existing models. It applies the general 
knowledge to new tasks to fully use the source data to help the 
model improve on the target data. Transfer learning can also 
combine with other models, such as federated learning and 
reinforcement learning [122,123].

Transfer learning can be classified into 4 categories accord-
ing to the learning style. Instance-based transfer learning 
selects instances from the source domain to help train the target 
domain [124]. Different weights are assigned to the instances. 
The more similar the instances are, the higher the weights are. 
Instances with higher weights have higher priority. Feature-
based transfer learning maps the target and source domains 
into the same space, minimizing the distance between the dis-
tributions of the 2 domains [125]. The symmetric-space meth-
ods transform the source and the target domain feature space 
into a common subspace. The asymmetric-space methods 
directly convert the source domain feature space to the target 
domain feature space (or, on the contrary) to achieve the align-
ment of the 2 domains. This method can solve the problem of 
inconsistent data distribution between the source and target 
domain to solve the data-lacking problem completely. Model-
based transfer learning reuses the model trained on the source 
domain and adjusts the model parameters via fine-tuning or 
fixed feature extractor [126]. Relationship-based transfer learn-
ing explores the relationship of similar scenes and uses the 
correlation implicit in the relationship between the source and 
the target domain [127].

Meta-learning
Meta-learning aims to help machine learning to learn [128,129] 
so that the machine can quickly learn various complex new 
tasks in the real environment. Traditional machine learning 
methods manually adjust the parameters in advance and 
directly train the deep model under specific tasks, while meta-
learning will make the machine learn all the parameter varia-
bles that need to be set and defined by humans in advance, 
including how to pre-process data, choose network structure, 
set hyperparameters, define a loss function, and so on [130]. 
The experience gained from the learning history gives the 
machine meta-knowledge. As a result, it can quickly handle 
new tasks with only a few data samples. Meta-learning is mainly 

used in few-shot learning, zero-shot learning, unsupervised 
learning, and other fields with very little available data. Meta-
learning is proposed to solve the traditional neural network 
models’ problems of insufficient generalization performance 
in few-sample cases and poor adaptability to new tasks. The 
idea of meta-learning makes the machine learning process 
more autonomous by reducing the model design cost for var-
ious similar tasks.

Since the goal of meta-learning is to obtain the ability to 
learn new tasks by the meta-knowledge from training data 
quickly, meta-learning considers the entire task set as training 
examples. Meta-learning gets the initial network parameters 
with strong generalization on the training and the validation 
dataset. It performs a few gradient descent operations on the 
test data to learn new tasks. Then, it tests the effect of the model 
after learning. Meta-learning obtains a good initial value of 
the model through preliminary training and then updates the 
weight of the specific task with a small amount of training data 
based on the initial value to achieve good results. Meta-learning 
can also be regarded as finding a set of high-sensitivity param-
eters. Based on the parameters, only a few iterations are needed 
to achieve desirable results on a new task.

The most influential meta-learning model to date is model-
agnostic meta-learning (MAML) [131]. MAML is not a deep 
learning model but more like a training technique. It targets 
training a set of fine-tuned parameters for a group of tasks rather 
than a model for a specific task. Thus, the inputs to feed in 
MAML are tasks, not data. MAML uses a set of adaptive weights, 
which can be adapted well to new tasks after a few gradient 
descents. Then, finding this weight is the training objective. 
MAML iteratively trains a batch of tasks. In each iteration, it first 
trains each task in the batch, then returns to the original status, 
makes a comprehensive judgment on the loss of these tasks, and 
then selects a direction suitable for all tasks in the batch.

Autonomous learning
Meta-learning can handle the general solution model of a spe-
cific type of task by learning from similar task sets and can 
transfer learning between tasks. However, this learning ability 
can only transfer between homogeneous tasks, where even the 
support and query set sizes of tasks are strictly aligned. 
Autonomous learning aims to transform from passive data 
acceptance and training to active learning and improve learn-
ing efficiency, which is the direction considered by Turing 
Award winner Yann LeCun [132]. In addition to higher-level 
transfer learning capabilities, models of the external open world 
are incorporated into the design of autonomous intelligent 
architectures.

Humans and other animals have always been able to learn a 
great deal of background knowledge about how everything works 
in an unsupervised manner through observation and a small 
amount of interaction. This knowledge is what we call common 
sense, which is the basis of the model of the world. LeCun 
designed a learning framework that allows machines to learn a 
“model of the world” in a self-supervised manner (i.e., without 
labeled data). He used that model to make predictions, reason, 
and act. In this model, he extracts valuable ideas from various 
disciplines and combines those ideas to propose an autonomous 
intelligence framework consisting of 6 modules (configuration 
module, perception module, world model module, cost module, 
action module, and short-term memory module). Each module can 
easily calculate objective functions, estimate the corresponding 
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gradient, and propagate the gradient information to the upstream 
modules.

Most of the modules in this cognitive framework of auto
nomous intelligence have an analogy to the animal brain. The 
perception module corresponds to the cortex processing visual, 
auditory, and other sensory pathways. The world model corre-
sponds to some partial high-level processing units of the pre-
frontal cortex. The intrinsic cost module corresponds to the 
amygdala. The trainable critic cost module, however, corresponds 
to the part of the prefrontal cortex responsible for reward pre-
diction. The short-term memory module can correspond to 
the hippocampus. At the same time, the configurator corre-
sponds to the central control and attention regulation mecha-
nism in the prefrontal cortex. The actor module corresponds 
to the premotor cortex. Through this highly brain-like design, 
not only does the transfer of learning ability across tasks look 
promising, but it also introduces common sense and emotion into 
the framework in a modular way, allowing the machine to take 
a big step toward the “conscious” reasoning and planning.

Man–machine integrated intelligence
Despite significant progress in the 4 levels of intelligence, more 
is needed to get critical insights from extremely complicated 
scenarios only by calculation/statistical models. In these sce-
narios, humans should continue to play an indispensable role 
in problem-solving and decision-making, explore the elements 
involved in human cognitive processing, and combine them 
with machine intelligence. The following will focus on human–
computer interaction, human–machine integration, and brain–
computer interface (BCI).

Human–computer interaction
Computers have appeared in various forms in daily life and 
industrial operations. Various methods and products have been 
designed to improve the usability of computers. The devel-
opment of human–computer interaction technology further 
releases the potential of computers and improves users’ work 
efficiency. Human–computer interaction has gone through the 
early stages of humans adapting to computers via manual work, 
command language, graphical user interface (GUI), network 
user interface, and so on. GUI is simple and easy to learn by 
reducing typing operations. Ordinary users who need help 
understanding the computer can also skillfully use it. It realizes 
the actual standardization and brings unprecedented develop-
ment to the information industry due to the expansion of the 
user population.

With the universal development of the network and the 
development of wireless communication technology, the 
human–computer interaction field is facing enormous chal-
lenges and opportunities. The users require a more convenient 
interaction pattern in the multimedia terminal. At the same 
time, the operation interface has innovations in aesthetics and 
forms. It has reached the multimodal and imprecise interac-
tion stage and is constantly developing in the direction of 
human-centered natural interaction. In this stage, human–
computer interaction uses multiple communication channels. 
Modality covers a variety of communication methods for 
users to express intentions, perform actions, or perceive feed-
back information. Computer user interfaces that take this 
approach are called multimodal user interfaces (MMI). MMI 
uses a variety of human sensory channels and action channels 

(such as speech, handwriting, posture, sight, expression, touch, 
smell, taste, and other inputs) to interact with the computer 
environment in a parallel and imprecise manner. It frees peo-
ple from the shackles of traditional interaction methods and 
enables people to enter a period of natural and harmonious 
human–computer interaction [133,134].

Human–machine integration
The theory of human–machine fusion intelligence focuses 
on a new form of intelligence produced through interaction 
between humans, machines, and environments. It is a brand-
new generation of intelligent scientific systems that combine 
physical and biological characteristics. Human–machine fusion 
intelligence, which effectively mixes objective data collected by 
hardware sensors and subjective information perceived by 
human senses, integrates the profound cognitive way of people 
and the superior computing power of computers [135,136]. It 
utilizes human prior domain knowledge as important learning 
clues to construct new understanding approaches and enhances 
computer-based decision-making. With the new methodology, 
computers can manage complex problems in professional fields 
that neither humans nor machines are capable to handle alone.

Human–machine integration, with humans and machines 
directing the integrated learning process until consensus, is 
conducted interactively and collaboratively rather than stati-
cally. It requires intuitive communication between the 2 com-
ponents via an interactive platform. Machine intelligence can 
be interpreted and sent directly to humans. Experts can easily 
submit feedback in a natural form. Furthermore, the fusion 
should automatically adapt to a dynamic environment so that 
integrated intelligence can continuously evolve with updates 
in human knowledge. Thus, self-evolving integrated intelli-
gence is critical for handling dynamic scenarios so that the tasks 
and data can change rapidly [137].

To effectively bring the computer into the real-time thinking 
process, humans and machines must be more closely coupled. 
It is not easy to achieve high real-time performance in inte-
grated computers traditionally. An advanced mode to combine 
human and machine abilities is human–machine symbiosis. A 
human–machine symbiosis system should better understand 
the human intention in terms of better interaction and coop-
eration [138]. The hardware, such as sensors, bracelets, wear-
able devices, and other computers, is formalized in invisibility 
like air. For example, wearable devices can be attached to 
clothes and shoes to realize human–machine symbiosis [138]. 
In software, the development of meta-universe technology will 
provide people with a fully immersive experience of human–
machine symbiosis [139,140]. Computer technology will con-
tinue to serve us in the future, and interactive interfaces and 
tasks will become more natural and intelligent. The cloud-side-
end distributed interaction and collaboration system will be 
built with virtual and real integration. It will obtain human 
functions in the loop of information perception, modeling, 
simulation, deduction, prediction, decision-making, presenta-
tion, interaction, and control. It will provide the continuous 
learning ability of human–machine collaboration. It will pro-
vide platform support capabilities for significant applications 
such as remote exploration and operation in uncharted 
environments, collaborative command and operation of com-
plex systems, human–machine co-driving environment, and 
research and governance of social problems integrating virtual 
and reality.
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Brain–computer Interface
BCI is an interactive system established by analyzing the elec-
troencephalogram (EEG) signals of humans (or animals). It 
breaks through the limitation of traditional neural reflex arc 
structure and enables the brain nerve signal to communicate 
directly with the computer by wire or wireless to control and 
communicate directly with external electronic application 
equipment. According to the signal acquisition method, BCI is 
divided into 3 categories: noninvasive, semi-invasive, and inva-
sive. Noninvasive BCIs utilize signal sources, including surface 
EEG, magnetoencephalography (MEG), functional magnetic 
resonance imaging (fMRI), and functional near-infrared spec-
troscopy (fNIRS). Semi-invasive BCIs use electrocorticography 
(ECoG). Invasive BCIs utilize intracortical EEG. Due to the 
simple acquisition of equipment, convenient operation, safety, 
and easy clinical use, EEG technology is greatly valued. The 
apparent advantage of EEG signals is that they can achieve high 
temporal resolution at the millisecond level, which is suitable 
for real-time monitoring and online transmission [141].

The single-modal BCI faces some challenges, including poor 
robustness of long-term operation, classification accuracy 
affected by the number of commands, human–machine adapt-
ability, and system stability to be improved. For example, the 
number of tasks that a single-modality BCI system can achieve 
is limited, which restricts the completion of complex tasks by 
external output devices. With the increase in the number of 
function instructions, the classification accuracy decreases, the 
system stability is limited, and it is difficult to obtain good results 
in practical applications. Given the above problems of single-
modality BCI, the hybrid BCI (HBCI) concept has been pro-
posed in recent years. HBCI is also known as a multimodal BCI 
(MBCI). It refers to a system combining a unimodal BCI with 
another system (BCI system or non-BCI system) [142,143]. 
HBCI can satisfy the demand for multi-instruction and real time 
in the multi-degree-of-freedom control system to break through 
the problem of limited instruction and low accuracy of multiple 
classification and recognition in single-mode BCIs. It extends 
motion commands quantity, increases the applicability and out-
put characteristics of human–computer interaction, and perfects 
the human–computer interaction system function. It has a broad 
application prospect in aerial teleoperation and equipment con-
trol [144,145].

The HBCI system has 2 essential features: information 
fusion and control strategy. Information fusion includes data-
level fusion, feature-level fusion, and decision-level fusion 
according to the level of information representation. Data-level 
fusion directly fuses the signal data obtained by different sen-
sors. Feature-level fusion combines the feature vector extracted 
from the data obtained by each sensor. Decision-level fusion 
outputs the decision results of the overall system according to 
voting or weight calculation of classified decisions, which are 
processed by each sensor separately. According to the control 
strategies, HBCI system processes input signals by adopting 
the simultaneous mode [146,147] or sequential mode [148,149].

A collaborative BCI (CBCI), which can be applied to group 
collaboration to improve system performance by increasing the 
user dimension, is proposed [150]. The advantages of CBCI are 
not only to effectively integrate group EEG features and improve 
decoding accuracy and robustness. It can also improve the 
decision-making confidence of human–computer hybrid intel-
ligence in cutting-edge tasks. The CBCI usually has precise 
application scenarios. By designing efficient group brain 

information fusion algorithms, it can achieve more accurate 
and faster target control than single brain information [151]. 
The application value of CBCI is to enhance the information 
processing ability of multi-user brain–computer collaboration 
systems for specific tasks. It includes strengthening the deci-
sion-making ability of the system based on human visual infor-
mation and the control ability of the system based on human 
kinesthesia information [152,153].

The structure of CBCI is divided into 2 types: centralized 
and distributed. A centralized CBCI structure is to perform 
multiperson EEG joint feature extraction for one or more fea-
tures [154]. The design idea of distributed CBCI structure is 
group decision-making. The group performs the same task at 
the same time. Different decision weights are assigned to each 
user according to their task performance to avoid individual 
EEG differences. The setting of weights is the critical issue of 
decision fusion [155]. Through the design of joint tasks, the 
exploration of brain activation characteristics, and the analysis 
of the causal relationship between multiperson cooperation, 
the traditional interaction research between a single person 
and environment/task is gradually transformed into group 
interaction research between multiple people and environ-
ment/task. It is a sign that BCI technology breaks through the 
limitations of engineering application. The group–brain col-
laborative joint operation in CBCI is more in line with the 
future human–computer interaction socialization and will be 
unprecedentedly developed and widely used.

Computing for Intelligence

AI discoveries are coming out of the woodwork on a regular 
basis, owing largely to ever-increasing computing power [156]. 
Compared to the groundbreaking 2012 model that initially 
popularized deep learning, the biggest model revealed in 2020 
required 6 million times as much computing power. After high-
lighting this tendency and attempting to quantify its pace of 
rising in 2018, OpenAI researchers have concluded that this 
rapid rising cannot be maintained forever. Indeed, the looming 
slowdown may already be underway.

Historically, the rapid pace of change in AI has been fueled 
by new ideas or revolutionary theories. Often, the newest state-
of-the-art models rely only on bigger neural networks and more 
powerful processing systems than those previously used in 
efforts to achieve the same goal. A study to track the growth of 
the biggest models based on computing power was made by 
OpenAI researchers in 2018 [157]. Using the amount of com-
puting necessary to train some of the most prominent AI mod-
els during the history of AI research, they discovered 2 trends 
with the rapid growth of computing resources.

Their study shows that the amount of computing power 
required to develop a breakthrough model has grown at about the 
same pace as Moore’s law, the long-standing observation that 
the computational capacity of a single microchip has tended 
to double every 2 years, before 2012. Although deep learning 
techniques have been the driving force behind most of the AI 
developments over the previous decade, AlexNet, an image 
recognition system, attracted new interest in them in 2012 when 
it was released. The introduction of AlexNet spurred a dramatic 
increase in the computational needs of top models, which doubled 
every 3.4 months between 2012 and 2018, as seen in Fig. 10.

Research into picture categorization provided the first evi-
dence that growing computational power consistently improved 
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performance in the earliest years of deep learning. However, 
when image recognition algorithms started to outperform 
humans at certain tasks by increasing the computing resources 
[158], attention switched to other areas. Reinforcement learn-
ing techniques were used in huge AI models to play games like 
Atari or Go in the middle of the 2010s [159]. Later, a new archi-
tecture called the transformer emerged, refocusing emphasis 
on language tasks [55]. OpenAI’s GPT-3 [160], a text generator, 
has become one of the most popular AI models in recent years.

Despite advances in algorithms and architectures that allowed 
for more learning to be accomplished with fewer computations, 
the processing needs remained high even after these advance-
ments. AlexNet through GPT-3 requires the same 3.4-month 
doubling period in computing requirements. Computing power 
is therefore becoming a bottleneck for intelligent computing. 
At the same time, the energy efficiency of the AI/ML platforms 
will become increasingly important to reduce the cost of com-
putation [161].

Distributed machine learning (DML) approaches are being 
developed to make the computations scalable by reducing the 
computational load on a single server [162]. One category of 
DML, which is referred to as federated learning (FL), is par-
ticularly promising for distributed learning while preserving 
data privacy at the servers [163]. It also avoids the overhead of 
transmitting a large volume of data from the distributed loca-
tions to a central server. After all, different DML paradigms 
will be vital in future intelligent computing systems.

Large computing systems
When Moore’s law loses efficacy, super large computing power 
primarily depends on parallelly stacking up massive comput-
ing, memory, and storage resources. For example, the term 
“high-performance computing” is used to describe the practice 
of rapidly networking a large number of computers into a single 
“cluster” to do intensive computations. Because of cloud com-
puting, organizations now have the option to increase the 
capacity of their HPC programs.

High-performance computing
HPC allows users to handle massive volumes of data faster than 
a traditional computer, allowing for greater insight and com-
petitive advantage. Over the next decade, scientists will see a 
10 to 100 times increase in sensitivity and resolution from their 
instruments, necessitating a comparable scale-up in data stor-
age and processing capacity. The data derived by these upgraded 
instruments will push Moore’s law to its limits, posing a threat 
to conventional operating models predicated primarily on HPC 
in data centers [164,165].

Conventional HPC architectures were developed for simu-
lation-based methods like computational fluid dynamics. On 
the contrary, applications were developed to use the underlying 
technology accessible to programmers. Modern HPC systems 
include a wide variety of hardware components (e.g., process-
ing, memory, communication, and storage). A measure of this 
heterogeneity can be seen in the diverse characteristics of 

Fig. 10. Growth in computing power demands over the past decade substantially outpaces macro trends [359].
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applications integrated with techniques such as machine learn-
ing. The convergence of HPC and AI has led to the development 
of novel approaches to old issues and the formulation of new 
applications.

The AI platform, which increases the effectiveness of sci-
entific discoveries through AI, provides an integrated work-
space for development and computing. Researchers can avoid 
laborious environment settings and computer resource man-
agement because of the AI platform [166]. Although research-
ers would want to submit AI workloads to HPC clusters 
directly, doing so is impractical due to the need for extensive 
administration and scheduling procedures. To encapsulate 
heterogeneous infrastructure and create a consistent setting 
for researchers, HPC-based AI platforms are becoming more 
popular. In the future, researchers will increasingly use inter-
disciplinary approaches that use a variety of resources (includ-
ing data, HPC, and the physical world) to address a wide 
range of problems [167–169].

Recently, a growing number of technology firms have looked 
at platforms that use comparable AI technologies. Numerous 
AI platforms have been established for various study disciplines 
because of the development of architecture and the constant 
expansion of processing power [170].

• � IDrug [171] by Tencent offers a drug development plat-
form that integrates the strengths of the latest algorithms, 
databases, as well as hardware. The operating time for 
computer-aided drug search iteration is significantly 
reduced by utilizing powerful computing resources 
[e.g., NVIDIA graphics processing unit (GPU)]. IDrug 
facilitates creating and aggregating fresh data while inte-
grating several current databases. IDrug offers services 
related to preclinical drug development, covering protein 
structure prediction, visualization, synthesis routing, and 
molecular design.

• � EasyDL [172] features a thresholdless deep learning 
platform from Baidu Brain that utilizes P4 and P40 
GPUs from NVIDIA’s Tesla series for the majority 
of machine learning workloads. For fundamental 
tasks, the PaddlePaddle framework and the AI work-
flow engine are combined [173]. Typically, business 
researchers with training in AI development should 
use the EasyDL.

• � Amazon AI [174] (AWS) leverages Amazon Web Services 
via the cloud. The major characteristics of Amazon AI 
are flexibility, configurable, and simplicity of installa-
tion. AWS supplies a full range of resources, including 
a variety of popular Python tools and libraries, besides 
security features.

• � VenusAI [170] is a supercomputer-based method that 
extends the virtualization and containerization of pri-
mary hardware. VenusAI provides a technology mech-
anism for aggregating and allocating diverse resources. 
VenusAI also has a uniform interface for resources at the 
layer of application services.

The abovementioned platforms range from commercial 
cloud deployments to industry-specific platforms requiring 
complex integration with scientific investigations. This neces-
sitates the creation of an AI platform with powerful processing 
capabilities for scientific research.

Edge, fog, and cloud computing
Cloud computing has existed as a well-established paradigm 
since 2006 [175]. It allows application deployment and scala-
bility by abstracting underlying computation, storage, and 
network infrastructure. In a cloud data center, numerous 
homogeneous, highly capable computers are linked together 
by a highly reliable, redundant network [176].

The IoT era has been shaped by the widespread addition of 
computing capability because of recent advancements in 
processors, memory, and communications technology [177]. 
Smartwatches, smart city power grids, and smart building 
devices that monitor physiological data are all examples of this 
emerging field. In light of advances in mobile computing and 
the widespread desire for these devices to function together, a 
circumstance has emerged in which many different types of 
devices are all involved in providing the same service or pro-
gram (e.g., a health monitoring app). These new computational 
needs are typified by the requirement of a local computation 
paradigm, which is not met adequately by cloud computing 
owing to its aforementioned features [178].

Fog Computing is a kind of distributed cloud computing in 
which resources such as data, computing, storage, and applications 
are located not in a centralized data center but rather in other 
nodes across the cloud and its underlying data sources. It is a method 
for controlling many dispersed networks, some of which may 
be virtualized, all of which provide data processing and trans-
mission facilities between sensors and cloud storage facilities [179].

Edge computing enables remote devices to process data 
locally, at the network’s “edge” on their own, or with the help 
of a nearby server. Moreover, only the most crucial data are 
transported to the central data center for processing, drastically 
reducing latency [180]. In an edge computing scenario, termi-
nal devices may communicate with a nearby base station to 
offload processing-intensive jobs. After completing a job, the 
edge server sends the results to the terminal device. While the 
end result of this job handling is comparable with those of cloud 
computing, edge servers rather than centralized cloud servers 
are responsible for delivering the required services to terminal 
devices. By moving distributed services closer to the physical 
locations of events, edge computing can potentially signifi-
cantly decrease service latency for end-user devices.

Figure 11 illustrates the representation of cloud, fog, and 
edge computing. In certain cases, the terms “edge” and “fog” 
are used synonymously [181]. Contrary to popular belief, fog 
computing does not only rely on edge computing. Conversely, 
fog computing might be used via edge computing. In addition, 
the cloud is included in the fog when it is not in the edge. 
Accordingly, the fog must exist at a position intermediate some-
where between the edge devices and the cloud. It acts as an 
intermediary between the network and the edge devices, sup-
porting local computing for analysis.

In most cases, edge servers cannot compete with the power 
and flexibility of cloud servers when it comes to computation. 
As the number of endpoints continues to rise, the demand for 
edge servers might become too much to handle. Since edge 
computing is a distributed computing paradigm, an edge server 
can only utilize the information locally to the node where it is 
located instead of the entire dataset. According to these results, 
edge computing is not optimal for global decision-making. 
However, due to its centralized nature, cloud computing has the 
potential to provide not only substantial computing capabilities 
but also a service for international decision-making. Based on 
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these findings, researchers have proposed the concept of edge–
cloud computing, which brings together the advantages of both 
edge and cloud computing [180]. However, note that in an edge 
computing system, multiple servers can cooperate with each 
other securely (e.g., by utilizing a Blockchain platform) to serve 
the terminal devices and thereby improve the utilization of the 
edge servers [182,183]. However, the coordination among the 
servers will involve some overhead.

There are several advantages to using a hierarchical and col-
laborative edge–fog–cloud architecture, such as the ability to 
spread intelligence and computing to find an optimum solution 
within the bounds of the given restrictions (such as the trade-
off between delay and energy) [184]. Obtaining a sustainable 
integration of edge, fog, and cloud computing necessitates over-
coming several problems with design, implementation, deploy-
ment, and assessment because of the hierarchical, cross-layer, 
and dispersed structure of this paradigm.

Emerging computing architectures
The goals of architectural innovation to boost digital computing 
include more efficient energy management, reduced power 
consumption, cheaper total chip cost, and quicker detection 
and correction of errors. AI accelerators may drastically cut 
down on training and execution time when it comes to certain 
AI operations that cannot be performed on a CPU. In-memory 
computing is an extremely favorable choice because it facilitates 
memory cells to conduct primitive logic operations so they can 
compute without the necessity to interact with processors, 
which is a major contributor to the widening speed gap between 
memory and processor.

Accelerators
In the near term, architectural specialization using a variety of 
accelerators will be the best way to keep computing power 
growing, because a transistor prototype built in the laboratory 
typically takes around 10 years to be integrated into a general 
manufacturing process. However, no viable alternatives have 
been exhibited so far. Consequently, it is almost a decade past 
the deadline to find a practical post-CMOS solution to this 
issue. Architectural specialization is the only viable option for 

hardware in the next decade without a viable alternative. 
Hardware specialization was hard to keep up with in an evolv-
ing universal computing environment. As a result of long lead 
times and expensive development, specialization was not an 
appropriate solution. While the slowing of Moore’s law, as 
argued by Thompson and Spanuth [185], renders architecture 
specialization a practical and affordable substitute for full uni-
versal computing, it will have far-reaching consequences for 
algorithm design and programming environments [186].

As shown in Fig. 12, peak power (x axis) and peak giga-
operations per second (y axis) are shown on a logarithmic scale. 
Take heed of the caption on the right, which explains the 
numerous characteristics used to categorize computation accu-
racy, form factors, and inference/training. The geometry used 
to indicate the precision of the calculation may take many dif-
ferent forms, including analog, int1, int32, fp16, and fp64. It 
is easier to see what volume of computing power is being 
crammed into a computing element when the form factor is 
represented with different colors. This study only includes set-
ups with a single motherboard and one physical memory slot. 
Finally, solid geometric figures represent the performance of 
accelerators built for both training and inference, whereas hol-
low geometric objects represent the performance of inference-
only accelerators.

Some of the newest and finest chips from companies like 
Alibaba and Groq, as well as recent offerings from NVIDIA 
and Intel, have peak power consumption far beyond 100 W 
and were developed with inference in mind. The trend over the 
last several years has changed with this. Both accelerators are 
designed for driverless cars and data centers, indicating that 
the power budget for these technologies has increased to more 
than 100 W. Previously, other numerical precisions were the 
norm for integrated devices, autonomous vehicles, and data 
centers; however, int8 has since supplanted them. Several accel-
erators support not just int8 for inference but also fp16 and/or 
bf16. Finally, the ellipse representing data center systems reveals 
rising rivalry for high-end training nodes. Nodes from NVIDIA 
and Cerebras are among the most performing, and there are 
also notable contributions from Graphcore and Groq. Although 
Google TPUs and SambaNova are also competitors, they have 
only reported multinode benchmark results rather than the 
peak capability of their systems on a single node.

Accelerators are, therefore, the most effective tools to ensure 
constant performance gains expected by all scientific comput-
ing users; however, accelerators should be driven by a clearly 
defined use case. As a result, there is a special need for the fields 
of study to emphasize certain features of data science for pur-
poses of analysis and simulation. Some of the biggest names in 
the IT sector have been discussing how next-generation HPC 
systems are becoming much more diverse. As a result of these 
long-term improvements in hardware design, it would not be 
easy to maintain the efficacy and performance increase of HPC 
systems in the future.

In-memory computing
It is clear that the way computers are used is rapidly evolving. 
According to von Neumann’s model of computation, a com-
puter retrieves the data and code it needs to carry out its instruc-
tions from a central repository called memory. Nevertheless, 
the performance gap between the memory and processor is 
widening despite improvements in memory devices. Breakthroughs 
like deep learning and IoT have a particularly severe case of 

Fig. 11. Representation of cloud, fog, and edge computing [360].
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this issue. Since handling such massive datasets exceeds the 
capabilities of the von Neumann architecture, such applications 
provide significant difficulty.

When memory cells are given the ability to execute elemen-
tary logic operations, computing-in-memory (CIM) becomes 
a viable option since it can compute independently of a central 
processor unit [187–190]. Several alternative computer architec-
tures based on CIM that break from the von Neumann paradigm 
have been suggested. Such designs often use cutting-edge tech-
nology and a thoughtful mix of tried-and-true and novel techniques 
to boost computing performance. Improving the performance 
of such systems demands considerable synthesis, which pro-
vides significant obstacles to application translation. Similarly 
crucial is the issue of verifying such CIM frameworks.

An appropriate CIM design for the requirements of future 
computing demands requires a careful balancing of technolog-
ical and architectural options. One such modern technology 
that has already impacted the computer industry is the 
memristor. Scientists are investigating implementations of 
memristors for many reasons, including their low-temperature 
manufacturing technique, nonvolatile resistive switching, and 
compatibility with CMOS. Because of its status as a relatively 
new technology, memristors have several limitations, such as 
geographical and temporal variations in device performance 
and an absence of reliable simulations.

Static random access memory (SRAM) [191,192] or non-
volatile memory [193,194] may both be used to implement 
CIM, namely, SRAM-CIM or nvCIM [195]. SRAM may be used to 
construct CIM (SRAM-CIM) or nonvolatile memory (nvCIM). 
nvCIM allows storing weight data even while the system is 
inactive, so it is unnecessary to retrieve data from a processor 
upon powering it up. Because of its low durability and high write 
energy, nvCIM can only be used on systems with adequate 
memory to retain all data required for the specific application. In 
contrast, SRAM-CIM is well suited for low- to medium-capacity 

systems. It can be configured to function with various neural 
networks because of its quicker write rates, cheaper write 
energy, and significantly better (nearly infinite) endurance. The 
latest logic technologies may also be used with SRAM-CIM, 
reducing latency and improving power efficiency.

According to [195], in terms of computational structure, 
memory macro and digital processing elements are set up as 2 
distinct blocks in the traditional von Neumann design [196–198]. 
On the other hand, CIM macros do both information exchange 
and computation throughout the single memory window. As 
shown in Fig. 13, CIM is classified into either near-memory array 
computing (NMAC) or in-memory array computing (IMAC).

• � NMAC: Data are stored using the NMAC structure’s 
memory cells like those of a conventional memory 
device [199–201]. The memory macro is outfitted with 
an individual interface to connect a simulant or elec-
tronic circuit with the memory cells. NMAC circuits 
are used to compute the digital or analog MAC using 
the output weights and inputs from outside the circuit. 
Digital MAC procedures store NMAC’s outputs in out-
put registers.

• � IMAC: Various input techniques are used to input data and 
execute analog computations using the memory cell array 
[202–204]. Each SRAM cell multiplies a binary weight 
and an input once during MAC computation. The results 
of analog computation on the bitlines are subsequently 
converted into digital outputs. For example, consider the 
binary fully connected network-using MAC computing 
approach in [203]. All the accessed memory cell (IMC) 
data for a particular column are added together to get 
the accessible bitline’s analog voltage because of the MAC 
operation. Then, an analog-to-digital converters (ADCs) 
circuit transforms this voltage of the accessible bitline 
into a digital output.

Fig. 12. Peak performance versus power scatterplot of publicly announced AI accelerators and processors [361].
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Emerging computing modes
The presence of complexity is frequently to blame for the failure 
of traditional computers. If a supercomputer gets stumped, it 
is likely because a particularly difficult task was presented to 
the large classical machine. Moreover, the ubiquitous use of 
today’s highly complex AI models, such as deep neural net-
works (DNNs) in edge devices remains elusive. It is attributed 
to the deficiencies that there is a power and bandwidth crunch 
for premium GPUs and accelerators operating these models, 
which results in long processing times and cumbersome archi-
tecture designs [205]. In light of these facts, researchers are 
spurred to create novel computing modes, such as neuromor-
phic and photonic computing, biocomputing, and mind-bogglingly 
disruptive quantum computing.

Quantum computing
Since entering the big data era, demand for data processing 
speed is increasing. At the same time, the computational power 
of classical computers is gradually reaching its limit. Quantum 
computing, however, can surmount this limitation since it has 
the quantum advantage brought on by entanglement or other 
nonclassical correlations, achieving exponential speed in many 
complex computational problems. This advantage of quantum 
computing could bring a huge potential to deal with extensive 
information in a short time and become a promising candidate 
for next-generation computing technology.

In the early 1990s, Elizabeth Behrman started combining 
quantum physics with AI. Most scientists thought the 2 disci-
plines were just like oil and water and could not be combined. 
But now, when chemists and biologists begin to learn quantum 
mechanics, the combination of computer science and quantum 
mechanics seems very natural. Additionally, the evolution of 
computers is greatly influenced by quantum IT. Compared with 
the classical bits 0 and 1 considered by computer science, quan-
tum physics began to consider whether such classical bits could 
be replaced by quantum bits for operation. Due to its superpo-
sition state, this qubit may stand for either 0 or 1, depending 
on the context. Superposition exists in many quantum systems, 
including the 2 orthogonal polarization directions of photons, 
the spin directions of electrons in a magnetic field, and the 2 
spin directions of nuclear spin, all of which have applications 
in quantum computing. The superposition of quantum systems 
gives quantum computing the advantage of parallel computing, 
which improves its speed significantly. The quantum computer 

can improve the computing power exponentially compared 
with the classical computer [206,207]. Besides, if we study AI 
from the perspective of quantum computing, we may not need 
a very advanced general-purpose quantum computer. Most of 
the time, a specific function quantum processor can satisfy an 
AI algorithm and exhibits the quantum advantages [208–213], 
and this can be achieved very soon.

In recent years, AI and quantum computing have continued 
to heat up and gradually become 2 major research hotspots. 
Quantum AI is an interdisciplinary frontier subject combining 
these 2 hot topics as illustrated in Fig. 14. At present, people 
believe that if one of the data or algorithms is quantum, it can 
be summarized into the category of quantum AI. Two signifi-
cant concerns exist in this emerging discipline. One is using 
advanced classical machine learning algorithms to analyze or 
optimize quantum systems and solve problems related to quantum 
mechanics. The other one is establishing a quantum learning 
algorithm based on quantum hardware and using the parallelism 
of quantum computing to improve the speed of the machine 
learning algorithm. Finally, there is another situation: the algo-
rithm is quantum, and the data is quantum, but there is no 
substantive progress in this field.

Quantum AI has broad application prospects [214]. For exam-
ple, quantum AI has been applied in the synthesis of drugs 
[215] and the treatment of various chemical reactions [216]. 
Despite the rapid development of quantum AI, it is still in its 
initial stage. Many applications are still limited by the number 
of quantum bits and the bit error rate caused by environmental 
noise in the specific function quantum computer. Therefore, 
now, we study quantum AI from the quantum perspective. We 
all consider how to build a scalable system and ensure that 
quantum bits receive the least noise in the calculation process. 
We believe that quantum AI will bring the fifth wave to the 
world after several years or even decades of development.

For now, we must deal with a lot of data every day. There is 
an association between these data. Graph algorithms can get 
much helpful or hidden information from the relationship 
between these data. Graph computing, the core technology of 
next-generation AI, has been widely used in many fields such 
as medical treatment, education, military, finance, and so on. 
However, when the scale of the graph is large, the computing 
resource requirements will greatly increase. For example, the 
problem of finding the largest fully connected subgraph is an 
NP-hard problem. Now, we think about whether we can use 

Fig. 13. Three conceptual approaches to computing: (A) conventional digital computing, (B) near-memory array computing (NMAC), and (C) in-memory array computing 
(IMAC) [195].
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quantum computing to improve the speed of graph computing. 
Gaussian Boson sampling has been proven with quantum supe-
riority many times, and at the same time, we find that the graph 
can be encoded into a Gaussian Boson sampling machine [217,218]. 
Namely, we can use the sampling results to quickly find the 
maximum number of fully connected subgraphs (cliques) [215].

Neuromorphic computing
Carver Mead first uttered the term neuromorphic in the 1980s 
[219,220], at which time it mainly involved hybrid analog–
digital forms of brain-inspired computing. Nevertheless, a 
considerably wider spectrum of hardware is now considered 
to fall under the umbrella of neuromorphic computing because 
of the growth of the field and the appearance of significant 
funding for brain-inspired computer systems.

Non-von Neumann computers are those that resemble neu-
rons and synapses. Their construction and operation are 
inspired by neurons and synapses in the brain. Alternatively, a 
neuromorphic computer has neurons and synapses that control 
processing and memory. In contrast to von Neumann computers, 
neuromorphic computers construct their programs utilizing 
parameters and the neural network’s topology instead of pre-
defined instructions. One subclass of neuromorphic approaches 
relies on generating and manipulating “spikes” in analog neural 
networks. The frequency that spikes appear, their magnitude, 
and their shape can be employed to store numerical data in 
neuromorphic computers, whereas von Neumann computers 
encode information as binary values. The conversion of binary 

values into spikes and vice versa is still a subject of study in 
neuromorphic computing [221]. Figure 15 shows structures of 
conventional computing systems and brain-inspired computing 
systems.

The 2 designs operate differently from one another because 
of their differing traits [222].

• � High parallelism: Since all neurons and synapses have 
the ability to function concurrently, neuromorphic com-
puters are by their very nature parallel. In contrast to 
von Neumann systems, neurons and synapses carry out 
comparatively straightforward calculations.

• � Co-located processing and memory: In neuromorphic 
hardware, processing and memory are not separated. 
In many cases, synapses and neurons carry out pro-
cessing and storing values, although neurons are often 
regarded as processing units and synapses as memory 
units. Incorporating processors and memory units can 
alleviate the von Neumann limitation regarding proces-
sor or memory division, resulting in slower maximum 
performance. Furthermore, co-location reduces the time 
data are accessed from main memory, a practice common 
in conventional computing that consumes a substantial 
volume of energy compared to computing.

• � Intrinsic scalability: Since adding more neuromorphic 
chips entails adding more neurons and synapses, neu-
romorphic computers are naturally scalable. One may 
think of a combination of many physical neuromorphic 

Fig. 14. Diagram showing the relationship between complexity classes and a flowchart for identifying and evaluating possible quantum advantages [209]. (A) It is illustrated 
how adding more data may increase the complexity in several ways. It is believed that quantum computing can efficiently solve issues that conventional ML algorithms with 
data cannot, because classical algorithms that are able to learn from data belong to a complexity class that can handle issues that go beyond classical computation. (B) 
The flow chart is the developed methodology for analyzing the feasibility of a quantum prediction advantage. Quantum and classical procedures with associated kernels, as 
well as N samples of data from a quantum neural network (QNN) with potentially unlimited depth using encoding and function circuits Uenc and UQNN, are supplied as input. 
The importance of the data for a potential prediction advantage is emphasized by presenting the tests as functions of N. Before even thinking about the function to learn, a 
geometric quantity called gCQ may be evaluated to determine the likelihood of a positive quantum or classical prediction separation. If the test is successful, we demonstrate 
how to build an adversarial function that reaches this limit effectively; otherwise, the traditional technique is guaranteed to provide the same level of performance regardless 
of the data function. After the model complexity sC and sQ have been determined, a label/function-specific test may be conducted to evaluate the actual service provided. The 
red dashed lines show whether the quantum kernel (QK) approach can determine whether a simple classical function may represent any given encoding of data.
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chips as a huge neuromorphic system to operate ever 
larger networks. Numerous massive neuromorphic 
hardware systems have been effectively put into use, such 
as SpiNNaker [223,224] and Loihi [225].

• � Event-driven computation. Neuromorphic computers 
are able to perform extremely efficient computations due 
to event-driven computation [226,227]. During the exe-
cution of the network, neurons and synapses only carry 
out computations when spikes are present, and spikes 
are relatively sparse.

• � Stochasticity: Neuromorphic computers can incorporate 
stochasticity.

Neuromorphic computers are extensively described and 
cited in publications as motivations for adoption [228,229]. 
Neuromorphic computers are ideally suited for computation 
because of their energy efficiency: They typically run with a 
fraction of the power of traditional computers. They consume 
very little power because they are event-driven and highly par-
allelized, meaning that only a fraction of the system works 

simultaneously. Energy efficiency is a sufficient motivation to 
explore the implementation of neuromorphic computers, given 
the increasing energy consumption of computing and the 
emergence of energy-constrained programs (i.e., edge comput-
ing). In addition, neuromorphic computers are ideally suited 
to modern AI and ML applications, as they inherently perform 
neural network-like operations. Additionally, neuromorphic 
computers have the potential to handle multiple kinds of com-
putations [230].

Photonic computing
Architecture specialization is bringing more data center 
demands like accelerator technologies for machine learning 
workloads, and rack disaggregation approaches are also putting 
pressure on current interconnect technologies. Although the 
newest high-throughput processor chips feature multiple CPU/
GPU cores that can perform extremely difficult computations, 
they lack the off-chip bandwidth needed to make the most of 
their resources. Taking on this challenge requires overcoming 
packaging limitations, which are directly related to the limited 
bandwidth density of current electrical packages [186].

Fig. 15. Structures of conventional computing systems and brain-inspired computing systems [357]. The figure illustrates that based on the 3-tiered structure of conventional 
computing systems (right), a brain-inspired computing system (left) consisting of software (on the top), a compiler (in the center), and hardware (at the bottom) was proposed. 
Applications and Turing-complete programming languages (like JAVA and Python) make up the software layer of the architecture of a conventional computer system. Intermediate 
software representations, such as the abstract syntax tree, are transformed into hardware representations, such as instructions, throughout the compilation process. The 
instructions are executed by CPUs or GPUs that adhere to the von Neumann architecture at a hardware level. ALU, CPU, ROM, RAM, and I/O are all von Neumann architecture 
components. Turing completeness guarantees the exact equality of all stacks. The neuromorphic applications and frameworks for their development constitute the software 
layer of a computer system inspired by the human brain (such as Nengo and PyTorch). The programming operator graph (POG) represents software at this stage, and an 
execution primitive graph (EPG) represents hardware at this stage [control flow graph (CFG)]. The POG is presented before the compilation tools are used to convert it to the 
EPG. To abstract the neuromorphic hardware, a hardware layer called ANA was proposed, which consists of scheduling units (SUs), processor units (PUs), memory, and an 
interconnection network (TrueNorth, SpiNNaker, Tianjic, and Loihi). Neuromorphic completeness, on the other hand, offers not only exact equivalence but also approximation 
equivalence to account for the approximation feature of brain-inspired computing.
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Optical neural networks (ONNs) offer many benefits over 
electrical neural networks as shown in Fig. 16, including ultra-
high bandwidth, fast calculation speed, and high parallelism, 
all of which are realized by using photonic hardware acceleration 
to calculate complicated matrix-vector multiplication [205,231 
,232]. To keep up with the ever-increasing complexity of data 
processing techniques and the volume of datasets, we need 
deeply integrated and scalable ONN systems with compact sizes 
and decreased energy usage. Light’s superposition and coher-
ence features allow ONN neurons to be naturally coupled by 
interference [233] or diffraction [234] in diverse contexts, while 
a wide range of nonlinear optical effects [235] may be used to 
implement the activation function of the neurons physically. 
Because of these tools, other types of neural network topolo-
gies, such as fully connected [233,234 ,236], convolutional 
[237–239], and recurrent [240,241], may now be realized opti-
cally. With today’s state-of-the-art optical technologies, ONNs 
can perform 10 trillion operations per second [237], which is 
comparable to electrical counterparts, with energy consump-
tion that may be on par with or even less than one photon per 
operation [242], which is orders of magnitude lower than 

digital computation [243]. Silicon photonic integrated circuits 
(PICs) are becoming an attractive option for building the mas-
sive and compact processing units needed in optical artificial 
intelligence computers because of their small size, high inte-
gration density, and low power consumption [238,244–246].

Biocomputing
Biological computing is a new computing model developed 
using the inherent information processing mechanism of bio-
logical systems. In short, it is used to solve computational prob-
lems with biological methods. As we can see in Fig. 17, biological 
computing mainly focuses on devices and systems. Devices, 
also known as molecular devices, are the basic units for infor-
mation detection, processing, transmission, and storage at the 
molecular level; a system refers to the design of a new comput-
ing system utterly different from the traditional computing 
architecture. Generally, the system is a distributed system.

Biological computers mainly include protein computers, RNA 
computers, and DNA computers. The protein computer takes 
the law of protein motion as the basic prototype of computer 
operation. The researchers of Syracuse have used protein as the 

Fig. 16. Deep neural networks, including conventional and electronic–photonic [362]. (A) A typical block architecture for a deep neural network comprises an input layer, 
multiple hidden layers, as well as an output layer that produces outputs for classification or regression. (B) In this network design, a conventional N-input neuron is employed. 
Its output is formed by processing the linear weighted sum of its inputs via a nonlinear activation function. (C) In accordance with the photonic deep neural network (PDNN) 
chip architecture, separated from one another by overlap, the input picture is split into 4 smaller images on a 5 pixel-by-6 pixel array. Pixels that constitute portions of images 
are sent to the primary layer of neurons. The connections between the second and third tiers and the layers below them are obvious. Two outcomes are conceivable for the 
network. (D) The architecture of a real-world N-input photonic neuron, in which optical P-doped–intrinsic–N-doped (PIN) attenuators are used to change the weights of N 
optical input signals, and the summed output of parallel photodiodes (PDs) is then used to perform photodetection. A transimpedance amplifier (TIA) is used to amplify and 
voltage-convert the photocurrent isum. Adjusting the supply light makes it possible to produce the optical output of neurons.
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computer’s core device and the laser to read the information. 
The storage capacity is 300 times larger than the electronic com-
puter, opening the era of protein computers. RNA and DNA 
computers use the specific hybridization between nucleic acid 
molecules as the basic model. Because RNA is inferior to DNA 
in differentiating molecular structure and experimental opera-
tion, few people have paid attention to RNA computing. DNA 
computer takes biological enzymes as the basic material and 
biochemical reactions as the process of processing information, 
trying to improve the efficiency of computer processing infor-
mation in the way humans process information. Adleman first 
proposed a DNA computer in 1994. After numerous studies and 
practices, although it is still in its infancy, the powerful storage 
capacity and parallelism shown by DNA give DNA computers 
a huge potential.

Biological computing has unique advantages compared to 
traditional computing, which can be summarized as the strong 
parallel and distributed computing ability and low power con-
sumption. Parallel computing and distributed computing are 
the modes designed by traditional computers to solve large-
scale and complex computing problems. But biological com-
puting naturally has incomparable advantages over parallel and 
distributed computing. Second, the biochemical connection 
process in biological computing requires molecular energy and 
does not require additional external energy, and the overall 
energy consumption is very low. For example, the energy of 
1 joule can complete more than 1,000 calculations for DNA, 
while the traditional silicon-based computer can only complete 
more than 100 calculations. There is an order of magnitude 
difference.

Within the scope of current technical capabilities, biological 
computing inevitably has deficiencies. Limited by the existing 
biological technology, most current biological computers are 

designed on paper, and there are no suitable conditions for 
relevant experimental verification, let alone construction. For 
example, in the DNA computer, DNA or protein is reused to 
meet the requirements of continuous consumption of DNA in 
the calculation process. The existing DNA computers are all 
dedicated to a specific field. It is also complex in making stand-
ard and universal computer components. DNA involves 
biological privacy information. Protecting citizens’ DNA infor-
mation from being infringed on and used by criminals is a 
significant social problem.

Applications of Intelligent Computing

Intelligent computing for science
Discovering innovative ideas with the same old methods is not 
going to stagnate if we are going to keep up with the ever-
increasing problems of our rapidly evolving environment. 
However, the pace of scientific discovery will be tremendously 
boosted like never before by the confluence of computer revo-
lutions now underway.

Computational materials science
Computational materials (CM) have become a powerful means 
of studying materials’ properties and designing new materials 
for several decades. Their applications, however, suffer from 
many challenges due to the complexity of materials and mate-
rial behaviors, including lacking force fields and potentials for 
many atoms, ions, and atomic and ionic interactions, different 
thermodynamic phases in molecular dynamics (MD) simula-
tions, and the huge search space for the optimization of material 
components and process parameters. AI integration into CM 
is shown to be a revolution to the traditional CM as a new 
research paradigm [247]. Intelligent CM as shown in Fig. 18 is 

Fig. 17. Biocomputing might offer performance superior to that of traditional computers [363]. (A) Inputs and outputs and the processing of inputs by an algorithm are technically 
defined in a computing model. Although there are various physical implementations of the same theoretical computing model, the essence of computation is consistent 
regardless of the specific implementation. Electrical data also make up the inputs and outputs for electronic implementations. Still, cells can also detect and transmit a wide 
range of physical, chemical, and biological data flow. Data may be encoded into inputs using a variety of techniques. Examples of temperature encoding systems. (B) More 
complex computation models than combinatorial logic have been established in computer science. The Turing machine and finite-state machines are examples of this. These 
models outperform combinatorial logic because they enable the processing of a wider range of inputs into a wider range of outputs in a wider range of ways. Living systems’ 
cells can process information because a variety of computing mechanisms have evolved throughout time. A simple model that serves as the basis for creating combinatorial 
logic circuits in cells represents the fundamental tenets of molecular biology. However, the model does not take into account essential biological systems like metabolism or 
processes like evolution that may pave the way for the development of more sophisticated, as-yet-unknown models.
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one major component of materials informatics [248] and is 
becoming increasingly popular. The number of relevant pub-
lications has reached 50,000 on the Web of Science. About 70% 
were published in the past 5 years.

The integration of AI and CM is exhibiting great success 
in multiple lengths and time scales and multiple physical 
field coupling calculations. The most famous electronic and 
atomic-scale calculation method is first-principle calculations 
by applying the density functional theory (DFT). The key issue 
in DFT calculations is the huge demands on computational 
powers due to the multiple particles and nonlinear interactions 
in the Schrödinger equation for electronic structures. The deep 
neural network might be an efficient way to accelerate the 
calculation process of the electronic Schrödinger equation 
[249,250]. The approximations of exchange-correlation (XC) 
energy in DFT limit the accuracy of the Kahn–Sham DFT cal-
culations. Kernel ridge regression and deep neural networks 
can create more accurate XC approximations [251,252]. 
ML-based XC approximations can even be applied in systems 
with strong correlations. By substituting time-consuming elec-
tronic structure calculations with empirical potentials, MD can 
simulate much larger systems with defects in different temper-
atures. ML can provide a systematic method to derive force fields 
or potentials from first-principle calculations. The ML-based 
force fields are called ML potentials. ML potentials consist of 
2 parts: data and ML potential model. During data collection, 
prior knowledge of the studied system plays a central role in 

the design of candidate structures that should be calculated 
using first-principle calculations. The design of descriptors for 
local structures is the heart of the ML potential model [253]. 
Several efficient ML potential packages have been published 
including Amp [254], MLIP [255], MLatom [256], and DeepMD 
[257]. Xu et al. [258] investigated Li–Si alloys using MD based 
on a model that was built from DeepMD. Various crystalline 
and amorphous Li–Si systems were analyzed for their structural 
and dynamic features. Their prediction was 20 times faster than 
ab initio MD simulations with similar accuracy. This method 
can also be applied to insulating materials like liquid water. 
Sommers et al. [259] introduced a model for insulating mate-
rials and applied it on liquid water. It shows that the Raman 
spectra associated with classical 2-ns trajectories under a fixed 
temperature could be computed, and the resolution of low-
frequency Raman spectra was enhanced. Li et al. [260] applied 
DeepMD on the solid-state electrolyte Na3OBr. The Na+ diffu-
sion coefficients at finite temperature were obtained, suggesting 
the influence of temperature on the migration barrier. Their 
work also demonstrates the promising future of DeepMD in 
the study of transport properties of solid-state electrolytes. 
Recently, Zhang et al. [261] studied the structure phase transi-
tions of SrTiO3 using DeepMD. The temperature-driven phase 
transition characters under different in-plane strains were stud-
ied via the model build using DeepMD.

Phase-field simulations can illustrate the microstructure 
evolution over time at the continuum thermodynamic and 

Fig. 18. High-level comparison of paradigms for materials/molecular sciences [364]. The conventional paradigm is described on the left and illustrated using organic redox 
flow batteries in the middle. On the right is a model of a closed-loop system. Inverse engineering, intelligent software, AI/machine learning, embedded systems, and robotics 
are all necessary components of a closed-loop system.
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kinetical levels. But they require huge computational powers. 
LSTM networks, as a famous algorithm of gated RNN, were 
successfully applied to train a model to predict results of a long 
time evolution from data collected from calculations over a 
very short time period [262]. In finite element calculations of 
materials, the key issue is constructing a constitutive model for 

specific materials in a given service environment. Many ML 
models are able to construct a constitutive model from data, 
for example, Gaussian processing [263], artificial neural net-
works [264–269], and symbolic regressions [270,271].

Another application of ML in CM is to train an ML surro-
gate model, especially a simple analytic surrogate formula, 

Fig. 19. Different deep learning-based drug–target interaction (DTI) prediction algorithms take different input characteristics into account [365]. Therefore, they may be 
divided into 3 categories: (A) ligand-based approach, (B) structure-based approach, and (C) relationship-based approach.

Fig. 20. Combination of big data and next-generation AI in plant breeding [366].
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which is used to substitute the original true physical model 
[272,273]. Data are collected from several calculations of the 
physical model with different input parameters and applied in 
ML model training. Usually, the ML surrogate model can be 
evaluated far faster than the original physical model, while both 
models have nearly the same accuracy. The several orders accel-
eration on computational speed allows for a global search in 
the design and optimization space. Typical ML algorithms that 
can be applied to train a multifidelity surrogate model include 
Kriging/Gaussian process [274], LSTM networks [262,275], 
physics-informed neural networks [276], and CNNs [277].

For cases without available physical models, a surrogate model 
can be trained directly from experimental data to substitute a 
yet-unknown physical model. The situation is the most common 
in materials society, and the model is usually called the material 
microstructure–macroproperty relationship. Features or descrip-
tors in machine learning of materials include electronic and 
atomic parameters, chemical composition, microstructural 
parameters, thermodynamic and kinetic parameters, processing 
conditions, service environment conditions, all material charac-
terization conditions, and optical and electron microscopy 
images. The output of machine learning models can be either 
target properties or potential energy surfaces [257]. Depending 
on the studied problems, some parameters are features in some 
problems and become responses in other problems. Target prop-
erties include stability [278], formability, bandgap [279], Curie 
temperature, dielectric properties, and flexoelectricity [280]. 
Stability plays an imperative role in predicting new materials and 
the formation energy, which can be obtained from the first-
principles calculations. Li et al. [281] developed a transfer learning 
method to predict formation energy. After screening 21,316 per-
ovskites, they found 764 stable perovskites with a tolerance factor 
of less than 4.8. Ninety-eight of them have already been proven 
stable by DFT calculation. Recently, Takahashi et al. [282] studied 
the stability of hybrid organic/inorganic compounds using a 
series of machine learning models and proved that the combi-
nation of advanced electronic structure theory and machine 
learning promotes designing new materials. The bandgap is an 
important parameter in designing novel photovoltaic devices. 
The solar cell requires a bandgap that meets the wavelength of 
visible light. In 2018, Park et al. [278] predicted perovskite band-
gap to search candidates for solar cells using machine learning. 

They predicted 9,238 perovskite materials to have the desired 
bandgap, and 11 of them were undiscovered.

Computing for astronomy
Astronomy has gathered vast amounts of data in history as one 
of the most ancient observational sciences. Because of the 
breakthroughs in telescopic technologies that generate digital 
outputs, there has recently been a tremendous data explosion. 
The field of astronomy and astrophysics is characterized by a 
wealth of data and a variety of ground-based telescopes with 
big apertures, for example, the upcoming large synoptic survey 
telescope and the space-based telescopes [283]. Data collection 
is now more efficient and largely automated using high-resolution 
cameras and associated tools. The system will collect roughly 
15 TB of data daily [284]. With respect to effective decision-
making, it is imperative to have more effective data analysis. 
Hence, intelligent computing techniques are needed to inter-
pret and evaluate that dataset.

In the field of morphological classification of galaxies, after 
years of waiting and anticipation, the first images captured by 
the James Webb space telescope were finally released on 2022 
July 12. A machine learning model called Morpheus creates 
morphological classifications of astronomical sources at the pixel 
level. Morpheus is trained on UC Santa Cruz’s Lux supercom-
puter, which consists of 28 GPU nodes with 2 NVIDIA V100 
Tensor Core GPUs each. Machine learning models rapidly 
evolve into incredibly effective tools in cosmology and astro-
physics. For example, CNNs and generational adversarial net-
works (GANs) have been successfully applied to facilitate the 
classification of galactic morphologies based on star formation 
and morphological properties [285–288]. It has been proven 
that these ML algorithms can achieve over 90% accuracy and 
perform equally well or even superior to conventional methods 
with much fewer time budgets.

For radio frequency interference detection, newer studies 
have shown that U-Net [289] and its variants provide a strong 
architectural foundation for semantic segmentation, which is 
a crucial component of deep learning-based radio frequency 
interference (RFI) detection. U-Net was initially implemented 
for RFI detection in radio astronomy [290]. A combination of 
computer-generated data and observed data captured by a sig
nal antenna at Bleien Observatory was used to train and test 
the network [291]. After evaluating a U-Net variant in terms 
of detecting RFI using synthetic and real data collected at the 
HERA observatory [292], for improved generalization to other 
representations, the authors split off the scale and the time pe
riod into separate elements in the model. Combining the scale 
and the time period depictions of the intricate visibility yielded 
only marginal benefits, as is demonstrated in [293,294]. Trans
fer learning has consistently been found to be effective in situ-
ations where labeled data are absent. For instance, R-Net can 
be trained on simulated data and employ a tiny part of expert-
labeled data. Its domain may be adapted from simulated 
to real-world data [294]. GANs have been demonstrated to 
be useful for RFI detection in [295]. A very novel way to use 
GANs was proposed in [296]. The authors suggested a source-
separation strategy to differentiate astronomical signals from 
RFI based on employing 2 independent generators.

Computing for pharmaceutical research
AI has been affected by all drug design phases [297–299], and 
can be divided into 3 categories in Fig. 19. Drug design benefits 

Fig. 21. Components of digital society [367].
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from AI as it helps scientists establish 3D structures of pro-
teins, the chemistry between medications and proteins, and 
the efficacy of drugs. In pharmacology, AI is used to create 
targeted compounds and multitarget medications. AI can also 
design synthetic routes, predict reaction yields, and under-
stand the mechanics behind chemical synthesis. AI has made 
it simpler to repurpose current medications to treat new ther
apeutic objectives. AI is vital for identifying adverse reac-
tions, bioactivity, and other drug screening outcomes.

Recent AI tools and platforms for drug design are as fol-
lows [300].

• � AlphaFold, the groundbreaking computational model, 
estimates the 3D structure of proteins exclusively using 
their amino acid sequence generated by DeepMind and 
EMBL-EBI [301]. According to the latest CASP14 analy-
sis, AlphaFold provides the most precise estimation of 3D 
protein structures [301]. In addition to considering dif-
ferent constraints (evolutionary, physical, and geometric) 
related to protein structures, AlphaFold implements a 
neural network architecture based on protein data banks.

• � SwissDrugDesign [302], a product of the Swiss Institute 
of Bioinformatics, is one of the most widely used AI plat-
forms for drug design.

• � Synthia by Merck, an upgraded version of Chematica, 
suggests potential synthesis routes based on compound 
information. The AI application can provide multiple 
synthetic routes for the target molecule by adjusting the 
search options. Chematica was developed by Klucznik et al. 
[303] to generate synthetic procedures for 8 commonly 
occurring compounds and subsequently conduct exper-
iments on them. Each of the compounds has shown a 
significant increase in productivity and cost reduction 
compared to conventional techniques.

• � Ligand Express from Cyclica identifies potential tar-
gets associated with certain macromolecules. Instead 
of screening large collections of macromolecules to 
locate the suitable ligand to bind to certain proteins, an 
advanced platform built on the cloud screens the human 
proteome to discover the optimal matching protein and 
proteins [304].

• � AstraZeneca’s AI platform REINVENT is used to design 
macromolecules from scratch. It can produce macromol-
ecules that comply with a broad range of preferences 
entered by the user [305].

There are several different AI platforms and tools for drug 
research and discovery on the web, and new ones are continu-
ally emerging. The current study does not have the space to 
describe them all in depth, but other excellent evaluations 
[297–299,306–308] analyze and compare them.

The detection of active compounds through huge chemical 
libraries is one of the initial stages in the drug development 
process [309]. High-throughput screening (HTS) now rules 
this phase [310]. Large chemical libraries are screened via HTS 
using assays relevant to the study. Instead of calculating behav-
iors in silico, it offers the benefit of testing them empirically. 
HTS is not constantly necessary yet. Large libraries are expen-
sive to experimentally screen because they only contain a tiny 
portion of the chemical space. Additionally, not all assays can 
be carried out on a large enough scale; generally, negotiation 

must be made between the amount and quality of experimental 
data acquired for each test to get the best possible results. 
Virtual screening (VS) is an alternate method that may be used 
in addition to or instead of HTS [311,312]. By screening chem-
icals in silico rather than in vitro, which is more affordable and 
is not constrained by a physical library, VS aims to overcome 
the drawbacks of HTS. VS usually enriches actives, raises hit 
rates, and lowers the cost of subsequent tests [313]. This is par-
ticularly true when a distinct design hypothesis, like a verified 
target, is present. Nevertheless, VS is imprecise and prone to 
producing inaccurate predictions, much like several other in 
silico techniques. Once this occurs, inactive molecules may be 
classified as false positives, wasting time and important resources 
on further research. Therefore, increasing VS’s enrichment rates 
is still necessary.

Stephen Oliver and Ross King from the University of 
Manchester created 2 robots, Adam and Eve, which are the icing 
on the automation and present use of AI in drug creation [300]. 
Adam was built to do microbiological experiments, analyze the 
data on its own, propose hypotheses, and create experiments 
to examine the hypotheses until a correct theory was established 
[314]. The robot Eve is more sophisticated; it experimentally 
screens hundreds of compounds each day, identifies certain hits, 
constructs a specific cell line to test the hits, and then modifies 
the structures of the hits to produce lead compounds [315].

In the pharmaceutical industry, there is a general trend 
toward the use of advanced manufacturing technologies, with 
a strong emphasis on connected and efficient processes like 
continuous manufacturing, new technologies suited for per-
sonalized and on-demand medicine (like 3D printing), and an 
ongoing effort to find solutions for problematic compounds in 
the pipeline [316]. The COVID epidemic made us reevaluate 
ways to quicken the processes of medication and vaccine 
research and development. Digitalization, difficult substances, 
and a quick pace bring a tendency for modeling, predictive 
methods, and digital cooperation in the pharmaceutical sector. 
Additional and unique difficulties, such as protein stabilization 
and purification, are brought on by the growing number of 
biomolecules in the pipeline.

Computer-aided breeding
Food security is now a world concern, partly because of the fast 
population expansion, which is anticipated to reach 9 billion 
people by 2050 [317]. Approaches such as tissue culture muta
genesis and transformation have been used to improve crops. 
Functional genomics improves our understanding of the plant 
genome and opens new opportunities for tinkering with it. 
Promising methods, like nanotechnology, RNA interference, 
and next-generation sequencing, have been developed to boost 
agricultural output in response to future needs [318].

Crop breeding has lately seen a growth in the use of AI tech-
nologies, which support the creation of services, the identifi-
cation of models, and decision-making processes in agri-food 
applications and supply chain stages. Figure 20 indicates the 
combination of big data and AI in crop breeding. The main 
objective of AI in agriculture is to anticipate outcomes with 
accuracy and improve yield while minimizing resource use [319]. 
Therefore, AI tools provide algorithms that may evaluate perform
ance, anticipate unforeseen issues or occurrences, and dis-
cover trends, such as water consumption and irrigation process 
management via the installation of intelligent irrigation sys-
tems, to handle agricultural concerns [320].
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AI facilitates the whole agricultural value chain, from plant-
ing to harvesting to selling [321]. Therefore, AI advancements 
have aided the efficiency of agro-based firms by enhancing crop 
management. Weather forecasting, improving automated equip-
ment for accurate pest or disease detection, and analyzing sick 
crops to boost the ability to produce healthy crops are common 
areas where AI is being used. It has paved the way for several 
technology firms to create AI algorithms that help the agricul-
tural sector to deal with issues that include pest and weed infes-
tations and yield decreases due to global warming [322].

To maximize yields and profitability while reducing crop 
damage, farmers should employ technology to predict the 
weather. AI empowers farmers to gain greater knowledge and 
understanding by analyzing the data they collect and then act-
ing by putting processes in place that help them make informed 
choices [323]. Additionally, using either farm flora patterns or 
pictures taken with a camera recognition tool, AI techniques 
can monitor soil management and health by recognizing plant 
pests and diseases, as well as nutrient deficits and potential soil 
defects [321]. By lowering the use of pesticides, AI technology 
offers a huge functional advantage in environmental preserva-
tion. Farmers might, for instance, spray herbicides just where 
weeds are present using AI approaches, including robotics, ML, 
and computer vision, controlling weeds more effectively and 
precisely. This would lessen the chemical spray needed to cover 
the whole field.

The 4 central clusters of the agricultural supply chain (prepro-
duction, production, processing, and distribution) are becoming 
more and more relevant for ML algorithms [324]. ML technolo-
gies are used during the preproduction phase to anticipate soil 
characteristics, crop output, and irrigation needs. In the succeed-
ing stage, ML might be used to detect illnesses and predict the 
weather. To achieve high and secure product quality, production 
planning is forecasted using ML algorithms in the third cluster 
of the processing phase. Finally, the distribution cluster may ben-
efit from ML algorithms, especially in terms of storage, customer 
analysis, and transportation [321].

Intelligent computing for economy and governance
Intelligent computing accelerates transformational change, 
resulting in the shift of economic and social order. Markets for 
goods and labor are changing drastically due to technological 
advancements. The newest developments in AI and associated 
advancements are pushing the boundaries of the digital revo-
lution in new directions as illustrated in Fig. 21.

Digital economy
There are several potential routes for advancement in AI sys-
tems. In general, AI should be at the heart of every data-driven 
strategy in the digital economy, including Industry 4.0. 
Predictive maintenance, for instance, may benefit greatly from 
AI [325,326]. Predictive maintenance deals with maintenance 
involving general or production machinery and aids in lower-
ing operating expenses or downtime using sensor data from 
either production or operating lines.

It is possible to develop and apply AI-based prediction models to 
improve maintenance schedules. Furthermore, IoT and cyber-physical 
systems (CPS) applications should benefit from AI since these 
technologies were created for data collection rather than analysis. 
Finally, AI may contribute to the future development of robotics 
and automation for use in industrial, manufacturing, and service 
applications. For such unique AI techniques, DRL is now showing 

promising results [327,328]. A more basic thing to notice is that 
general data analysis concepts must also be adjusted for the use 
of AI. Cross-industry standard procedure for data mining [329] 
is a rudimentary standard that emphasizes feedback between 
successive analytical processes. This has recently been expanded 
to consider industry-specific demands and domain-specific 
expertise [330].

Three main issues are commonly brought up regarding the 
use of AI in business and the economy. The first is job losses 
because of the adoption of automated analytic systems [331]; 
the second is the difficulty in understanding generic AI 
approaches; the third is the widening wealth disparity between 
rich and developing nations [332]. Interestingly, the first 2 
arguments are virtually identical to digital medicine and health 
systems. AI governance, which must be designed appropriately, 
addresses the latter problem.

Urban governance
According to recent research, urban governance is to develop 
novel strategies and methods to make cities smarter [333]. 
Smart cities include smart urban governance, which aims to 
utilize cutting-edge IT to sync data, procedures, authorities, 
and physical structures that will benefit locals [334]. Meijer and 
Bolívar [335] established 4 exemplary conceptions of smart 
urban governance based on a thorough examination of the 
literature: smart decision-making, governance of a smart city, 
smart administration, and smart urban cooperation.

Also, numerous promising new avenues of research into the 
urban brain have been presented [336–338]. Big data has made 
it common practice to combine data from various sources and 
different points of view to provide a complete picture of urban 
residents. Large-city population development has brought the 
additional challenge of managing more complicated road net-
works. Because of this, traffic management also necessitates 
analysis, forecasting, and smart action [339]. For instance, cities 
have been developing integrated traffic management systems 
for the optimization of traffic flow in real time, such as City Brain 
in Hangzhou, China. These technologies take advantage of copi-
ous urban monitoring data captured by a variety of sensors. In 
addition, the difficulty of simulating the urban brain system 
increases with the complexity of traffic networks. Important 
considerations include [340] (a) speeding up computations on 
enormous synchronized heterogeneous network configurations 
through parallel heterogeneous computing and (b) visually sim-
ulating an urban setting and building algorithms for flexible 
perception with strong environmental robustness. In terms of 
crisis management, it will be crucial for future cities to be able 
to conduct searches rapidly. As a result, it is crucial to search for 
and recognize individuals in monitoring data by conducting 
simulated analyses of their characteristics and activities. Urban 
planning and analyzing public resources are also fascinating 
fields. The urban brain can accumulate facts according to the 
rules of urbanization throughout time. It is possible to optimize 
the design of public facilities and the distribution of government 
funds by examining such information.

Recent research has called for a greater emphasis on the 
“urban” component of “smart governance.” Instead of placing 
excessive weight on technologically created neutral informa-
tion, urban issues, relevant expertise is understood as socially 
formed via interaction with people [341]. For instance, infor-
mation that is the product of collaborative efforts between the 
government, the business sector, and civil society is often 
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poorly organized or, at most, semistructured. It is required 
when attempting to solve strategic and unconventional prob-
lems. When addressing issues that affect a whole community, 
we must have access to technological tools that promote 
dialogue, debate, and the development of agreement [337]. 
Democratic institutions, social conditions, ethnic and political 
values, and the physical world are all examples of contextual 
elements that may foster or stifle the growth of creative and 
smart governance. It argues that context should be considered 
when considering alternatives to the existing “smart” govern-
ment [335].

Perspectives
The technical detail of intelligent computing and its main chal-
lenges from theoretical and experimental perspectives have 
been reviewed in the previous sections. In this section, the main 
challenges and future development of the intelligent computing 
industry are exposited from the view of an emerging industrial 
ecology.

Theoretical revolution in machine intelligence
Compared with conventional computing theory, intelligent 
computing is the application and development of linguistically 
and biologically motivated computational paradigms [342]. It 
means that machines can mimic the problem-solving and 
decision-making capabilities of the human mind based on dif-
ferent scenarios. However, there are fundamental differences 
in the underlying logic of silicon- and carbon-based operations, 
and the mechanics of brain intelligence still need to be further 
revealed. The next step in intelligent computing is to develop 
a radical theoretical overhaul through an in-depth exploration 
of the essential elements of human-like intelligence and its 
interaction mechanism at the macro level [343] and the com-
putational theory underpinning the generation of uncertainty 
at the micro level.

According to the theory of multiple intelligence by Howard 
Gardner, human intelligence can be differentiated into specific 
modalities of intelligence [344]. Depending on the expression 
of different machine intelligence, it can be disassembled into 
different combinations of basic abilities. For example, logical–
mathematical intelligence is the combination of learning ability, 
computing ability, and memory ability. Since intelligent com-
puting refers to the simulation and approximation of human 
intelligence in machines, a basic paradigm, which clarifies the 
definition and standardizes the definable and computable prop-
erties of multivariate intelligence, helps better realize human-
like intelligence. It is necessary to design an axiomatic system 
of multivariate intelligence and prove that it has basic mathe-
matical properties such as decidability and completeness. For 
multivariate computational intelligence, precise decomposition 
and quantitative description are needed. Moreover, the calcu-
lability and comparability of multivariate intelligence should 
also be provided through quantified mathematical expressions 
and measurement criteria of the atomic intelligence fusion. 
Scientists can develop better human-like machine intelligence 
through the integration, collision, and interaction between dif-
ferent theories [345–347].

Turing computation, based on the theory of computation, is 
functional. Classical computation built on Turing computation 
produces deterministic results. However, the creativity of intel-
ligence is built on uncertainty. Receiving the same background 

knowledge, different people will have diverse thinking on the 
same problem. Even in the face of the same problem, the same 
person makes various choices and judgments at other times and 
circumstances. This uncertainty is why human intelligence 
can continuously generate new data, knowledge, and tools. 
Randomness and fuzziness are 2 primary forms of uncertainty 
in the subjective and objective world. At present, the exploration 
of machine intelligence is built on the classical computing the-
ory, trying to abstract the natural world through artificial preset 
symbolic systems and algorithmic models, and realize the 
approximation of randomness and fuzziness. The intelligence 
of the human brain grows out of the emergence of chemical 
phenomena such as proteins, particle channels, chemical sig-
nals, and electrical signals. To study evolvement from low-level 
perception to high-level logical reasoning, it is necessary to 
understand how uncertain emergence occurs and how to repro-
duce the randomness and fuzziness of the emergence. A neu-
romorphic network simulates the structure and function of 
neurons in the brain, but it cannot simulate the process of intel-
ligence generation. Quantum computing may be one of the most 
promising directions. Quantum mechanics reveals the uncer-
tainty of the fundamental particles that make up the world. This 
uncertainty may drive the emergence and development of 
human consciousness and can also be the theoretical basis for 
constructing high-level machine intelligence. Some research has 
been conducted to mimic the probabilistic behavior of quantum 
mechanics in a classical computer [348]. To further develop 
intelligent computing, we need first to build a computational 
theory that can support uncertainty to realize a perfect mapping 
from theoretical computing space to physical space.

Knowledge-driven computation
To make the computer learn like humans, scientists have 
adopted 2 approaches: symbolic AI, brought up by expert sys-
tems, and connectionism, designated by deep neural networks 
[349,350]. These approaches can be good solutions to intelli-
gent computing problems to some extent. The key to the 
problem still requires prior knowledge inputs such as a pre-
defined physical symbol system, neural network models, and 
behavior rules. Data-driven intelligence at the theoretical and 
methodological level relies mainly on mathematical models 
and large-scale data input to compute results. In essence, the 
machine does not produce new knowledge; it only performs 
a series of numerical calculations based on prior knowledge 
and, thus, the results. In other words, the machine is just an 
“executor,” while the actual strategies and logic that enable the 
derivation and computation of the knowledge are still specified 
by humans. However, data-fitting learning in small tasks with 
large data gradually shows limitations. Due to the problem of 
weak generalization, poor interpretation, difficulty in knowl-
edge expression, lack of common sense, and catastrophic for-
getting, the models are far from human understanding. In 
most cases, humans are better at summarizing from a few 
practices without learning from large-scale training data. 
According to their correlation [351], the brain can transform 
vision into multiple knowledge. However, the current deep 
learning frameworks can only simulate human intelligence on 
the surface [352].

Integrating knowledge from different domains with algo-
rithmic models can lead to better problem solving, on which 
the prototype of the fifth paradigm of scientific research is 
based [353]. Therefore, it is important to explore how humans 
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learn and apply it to the study of AI. The knowledge-driven 
machine intelligence can learn from human activities and 
mimic the decision-making capabilities of the human mind, 
enabling machines to perceive, recognize, think, learn, and 
collaborate like humans. Exploring theories and key technol-
ogies for multiknowledge-driven knowledge reasoning and 
continuous learning to enable intelligent systems with human-
like learning, perception, representation, and decision-making 
capabilities can facilitate the evolution of intelligent computing 
from data driven to knowledge driven [354]. Combining data-
driven inductive abstraction with knowledge-driven deductive 
reasoning and constrained optimization of physical theorems 
is a key challenge in improving machine intelligence. To 
achieve the ability to summarize abstract concepts and reach 
higher levels of intelligence, more flexible system architectures 
need to be developed to explore the way knowledge is created, 
stored, and retrieved. At the theoretical level, the knowledge 
data model needs to be improved, while the model’s ability to 
describe the real world needs to be enhanced. Human-like 
thinking models are introduced to learn human environmen-
tal perception, emotional preference, seeking advantages, 
and tendency to avoid harm and to construct a computational 
model of a self-learning system capable of perceiving the 
environment.

Architectural innovation for hardware and software
Various innovations have been proposed in hardware architec-
tures. But the adaptation between hardware and software faces 
enormous challenges, such as accuracy loss, invoking difficulty, 
and collaboration inefficiency. From the theoretical perspective, 
neuromorphic computing is an effective technology system with 
apparent advantages in computing for intelligence [355,356]. 
Neuromorphic technology can reduce power consumption and 
improve real-time computational performance by several mag-
nitudes. In addition, neuromorphic technologies are low-cost 
and easy to implement in many applications. However, the 
design of neuromorphic computing hardware [neuromorphic 
chips, spiking neural networks (SNNs), memristors, etc.] places 
obstacles in constructing algorithms and models. Although the 
traditional neural network model has achieved accurate results 
in modeling domain problems, when transplanting the trained 
neural network model to SNNs, structural incompatibility can 
lead to a loss of accuracy. The application of SNNs depends on 
the development of neurocomputing chips. Due to their new 
design structure and computing mode, the SNNs cannot achieve 
the theoretical results in traditional chips.

To narrow the gap between neuromorphic computing 
hardware and software, the co-design and coordinated devel-
opment of software and hardware are necessary for data man-
agement and analysis in the new hardware environment. In 
the future, it is essential to break through the fixed input and 
processing paradigm under von Neumann’s architecture for 
the computer and vigorously develop interdisciplinary intel-
ligent computing and bionics. In addition, it is substantial to 
design at the algorithm level, break through the existing archi-
tecture’s limitations and try more flexible and human-like data 
processing with lower computational cost and hardware 
design. It is also important to develop new component design 
schemes with high-performance and low-energy consumption 
to improve the computing ability and efficiency of both soft-
ware and hardware to meet the rapid growth in demand and 
the application of intelligent computing.

Solutions to large-scale computing systems
The theoretical–technical architecture of intelligent computing 
is a complex system with multiple subsystems that interact with 
other disciplines. Various hardware in the system requires a more 
complex system design, better optimization technologies, and 
many costs in system tuning. Lacking complexity in the theory 
of high-dimension computing is the main challenge for a large-
scale computing system. In large-scale computing systems, the 
optimization problems can be simplified into multiple small tasks 
to reduce the system’s complexity. However, no solid theoretical 
foundation exists in that aspect. For the optimization problem, 
the main target is minimizing the objective function. However, 
minimizing the objective function cannot capture those uncer-
tainties when there are multiple uncertainties. Uncertainty can 
lead to significant variation in the system and thus increase the 
complexity, which is difficult to analyze. For example, in the prob-
lem of computational social science, the main objects to be mod-
eled are groups of people. The mechanism of macro phenomena, 
such as ethnic group evolution and cultural transmission, can be 
explained by analyzing the interaction between humans and the 
environment. However, capturing all micro disturbances when 
operating such a large-scale system is problematic. Meanwhile, 
it is challenging to disassemble the social science computational 
process into multiple independent subsystems.

When finding solutions for large-scale applications, it is 
necessary to define the global parameters from a macro per-
spective at the beginning of the task. A new interactive task 
guidance method that introduces the role of humans in the task 
understanding process needs to be designed. Then, it is neces-
sary to break the complex computing problems into subprob-
lems and organize the problem sequence according to its logic. 
Finally, the results from multiple subproblems can be combined 
as a complete solution. Generally, there are 3 difficulties in solv-
ing large-scale problems. First, new abstraction methods should 
be explored to build the micro–macro linkage causal analysis 
model instead of adding more parameters and building more 
complex subsystems. For system modules that are not directly 
connected, the implicit relationships between them can be 
revealed through dimension transformations. The problem of 
a large-scale complex system often involves multiple disci-
plines, which require prior knowledge and experimental expe-
rience from different fields to solve the general mathematical 
principles of their subproblems. Second, in large-scale systems, 
the subsystem’s calculation mechanism is highly nonlinear, 
which may cause competition in the computing resource in 
different subsystems or even constrain each other. The multi-
level subsystems make it exponentially more difficult to study 
the nonlinear effects. Studying the nonlinearity of the multilevel 
subsystems can effectively reveal the internal mechanism of 
large-scale systems. The last problem is the interpretability of 
the system. In general, the model complexity gradually grows 
with accuracy, and higher complexity leads to an unexplainable 
model. Since the large-scale system frequently exchanges infor-
mation with the real world, the complex interaction between 
the subsystems leads to the evolution of the system structure. 
It is necessary to establish a new theory from a higher-order 
perspective to analyze its interpretability [357].

Conclusion
We are currently ushering in the fourth wave of human devel-
opment and are in the critical transition from the information 
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society to the human–physics–information integration of the 
intelligent society. In this transition, computing technologies 
are undergoing transformative, even disruptive, changes. 
Intelligent computing is believed to be the future direction 
for computing, not only intelligence-oriented computing but 
also intelligence-empowered computing. It will provide uni-
versal, efficient, secure, autonomous, reliable, and transparent 
computing services to support large-scale and complex com-
putational tasks in today’s smart society. This paper presents 
a comprehensive review of intelligent computing, covering its 
theory fundamentals, the technological fusion of intelligence 
and computing, important applications, challenges, and future 
directions. We hope this review provides a good reference to 
researchers and practitioners and fosters future theoretical 
and technological innovations in intelligent computing.
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