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Abstract: This article discusses four fundamental topics for future Distributed Computing Con-
tinuum Systems: their representation, model, lifelong learning, and business model. Further, it
presents techniques and concepts that can be useful to define these four topics specifically for Dis-
tributed Computing Continuum Systems. Finally, this article presents a broad view of the synergies
among the presented technique that can enable the development of future Distributed Computing
Continuum Systems.
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1. Introduction

The expansion from Cloud computing to Edge computing has brought a new paradigm
called the Distributed Computing Continuum [1–4]. This combines the virtually unlimited
resources of the Cloud with the heterogeneity and proximity of the Edge. To do so, the
Distributed Computing Continuum combines the underlying infrastructure of all other
computing tiers. Hence, the infrastructure becomes a first-class citizen compared to current
Internet-distributed systems.

Current research on Edge computing and Distributed Computing Continuum focuses
on solving specific problems, which produce particular solutions with narrow applicability.
A few examples include: in [5], the approach is tailored to an ultradense network; in [6],
the authors present a solution for a static description of the system; or in [7], the authors
present an orchestration for the edge-cloud that requires centralization on the Cloud. In
this article, we aim to show pointers to generalized solutions; we organize it through the
highlighting of four key aspects that require in-depth analysis, as well as a high degree of
agreement among the scientific community and the other stakeholders to make tangible
progress on the development of the Distributed Computing Continuum.

First, the Distributed Computing Continuum needs a novel representation beyond
the classical architecture of computer systems. Distributed Computing Continuum Systems
are built of a large variety of heterogeneous devices and networks. The system’s functional
requirements can either naturally evolve during their lifetime, dynamically change the
running services [8], or, more critically, suffer unexpected events. These changes will affect
the underlying infrastructure configuration, out-dating previous architectural representa-
tions. For instance, the Edge infrastructure requires a dynamic adaption to new devices
and network connections, leading to a completely new system from the perspective of
its design phase. This behavior contrasts with Cloud computing, where changes in the
underlying infrastructure can be updated, but the application is not affected.

Another challenge for Distributed Computing Continuum Systems is their model.
First, we need to clarify the difference between the representation and the model. Our view
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is that representation is a description of the system, its components, its relations, and its
characteristics. Whereas we address the dynamic behavior of the system and its components
by the model. Nevertheless, both concepts require a certain level of agreement as, ideally,
one aims to have a compatible representation and model of the system. The complexity
of the system, coupled with its openness (i.e., many external and spontaneous actors can
affect the system), endangers the correctness of adaptation strategies; in the Cloud, this is
usually solved by only considering a single elasticity strategy per component [9]. Further, it
is complex to assess the impact of the adaptation on the entire system, i.e., using a different
set of Edge devices might imply moving data through another network, which can affect
privacy/security constraints. Hence, tools to describe the new behavior of the infrastructure
are needed.

The third key element is a lifelong learning framework. The dynamicity of the
environment, the user’s variety of behaviors, the evolution of functional requirements,
and the long-term usage of the underlying infrastructure require developing a learning
framework to keep high-quality standards during the system’s entire life cycle. This is
aligned with the idea presented in [10] about lifelong learning for self-adaptive systems.

The last facet that requires agreement among the community is the business model.
A key enabler for the Cloud tier has been its successful business model. Nevertheless,
the multi-tenant and multi-proprietary characteristics of the underlying infrastructure
produce a more challenging set of stakeholders for Distributed Computing Continuum
Systems. However, to attract the needed collaborations and investments to develop such
an ambitious computing tier, it is of utmost importance to develop certain agreements that
can enable the best business model. In this regard, we have witnessed, in the context of
the Mobile World Congress 2023, how the big telecommunication companies want to be
part of the Distributed Computing Continuum Systems by providing an API to application
developers to tailor their networks to the application’s needs, e.g., see “GSMA Open
Gateway”, from Future Networks (https://www.gsma.com/futurenetworks/?page_id=35
168—accessed 1 March 2023).

The main goal of this work presented as a vision for the emerging Distributed Com-
puting Continuum Systems, is to highlight the need for a holistic perspective. This type
of system is far from being a reality, and we believe that common grounds are required to
advance their development. Hence, we provide what we think are fundamental research
challenges to be solved and what are our research road-maps for each of them. We seek to
spark discussion and creativity in the research community to enable these future systems.

To sum up, Distributed Computing Continuum Systems require a broad agreement
on a representation, a model, a lifelong learning framework, and a business model to
enable its development. This article presents a few ideas on how to start building these
required blocks. In the following section, a technique or concept is presented for each of
the presented aspects to shape our vision of Distributed Computing Continuum Systems.
Then, we discuss the overall merging of all presented concepts and techniques, and we
finish this article with a conclusion and future work.

2. Vision

In this section, we present key elements for each of the previously introduced aspects that,
from our perspective, will be key for developing Distributed Computing Continuum Systems.

2.1. Representation

The characteristics of the Distributed Computing Continuum require new represen-
tations for Internet-distributed systems enabling dynamic systems and topologies. This
contrasts with the usage of the concept of system architecture, where the word architecture
refers to a static structure of the system. As previously discussed, the complex and dynamic
behavior of Distributed Computing Continuum calls for other techniques to represent these
systems, which can accommodate the dynamic behavior of the underlying infrastructure
and the system’s environment.

https://www.gsma.com/futurenetworks/?page_id=35168
https://www.gsma.com/futurenetworks/?page_id=35168


Information 2023, 14, 198 3 of 10

Further, a fundamental concept requires an in-depth discussion: the definition and
scope of the system and its relation to each component. Simply put, the Distributed Com-
puting Continuum needs to be understood as an ecosystem in which there are different
abstraction layers, where components are described and aggregated differently. Interest-
ingly, when one thinks about an ecosystem, the synergies and dependencies between the
components blur the definition of self, i.e., the boundaries of an autonomic component are
flexible and dependent on the purpose. Components interact with others both horizontally
and vertically with respect to their abstraction levels. In this regard, Distributed Computing
Continuum Systems have multi-level and multi-scale structures, and their components
show a dual tendency; from one side, they aim to be autonomous, and from the other side,
they need to be integrated with others to provide a complete view of the system. Hence,
they require defining what is the self : the entire system, a single autonomic component, or
all things simultaneously. Hence, we need to analyze and provide arguments for each case
to understand which is the best solution for the system’s representation.

Our initial intuition is that we need a holistic view of the system, considering it as a
system of systems and providing compatible tools at any level. Hence, we envision the
Markov Blanket as a key element to represent Distributed Computing Continuum Systems
given its nesting and filtering capacity [11].

Markov Blanket

The Markov Blanket, in Bayesian statistics, refers to the set of variables that contain
all needed information to determine a target variable. Simply put, the Markov Blanket
concept can be used to determine which variables influence another. Formally, if x is a
random variable, and Y is the set of random variables of the Markov Blanket of x, then
P(x|Y) = P(x|Y, Z), where Z represents any other random variable [12].

In large-scale Distributed Computing Continuum Systems, the Markov Blanket con-
cept can be seen as causal filtering, given that it allows working only with the subset of
variables affecting the target. This is key in terms of scalability, e.g., the problem of select-
ing the best device for each service in an application is NP-Hard with exponential time
complexity [13]; hence dealing with only the required subset of components can drastically
alleviate the difficulty. Further, the definition of a random variable within the Markov
Blanket scope is flexible, which means that regardless of the abstraction level in which
the variable exists, it will be possible to build its Markov Blanket. Hence, we can foresee
this as a nesting capability in which the higher-level abstraction Markov Blanket can be
decomposed as a set of other Markov Blankets at lower-level abstractions. If we bring
this to the Distributed Computing Continuum Systems, it is possible to define the entire
system with a Markov Blanket describing the main components that affect the system, and
it is possible to go deeper in detail and describe smaller components also in terms of a
Markov Blanket. Hence, both scalability and the self’s definition are addressed by using
the Markov Blanket abstraction. In conclusion, the Markov Blanket concept is needed to
represent Distributed Computing Continuum Systems.

2.2. Model

Two main challenges are identified specific to Distributed Computing Continuum
Systems to develop models of their behavior. (1) Its decentralization precludes developing
a model of the entire system as a single entity; conversely, the model should allow its
distribution. In other words, the model has to allow its splitting among the different parts
of the system. Further, it can be linked with the representation; one could imagine that
there is a model for each Markov Blanket used to represent the system. (2) Distributed
Computing Continuum Systems are set within an uncertain environment. On the one
side, there is unpredictability in the user’s behavior, e.g., in an autonomous vehicle use
case, external computations require to follow a car through its trajectory to keep latency
at a lower bound [14], but the required hops can not be predicted beforehand, given that
the trajectory can change on demand. On the other side, the underlying infrastructure of
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Distributed Computing Continuum Systems is multi-tenant and multi-proprietary. Hence,
another source of uncertainty is from the usage of others tenants of the shared resources.
Further, their complexity and interconnection also generate internal uncertainty, given that
the exact knowledge of the system’s behavior might not be known; in this regard, there
are many sources of internal uncertainties for self-adaptive software systems, as explained
in [15], in brief, the model has to handle uncertainty.

To develop the system’s model, we look at one concept and one technique. The concept,
called DeepSLOs, can define and link constraints for a Distributed Computing Continuum
System at different abstraction levels. In contrast, the technique, Causal inference allows
the system to understand its own behavior and to perform a priori analyzed changes on its
underlying infrastructure to minimize the effects of uncertainty.

2.2.1. DeepSLOs

DeepSLOs stem from Cloud Service Level Objectives (SLOs). In general, an SLO is
a constraint to the underlying infrastructure, simply put, the minimal availability of a
service or the maximal CPU usage of a workload. Hence, in the Cloud, when a constraint
is violated, an elasticity strategy is triggered, which modifies the system and brings the
Service Level Indicator (SLI) within the value specified by the SLO. In contrast, a DeepSLO
is a set of hierarchically connected SLOs. This deviates from Cloud SLOs because they are
no longer isolated constraints of the system. However, they provide a holistic perspective
on the system status given by its constraints. Hence, it is possible to obtain a complete
description of the system’s performance. Further, DeepSLOs also aim to fully describe
the characteristics of the underlying infrastructure, which highlights the infrastructure as
a key part of any Distributed Computing Continuum System. Within a single DeepSLO,
there are SLOs at different levels of abstraction, which describe the system’s performance
from different perspectives. Simply put, low-level abstraction SLOs can easily define
infrastructure behavior, i.e., the performance of GPUs at the Edge, while higher-level
abstraction can deal with application performance, i.e., the accuracy of the inference job at
the Edge. Both given examples can be expressed as constraints within a single DeepSLO,
each as an SLO but connected through the system dependencies. Still, the first brings
information on the hardware performance for the inference job, and the second has a
holistic performance on the tasks. In this way, different elastic strategies can be used
efficiently depending on the cause of the system’s performance degradation.

2.2.2. Causal Inference

Causal inference [16] is a mathematical framework able to discover causal relations
between system variables and predict their behavior. Hence, it provides a better under-
standing of why events occur, solving conflicts when several adaptation strategies are
needed. Further, it can predict the outcome of interventions in the system. Simply put, it
predicts how the system will behave after a new configuration. Finally, causal inference un-
folds the ability to develop counterfactuals to better understand the system’s true behavior,
providing a key element to the learning capability. On the one side, studying interventions,
i.e., applying a specific condition to the variables, can ease the selection of the adaptation
strategies; further, using counterfactuals, hypothetical situations can be described to extract
learnings and improve the system’s resistance against uncertainty. These methods are very
relevant for uncertainty management, given that it is possible to achieve knowledge of
the system’s behavior under conditions not yet met in real operations. Causal inference
is usually applied over a directed acyclic graph to perform its analyses and explain the
behavior of the system; interestingly, this graph can be provided by the Markov Blanket
representation of the system.

One can imagine an application with a peak of demand in some region. Hence, the
Distributed Computing Continuum System is required to perform an adaptive action to
properly maintain its expected quality standards. However, there can be several ways to
tackle that situation, scaling up Cloud or Edge components, using new resources, etc. In
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such situations, causal inference provides an understanding of how the system will react to
these changes, e.g., how costs can be increased, how other services can be affected, how
sustainable is the solution, etc. Further, if quality and cost (see Section 2.4) are not fixed, and
there are some assumable margins, the manifold of options and their consequences grows.
This complexity, also explained through an illustrative use case in [17], can be tackled by a
better understanding of the internal system relations provided by causal inference.

2.3. Lifelong Learning Framework

Under the assumption that Distributed Computing Continuum Systems are complex
and inhabit a dynamic environment, providing the system with the learning capacity is of
foremost importance. Hence, lifelong learning enables improving the models that govern
the system, and, due to the nature of these systems, it also needs to be related to composition,
i.e., which are the best components of the underlying infrastructure to use in an application.
Systems need to be able to change their configuration using other components that are
not initially part of the system; in other words, the use of adaptation strategies requires
learning, given the huge space of possible configurations. Consequently, they need to make
decisions dependent on the system’s current state, which cannot be foreseen at design time.
Hence, Distributed Computing Continuum Systems need techniques that provide this
capacity for continuous improvement in a dynamic setting. In this regard, the Free Energy
Principle (FEP) explains the behavior of systems to adapt to their environment, initially
developed as a hypothesis on how the brain works [18]. To do so, the FEP aims to maximize
the knowledge of the system about its environment, which is needed to continuously
improve operation.

Free Energy Principle and Active Inference

The FEP was first defined by K. Friston to describe the behavior of the brain as a
system that adapts to its dynamic environment. In brief, the FEP shows that adaptive
systems have an internal model of their environment and that this allows adaptive systems
to persist in it. Further, the FEP claims that this adaptivity is achieved by minimizing
the difference between the internal model that the system possesses of its environment
concerning the real environment behavior. Another important observation of the FEP
for Distributed Computing Continuum Systems is that regardless of the scale, adaptive
systems behave similarly [19].

The active inference is a corollary of the FEP, providing a methodology to develop
agents (systems) that can learn from actions following the FEP [20]. Hence, by adapting Dis-
tributed Computing Continuum Systems to the active inference methodology, it will be pos-
sible to develop systems that progressively learn to adapt within a dynamic environment.

2.4. Business Model

We have learned from Cloud computing that a key aspect of the success of Distributed
Computing Continuum Systems is considering and easing their business logic. These
systems are multi-tenant and multi-proprietary; hence, we need concepts and methods
that allow several stakeholders to collaborate or share part of their infrastructure. We are
not considering here which has to be the business model, but two ideas are needed for its
emergence. Our intuition is that to enable this, communication and understanding among
them need to be the cornerstone. Further, the fact that systems, components, and other
involved stakeholders understand different abstractions is a great challenge that needs
to be addressed. From this perspective, the use of Resources, Quality, and Cost as the
highest-level abstraction state variables enables homogenization among components and
systems [21]. Further, they are understandable to all stakeholders given their higher level
of abstraction [22].

Finally, security is key to engaging stakeholders. Therefore, Zero Trust [23] concepts
promise control network flows between all assets, advanced resource protection, fast
detection of malicious activities, improved system performance, and secure communication
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between components. Features that are vital to make Distributed Computing Continuum
a reality.

2.4.1. Resources, Quality, and Cost

In previous work on Cloud computing, Resources, Quality, and Cost have been
defined as elasticity dimensions [24], which can define the system’s overall state. For
Distributed Computing Continuum Systems, we are convinced that the same abstractions
are needed; however, they are not elasticity dimensions but the highest-level abstractions
of the system state, which will ease the system’s management decisions. In other words,
Resources, Quality, and Cost are required to understand the system’s current situation
at the highest level of abstraction and how it can deviate toward other possible states. It
is important to remark that Resources, Quality, and Cost are chosen because any system
stakeholder can interpret them, and agreements at the highest level can be reached, which
then can be specified into lower-level agreements tailored to the specific characteristic of
each stakeholder.

2.4.2. Security through Zero Trust

Trustworthiness is key among stakeholders, and secure systems are needed to enforce
trust. In this regard, Zero Trust [23,25] is an emerging security paradigm where trust among
system components needs to be achieved at every step. In other words, it is not enough to
be part of the network’s system, but the components’ behavior is also continuously verified.

3. Discussion

This section first presents some alternative directions to the ones discussed and shows
our holistic vision of the ideas and techniques presented. The alternative ideas presented
are not exhaustive as this work presents a vision. Hence, this section aims just at providing a
broader context to the current research around Distributed Computing Continuum Systems.

3.1. Techniques Discussion

In terms of representation techniques for Distributed Computing Continuum Systems,
some works focus on graph-based representations; in [26], the authors specify the task type
and system with graphs and leverage such a representation to solve the task offloading
problem. Another perspective is given by [27], where their graph-based representation
of Distributed Computing Continuum Systems is the input for graph-based neural net-
works to solve the distributed scheduling problem. Conversely, our representation aims
at being general for whichever problem needs to be solved in the Distributed Computing
Continuum paradigm. Further, the filtering and nesting capacity of the Markov Blanket,
which is also graph-based, is of utmost importance for Distributed Computing Continuum
Systems. Take, for instance, the work in [13], which uses propositional logic to represent
the Distributed Computing Continuum System; they show how the complexity of solving
the task assignment problem is exponential. Hence, a representation able to filter out the
useless aspects for the specific case can make it feasible.

There are several approaches that propose a model for the entire Distributed Com-
puting Continuum that can be leveraged to describe and forecast its expected behavior.
Most of the time, the description is left to deep neural networks [28–30], which, in general,
provide good results, but it is hard to assess its generalization capabilities. There are also
approaches that provide a function-based description that allows for solving the problem,
e.g., through game theory [31]. This type of model usually requires many parameters and
assumptions on these parameters. A similar situation is found when modeling through
queue theory [32,33]. From our perspective, queue theory embraces the randomness found
in these systems. However, it requires precise modeling for the probability distributions
governing the system behavior. Another interesting approach follows the osmotic comput-
ing concept [34,35], which uses the analogy of physical pressure to manage Distributed
Computing Continuum Systems. Finally, there are also constraint-based approaches for
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system modeling, such as in [36], where they are able to verify the system’s performance.
We are proposing a constraint-based perspective from the use of DeepSLOs where we can
relate the underlying infrastructure with the application to define the entire Distributed
Computing Continuum System. Still, we understand that the complex and stochastic
behavior requires another modeling layer. There, we see fit for causal inference to leverage
a probabilistic model with causal relationships.

We relate lifelong learning with the capacity of a system to continue learning and
improving its behavior during its life-cyle when the requirements and tasks can change
over time. This problem is usually tackled through machine learning, specifically with
reinforcement learning in robotics [37,38]. In this regard, an interesting framework for
self-adaptive systems is provided by [10]. A new and interesting approach is on graph
continuous learning; a survey is presented in [39]. Our intuition to propose active inference
from the FEP relates to its ultimate goal of modeling the dynamic environment to optimize
the system’s adaptive capacity. Further, its mathematical formulation fits well with the
use of Markov Blankets, allowing us to easily combine both techniques. We are aware that
FEP has been questioned in terms of applicability and generality [40,41]. Nevertheless, its
fitness to our scope and the results showed in other articles [42] are promising.

Regarding the business model, there is a vast amount of work on security aspects,
where Zero Trust is one of the most prominent perspectives. In terms of high-level abstrac-
tions to set common ground on business objectives, the literature is scarce. We propose
Cost, Quality, and Resources that stem from previous work and have worked as expected
in Cloud systems. In general, objectives can be QoS parameters, but there is no consensus
on how to abstract or normalize such metrics.

3.2. Holistic Perspective

The four key aspects discussed in this article are presented in an integrated view in
Figure 1.

The Markov Blanket concept provides a nested representation of the system, which
allows us to represent the highest-level state of the system (Resources, Quality, and Cost)
as a wrapping blanket over the lower-level states. Interestingly, maintaining the Markov
Blanket representation across abstraction layers enables the usage of the same techniques,
regardless of the abstraction layer. Further, SLOs can leverage this structure of blankets
to add constraints on the infrastructure at different layers, covering the entire Distributed
Computing Continuum System. Hence, they can be understood as the hooks to the infras-
tructure, allowing the building of a modular and adaptive system’s model. Combining
these SLOs enables the building of the DeepSLO construct. Hence, by means of causal
inference, we can define and predict how the relations within a DeepSLO will behave.
It will be possible to tailor the adaptive measures to the predictions through the study
of interventional situations. Further, the counterfactual capacity of causal inference can
generate hypothetical situations that can be input for a lifelong learning framework. Within
this framework, lifelong learning can be achieved by using methodologies such as active
inference from the FEP that will be biased toward actions that can improve the system’s
knowledge of its environment. Finally, understanding and trustworthiness are required to
build a business model for Distributed Computing Continuum Systems; hence, both state
variables, such as Resources, Quality, and Cost, as well as a secure environment, are key to
that development.
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Figure 1. Starting at the center of the figure, we see that all developments require a trusted and secure
environment, where Zero Trust techniques will have great relevance due to the heterogeneity and
distribution characteristics of the system. On the left (A), three different abstractions for a Distributed
Computing Continuum System are depicted (the granularity shown can be refined by showing
network characteristics or unfolding aspects from the application logic). Each abstraction can easily
engage a kind of stakeholder. However, the highest level: Resources-Cost-Quality, aims at being
understood by all of them. On top (B), there is the representation of the system through Markov
Blankets, considering α as a high-level abstraction variable that we can assess by observing the
surrounding node, i.e., those factors that affect its value, remarkably thanks to the Markov Blanket
approach only those that are relevant are there. Further, α can be decomposed on other lower-level
variables (β and γ), providing a nested structure that can cover the entire system. On the right (C), we
take advantage of this representation to embed SLOs, more specifically, a DeepSLO, in order to model
the behavior of the system. As an example, SLO1 can be related to the quality of a machine-learning
inference component, which has its own metrics and adaptation strategies. This is linked to two
other lower-level SLOs; in this example, SLO2 can control the input data by making sure that it has
the expected resolution, while SLO3 controls the required time to perform the inference. Having
this decomposition enables a fine-grained capacity for adaptation; other lower-level or higher-level
SLOs could be developed if needed to have a broader view of a larger component or a more fine-
grained control over a smaller one. On the bottom (D), several cases are shown with forced values
for metrics and/or elastic strategies. This way, causal inference can improve the systems model to
deal with future situations that are not yet known, providing a basis to deal with unexpected or
unforeseen scenarios.

4. Conclusions

This article has presented a novel discussion of fundamental aspects that require
agreement among the community to enable the development of Distributed Computing
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Continuum Systems. This work aims at deviating from the mainstream topics on Dis-
tributed Computing Continuum, which usually tackles one of these topics by solving a
specific issue, by focusing on the system’s representation, its model, its lifelong learning
framework, and finally, its business model. This research presents some techniques and
concepts that can help address the issues of each of the discussed characteristics, and we
compare them with some of the current trends for Distributed Computing Continuum
Systems. Further, we show some relations among the presented techniques that can use
their synergies to enable future Distributed Computing Continuum Systems.
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