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Abstract—With deepening urbanization and Internet of
Vehicles (IoV) applications, the number of private cars has been
increasing in recent years. However, because the surging num-
ber of private cars is not compatible with limited road resources,
private car users have had unsatisfactory commute experiences
during their daily travel. In this work, we focus on improving pri-
vate car users’ commute experience based on an analysis of IoV
trajectory data in a privacy-preserving way. Our idea is based on
the following observations: 1) the commute experience of private
car users is closely related to the departure time and the travel
cost and 2) most travel costs are spent on urban hot zones.
Motivated by these findings, we propose a novel blockchain-
enabled model named Deep Improving Commute Experience
(DeepICE) to improve private car users’ commute experience by
predicting when to depart and when to arrive. In this model, a
blockchain with a consensus mechanism is developed to address
private car user privacy concerns. In addition, we propose a
multitask learning-enabled graph convolution network (GCN)
method to capture the highly complex features and relations
between two tasks, i.e., the departure time and travel cost, and
then develop the model to predict these two tasks. The exper-
imental results demonstrate the superior performance of our
proposed model compared to existing approaches. Our model
can be applied to efficiently enhance private car users’ commute
experience.

Index Terms—Blockchain, commute experience, multitask
learning, privacy-preserving, private car.
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I. INTRODUCTION

DRIVEN by deepening urbanization and the advance of
the Internet of Vehicles (IoV) [1], private cars have been

experiencing continuously increasing growth for decades and
constitute the vast majority of urban automobiles. For exam-
ple, the number of private cars reached 207 million by 2020 in
China, accounting for 79.61% of automobiles [2]. In particular,
in the past five years, the average annual growth of automo-
biles was 19.66 million according to [2], and over 94% of them
were private cars. In the U.S. and Canada, the number of pri-
vate cars has exceeded 200 million, and 80% of Americans
possess private cars [3]. With this background, an increasing
number of people commute by using private cars to conduct
daily activities and fulfill travel needs [4], [5], [6], [7].

During people’s daily travel, they have unsatisfactory com-
mute experiences because the surging number of private cars
exceeds limited road resources. This problem motivates us to
seek solutions to improve private car users’ commuting expe-
rience. Doing so will not only help to decrease the probability
of an unpleasant commute but also enhance private car users’
driving safety, thereby alleviating traffic congestion and pol-
lutant emissions and helping the government smartly manage
urban traffic.

Specifically, we make the following observations on the
commute experience of private cars according to [8] and [9].

1) The commute experience is closely related to the private
cars’ departure time and the travel cost [10], particularly
the interaction of departure time and travel cost.

2) Existing works such as [11] find that a large num-
ber of urban residents choose similar travel routes for
their commutes during working days. More specifically,
private car users tend to choose an unchanged route
for commutes regardless of the traffic condition and
external factors, such as weather and the distribution
of points of interest (PoIs) [11], [12]. For this reason,
route optimization or path recommendation [13], [14],
[15], [16], [17] methods would not help achieve a good
commute experience.

3) When people use their private cars for commuting, they
will spend more time commuting and passing through
urban hot zones. As such, travel cost depends mostly
on the hot zones that they drive through. Furthermore,
popularity of hot zones and the number of hot zones in
private car users’ routes directly determine whether their
commute route incurs high travel costs [18].
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Fig. 1. Application of improving users commuting experience.

As illustrated in Fig. 1, the private car user sticks to the
same route, and various departure times and travel costs pro-
vide varying commute experiences. The user could choose to
leave at 7:30 A.M. if the driver needs to arrive at his office in
advance, or the driver could leave at 7:40 A.M. if the driver
is not in a hurry. However, if the driver departs at 7:50 A.M.,
the driver will be late. By selecting a suitable departure time
and evaluating the expected travel cost, the private car user can
obtain a satisfactory commute experience. Here, we emphasize
that travel cost is tightly connected with travel time, namely,
the time the private car users need to spend arriving at their
commute destinations. A longer travel time makes them not
only endure long commutes and congested traffic conditions
but also face the risk of being late. Intuitively, if these two
tasks, i.e., departure time and travel cost (e.g., travel time),
can be accurately predicted, it will help enhance private car
users commute experience.

In this article, we strive to improve private car users com-
mute experience based on an analysis of their trajectory
data. In recent years, deep learning (DL) methods have been
developed to focus on trajectory data research. For example,
Yao et al. [19], [20], and Zhou et al. [21] utilized cars’ histor-
ical trajectory data to model and predict traffic. Li et al. [22],
Chen et al. [23], and Zhou et al. [24] proposed evaluating the
risk factors during traffic based on trajectory data. Motivated
by these studies, we aim to improve private car users’ commute
experience by designing a DL-based approach with trajectory
data.

Although existing solutions look promising, they introduce
the following issue: How can we jointly predict the departure
time and travel cost based on private cars’ trajectory data
in a privacy-preserving manner? To resolve this problem, we
must address the following issues.

1) A more abnormal traffic environment occurs in the com-
mute period. For example, there are more vehicles on
the road and more congested travel conditions in this

period. In addition, it is becoming increasingly difficult
to extract the task dependencies between the two tasks,
i.e., selecting a proper departure time and foreseeing the
expected travel cost.

2) It is challenging to effectively represent temporal and
spatial features during the learning process of task
modeling. On the one hand, the spatial structures of hot
zones are irregular, and the spatial correlations between
these hot zones are complex. Hence, modeling the travel
cost spent on the different hot zones is becoming more
difficult. On the other hand, the temporal relations of the
departure time and the travel cost are complicated due
to their periodicity property [12].

To address the abovementioned challenges, many works
have been proposed to incorporate different tasks to fully
exploit the spatial and temporal relations. For example,
Zhang et al. [25], Jiang et al. [26], Li et al. [27], and
Zhou et al. [28], [29] introduced multitask learning to exploit
the spatial and temporal relations between different tasks.
They utilize traditional DL-based functions, such as fully
connected networks and CNNs, as the kernel functions to
extract the task dependencies from the training data set.
One shortcoming of these works is that they cannot fully
exploit irregular spatial structures to properly model task
dependencies because the spatial dependency between hot
zones is a non-Euclidean construction. Accordingly, sev-
eral works [30], [31], [32], [33], [34] utilize graph structures
to model irregular spatial constructions. Motivated by this
approach, the graph structure is applied to simulate the irreg-
ular spatial structure. We purposely utilize GCN to construct
the graph structure, which is one of the most popular algo-
rithms in the field of graph DL. Nevertheless, using only graph
structures cannot realize task dependency extraction.

In this article, we propose a blockchain-enabled multi-
task learning model [Deep Improving Commute Experience
(DeepICE)], to efficiently improve private car users’ com-
mute experience in a privacy-preserving way. Within the
proposed method, we first extract several hot zones based
on spatial and temporal trajectory data through the spatial-
temporal density-based spatial clustering of application with
noise (ST-DBSCAN) algorithm, considering that most pri-
vate car users’ travel costs are spent on the hot zones of the
city [18]. Note that the blockchain technology is applied in
information sharing so that each private car user can acquire
knowledge from others’ trajectory data in a trustworthy way.
Focusing on these hot zones will alleviate computational com-
plexity and achieve lightweight computing. Then, a multitask
graph convolution network (GCN) is proposed to determine
the inherent trend between the departure time and travel
cost. Specifically, we design a multitask learning approach
to extract potential relations of the aforementioned tasks
and improve prediction accuracy [34], [35], [36], [37], [38].
Overall, the blockchain-enabled DeepICE model can be uti-
lized to improve private car users’ commute experience
and provide privacy, thereby facilitating related services, for
instance, alleviating traffic congestion and decreasing pollutant
emissions.

This work makes the following contributions.
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1) To the best of the authors’ knowledge, this work is the
first to predict the departure time and travel cost to effi-
ciently improve private car users’ commute experience.

2) We propose an end-to-end model DeepICE to improve
private car users’ commute experience, in which deep
learning methods are developed to predict private car
users’ departure time and travel cost, because the com-
mute experience is closely related to the departure time
and the travel cost.

3) In the prediction part of DeepICE, we propose a mul-
titask GCN to simultaneously learn two tasks, i.e., the
proper departure time and the expected travel cost, which
is able to fully exploit the potential spatial and tempo-
ral features to improve prediction accuracy and enhance
private car users’ commute experience.

4) Extensive experiments are conducted based on a real-
world private car trajectory data set. The results demon-
strate the superiority of our approach; most of the
experimental results are better than the baselines in both
single-task learning and multitask learning.

The remainder of this article is organized as follows:
Section II presents the related works. Section III introduces the
definitions and the problem formulation. Section IV presents
an overview of the proposed method and illustrates its details.
Next, Section V describes the experimental results based on
private car trajectory data. Finally, Section VI concludes this
article.

II. RELATED WORKS

A. Commute Experience

As commutes are becoming routine in most people’s lives,
several recent works have focused on studying the experi-
ence of personal commutes. For example, Nunes et al. [39]
investigated how to leverage passenger knowledge to enhance
the travel experience. The authors aim to enhance the travel
experience of people who usually take urban public trans-
portation. Thus, the authors propose a framework that unifies
their collective intelligence through mobile computing devices
and dedicated Web services. They strive to intensify win-
win relationships between public transport passengers and
operators.

Bonera et al. [40] developed travel experience indices for
evaluating travel experience quantitatively. In addition, they
aim to identify relationships between objective factors and
users’ perceptions and pinpoint similarities and differences
between the two contexts. This work conducts a compara-
tive investigation of two different contexts, Bristol (U.K.) and
Brescia (IT), by analyzing the quality of time spent on board
urban buses.

Zhu et al. [41] proposed offering a path planning method
based on urban traffic big data. Because a real-time path
planning system between the server, public vehicles, and
passengers is indispensable for improving transportation effi-
ciency, the authors increase real-time performance by restrict-
ing search places for each public vehicle through the managing
process. Doing so can alleviate the computational pressure
and thus increase the real-time performance of path planning

systems. However, the system cannot be utilized to truly
improve passengers’ commuting experience. In the busy com-
mute period, passengers must bear tremendous commute
stress. Furthermore, private car users tend to choose the same
commute route, regardless of traffic conditions or external
factors [5], [12]. For these reasons, path planning or route
optimization methods are not suitable for improving private
car users commute experience.

B. Travel Cost Prediction

As we discussed in Section I, travel time is the major con-
cern related to travel cost. There are three main approaches
to travel cost prediction: 1) OD-based prediction; 2) segment-
based prediction; and 3) path-based prediction.

1) OD-Based Prediction Approach: One approach to travel
time prediction is origin-destination (OD) prediction, which is
suitable for trajectory data with only origins and destinations.
In [42], a nearest neighbor-based method for OD travel time
estimation is proposed. This approach estimates the travel time
by averaging the scaled travel times of all historical trips with
a similar origin, destination, and time of day. However, this
approach neglects the underlying spatial structures and the spa-
tial relations of the place that the user passes through, which
could lead to inaccurate prediction.

2) Segment-Based Prediction Approach: Segment-based
prediction requires full trajectory data with all segments.
Wang et al. [43] forecast vehicle speed from the loop sen-
sor and then forecast travel time on individual road seg-
ments. In [44], trajectory data are collected via GPS receivers
equipped on cars. The travel speed of individual cars on road
segments at time t is collected in the GPS so that the travel
time through these segments can be predicted. However, due
to the low sampling rate, the trajectory data of these cars are
sparse, and it is difficult to cover all road segments that vehi-
cles pass through under the low sampling rate and sparse
trajectory data, thereby leading to unsatisfactory prediction
performance.

3) Path-Based Prediction Approach: Another approach to
travel time prediction is path-based prediction. Because the
time spent on intersections is not negligible in prediction,
existing research considers this aspect [45]. However, these
works do not directly use subpaths to estimate travel costs.
Subpaths were first proposed in [46] to improve travel cost
prediction. Fu et al. [47] further improved the path-based
method by mining frequent patterns between trajectories.
Nevertheless, with scarce trajectory data that have only origins
and destinations, this approach is not applicable. Furthermore,
it demands great computational complexity to support the
prediction tasks.

Due to the complex spatial and temporal relations between
trajectory data, binding such relations to improve the
prediction is essential. However, these approaches cannot cap-
ture these features well to obtain a better result. Furthermore,
because trajectory data are always sparse, they need to bal-
ance the coverage of queries and the accuracy of the travel
time, which are quite time consuming and memory consuming.
Hence, an efficient way to predict travel costs is needed.
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Fig. 2. “Hot zones” on 20 June 2023, in Changsha, China. 9:00 A.M.

III. PRELIMINARIES

In this section, we first present some definitions in this work
followed by the problem formulation.

A. Definitions

Trajectory Data: The trajectory data, tra = {p1, p2, . . . , pm},
are composed of consecutive historical GPS points. The ith tra-
jectory point pi is represented by the latitude (lati), longitude
(lngi), and timestamp (ti). m denotes the number of trajectory
points.

The trajectory trip contains essential information, such as
the start time (StartTime), the stop time (StopTime), and the
corresponding car’s ID (ObjectID). Table I gives an example
of a trajectory trip. Table II presents an example of trajectory
data.

Hot Zones Network: From Fig. 2, we observe that when
people use their private cars for commuting, these private car
users (i.e., noncommercial and nonoperational vehicles, which
are only used for private commuting) tend to choose a fixed
route for their commutes [12], and they spend more time pass-
ing through urban hot zones. Accordingly, their travel cost is
highly dependent on the hot zones that they drive through.
Focusing on the computing of hot zones leads to lightweight
computing. In addition, the trajectory data of private cars are
sparse due to their stop-and-wait nature [5].

Considering the sparsity of trajectory data and the specific
relations between private car users and hot zones, we construct
a hot zone network Z to alleviate the sparsity of private car
trajectory data and avoid burdensome computing. In particular,
the trajectory data are collected by private car users sharing
their trajectory trips. In such data sharing, the blockchain with
the consensus mechanism [48] is used to establish trust among
untrusted private car users.

In doing so, the sparsity of the overall trajectory data is
scattered to these hot zones. Accordingly, the computing com-
plexity can be reduced. Specifically, we first extract hot zones
in the city based on the private car trajectory data through the
ST-DBSCAN algorithm [49]. Then, each hot zone serves as
a node z. If two hot zones, e.g., zi and zj, are geographically

adjacent, they are interrelated. The hot zone network is rep-
resented as Z = (z, E), where z is a set of hot zones (z1, z2,
. . ., zn) and n denotes the number of extracted hot zones. E
denotes a set of edges, indicating whether there are relations
between hot zones. The element of E is described as follows:

e =
{

0, if there are no relations between hot zones
1, if there are relations between hot zones

(1)

where the existence of relations between hot zones means that
the minimum spatial distance of trajectory points in hot zone zi

and in hot zone zj is less than the threshold θ . If the minimum
spatial distance is more than the threshold value θ , there is no
relation between the two hot zones.

In addition, the spatial distance is calculated as follows:

distance =
√

(lat1 − lat2)2 + (lon1 − lon2)
2 (2)

where lat1 and lat2 denote the latitudes of the two trajectory
points, and lon1 and lon2 are the longitudes of the two points.

Travel Cost: Travel cost [10], for example, travel speed
or travel time, could imply the degree of traffic congestion.
According to [18], we observe that private cars spend more
time passing through urban hot zones. To alleviate the spar-
sity of the trajectory data and decrease computational pressure,
we choose the travel time spent passing each hot zone as the
research object. Note that private car users’ overall travel cost
relies on the travel cost in hot zones; it is not required to
calculate total travel time between the origin and destination.
Therefore, by predicting the travel cost for passing through
each hot zone, we can obtain the overall travel cost for a
private car user.

As shown in Table I, with the input trajectory vector
trip={ObjectID, StartTime, StopTime, StartLon, StopLat}, we
calculate the travel cost for each hot zone

travel costi = StopTimei − StartTimei, i = 1, . . . , p, (3)

travel costj =
( p∑

i=1

travel costi

)
/p (4)

where travel costi denotes the travel cost of the ith trajectory
record in the hot zone, p denotes the number of trajectory
records in the hot zone, and travel costj is the travel cost of
the jth hot zone.

Feature Matrix: The feature matrix X is composed of dif-
ferent features, such as travel cost and departure time. The
calculation process is as follows:

X = (Xc, Xd), (5)

Xt+1, . . . , Xt+T = fθ
(G; Xt−T ′+1, . . . , Xt

)
(6)

where Xc denotes the travel cost, Xd is the departure time, and
θ is a tunable parameter. Furthermore, because the original for-
mulations of Xc and Xd are heterogeneous, for example, the
original Xd is represented in date format (8:30 A.M. However,
Xc is the travel time (e.g., 30 min); hence, we transform the
original Xd into the nondata format, i.e., 8:30 A.M. is trans-
formed into 8.5, thereby decreasing the heterogeneity of the
input data Xc and Xd.
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TABLE I
TRAJECTORY TRIP IN THE DATA SET

TABLE II
TRAJECTORY DATA IN THE DATA SET

B. Problem Formulation

On collecting large-scale private cars’ trajectory data, his-
torical traffic data, for example, travel cost and departure time,
can be denoted as a feature matrix X ∈ RN×T ′

, where T ′ is
the number of historical time periods. Hence, this problem can
be regarded as learning a function f with the feature matrix
X ∈ RN×T ′

and hot zone network H = (h, E) to forecast the
future travel cost and departure time in the next T time periods.
The input feature matrix of the problem is as follows:((

xt−T ′+1
1 , xt−T ′+2

1 , . . . , xt
1

))
(

xt−T ′+1
2 , xt−T ′+2

2 , . . . , xt
2

)
(

xt−T ′+1
3 , xt−T ′+2

3 , . . . , xt
3

)
. . .(

xt−T ′+1
n , xt−T ′+2

n , . . . , xt
n

)]T

.

IV. METHODOLOGY

To improve private car users’ commute experience, we pro-
pose a blockchain-enabled multitask learning model named
DeepICE, which consists of three components as follows.

1) Preprocessing.
2) Spatial and temporal feature modeling.
3) Blockchain-enabled multitask learning.
Fig. 3 illustrates the framework of the proposed DeepICE

model. First, in the preprocessing component, we construct the
hot zone network (see Definitions in Section III-A) by extract-
ing the hot zones from weekday trajectory data. Next, we
model the spatial features and temporal features through DL-
based methods. Finally, we utilize multitask learning to jointly
predict travel cost and departure time. Algorithm 2 presents a
detailed processing of the proposed model. See Table III for
formulas and definitions.

A. Preprocessing

In the preprocessing of DeepICE, we filter trajectory records
whose travel time is less than 5 min and whose departure time
is not 6:30 A.M. Note that we strive to improve the com-
mute experience of private car users; hence, we select private

TABLE III
NOTATIONS AND DEFINITIONS

cars’ trajectory data on workdays (excluding weekends and
holidays). Notably, private car users share their trajectory data
in a distributed way, and hence, privacy issues emerge. To
solve this problem, the blockchain with a consensus mecha-
nism is employed during trajectory acquisition to improve user
privacy.

After classifying the filtered trajectory data into five types
according to different workdays, we then extract the hot zones
for the workdays. To that end, we utilize the ST-DBSCAN
algorithm to extract the hot zones [49]. Based on the tra-
jectory data, Algorithm 1 presents a detailed processing of
ST-DBSCAN for extracting urban hot zones. ST-DBSCAN is
able to discover clusters according to nonspatial, spatial, and
temporal values of the objects [50]. The algorithm uses two
distance parameters, Eps1 and Eps2, to measure the similarity
of the spatiotemporal trajectory data. Eps1 is used to measure
the spatial distance, and Eps2 is applied to calculate the tempo-
ral distance. For example, for the points P(Lon1, Lat1, t1, t2)

and Q(Lon2, Lat2, t3, t4), we compute Eps1 and Eps2 as
follows:

Eps 1 = Euclidean(Lon1, Lat1, Lon2, Lat2) (7)

Eps 2 =
√

(t3 − t1)2 + (t4 − t2)2. (8)

B. Spatial and Temporal Feature Modeling

In this section, we implement the feature modeling compo-
nent of DeepICE. Specifically, we model the spatial features
of the extracted hot zone network and capture the tempo-
ral features of different workdays through a one-layer graph
convolution network (GCN) and gated recurrent unit (GRU).
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Fig. 3. Overview of deepICE.

1) Spatial Feature Modeling: Traditional DL methods,
such as convolutional neural networks (CNNs) and fully con-
nected networks can obtain the spatial features of regular
structures. For example, they can model the features based on
the regular grid structure [51]. However, they cannot exploit
irregular structures to properly represent task dependencies
because the spatial dependencies between hot zone networks
are non-Euclidean. To tackle this problem, we propose uti-
lizing graph structures to model the spatial features of the
spatial hot zone network. To that end, we first introduce the
general concept of the graph convolution neural network-graph
operator

o = (f ∗ Gg)θ = Ugθ UTf (9)

where U ∈ R
n×n is the graph Fourier basis that represents

the matrix of eigenvectors of the normalized graph Laplacian
matrix L = In−D−(1/2)AD−(1/2) = U�UT ∈ R

n×n. In denotes
an identity matrix, and D ∈ R

n×n is the diagonal degree
matrix. � ∈ R

n×n is the diagonal matrix of eigenvalues of
L.

Note that this computation is expensive due to the (n2)

complexity with the graph Fourier basis U. To resolve this
problem, we introduce a more efficient spectral graph convo-
lution as follows:

o = ζ
(

In + D− 1
2 AD− 1

2

)
x = ζ

(
D̃− 1

2 ÃD̃− 1
2

)
x (10)

where ζ ∈ R
� is a vector of parameters in the Fourier domain,

Ã = A + In, D̃ = ∑
i=1 ãjj.

Upon extracting the graph operators o, we then obtain the
output of the GCN

Ỹt = δ
(

D̃− 1
2 ÃD̃− 1

2

)
XW (11)

where X denotes the feature matrix, W is the weight matrix,
and δ is the activation function. In this work, we choose ReLU
as the activation function.

2) Temporal Feature Modeling: Note that there are long-
term features such as periodicity features in private car trajec-
tories. For example, Mondays’ commute trajectories exhibit
similar traveling trends [11]. Extracting the features and uti-
lizing them will improve prediction accuracy. To capture
these hidden features, we leverage a GRU to capture the
task dependencies and long-term features in the temporary
dimension [52].

The GRU method, an improved version of the RNN, is able
to resolve the problem of gradient disappearance or gradient

Fig. 4. Inner structure of a GRU.

explosion in the RNN by adding gate structures. Compared
to another improvement in RNNs, namely, long short-term
memory (LSTM), GRU can realize results equal to or bet-
ter than LSTM [53], [54], but the GRU, with fewer neurons,
can alleviate computational pressure and accelerate computa-
tional speed [55]. Fig. 4 illustrates the inner structure of the
GRU. In Fig. 4, ht−1 represents the hidden state at time t-1;
xt represents the traffic data at t; rt is the reset gate to control
the degree of ignoring the status information in the previous
moment; and ut denotes the update gate to control the degree
to which status information at the previous time is brought
into the current status. ht is the output state at time t, and h̃t

is the momentary state at time t.
After obtaining the output of the last layer Ỹt, the GRU can

transform Ỹt to ht as follows:

ht = GRU
(

ht−1, Ỹt

)
. (12)

The details of the GRU process are as follows:

rt = σ
(

Wr

[
Ỹt, ht−1

]
+ br

)
(13)

ut = σ
(

Wu

[
Ỹt, ht−1

]
+ bu

)
(14)

h̃t = tanh
(

Wh

[
Ỹt, (rt � ht−1)

]
+ bh

)
(15)

ht = ut � ht−1 + (1 − ut) � h̃t (16)

where Wr, Wu, and Wh denote the weight matrices, br, bu, and
bh are the deviations of each variable, and σ and � are the
activation functions and a multiplication operator, respectively.

C. Blockchain-Enabled Multitask Learning

During people’s commute, travel cost and departure time
are closely connected and influence each other. For instance,
an earlier departure time will lead to a lower travel cost,
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Algorithm 1 ST-DBSCAN for Extracting Hot Zones
Input: D={p1, p2, . . . , pm}, denotes the set of trajectory

points.
Eps1: Maximum spatial distance value.
Eps2: Maximum temporal distance value.
MinPts: Minimum number of trajectory points within

the Eps1 and Eps2 distances.
�ε: Threshold value to be included in a cluster.

Output: C = {C1, C2, . . . , Ck} set of k clusters
1: Cluster_Label=0
2: for all i=0 to m do
3: if pi is not a cluster then
4: X=Retrieve_Neighbors(pi, Eps1, Eps2);
5: if |X| < MinPts then
6: Mark pi as noise;
7: else
8: Cluster_Label=Cluster_Label+1;
9: for all j=1 to |X| do

10: Mark all trajectory points in X with current
Cluster_label

11: end for
12: Push {all trajectory points in X}
13: while not Empty do
14: CurrentPoints=Pop()
15: Y=Retrieve_Neighbors(CurrentPoints,

Eps1, Eps2)
16: if |Y| > MinPts then
17: for all trajectory points p in Y do
18: if (p is not marked as noise or it is

not in a cluster) and
19: |Cluster_Avg() − p.Value| <=

�ε then
20: Mark p with current

Cluster_label;
21: Push(p)

22: end if
23: end for
24: end if
25: end while
26: end if
27: end if
28: end for

and the nearer the departure time is to the peak hour, the
higher the travel cost will be. There are hidden task dependen-
cies between departure time and travel cost. Extracting these
dependencies and achieving representation sharing will help
to improve prediction and private car users’ commute experi-
ence. Accordingly, we utilize a multitask learning framework
to jointly predict travel cost and departure time. Multitask
learning can reveal the latent features in tasks and benefit
each individual task [56]. The underlying shared represen-
tation can be captured by multitask learning to improve the
overall prediction [27], [57], [58]. Different tasks are treated
as interactive activities, making the obtained information more
robust than that gained from one single task. Recalling spatial

Algorithm 2 DeepICE Model
Input: Historical track data S and rh.

S = {ObjID, StartTime, StopTime, StartLon,

StartLat, StopLon, StopLat}.
Output: Predicted travel cost Yd and departure time Yc of

each hot zone at the next moment.
1: Initialize weight matrix parameters and bias

terms: Wr, Wu, Wh, br, bu, bh, bC.
2: Calculate the travel cost and average departure time

through each hot zone based on S and rh.
3: Construct the hot zone matrix XZ according to

Algorithm 1.
4: Calculate the adjacency matrix E of the hot zone matrix

according to Equation (1).
5: Construct a 2-D matrix Xd based on average departure

time and a 2-D matrix Xc based on average speed as
follows:

Xc =
[
xt−T,+1

ci , xt−T,+2
ci , . . . , xt

ci

]T
, i = 1, . . . n

Xd =
[
xt−T,+1

di , xt−T,+2
di , . . . , xt

di

]T
, i = 1, . . . n

6: while i ≤ total number of hot zones do
7: for each hot zone do
8: Calculate Yd and Yc according to

Equations (11)–(19)
9: end for

10: end while

Fig. 5. Multitask GCN.

and temporal feature modeling (see Section IV-B), we propose
a multitask GCN to better model and predict the travel cost
as well as the departure time. Fig. 5 details the construction
of the multitask GCN.

Furthermore, we design a hard parameter sharing method to
jointly predict the travel cost and the departure time because
hard parameter sharing is effective for addressing tasks with
strong correlations. In particular, we utilize blockchain tech-
nology to address the privacy concerns of private car users
during the multitask learning process. In so doing, each private
car user can learn the spatial and temporal connection from
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the trusted trajectory data shared by other users. As such, it
is suitable for our prediction tasks, i.e., predicting the proper
departure time and the expected travel cost, and the privacy
issues of private cars are properly handled. Specifically, this
method can be applied to all hidden layers of all tasks, which
is suitable for tasks with strong correlations, such as depar-
ture time prediction, and retaining the output layer related to
the task.

The goal of the two prediction tasks is to minimize the
prediction loss functions Lc(θ) and Ld(θ), which can be
represented as follows:

Lc(θ) = (
Ỹc − Xc

)2 (17)

Ld(θ) = (
Ỹd − Xd

)2
. (18)

Here, Ỹc denotes the travel cost prediction result, Xc denotes
the ground truth of the travel cost, Ỹd is the departure time
prediction result, and Xd is the real value of the departure
time. The proposed DeepICE utilizes multitask learning in
the prediction, and the target is transformed to jointly predict
two tasks and minimize the comprehensive loss function as
follows:

L(θ) = δc
(
Ỹc − Xc

)2 + δd
(
Ỹd − Xd

)2 (19)

where δc and δd are the weighted parameters. We set δc and
δd to 0.5 in the experiment.

V. EXPERIMENTS

A. Data Set

Private Car Trajectory Data: In previous work, we uti-
lized vehicle positioning methods [59], [60] in real-world IoV
scenarios and implemented trajectory collection in real-world
urban environments. The blockchain technology is used to
secure vehicle-to-everything (V2X) communication so that tra-
jectory data collection is a trusted task. In other words, private
car users can trust others’ trajectory data. At present, we have
obtained large-scale private car trajectory data (see examples
in Tables I and II). For more details of the trajectory data set,
please refer to [61].

In the experiments, we select the private car trajectory data
set from Yuhua District of Changsha City, China. The exper-
imental period is sampled from 1 May 2020 to 31 August
2020. The overview of our data set is provided in Table IV.
From the original data, we first extract the travel cost and the
departure time of each trajectory record. Considering that our
experiments are based on different workdays’ hot zone dis-
tributions, we cluster five workdays’ trajectories into several
hot zones by the ST-DBSCAN algorithm (see Section IV-A).
As presented in Table V, the spatial threshold Eps1 is set as
500 m, and θ is set to 2Eps1. The temporal threshold Eps2
is set as 15 min, and the minimum neighbors are set as 3.
For instance, Fig. 6 depicts the hot zone network of Monday,
and there are 14 hot zones in the selected region in Yuhua
District on Mondays between May 1st and August 31st. The
experiments are conducted based on the MindSpore framework
platform.

TABLE IV
OVERVIEW OF PRIVATE CAR TRAJECTORY

TABLE V
NUMBER OF HOT ZONES OF WORKDAYS

Fig. 6. Hot zone network for Monday.

B. Experimental Environment

1) Evaluation Metrics: We choose the following metrics
to evaluate the performance of the proposed DeepICE and the
baselines: root mean squared error (RMSE) and mean absolute
error (MAE). The following formulations are defined:

RMSE =
√√√√1

n

n∑
i=1

(ỹi − yi)
2 (20)

MAE = 1

n

n∑
i=1

|ỹi − yi| (21)

where ỹ = {ỹ1, ỹ2, . . . , ỹn} denotes the predicted value of the
proposed model, y = {y1, y2, . . . , yn} denotes the ground truth,
and n is the number of testing samples.

2) Baselines: Departure time and travel cost are jointly pre-
dicted by the proposed DeepICE. We evaluate the proposed
method with two types of baselines: 1) single-task prediction
and 2) multitask prediction.

Single-Task Prediction: We introduce the single-task
prediction as follow:

1) History Average (HA): This model is a basic statistical
model based on historical values, predicting future val-
ues by averaging the values of corresponding historical
periods [62].

2) Autoregressive Integrated Moving Average (ARIMA): It
is a prediction model based on data analysis, forecasting
the data in a given time series based on past values [63].

3) LSTM: It is a time loop neural network. Due to its unique
design structure, LSTM is suitable for processing and
predicting important events with very long intervals and
delays in the time series [64].
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4) BO-Support Vector Recurrent (BO-SVR): It is an
improvement in SVR and can be utilized to predict the
time series problem [65].

5) The Diffusion Convolutional Recurrent Neural Network
(DCRNN): It is a neural network that can maximize
the probability of generating target future time series
by using temporal backpropagation, thereby captur-
ing the spatial and temporal correlations between time
series [66].

6) The Temporal Graph Convolutional Network (T-GCN):
It is combined with the GCN and GRU, and the GRU is
used to learn dynamic changes in traffic data to capture
temporal dependence [67].

7) The Graph Convolutional Network (GCN): It is a
neural network that operates on graphs. It can han-
dle non-Euclidean data and is widely used for traffic
prediction [68].

Multitask Prediction: We introduce the multi-task prediction
as follow:

1) 3S-FCN: This method is based on a fully connected
network and multitask learning, modeling the tempo-
ral correlations and capturing the spatial correlations
via multiple convolutions simultaneously. Hence, it can
predict two tasks in the meantime [25].

2) Multi-CNN: This model has two CNN layers sharing a
similar multitask architecture and can be used to predict
several tasks [69].

3) DeepICE: Our proposed model can capture the temporal
and spatial features of different tasks and then utilize
these features to predict and improve accuracy.

C. Experiments and Results

1) Performance Comparison: Table VI lists the experimen-
tal results on travel cost prediction, and Table VII presents
the comparison results of predicting the departure time only.
Table VIII presents the performance of baselines on predicting
two tasks simultaneously. All the comparisons are evaluated
by the metric RMSE. From these results, we observe the
following.

1) Compared with the baselines, our proposed DeepICE
achieves the best performance in terms of one-task
prediction and two-task prediction.

2) Basic statistical models, such as HA [62] and
ARIMA [63] perform worse than other baselines
because these two methods lack the ability to capture
the underlying spatial and temporal features.

3) DL-based models, such as GCN [68], LSTM [64], BO-
SVR [65], DCRNN [66], and T-GCN [67] perform
better than basic statistical models because DL networks
can capture temporal features. However, they cannot
connect two tasks to achieve feature sharing, so their
performance deteriorates significantly compared to that
of DeepICE.

4) Compared to multitask models, such as 3s-FCN [25]
and Multi-CNN [69], our proposed DeepICE obtains
better results. The reasons behind this result stem from
importing GCN as the spatial feature extractor to model

TABLE VI
PERFORMANCE ON DEPARTURE TIME PREDICTION (RMSE)

TABLE VII
PERFORMANCE ON TRAVEL COST PREDICTION (RMSE)

TABLE VIII
PERFORMANCE ON TWO-TASK PREDICTION (RMSE)

historical data at a high level, while the other two models
fail to represent the spatial factors in the prediction task.
Therefore, even though the concept of multitask learn-
ing is utilized in these two models, they show poorer
performance.

Furthermore, we compare the proposed DeepICE with base-
lines from the perspective of MAE (%). The experimental
results are presented in Figs. 7–9. We observe the following.

1) The proposed DeepICE obtains the best results in not
only the RMSE as the evaluation metric but also the
MAE as the evaluation metric. These results demonstrate
the superiority of DeepICE over the baselines.

2) The prediction of travel cost achieves a lower accuracy
than the departure time prediction in all the methods
because the departure time fluctuates less than the travel
cost. Furthermore, because the departure time is fixed
in a time frame (6:30 A.M. to 9:00 A.M.), it is trans-
formed into a value range of 6.5 to 9.0, but the value of
travel cost has no range; it changes through the differ-
ent time and spatial dimensions. Accordingly, it is more
difficult to extract the spatial and temporal features in
the travel cost prediction task than in the departure time
prediction task.

3) Due to the relations between travel cost and departure
time, our proposed DeepICE realizes hard parame-
ter sharing and network sharing between these two
tasks. In addition, by introducing a GRU and GCN
into DeepICE, the spatial and temporal features can be
captured efficiently.

2) Effect of Each Component in DeepICE: To evaluate
the effect of the DeepICE components, we test performance
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Fig. 7. Travel cost prediction performance (MAE).

Fig. 8. Departure time prediction performance (MAE).

Fig. 9. Performance comparison on two-task prediction (MAE).

individually by removing each component. As presented
in Section IV, the proposed DeepICE consists of four compo-
nents.

1) Preprocessing: a) the extraction of hot zones.
2) Spatial and Temporal Feature Modeling: b) the

importing of GCN; c) the importing of GRU.
3) Multitask Learning: d) the importing of multitask

learning.
Thus, there are four variants of DeepICE as follows.

1) Deep-nohot indicates that there is no “hot zone”
extraction (i.e., without a).

TABLE IX
PERFORMANCE OF EACH COMPONENT ON

TWO-TASK PREDICTION (RMSE)

Fig. 10. Performance of each component on two-task prediction (evaluation
metric: MAE).

2) Deep-noGCN indicates that the GCN is removed from
the proposed method (i.e., without b).

3) Deep-noGRU indicates that the GRU is removed from
the proposed method (i.e., without c).

4) Deep-nomulti means not using multitask learning (i.e.,
without d).

We implement experiments on two-task prediction. Table IX
compares the performance of these variants with that of
DeepICE. The evaluation metric is RMSE. Fig. 10 depicts the
comparison results for the joint prediction of travel cost and
departure time, with MAE serving as the evaluation metric.
From Table IX and Fig. 10, we find the following.

1) The proposed DeepICE outperforms all the variants,
illustrating the indispensability of each component in
the overall model.

2) Each component contributes to the prediction task, espe-
cially the extractions of hot zone functions, because hot
zone extraction significantly influences spatial feature
extraction.

3) With multitask learning being removed, the RMSE of
Deep-nomulti increases slightly compared to the other
variants of DeepICE. This result implies that the influ-
ence of multitask learning is less than that of the other
components. In other words, multitask learning can play
an essential role in improving the prediction results,
given that the temporal and spatial features are properly
modeled.

3) Parameter Sensitivity Analysis: To investigate the effi-
ciency of the parameter setting of the proposed DeepICE,
we conduct two-task prediction to evaluate the sensitivity of
the hyperparameters based on the number of training epochs
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Fig. 11. Parameter Sensitivity: number of epochs (evaluation metric: MAE).

Fig. 12. Parameter Sensitivity: number of GRUs (evaluation metric: RMSE).

TABLE X
COMPUTATION PLATFORMS USED BY DIFFERENT CAR BRANDS

and the number of GRUs. The training epochs vary in the
range {60, 70, 80, 90, 100}, and the number of GRUs varies
in the range {16, 32, 64}.

Figs. 11 and 12 show comparison results for the num-
ber of epochs and the number of GRUs, respectively. When
other parameters are set to their defaults, RMSE decreases
significantly as the number of training epochs increases on
most workdays. In addition, various trends in prediction tasks
emerge on different workdays. In particular, the proposed
model achieves the best results, namely, it obtains the lowest
MAE on most workdays when the number of training epochs
is 100. Hence, we set the number of training epochs to 100 in
the experiments. Similarly, prediction performance is tightly
dependent on the number of GRUs. As shown in Fig. 12, on
most workdays, when the number of GRUs is 32, the best
performance is achieved. Accordingly, we set the number of
GRUs to 32 in our experiments.

Blockchain protocols, by design, involve complex cryp-
tographic operations and consensus algorithms that can
impose a significant computational burden. Additionally,
the communication overhead of maintaining a distributed

Fig. 13. Time overhead in the blockchain and GCN.

ledger can increase network traffic and latency. The runtime
performance of GCNs is a crucial aspect to consider when
deploying a predictive algorithm in real-world scenarios, par-
ticularly in the context of vehicular platforms with limited
computational resources. To address concerns about overhead
acceptability, further discussion is necessary.

As shown in Table X, Tesla’s SOC computing power is up
to 10 000 GFLOPS, while BMW’s SOC computing power is
the lowest at 216. However, Fig. 13 shows that the time over-
head of different models is not completely determined by their
SOC computing power. For example, the computing power
of Cadillac is 118% higher than that of Mercedes-Benz, and
the time overhead on the blockchain and GCN is reduced by
38% and 14%, respectively. This result is due to Nvidia’s
unique computing module, CUDA, which has an advantage
in computing. This observation shows that under limited com-
puting resources, an acceptable time cost can be obtained by
advanced algorithms. On the other hand, even on the BMW
platform, which has the worst time performance, the actual
performance of the blockchain and GCN is 512 and 630 ms,
respectively, which shows that our algorithm can effectively
cope with limited vehicle computing resources.

VI. CONCLUSION

In this article, we propose a blockchain-enabled DL-based
model, i.e., DeepICE, to improve private car users commute
experience in a privacy-preserving manner. In this model, we
jointly predict the travel cost and departure time of private cars.
Due to the relations between these two tasks, we designed a
multitask GCN architecture to represent the complex features
in these two tasks and predict them. Thanks to the introduction
of the blockchain technology, the privacy issues of private cars
can be properly addressed. The experimental results based on
real-world private car trajectories show that our model out-
performs all the baseline methods in terms of the evaluation
metrics, illustrating the superiority of our model.

In the future, we will devote our efforts to extending our
work from the following aspects. We will consider envi-
ronmental and external factors such as the weather into
the multitask learning model. Besides, we will incorporate
traffic information into our work to boost the prediction
performance, thereby further improving private car users’
commute experience.
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