
IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 11, NOVEMBER 2023 3191

FileDAG: A Multi-Version Decentralized Storage
Network Built on DAG-Based Blockchain

Hechuan Guo , Minghui Xu , Jiahao Zhang , Chunchi Liu , Dongxiao Yu ,
Schahram Dustdar , Fellow, IEEE, and Xiuzhen Cheng , Fellow, IEEE

Abstract—Decentralized Storage Networks (DSNs) can gather
storage resources from mutually untrusted providers and form
worldwide decentralized file systems. Compared to traditional stor-
age networks, DSNs are built on top of blockchains, which can
incentivize service providers and ensure strong security. However,
existing DSNs face two major challenges. First, deduplication can
only be achieved at the directory-level. Missing file-level deduplica-
tion leads to unavoidable extra storage and bandwidth cost. Second,
current DSNs realize file indexing by storing extra metadata while
blockchain ledgers are not fully exploited. To overcome these prob-
lems, we propose FileDAG, a DSN built on DAG-based blockchain
to support file-level deduplication in storing multi-versioned files.
When updating files, we adopt an increment generation method to
calculate and store only the increments instead of the entire updated
files. Besides, we introduce a two-layer DAG-based blockchain
ledger, by which FileDAG can provide flexible and storage-saving
file indexing by directly using the blockchain database without
incurring extra storage overhead. We implement FileDAG and
evaluate its performance with extensive experiments. The results
demonstrate that FileDAG outperforms the state-of-the-art indus-
trial DSNs considering storage cost and latency.

Index Terms—Decentralized storage networks, DAG-based
blockchain, deduplication, file indexing.

I. INTRODUCTION

B LOCKCHAIN technology is allowing for decentralized
computing by creating decentralized trust. This has led

to the development of various trustless applications, such as
decentralized learning [1], trusted IoT data collection [2], and
blockchain-based cloud services [3]. To improve the perfor-
mance and efficiency of decentralized computing, decentralized
storage networks have been created to decrease the amount of
redundant storage needed for blockchain. Decentralized Storage

Manuscript received 18 December 2022; revised 19 May 2023; accepted 13
June 2023. Date of publication 22 June 2023; date of current version 10 October
2023. This work was supported in part by the National Key R&D Program of
China under Grant 2022YFB4501000, in part by the National Natural Science
Foundation of China under Grant 62232010, in part by Shandong Science
Fund for Excellent Young Scholars under Grant 2023HWYQ-008, and in part
by the Shandong Science Fund for Key Fundamental Research Project under
Grant ZR2022ZD02. Recommended for acceptance by H. Jiang. (Corresponding
author: Minghui Xu.)

Hechuan Guo, Minghui Xu, Jiahao Zhang, Dongxiao Yu, and Xiuzhen Cheng
are with the School of Computer and Science and Technology, Shandong
University, Jinan 250100, China (e-mail: ghc@mail.sdu.edu.cn; peter_xumh@
163.com; zjh@mail.sdu.edu.cn; dxyu@sdu.edu.cn; xzcheng@sdu.edu.cn).

Chunchi Liu is with Ernst & Young, SE1 2AF London, U.K. (e-mail: li-
uchunchi@gwu.edu).

Schahram Dustdar is with the Research Division of Distributed Systems, TU
Wien, 1040 Wien, Austria (e-mail: dustdar@dsg.tuwien.ac.at).

Digital Object Identifier 10.1109/TC.2023.3288760

Networking is an emerging technology that can aggregate free
storage spaces offered by independent storage providers and
self-coordinate to provide data storage and retrieval services.
Compared to traditional storage networks [4], [5], a decen-
tralized storage network (DSN) is operated on a blockchain
system, which works as an incentive layer. Blockchain rewards
miners who provide reliable storage to clients, and thus enables
an open manageable storage market. Besides, blockchain can
act as a state machine replication protocol to ensure the con-
sistency of file storage against Byzantine nodes. Leveraging
blockchain technologies, DSNs (e.g., Filecoin [6], Storj [7],
Sia [8], Swarm [9]) provide worldwide, robust and secure storage
services among mutually untrusted users. Filecoin, as the most
popular DSN, was built on top of InterPlanetary File System
(IPFS) and adopts a novel proof-of-replication method proving
that data is correctly stored. As storage infrastructures, DSNs
have demonstrated their advantages in applications such as Web
3.0 [10], data sharing [11], and content delivery [12]. However,
current DSN schemes overlook the following two problems,
which significantly affect their performance.

[P1] Deduplication in Multi-Versioned Files: Supporting
multi-versioned file storage is necessary in DSNs since files are
usually dynamically changed or edited and users need to query
different versions of a file from time to time. For instance, when
developers release a new version of a software, which has com-
patibility issues with operating systems, users may have to revert
to an older version. In collaborative creation, version rollback is
also necessary when collaborators find that some changes they
have made are unnecessary. However, files on current DSNs
are not editable. To use multi-versioned file storage in current
DSNs, users have to upload all versions of a file, resulting in
high redundancy. Even though some DSNs have made efforts
in supporting directory-level deduplication, they cannot avoid
fine-grained file-level redundancy. For example, Filecoin real-
izes directory-level deduplication using Merkle DAG [13], in
which objects including files, file chunks, and directories are
organized into a Merkle DAG based on their nested relationships,
to remove duplicated objects among different directories; but
redundencies among different file versions are still unavoidable.
Missing file-level deduplication causes the waste of storage and
bandwidth. Nevertheless, achieving file-level deduplication is
challenging. Due to encryption and obfuscation applied on files,
correlation among different versions is implicit in current DSNs,
making it very hard to find duplicated contents and establish
relationships among multiple versions.

0018-9340 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 13,2023 at 09:55:54 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0397-1382
https://orcid.org/0000-0003-3675-3461
https://orcid.org/0009-0004-4163-2175
https://orcid.org/0000-0003-0200-8092
https://orcid.org/0000-0001-6835-5981
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-5912-4647
mailto:ghc@mail.sdu.edu.cn
mailto:peter_xumh@163.com
mailto:peter_xumh@163.com
mailto:zjh@mail.sdu.edu.cn
mailto:dxyu@sdu.edu.cn
mailto:xzcheng@sdu.edu.cn
mailto:liuchunchi@gwu.edu
mailto:liuchunchi@gwu.edu
mailto:dustdar@dsg.tuwien.ac.at

3192 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 11, NOVEMBER 2023

[P2] File Indexing With Blockchain: Traditional version con-
trol systems commonly adopt a DAG-based version graph [14]
to describe the relationships of multiple versions (also called
derivative relationships) and help establish file indexing. How-
ever, such a graph should be maintained by a centralized server,
e.g., Github [15]. In current DSNs, a centralized server is not
available, and the blockchain database simply stores file in-
formation in serialized transactions regardless of the derivative
relationships. Therefore, it is unavoidable for each user to locally
maintain an isolated database for additional metadata (e.g., a
version graph) to ease its file manipulations such as create,
version query, modification, merge, and fork. Furthermore, such
a deficiency prevents a blockchain from serving many data-
intensive applications since it takes a large amount of storage
but cannot directly answer file queries in many cases, making
itself like a “burden”.

To address these problems, we propose FileDAG, a DSN
system built on top of a DAG-based blockchain. FileDAG makes
use of an increment-based storage mechanism to realize file-
level deduplication in storing multi-versioned files. We apply
increment generation algorithms to calculate the increment, an
edit script that can transform a file from its previous version
to its current version. Storing increments achieves fine-grained
deduplication at file-level and saves storage space. Besides, we
adopt a two-layer DAG-based blockchain ledger, which orga-
nizes transactions according to their derivative relationships. Fa-
cilitated with this ledger, one can manipulate files without estab-
lishing additional databases. Moreover, DAG-based ledgers can
provide higher concurrency compared to chain-based ones [16],
[17], making FileDAG being able to handle simultaneous
queries. With these design considerations, FileDAG achieves
low storage cost, high system throughput, and efficient file
indexing.

To validate the performance of FileDAG, we build a full-
fledged FileDAG over Filecoin, by implementing the incre-
ment mechanism and the two-layer ledger mentioned above.
Such an implementation ensures that FileDAG not only inherits
all the nice features of Filecoin but also extends Filecoin’s
functionality to include effective file-level deduplication and
efficient file indexing. FileDAG is a practical system possess-
ing industrial-grade performance, as is Filecoin. To broaden
the application of and welcome examinations on FileDAG,
we open-source our designs at GitHub (the two layer ledger:
https://github.com/zhuaiballl/DAG-Rider; increment module:
https://github.com/zhuaiballl/dyaic).

Contributions: Compared to the existing works, our unique
contributions can be summarized as follows:

1) To our best knowledge, FileDAG is the first DSN that
supports file-level deduplication for multi-versioned files.
We introduce an increment generation method to calcu-
late and store the increment between two neighboring
versions rather than storing the entire new version. This
significantly reduces the storage cost and bandwidth usage
caused by dynamical file changes.

2) To support file indexing, FileDAG adopts a two-layer
DAG-based blockchain ledger. The lower layer supports
operations including create, update, merge and fork while

the upper layer ensures ledger consistency. This design in-
tegrates version graphs with a DAG-based ledger, thereby
saving extra storage space for file indexing.

3) Finally, we provide a practical full-fledged implementa-
tion of FileDAG and evaluate its performance with exten-
sive experiments. The results demonstrate that FileDAG
outperforms the state-of-the-art DSNs considering storage
cost as well as the latency of put and get operations.

Organization of the Paper: The rest of this article is organized
as follows. Section II summarizes related works and presents
preliminary knowledge. Section III details our FileDAG
design and demonstrates how it works. Key properties and
performance evaluation results of FileDAG are respectively
reported in Sections IV and V. Finally, we summarize this
article in Section VI and discuss our future research.

II. RELATED WORK AND PRELIMINARIES

A. Related Work

1) Decentralized Storage Network: Filecoin [6], developed
by Protocol Labs, is a DSN built on top of IPFS [18]. It proposes
Expected Consensus to adjust the winning probability of a miner
based on the quantity and quality of its provided storage. Filecoin
generates a hash-based content identifier (CID) for each file
object (a file, a file chunk, or a directory), and allows users
to reuse existing file objects for avoiding duplicatively storing
them. Besides, CIDs form a Merkle DAG depicting the nested
relationship of the file objects. To realize block concurrency,
Filecoin introduces tipset, which allows multiple blocks to be
confirmed at the same block height. Storj [7] and Swarm [9] were
developed based on Ethereum [19]. They make use of Proof-of-
Stake consensus1 and a chain-based ledger that doesn’t support
concurrency of blocks. Storj employs Object keys as globally
unique identifiers of its file objects while Swarm generates
addresses as identifiers for file chunks. These two DSN systems
both achieve directory-level deduplication. Sia [8] adopts PoW
as its consensus protocol. It builds a Merkle tree for each file
and takes the Merkle root hash as the identifier of the file, thus
supporting directory-level deduplication. The ledger structure
of Sia is a chain, thus it cannot process blocks concurrently.
Besides, Sia employs the Threefish [20] algorithm to encrypt
files, making it difficult to support version indexing.

2) File Indexing: File indexing is the process of mapping
files with identifiers that can be efficiently searched. Centralized
storage systems employ extra databases to record identifiers that
are mapped to the locations of the corresponding files [21].
Traditional distributed storage networks typically use distributed
hash tables to realize file indexing [4], [22], [23]. Decentralized
storage networks, i.e., DSNs, use content addressing technology
based on distributed hash tables for file indexing. Neverthe-
less, current methods in DSNs are not sufficiently effective as
the complete derivative relationships are hardly retained. For
example, IPLD [18] is a data model adopted in Filecoin to
describe a file or a directory as an aggregate of components

1Since September 15th, 2022, Ethereum has switched its consensus protocol
from Proof-of-Work to Proof-of-Stake.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 13,2023 at 09:55:54 UTC from IEEE Xplore. Restrictions apply.

https://github.com/zhuaiballl/DAG-Rider
https://github.com/zhuaiballl/dyaic

GUO et al.: FILEDAG: A MULTI-VERSION DECENTRALIZED STORAGE NETWORK BUILT ON DAG-BASED BLOCKCHAIN 3193

TABLE I
COMPARISON OF FILEDAG WITH EXISTING DSNS

linked together. With IPLD, each file is mapped to a unique
hash-based identifier, and the identifier of a directory is a hash of
the directory contents combined with pointers to the files. By this
way, IPLD links files and directories together for file indexing.
Adding, removing, or changing a file under a directory result
in a different identifier of the directory, and the derivative rela-
tionship between two versions of the directory can be inferred
because the two identifiers carry the pointers to the files that stay
unchanged. But unfortunately IPLD fails to depict the derivative
relationships among different versions of a file. Additionally,
to achieve verifiability and immutability, files in DSNs are
always encrypted and then made public; thus their metadata
is unaccessible without a valid secret key, making file indexing
a challenging problem. Based on the above analysis, one can
see that the current file indexing approaches are immature and
inefficient.

File provenance requires to track the derivation history of
a file based on file indexing. Muniswamy-Reddy et al. [24]
designed a storage system that can automatically collect and
maintain provenance data. They claimed that provenance data
should be maintained separately to serve different purposes.
Provchain [25] embeds the provenance data into blockchain
transactions to improve efficiency and avoid additional storage
cost. This incentives us to make blockchain undertake more
responsibility in file indexing.

3) Summary: A summary on the major adopted technologies
and properties of FileDAG and existing DSNs is reported in
Table I. One can see that current DSNs (e.g., [6], [7], [8], [9])
only achieve directory-level deduplication, which means that
only files can be reused but the common contents shared by
different versions of a file are still stored redundantly. Missing
file-level deduplication leads to the waste of storage and band-
width. Additionally, Storj and Swarm built on Ethereum adopt a
chain-based ledger, which stores transactions regardless of their
derivative relationships. Sia doesn’t consider storing derivative
relationship between files either. Filecoin packs multiple blocks
in a tipset and still ignores on-chain derivative relationships.
Lacking a depiction on the complete derivative relationships
among files render these systems fail to provide effective file
indexing.

B. Preliminaries

In this subsection, we provide the preliminary knowledge that
are needed by our FileDAG design.

Decentralized Storage Network (DSN): DSNs aggregate stor-
age offered by multiple independent storage providers and self-
coordinate to provide reliable and secure global data storage and
retrieval services to clients without relying on any trusted third
party. Generally speaking, the workflow of a DSN consists of two
phases: put and get. Users put their files into the storage network
and also get files with valid access keys from the network. A DSN
must guarantee data integrity, retrievability and fault tolerance.
We explain two techniques heavily used in FileDAG, namely
content identifier (CID) and Proof-of-Storage (PoS). CID, as
a fingerprint, is a hash-based unique identifier that maps to a
data chunk. In FileDAG, a client can generate CIDs for each
original file or increment. PoS helps miners prove that they have
stored files physically. In Filecoin, a miner has to periodically
generate proofs to demonstrate that files are indeed locally stored
on hardware, which mitigates Sybil attacks.

DAG-Based Blockchain: A blockchain is a decentralized
tamper-proof append-only ledger. Nodes in a blockchain net-
work achieve consensus on the ledger using a consensus algo-
rithm. According to the ledger structure, blockchains can be cate-
gorized as chain-based or DAG-based. For a chain-based ledger,
transactions are packed into blocks. Each block is hash-chained
to its previous block to ensure consistency and persistence [26].
As there can only be one block at a block height, chain-based
blockchains have weak concurrency. Bitcoin-NG [27] intends to
improve concurrency by adding micro blocks alongside a main
chain. However, this method does not fundamentally improve
concurrency. Therefore, DAG-based blockchains emerge [16],
[28], [29]. In a DAG-based blockchain, each block (or transac-
tion) can point to multiple previous blocks and form a directed
acyclic graph (DAG). Filecoin makes use of tipset to increase
network throughput, where a tipset is a set of blocks, and the
blockchain in Filecoin is a chain of tipsets. Blocks in a tipset
can point at multiple blocks in the previous tipset. As a result,
blocks in Filecoin form a DAG. But tipset is not flexible enough
to support file indexing; therefore we propose a two-layer DAG-
based blockchain in FileDAG to address this issue.

III. FILEDAG DESIGN

In this section, we begin with the design objectives and
overview of FileDAG and then describe its design details.

A. Design Objectives and Strawman

Design Objectives: We design FileDAG following three ob-
jectives: (1) Consistency. Honest nodes should agree on the same
view of the blockchain ledger and the same set of proofs of stor-
age. Deals of storage should be irreversible. (2) Deduplication.
Files stored on a DSN can share common components, especially
in a multi-version file system. FileDAG should use efficient
deduplication methods to save storage space. (3) Fast put & get.
The design of FileDAG should consider both bandwidth usage
and latency; any mechanism that can help to save storage space
should not bring too much extra latency. The overall latency
of putting and getting a file in FileDAG should be low despite
spending time on the increment generation.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 13,2023 at 09:55:54 UTC from IEEE Xplore. Restrictions apply.

3194 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 11, NOVEMBER 2023

Fig. 1. Strawman design of FileDAG.

Strawman: Here we provide a strawman as shown in Fig. 1 to
illustrate the whole picture of FileDAG. There are two entities
in FileDAG, client and miner. Clients pay tokens to use storage,
while miners earn tokens by providing services. Miners pledge
storage to the FileDAG network to provide storage and retrieve
services by helping clients search information on a blockchain.
All miners maintain the blockchain ledger of FileDAG.

The workflow can be divided into two phases, put and get. In
the put phase, a client can either create an original file or update
an existing one on the FileDAG network. An original file should
be uploaded to a miner [Step 1.1]. The miner then generates a
transaction TXcreate for the file and broadcasts the transaction
to the blockchain network [Step 1.2]. To update a file, the client
first compares the new version to the previous version to get the
increment [Step 2.1]; then the increment is sent to a miner who
can issue the corresponding TXupdate (or TXmerge, TXfork). Note
that only when transactions are confirmed on the blockchain can
the put phase succeed. In the get phase, a client first sends a
retrieval request [Step 3.1], then download the original file and
the increments from the file holders to obtain a specific version
[Step 3.2]; finally, the client assemble all fragments to recover
the file [Step 3.3].

In the following subsections, we detail the cores of FileDAG,
including the increment generation, the two-layer DAG-based
ledger, and the file recovery components. Note that our elabo-
ration on increment generation focuses on the storage of multi-
versioned files; but the idea is applicable to the more general
case where a client specifies the relationship between two files,
which is common in applications such as recreation of digital
arts and quotes of contents. Table II lists frequently used symbols
to facilitate our presentation.

B. Increment Generation

Increment mechanism has been widely adopted in cloud
computing to shorten backup windows and save storage [30].
As we have discussed in our strawman design, FileDAG updates
files by uploading increments instead of an entire new file. We
propose an increment generation method based on our insight
that files on DSNs are not simply static but changes over time.
Such dynamicity can be found everywhere especially when

TABLE II
SUMMARY OF SYMBOLS

storing codebases, medical records, mobile applications etc.
Neighboring versions of a file usually share a large amount of
duplicate contents. Our increment generation method intends
to identify such contents, which later will be used for file
recovery.

In concrete, FileDAG adopts patch algorithms to generate
increments for multi-versioned files. To achieve a better perfor-
mance, we adaptively use two patch algorithms, i.e., Myers [31]
and BSDiff [32], to process text files and non-text files (binary
files), respectively, rather than rely on one algorithm. Assume
we have two files, an old one A (of size |A|) and a new one B
(of size |B|). Both Git and diff commands in Linux use Myers,
which takes O(|A|+ |B|+D2) expected-time under a basic
stochastic model [31], where D is the size of the minimum
edit script between them. The Myers algorithm can quickly
generate patches for text files, but cannot efficiently handle
binary files. When forcing Myers to treat binary files as text
files, the algorithm runs slowly and the complexity of generating
an increment becomes O(|A||B|). To process non-text files,
we choose BSDiff which runs in O((|A|+ |B|) log |A|) time.
Besides, BSDiff has been widely used to generate patch files
for mobile applications, which proves its effectiveness. In our
implementation, FileDAG adaptively switches between Myers
and BSDiff. It feeds the files into an increment module (see
Fig. 5), which selects Myers for text files and BSDiff for non-text
files to generate increments. In addition, we employ a small trick
in which if |ΔAB | > |B|, FileDAG takes B as a new original
file instead of storing the increment ΔAB .

To update a file, the client sends the increment to a miner
who responds with a CID. Then the miner generates a proof for
this increment following the Proof-of-Storage protocol. In our
implementation, we adopt the same PoS protocol as Filecoin
since FileDAG does not focus on improving this process.

C. Two-Layer DAG-Based Ledger

FileDAG uses a two-layer DAG-based ledger denoted as G =
(V,El, Eu). Both layers share the same set of vertices V .El and

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 13,2023 at 09:55:54 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: FILEDAG: A MULTI-VERSION DECENTRALIZED STORAGE NETWORK BUILT ON DAG-BASED BLOCKCHAIN 3195

Fig. 2. Lower layer El and the four types of transactions.

Eu are respectively the sets of edges in the lower layer and the
upper layer. Each vertex in the ledger represents a transaction
(a file version). Edges in the lower layer are used to describe
derivative relationships between neighboring versions while the
upper layer adds more edges to ensure consistency.

Lower Layer El: Fig. 2 demonstrates an example lower layer
El, in which each vertex (i.e., a transaction) also corresponds to
a specific file version since it contains the CID of an original file
or an increment. Each edge represents the derivative relationship
between two vertices.

We allow four different types of transactions to describe
operations launched by a client, including create, update, merge
and fork, where the latter three depict the derivative relation-
ships among different file versions. Correspondingly, an edge
in El represents an update, or a merge, or a fork operation. A
create transaction is used to record a new original file. When a
client creates a new file, it transfers the file to a miner, then
constructs a create transaction TXcreate ← 〈CREATE,CIDv0

〉
and broadcasts it to blockchain, where CIDv0

is the identifier
generated for the file. To verify that a transaction is sent by a
client, each transaction should be correctly signed by the client’s
secret key. For convenience and clearance, we omit signatures
when describing transactions in the rest of this article. When
a client intends to put an increment to FileDAG, it sends an
update transaction TXupdate ← 〈UPDATE, v,CIDΔ〉, where v
is the version that the update follows, and CIDΔ is the identifier
of the increment.

A merge transaction TXmerge ← 〈MERGE, v, v′〉 combines
two version branches v and v′. A merge operation does not
require adding new information therefore it does not generate
increments. We only allow FileDAG to merge two versions at a
time because merging multiple versions at once incurs a large
complexity of addressing content conflict; but FileDAG can
merge multiple versions by calling the merge operation multiple
times. A fork transaction TXfork ← 〈FORK, v, V ′〉 can fork a
version v to get a set of new versions denoted by V ′. Each new
version contains an empty increment but is assigned a new CID.
With fork operations, users can create and work on their own
branches without the need of making new copies.

Fig. 3. Upper layer Eu.

Upper Layer Eu: The DAG ledger formed by El and V has
no consistency guarantee as it might be disconnected, making a
miner unaware of a newly added transaction if the transaction
is not linked to the ledger component stored by the minor. For
example in Fig. 2, Miner 0 does not know the newly added
transaction created by Miner 3 at round r + 3. This implies that
honest miners may have different views of the ledger and fail to
output the same result for a query, thus breaking the ledger’s
consistency property. To overcome such a problem, we add
extra edges as shown in Fig. 3 (the dotted arrows) to form the
upper layer edge setEu. More specifically, we modify the ledger
construction algorithm in DAG-Rider [33] to construct Eu. In
DAG-Rider, each vertex is associated with a round number (see
Fig. 3). Each miner broadcasts one transaction (creating one
vertex) per round and each vertex references at least 2f + 1
vertices in the previous round, where f is the maximum number
of Byzantine nodes to tolerate. That is, to advance to round r + 1,
a miner first needs to identify 2f + 1 vertices constructed by
different miners at round r. Such a DAG construction is proved
to achieve Byzantine atomic broadcast [33], which possesses
a strong consistency guarantee. Note that one can adopt other
approaches to construct Eu, as long as the ledger formed by
all edges in El ∪ Eu realizes Byzantine atomic broadcast. More
details about the Byzantine atomic broadcast will be discussed
in Section IV.

The whole procedure of constructing our two-layer DAG-
based ledger can be summarized as follows. At any round, an
incoming transaction first points to those confirmed in the pre-
vious rounds, following the derivative relations (update, merge,
or fork) to contribute edges to El; then we follow appropriate
rules to select a number of other confirmed transactions and
link the incoming transaction to them to construct edges for
Eu. The DAG ledger formed by El ∪ Eu has strong consistency
guarantee (see Section IV).

D. File Recovery

Based on the lower layer of the DAG-based ledger, a miner can
easily gather file fragments needed to recover a file. Considering
that files are stored as increments for different versions, we
propose Algorithm 1 to retrieve versions and recover the queried

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 13,2023 at 09:55:54 UTC from IEEE Xplore. Restrictions apply.

3196 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 11, NOVEMBER 2023

Algorithm 1: File Recovery.

file. This algorithm consists of two functions, namelyRetrieve()
and Recover().

First, the miner runs Retrieve(v) (line 2-11) to obtain the
versions of all fragments needed to recover the file of version
v. Retrieve(v) starts breadth first search (BFS) at version v
traversing the edges in El, and stops iteration when meets the
version corresponding to a complete file. Using BFS rather than
DFS (depth first search) can ensure that all the increments are
marked in a reverse topological order without a sort procedure
whose time complexity might be superlinear. All the traversed
nodes are placed in the array versions. Note that due to the
small trick mentioned in Section III-B, a new version is treated
as a new original file if the corresponding increment is larger
than itself. In this case, the Retrieve function finishes earlier
than it would without this trick (since the if condition in line
9 is not met at this version), and the Recover function will
start patching at that original file (line 16). When BFS stops,
Retrieve(v) reverses the order of the array versions and then
returns it to the client (line 12). After receiving versions, the
client runs Recover(versions) to download the original file and
the increments in versions, patch the increments to the origi-
nal file following the order in versions, and finally output the
requested file (line 15-20). The Patch algorithm takes either
Myers or BSDiff, depending on whether the file is a text or
not, as explained in Section III-B. These two algorithms both
have time complexity of O(|A|+D), where |A| is the size of
the file being patched and D is the size of the increment. Thus,
the overall time complexity of file recovery is linear to the total
size of the original file and the increments.

E. FileDAG Workflow

To end this section, we provide the workflow of FileDAG,
which consists of five major steps including Create, Update,
Retrieve, Download and Recover, as illustrated in Fig. 4.

Fig. 4. Protocol sequence diagram of FileDAG.

Create: When creating an original file v0 in the FileDAG
network, a client first calculates CIDv0

as the fingerprint of v0.
The client then sends a message containing CIDv0

to a miner
that might later provide storage services. If the miner is willing
to store the file, it starts synchronizing v0 with the client. After
synchronization, the client signs and sends a create transaction
〈CREATE,CIDv0

〉 to the blockchain ledger. Then the miner
generates a proof-of-storage for v0 and settle down the received
transaction.

Update: The main difference between creating and updating a
file is that updating a file needs to store an increment rather than
the entire complete file. Suppose we have a version v and a new
version v′. The increment generation method provides the client
with an increment denoted by Δ. Then the client calculates the
CID of Δ and sends Δ to a storage miner who is responsible
for generating a proof and settling down the transaction. Recall
that when updating a file, a client can issue three types of
transactions, namely update, merge and fork.

Retrieve: Fetching a file with a specific version in FileDAG
consists of two steps: Retrieve and Recover. A client sends
a retrieve message containing CIDv to a miner that provides
retrieval services to get the list of CIDs to recover v. After
receiving a retrieve message, the miner first looks up in its DAG
ledger to locate CIDv and then calls function Retrieve(CIDv)
and forwards its output versions to the client. In the ex-
ample illustrated in Fig. 4, the CID list contains CIDv and
CIDΔ.

Download and Recover: After obtaining versions, the client
calls function Recover(versions) to downloads all related file
fragments based on versions. For each file fragment, the client
needs to send a download message along with the CID to the
miner who stores the data. After gathering all the required
components, the client patches the increments to the original
file to recover file v.

IV. ANALYSIS

In this section, we analyze two properties of FileDAG: con-
sistency and efficiency (in terms of storage cost).

A. Consistency

Byzantine atomic broadcast [33] guarantees the following
properties:

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 13,2023 at 09:55:54 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: FILEDAG: A MULTI-VERSION DECENTRALIZED STORAGE NETWORK BUILT ON DAG-BASED BLOCKCHAIN 3197

� Agreement. If an honest node p commits vertex i in a DAG,
then every honest node p′ eventually commits i.

� Integrity. For each round r and node p, an honest node p′

accepts at most one vertex proposed by p in round r.
� Validity. If an honest node p proposes a vertex i in round
r, then every honest node p′ eventually commits i.

� Total order. If an honest node p commits vertex i before
committing vertex j, then no honest node commits vertex
j without first committing vertex i.

The construction of the two-layer DAG ledger (El ∪ Eu) in
FileDAG follows the algorithm of DAG-Rider; thusEl ∪ Eu can
be reduced to DAG-Rider’s ledger. As DAG-Rider is a byzantine
atomic broadcast implementation which guarantees the above
properties, the two-layer DAG ledger of FileDAG possesses
these properties as well.

Definition 4.1. (Consistency of multi-version DSN). For any
version v of a file, an honest node can be convinced by the PoS
proof that v is available in the FileDAG network only when v is
indeed available; and if an honest node claims that v is available,
then all other honest nodes claim the same.

Theorem 1. FileDAG meets consistency of multi-version
DSN.

Proof. First, the set of PoS committed in the FileDAG ledger
is consistent. Based on the agreement and validity of byzantine
atomic broadcast [33], each PoS proposed by an honest node is
committed by all honest nodes, and every honest nodes commit
the same set of PoSes.

Second, the consistency of PoS verification, i.e., for any
version v of a file, if any honest node p accepts that v is available
by verifying the PoS proofs, then every other honest node p′

accepts that v is available if p′ verifies the corresponding proofs.
FileDAG employs the PoS algorithm of Filecoin. Assuming
the soundness of the PoS algorithm, i.e., a miner can output
a valid PoS of a file if and only if it is able to output a copy of
the file, every honest node outputs the same verification result
for the same PoS. Provided the consistency of PoS committed
in the FileDAG ledger, the array of CID versions output by
function Retrieve(v) is determined for determined v, and thus
the consistency of PoS verification is satisfied.

Last, FileDAG meets consistency of multi-version DSN.
Assume that the diff algorithms and the corresponding patch
algorithms are correct so that when comparing two files (A
and B), a diff algorithm always generates the same increment,
and patching the increment to A always yields B. Combining
the ledger consistency and the consistency of PoS verification,
one can see that the consistency of multi-versioned files is
proved. �

B. Storage Cost

Next we analyze the storage cost of FileDAG. Let St denote
the size of the tth version of a multi-versioned file and It denote
the size of the increment that the tth version differs from its
previous version. After analyzing the growth of several GitHub
repositories, we found that for each repository, typically there
are two types of modifications for its growth, namely revision

and addition. A revision (REV) operation on a repository does
not significantly change the size of the repository, and the size of
increment between the updated version and its previous version
is much smaller than that of the whole repository. An addition
(ADD) operation usually adds a large quantity of contents to a
repository. For most repositories under our analysis, the number
of revision operations is about ten or hundred times of that of
the addition operations. But the size of the increment brought by
an addition operation is ten or hundred times of the increment
brought by a revision operation. To analyze the storage cost
of FileDAG, we make a few assumptions on the growth of a
multi-versioned file.

Consider the initial version of a file as an empty file with size
zero, then the creation of a file can be regarded as an addition
operation. In other words, we have S0 = 0 and S1 is the length
of the original file.

For each version vt, t > 1, the type τt of operation that outputs
vt can be regarded as a random variable (and the sequence of
operations observed by each node is consistent, as proved in
Theorem 1). Let

Prob(τt = ADD) = p,Prob(τt = REV) = 1− p

and

It =

{
rt τt = REV
at τt = ADD

(1)

For a specific multi-versioned file, one can assume that the ratios
1−p
p < 1 and E(r)

E(a) > 1 are constants. Then we have

1− p

p
· E(r)
E(a)

= O(1)

Theorem 2. Let C and C ′ denote the expected storage cost of
storing a file having n versions without and with the increment
mechanism, then we have C ′ = O(n−1)C.

Proof.

E(In) = pE(a) + (1− p)E(r),

E(Sn) =
n∑

t=1

pE(a) = npE(a)

C =

n∑
t=1

E(St) =
n(n+ 1)

2
pE(a) = O(n)E(Sn).

C ′ =
n∑

t=1

E(It) = npE(a) + n(1− p)E(r).

Based on our assumption,

1− p

p
· E(r)
E(a)

= O(1)

then

C ′ = npE(a)(1 +O(1)) = O(1)E(Sn).

Therefore, the expected storage cost of FileDAG to keep all
versions of a multi-versioned file is nearly equal to the size of

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 13,2023 at 09:55:54 UTC from IEEE Xplore. Restrictions apply.

3198 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 11, NOVEMBER 2023

Fig. 5. Block diagram of FileDAG.

the newest version of the file, while traditional solutions cost
O(n) times in expectation.

C ′ = O(n−1)C.

�
In Section V, we report our experimental results to further

support the above conclusion.

V. PERFORMANCE EVALUATION

To evaluate the performance of FileDAG, we carry out real
experiments. Specifically, we implement FileDAG based on the
description in Section III, and perform the full processes of put
and get operations.

A. Implementation

As FileDAG shares many common properties with Filecoin,
we implement it by making modifications on Filecoin. This
also provides a chance for us to objectively compare FileDAG
with Filecoin. Venus, which has a modular design and was
written in Golang, is one of the four main implementations of
Filecoin. We fork a branch from Venus (version v1.1.3-rc1)
to build FileDAG. A typical Venus deployment consists of
three components, namely Public Service, Client, and Storage
Provider (Storage Miner) [34]. Correspondingly, FileDAG has
the same three components and the modules included in each
component are illustrated in Fig. 5. Specifically, we build the
Consensus and Increment modules from scratch, and they are
marked green in Fig. 5. Additionally, we make adaptations on
the Market modules (Market Client and Market Server) and the
Storage Manager of Venus and reuse them in FileDAG – they are
colored blue in Fig. 5. The three modules marked gray, i.e., Node
Authentication, Messager, and Gateway, are directly inherited
from Venus. The Increment module is implemented with 1096
lines of code in Golang and is included in Client. It consists of an
Increment Generator and an Increment Accumulator, which can
be deployed separately, as a data consumer who does not create
or update files may not need the Increment Generator while
a data provider who does not download files may not need the
Increment Accumulator. We build a brand-new Consensus mod-
ule to replace the one in Venus and develop our two-layer DAG
ledger for FileDAG. The upper layer of the ledger is realized
by an independent prototype of DAG-Rider with 424 lines of

code in Golang. Note that the lower layer is implemented when
revising the Market Client. We also modify the Market Server
in Storage Provider to attach version control information when
transferring files/increments, and add the Retrieve() function
to the Storage Manager module to obtain the versions of all
fragments needed to recover the file of a particular version.
Modifications on Venus take 603 lines of code in total. Other
modules of Venus that are not mentioned in this article stay as
they are so that we can objectively evaluate the performance
enhancement brought by our innovation. All components of
FileDAG implementation are written in Golang, and we build
and test FileDAG with go1.17.11.

B. Experiment Setup

We deploy FileDAG on 5 computers, with each having 2-Core
CPU, 4 GB memory and 1 TB NVMe SSD, and running Ubuntu
22.04 LTS. The bandwidth of each computer is 1 MB/s. We use
the 5 computers to run: 1 Service node, 3 Storage Providers, and
1 Client.

Based on the design difference between FileDAG and File-
coin, one can see that the performance changes brought by
FileDAG come from three aspects: 1) storage space saved by
the increment mechanism and the novel DAG ledger, 2) ex-
tra processing latency (in both uploading and downloading)
brought by the increment mechanism, and 3) the decreased
transmission latency due to smaller sizes of the payloads. We
evaluate the storage cost and runtime of the operations in
the put and get phases when providing multi-versioned file
storage.

Files used in our evaluation consist of three types: text, mul-
timedia, and binary. There exist plenty of online text files, e.g.,
code repositories, at GitHub. As shown in Table III, we clone 4
repositories from GitHub, namely IPLD, go-ipfs, ccf-deadlines,
and Git. We extract all the versions in each repository, and store
them in our implemented FileDAG network. Each of these repos-
itories has hundreds of versions and their average sizes range
from 1.8 MB to 50.9 MB. Additionally, we use FileDAG to store
a multi-versioned presentation PPT (Microsoft PowerPoint) as
an example of multimedia file. Such files are common in practice
as when preparing academic reports or degree defenses, people
usually make revisions on a PPT multiple times and keep histori-
cal versions for possible rolling backs. In our evaluation, the PPT
file used is a research report maintained by one of the authors.
This file has 21 versions and the average size is 8.7 MB. Finally,
we take the APK (Android application package) files of several
popular apps as examples of binary files. These apps include a
game (Minecraft), an instant messaging software (WeChat), and
an entertainment app (Netflix). We have downloaded these APK
files from Uptodown,2 which provides downloads of APK files
with different versions. As of this writing, WeChat and Netflix
have 18 and 20 versions on Uptodown, while Minecraft has 277
versions. The average sizes of them range from 14.4 MB to
228.4 MB. We test the APK files because the BSDiff algorithm
used in our Increment module has been widely adopted to

2https://en.uptodown.com

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 13,2023 at 09:55:54 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: FILEDAG: A MULTI-VERSION DECENTRALIZED STORAGE NETWORK BUILT ON DAG-BASED BLOCKCHAIN 3199

TABLE III
COMPARISON BETWEEN FILEDAG AND OTHER STATE-OF-THE-ART DSNS

generate patch files for APK updates in Android applications.
For comparison purpose, we select two market-tested DSNs, i.e.,
Filecoin and Sia mentioned in Section II, as the baselines for
our evaluation. There are two Filecoin implementations written
in Golang: Venus and Lotus. Both implementations provide
storage, retrieval, and mining functionalities, and are compatible
with each other on the Filecoin network. However, Venus has
features tailored for storage providers, such as a distributed
storage pool, a simplified sealing process, and a user-friendly
interface. We evaluated both Lotus and Venus to explore whether
these features make a difference in performance.

C. Evaluation Results

A summary of the evaluation results averaged over 100 trials
on the eight datasets mentioned above are reported in Table III,
in which the three sections show the evaluation results in terms
of storage, put (upload) runtime, and get (download) runtime.
Storage measures the storage cost of the DSNs storing a multi-
versioned file. The put/get runtime measures the average time
cost of the DSNs to complete a put/get operation over one version
of a multi-versioned file. One can see that FileDAG saves up to
25% ∼ 99% storage space compared to Filecoin. This is because
FileDAG stores increments instead of the complete versions of
the multi-versioned files. For the text and multimedia files, the
put/get runtimes of FileDAG are significantly shorter than those
incurred by other DSNs. However, limited by the performance of
the increment generating algorithms processing binary files, the
put runtime of FileDAG might be longer than those incurred by
other DSNs, especially for WeChat, whose size is much bigger
than those of the other two binary files. But this doesn’t mean that
FileDAG is not suitable for binary files. One can see that the get
runtime of FileDAG is still significantly shorter than those of the
other two Filecoins. As in practice, a binary file, e.g., a software
installer, is usually downloaded multiple times (by different team
members, or from different computers) once being put on the
network, the longer time of an upload in FileDAG can be easily
amortized by the shorter time of many downloads. Besides, as
shown in Table III, compared to FileDAG and Filecoin, Sia has

extremely high storage cost and latency; thus it is ignored in the
following studies.

To better demonstrate the superiority of FileDAG over the
baseline DSNs, we use Figs. 6 and 7 to respectively depict the
accumulated storage cost and the put/get runtimes of the three
types of files under our study. Due to limited space, we report
the results of only one multi-versioned file in each category and
select Git for text, PPT for multimedia, and Minecraft for binary.
Particularly, in Fig. 7, as it is impossible to draw the bar graphs
of all versions, we choose 5 versions of each file, including the
initial and final ones, to illustrate the results. The experimental
results of other files exhibit very similar trends.

Storage Cost: We measure and compare the disk usages of the
DSN miners to demonstrate that FileDAG achieves low storage
costs. As one can see from Fig. 6,3 while a multi-versioned file
updates its versions, the storage size increases for all DSNs,
but the growth of FileDAG is much slower compared to both
implementations of Filecoin. More specifically, one can see that
the storage costs of Filecoin exhibit roughly quadratic growth,
while those of FileDAG show approximately linear growth. This
confirms our analysis in Section IV. One can also see that the
more version a file has, the more storage space FileDAG can
save via the increment mechanism, and the size of the increment
generated is related to how much a version differs from its
previous version. This explains why the save of the storage space
of Minecraft by FileDAG is not as big as those of the other two
files, as versions of Minecraft are quite different.

Put Runtime: The runtimes of the put phase of FileDAG and
the baselines storing the above-mentioned three files are reported
in the top three subfigures of Fig. 7. In a typical DSN, the
put phase consists of three steps: processing, transmission, and
on-chain confirmation. During the processing step, a DSN client
packs a new file version (in Filecoin) or the increment of the new
version (in FileDAG) into specific format of payloads, and for
FileDAG, increment generation is included in the processing
step. Transmission gets the payloads transmitted from the client

3Because Venus and Lotus adopt the same deterministic packing algorithm,
these two DSNs take equal storage spaces; thus the curves for their storage cost
results overlap in Fig. 6.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 13,2023 at 09:55:54 UTC from IEEE Xplore. Restrictions apply.

3200 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 11, NOVEMBER 2023

Fig. 6. Full version storage costs.

Fig. 7. Put and get runtime.

to the designated storage miner. After transmitting the file (or
increment) to the miner, the client creates a transaction that
contains the file CID and the miner ID, then gets it confirmed on
the blockchain to complete the storage put operation. To better
demonstrate these three steps, we split each bar in Fig. 7 into
three sections with different textures.

As shown in Fig. 7(a), (b) and (c), one can see that the on-chain
confirmation latency of all the tested files are similar and remain
stable. This is because the transaction sizes remain stable no
matter how large the files are as transactions only contain CIDs
or hashes whose sizes are constants. Additionally, based on
our observation, the confirmation latency of FileDAG is about
1 second shorter than those of the two Filecoin implementations,
thanks to the performance improvement brought by the
consensus algorithm in our two-layer DAG ledger. Processing
and transmission latencies intuitively depend on the sizes of the
payloads. In Fig. 7(b) and (c), one can see that due to increment
generation, FileDAG has higher processing latencies and

lower transmission latencies.4 In most cases, the put latencies of
FileDAG are lower than those of the baseline. In some other cases
such as for Minecraft, due to the complexity of the increment
generation algorithm, the put latencies of FileDAG might be
longer, but they are still acceptable, as usually put (upload) is an
infrequent operation compared to the get (download) operation
of the same file. In addition, the calculation of paid tokens
for storage services is based on the size of miner’s stored file.
Increment generation therefore saves tokens for users, making
the calculation more valuable. What’s more, one can see that
for the initial version of each file, FileDAG and Filecoin spend
equal time on processing and transmission, because all DSNs
process and transmit the same full-versioned file.

Get Runtime: Similar to the put phase, the get phase of most
DSNs also consists of three steps: retrieval, transmission, and

4The processing and transmission latences of Git in Fig. 7(a) is not obvious
as they are too short.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 13,2023 at 09:55:54 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: FILEDAG: A MULTI-VERSION DECENTRALIZED STORAGE NETWORK BUILT ON DAG-BASED BLOCKCHAIN 3201

file recovery. During retrieval, a miner gathers the required in-
formation (CIDs and the miner addresses) from the blockchain.
Then the corresponding files (or increments) are sent to the
client during the transmission step. As files can be encrypted
for transmission or transmitted in small pieces, the client needs
to recover the file in the last step. Therefore we also split each
bar in Fig. 7(a), (b), and (c) into three sections with different
textures. One can see that the latency of a get operation is
mainly attributed to retrieval and transmission, while file recov-
ery latency is negligible. The retrieval latency of FileDAG and
Filecoin are close and both stay stable at around 0.7 seconds.
The transmission latency of FileDAG is lower because of the
increment mechanism. Particularly, version 207 of Minecraft has
a small update compared to version 206, so the corresponding
increment is small, thus the transmission process finishes shortly.
Note that the latency saved by FileDAG during the get phase
is much more than that saved during the put phase, because
the increment generation takes more time than recovery. As we
have mentioned earlier, practically a file is usually downloaded
multiple times once being put on the network, the total latency
saved by FileDAG can be significant.

VI. CONCLUSION

In this article, we describe the design and implementation
of FileDAG, a DSN built on DAG-based blockchain. FileDAG
supports file-level deduplication in storing multi-versioned files
by adopting an increment mechanism. Besides, FileDAG sup-
ports flexible and storage-saving file indexing by introducing
a two-layer DAG-based blockchain ledger. We implement an
actual instance of FileDAG and evaluate its performance. The
results demonstrate that FileDAG outperforms the state-of-the-
art industrial DSNs in storage cost and latency. In our future
research, we plan to improve the performance of DSN by de-
signing a faster and more effective proof of storage mechanism
to further save storage cost of DSNs.

REFERENCES

[1] M. Xu, Z. Zou, Y. Cheng, Q. Hu, D. Yu, and X. Cheng, “SPDL: A
blockchain-enabled secure and privacy-preserving decentralized learning
system,” IEEE Trans. Comput., vol. 72, no. 2, pp. 548–558, Feb. 2023.

[2] C. Liu et al., “Extending on-chain trust to off-chain – Trustworthy
blockchain data collection using trusted execution environment (TEE),”
IEEE Trans. Comput., vol. 71, no. 12, pp. 3268–3280, Dec. 2022.

[3] M. Xu, S. Liu, D. Yu, X. Cheng, S. Guo, and J. Yu, “CloudChain: A cloud
blockchain using shared memory consensus and RDMA,” IEEE Trans.
Comput., vol. 71, no. 12, pp. 3242–3253, Dec. 2022.

[4] A. Chokkalingam and F. Riyaz, “BitTorrent protocol specification,” CSI
5321, 2004.

[5] J. Tate et al., Introduction to Storage Area Netw., Armonk, NY, USA: IBM
Redbooks, 2018.

[6] P. Labs, “Filecoin: A decentralized storage network,” Aug. 2017. [Online].
Available: https://filecoin.io/filecoin.pdf

[7] S. Wilkinson, T. Boshevski, J. Brandoff, and V. Buterin, “Storj: A peer-
to-peer cloud storage network,” Storj Labs, Jul. 2014. [Online]. Avail-
able: https://storj.io/storj.pdf

[8] D. Vorick and L. Champine, “Sia: Simple decentralized storage,”
Sep. 2014. [Online]. Available: https://sia.tech/sia.pdf

[9] The Swarm team, “Swarm: Storage and communication infrastructure for
a self-sovereign digital society,” 2021. [Online]. Available: https://www.
ethswarm.org/swarm-whitepaper.pdf

[10] P. Labs, “Web3 storage - the simple file storage service for IPFS & filecoin,”
2022. [Online]. Available: https://web3.storage/docs/

[11] BitTorrent, “BTFS,” 2022. [Online]. Available: https://docs.btfs.io/

[12] Filebase, “Use filebase as the origin for your CDN,” 2022. [Online].
Available: https://filebase.com/solutions/content-delivery/

[13] P. Labs, “Merkle DAGs,” 2022. [Online]. Available: https://docs.ipfs.tech/
concepts/merkle-dag/

[14] R. Achar, The Global Object Tracker: Decentralized Version Control for
Replicated Objects. Irvine, CA, USA: Univ. California, 2020.

[15] GitHub, “Configuring branches and merges in your repository,” 2022.
[Online]. Available: https://docs.github.com/en/repositories/configuring-
branches-and-merges-in-your-repository

[16] S. Popov, “The tangle,” White Paper, vol. 1, no. 3, 2018.
[17] L. Baird, “The Swirlds hashgraph consensus algorithm: Fair, fast,

Byzantine fault tolerance,” Swirlds, College Station, TX, USA,
Tech. Rep. SWIRLDS-TR-2016–01, 2016.

[18] J. Benet, “IPFS-content addressed, versioned, P2P file system (DRAFT
3),” 2014, arXiv:1407.3561.

[19] G. Wood, et al., “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, no. 2014, pp. 1–32, 2014.

[20] N. Ferguson et al., “The skein hash function family,” Submission to NIST
(Round 3), vol. 7, no. 7.5, 2010, Art. no. 3.

[21] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,” in
Proc. 19th ACM Symp. Operating Syst. Princ., 2003, pp. 29–43.

[22] Regarding gnutella, 2022. [Online]. Available: https://www.gnu.org/
philosophy/gnutella.html

[23] Coral CDN, 2022. [Online]. Available: http://www.coralcdn.org/
[24] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. I. Seltzer,

“Provenance-aware storage systems,” in Proc. Usenix Annu. Tech. Conf.
Gen. Track, 2006, pp. 43–56.

[25] X. Liang, S. Shetty, D. Tosh, C. Kamhoua, K. Kwiat, and L. Njilla,
“ProvChain: A blockchain-based data provenance architecture in cloud
environment with enhanced privacy and availability,” in Proc. 17th
IEEE/ACM Int. Symp. Cluster Cloud Grid Comput., 2017, pp. 468–477.

[26] J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone proto-
col: Analysis and applications,” in Proc. Annu. Int. Conf. Theory Appl.
Cryptographic Techn., Springer, 2015, pp. 281–310.

[27] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse, “{Bitcoin-NG}:
A scalable blockchain protocol,” in Proc. 13th USENIX Symp. Netw. Syst.
Des. Implementation, 2016, pp. 45–59.

[28] N. Community, “Nxt whitepaper,” 2022. [Online]. Available: https://
nxtdocs.jelurida.com/Nxt_Whitepaper

[29] Y. Ribero and D. Raissar, “Dagcoin whitepaper,” Whitepaper, pp. 1–71,
2018.

[30] NAKIVO, “Incremental backup,” 2021. [Online]. Available: https://www.
nakivo.com/incremental-backup/

[31] E. W. Myers, “An O(ND) difference algorithm and its variations,” Algo-
rithmica, vol. 1, no. 1–4, pp. 251–266, 1986.

[32] C. Percival, “Naıve differences of executable code,” Draft Paper, Citeseer,
2003. [Online]. Available: http://www.daemonology.net/bsdiff

[33] I. Keidar, E. Kokoris-Kogias, O. Naor, and A. Spiegelman, “All you need is
DAG,” in Proc. ACM Symp. Princ. Distrib. Comput., New York, NY, USA,
2021, pp. 165–175. [Online]. Available: https://doi.org/10.1145/3465084.
3467905

[34] I. Force, “Venus docs,” 2022. [Online]. Available: https://venus.filecoin.io

Hechuan Guo received the BS degree in computer
science and the MS degree in engineering from Bei-
jing Normal University, Beijing, China, in 2017 and
2020, respectively. He is currently working toward
the PhD degree in computer science with Shandong
University, Qingdao, China. His current research fo-
cuses on blockchain, consensus protocols, security,
and applied cryptography.

Minghui Xu received the bachelor’s degree in
physics from Beijing Normal University, in 2018, and
the PhD degree in computer science from George
Washington University, in 2021. He is an Assistant
Professor with Shandong University. His research
interests include blockchain, distributed computing,
and cryptography.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 13,2023 at 09:55:54 UTC from IEEE Xplore. Restrictions apply.

https://filecoin.io/filecoin.pdf
https://storj.io/storj.pdf
https://sia.tech/sia.pdf
https://www.ethswarm.org/swarm-whitepaper.pdf
https://www.ethswarm.org/swarm-whitepaper.pdf
https://web3.storage/docs/
https://docs.btfs.io/
https://filebase.com/solutions/content-delivery/
https://docs.ipfs.tech/concepts/merkle-dag/
https://docs.ipfs.tech/concepts/merkle-dag/
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository
https://www.gnu.org/philosophy/gnutella.html
https://www.gnu.org/philosophy/gnutella.html
http://www.coralcdn.org/
https://nxtdocs.jelurida.com/Nxt_Whitepaper
https://nxtdocs.jelurida.com/Nxt_Whitepaper
https://www.nakivo.com/incremental-backup/
https://www.nakivo.com/incremental-backup/
http://www.daemonology.net/bsdiff
https://doi.org/10.1145/3465084.3467905
https://doi.org/10.1145/3465084.3467905
https://venus.filecoin.io

3202 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 11, NOVEMBER 2023

Jiahao Zhang received the BS degree from Shandong
University, Qingdao, China, in 2022. He is currently
working toward the master degree in computer sci-
ence with Shandong University, Qingdao, China. His
current research mainly focuses on blockchain, de-
centralized storage networks, and security.

Chunchi Liu received the BS (with distinction) de-
gree in computer science from Beijing Normal Uni-
versity, Beijing, China, in 2017, and the PhD degree
in computer science from George Washington Uni-
versity, Washington DC, USA, in 2020. His current
research focuses on blockchain, Internet of Things,
security, and applied cryptography.

Dongxiao Yu received the BS degree in mathematics
from Shandong University, in 2006, and the PhD de-
gree in computer science from the University of Hong
Kong, in 2014. He became an Associate Professor
with the School of Computer Science and Technol-
ogy, Huazhong University of Science and Technol-
ogy, in 2016. Currently, he is a professor with the
School of Computer Science and Technology, Shan-
dong University. His research interests include wire-
less networking, distributed computing, and graph
algorithms.

Schahram Dustdar (Fellow, IEEE) is a full professor
of computer science with the Vienna Technical Uni-
versity, heading the Research Division of Distributed
Systems, TU Wien, Austria. He is the founding co-
editor-in-chief of the ACM Transactions on Internet of
Things and editor-in-chief of the Computing. He is an
associate editor of the IEEE Transactions on Services
Computing, IEEE Transactions on Cloud Computing,
ACM Computing Surveys, ACM Transactions on the
Web, and ACM Transactions on Internet Technology,
as well as on the editorial board of the IEEE Internet

Computing and IEEE Computer. He is the recipient of multiple awards: IEEE
TCSVC Outstanding Leadership Award (2018), IEEE TCSC Award for Ex-
cellence in Scalable Computing (2019), ACM Distinguished Scientist (2009),
ACM Distinguished Speaker (2021), IBM Faculty Award (2012), member
of the Academia Europaea (2016) and an Asia-Pacific Artificial Intelligence
Association (AAIA) fellow (2021) and the AAIA president (2201).

Xiuzhen Cheng (Fellow, IEEE) received the MS and
PhD degrees in computer science from the University
of Minnesota – Twin Cities, in 2000 and 2002, respec-
tively. She was a faculty member with the Department
of Computer Science, George Washington University,
from 2002–2020. Currently, she is a professor of
computer science with Shandong University, Qing-
dao, China. Her research focuses on blockchain, IOT
security, and privacy-aware computing.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 13,2023 at 09:55:54 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

