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Abstract— The multi-access edge computing (MEC) paradigm
has emerged as a critical solution to address the exponential
growth in mobile web services and devices. By implementing
an edge-based service provisioning system (EPS) with servers
located at the network’s edge, both transmission and computation
efficiency can be significantly enhanced. Nevertheless, it is also
essential to carefully consider the resource allocation for services,
the traffic management of requests, and the path arrangement
for data delivery to ensure the cost-effective operation of the EPS.
Therefore, we investigate and quantify the relationship between
the performance and cost of the EPS in this paper, and model
the cost-effective service provisioning problem as a multi-phase
convex optimization problem. An online algorithm whose name is
RDC based on the Lyapunov framework is proposed to decompose
this problem into several sub-problems.Additionally, a heuristic
approach that partitions edge servers into several clusters,
called RDC-NeP and based on RDC, has also been proposed to
reduce computational complexity. A series of experiments were
conducted to evaluate the proposed approach. The results demon-
strate that RDC can effectively balance expense and performance,
while RDC-NeP significantly simplifies the processing of RDC
when the problem scale increases.

Index Terms— Multi-access edge computing, resource alloca-
tion, service scheduling, service computing.

I. INTRODUCTION

THE recent proliferation of mobile services and devices has
necessitated the evolution of traditional mobile computing

technologies. According to a report1 released by HUAWEI
Technologies in March 2022, the total number of global
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connections is projected to exceed 200 billion by 2030.
Furthermore, a report2 by the Global System for Mobile Com-
munications Association predicts that the number of world-
wide mobile service subscribers will increase at an average
annual growth rate of 1.9% until 2025. Additionally, the global
cellular IoT connection number is expected to reach 3.2 billion
by 2024. Nevertheless, the instability of wireless channels and
the limited resources of mobile devices present challenges
for users in achieving an efficient and seamless experience.
To address these concerns, the multi-access edge computing
paradigm (MEC), also known as “mobile edge computing,”
has been proposed [1], [2], [3]. As an extension of mobile
cloud computing, MEC optimizes the resource usage from the
near-user side to provide context-aware services [4], [5]. With
its help, computation and transmission between mobile devices
and the cloud are allowed to be migrated to edge servers.

In the MEC paradigm, users can connect to nearby edge
servers via a wireless network to access powerful resources for
task completion. This is in contrast to using cloud resources
located far away from the users, which can result in higher
latency. In addition to reducing latency by localizing com-
putation, edge servers can also work together to make good
use of the available resources. Mature Platform-as-a-Service
(PaaS) management frameworks, such as EdgeSite,3 can be
used to organize edge servers into a cluster to handle user
requests from any others. Moreover, resource allocation and
release for services can be easily managed. However, it is
important to note that MEC is not a panacea for optimizing
mobile computing; while it offers improvements, it relies on
external resources that may incur significant costs. Therefore,
it is essential for any system design to take into account
its total cost and design cost-effective service provisioning
strategies [6], [7] in the MEC-based systems to make full use
of the limited edge resources, as the cost-performance ratio is
a significant factor in determining its viability [8], [9].

In this paper, we address the challenge of designing an
effective service provisioning strategy. To this end, we propose
a composite strategy comprising three components: resource
allocation, traffic scheduling, and data delivery. The paper’s
main contributions are:

1) The cost-effective service provisioning problem in
the MEC environment is formulated as a joint optimization
problem that aims to minimize the expected service response
time under the constraints of edge server available resource
limitation and expense.

2) We introduce an online approach, referred to as RDC,
to tackle the specified issue. This approach employs a Lya-
punov optimization framework and decomposes the target

2https://www.gsmaintelligence.com
3https://docs.kubeedge.io/en/latest/modules/edgesite.html
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Fig. 1. Examples of a 4-server/3-service/1-user EPS.

problem into three distinct sub-problems. We prove the con-
vexity of these sub-problems, enabling them to be solved
separately with ease.

3) In light of the large-scale cases, a heuristic approach
known as RDC-NeP is utilized to segregate the nodes into
distinct cliques to enable the parallel reuse of RDC.

4) The advantages of our approach are underpinned by a
series of comparison experiments with other existing base-
lines and the advantages are clearly illustrated. What’s more,
to explore the factors that may affect the RDC’s results,
we apply the RDC approach on sets of different system
configurations and analyze their individual contributions.

The remainder of this article is structured as follows:
In Section II, we use a concise yet illustrative example
to present the issues that will be addressed in this study.
Section III reviews previous research relevant to the identified
problems. In Section IV, we introduce the definitions and
concepts that form the basis of the problem being proposed.
Section V outlines the proposed solutions to address the
problem at hand. In Section VI, we explore the challenges that
arise when dealing with a large number of edge servers, and
present a heuristic solution known as RDC-NeP. Section VII
presents the experimental results, including an analysis of the
factors that influence our algorithms. Finally, in Section VIII,
we conclude our contributions and highlight possible avenues
for future research based on the findings.

II. MOTIVATION SCENARIO

In the context of the edge-based service provisioning system
(EPS), the choice of resource allocation and traffic scheduling
strategies can significantly impact the performance and cost of
the system [10]. This is particularly pertinent when edge server
resources are constrained and their cooperation is complex.
In this section, we illustrate the importance of these strategies
through a succinct yet illustrative example.

As shown in Fig.1, we establish a simple EPS which has
five edge servers (h1, h2, h3, h4, h5) as a cluster and three
types of services (s1, s2, s3) running on the edge servers
and providing different functionalities for users in the serving
areas of this system. Suppose the user u1 is going to use
service s1 to process the uploaded data (whose data volume
is d) collected by his or her wearable mobile devices, this
user will first connect to h1 (in this work, the nearest-first
principle is adopted when there are overlaps between different
serving areas). With different colors identifying the service
types, different areas of the colorful blocks revealing the
amount of their allocated resource, and dash lines among
edge servers describing the cluster topology, it can be found
that the service instances of s1 on h2, h4, or h5 can be

used to accomplish the task (this is because only these three
edge servers have allocated resources to s1 and they are also
reachable from the connected edge server h1 of user u1 in
the cluster). Now, if u1 uses the service instance of s1 on h5

as what is shown in Fig.1(a) and Fig.1(b), there will be two
possible data delivery paths ϕ1 = h1 → h2 → h4 → h5 and
ϕ2 = h1→ h2→ h3 → h5 to send corresponding data to
that service instance according to the network topology shown
with the dash lines. Apparently, the uploading of used data d
can be accelerated with parallel transmission: the data d can
be separated into two parts d1 and d2 (d1 + d2 = d) and
transmitted via these two paths so that the final time that s1 on
h5 receives the whole d will be estimated with

T1,5(d, {ϕ1, ϕ2}) = max

[
trans_time(d1, ϕ1),

trans_time(d2, ϕ2)
]

(1)

where trans_time(di, ϕi) is the transmission time of data
packets whose volume is di via delivery path ϕi. It will be easy
to conclude that a lame-duck-like data delivery path selection
will result in slow data transmission. Meanwhile, as we use
the number of envelopes to describe the data volume in Fig.1,
we can also find that the separations of d, namely d1 < d2 in
Fig.1(a) and d1 > d2 in Fig.1(b), will affect the value of
T1,5(d, {ϕ1, ϕ2}) as well. Thus, we need to take care of the
data delivery in the EPS — this is the first important issue we
would like to highlight and solve.

After the data is ready for s1 on h5, the service
instance will start to process it. Given the resource allo-
cated to s1 by h5 denoted with res5,1, the processing time
exec_time(res5,1) will be added to T1,5(d, {ϕ1, ϕ2}) to
obtain the total time cost of case Fig.1(a) and Fig.1(b):

T(a)/(b) = T1,5(d, {ϕ1, ϕ2}) + exec_time(res5,1) (2)

At the same time, as the total cost of example (a) or (b) in Fig.1
strongly depends on the allocated resource res5,1, we can also
use C(a)/(b)(res5,1) to represent it. Therefore, it will be clear
that the second key point can be summarized when comparing
the performance and cost in Fig.1(a) and Fig.1(b) — the EPS
in Fig.1(b) has less resource for s1 on h5 (represented by the
area of colored blocks), it means that the request processing
performance (quantified by the total time cost) is worse than
that of Fig.1(a); but just for the less resources the EPS in
Fig.1(b) has used, the total cost for the used resource may be
less because the cost C(a)/(b)(res5,1) is usually a monotone
and non-decreasing function on the used resource res5,1.
Namely, there will be a trade-off between the performance
and cost of a given EPS.
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At last, for the case where u1 choose the service s1 on
h4, instead of h5, to process the data as shown in Fig.1(c),
though h4 can allocate the same resource to s1 on it as that
of h5, but the possible data delivery paths changes to ϕ3 =
h1→h2→h3→h4 and ϕ4 = h1→h2→h3→h5→h4, which
results in the changing of transmission time estimation. Thus,
the traffic scheduling of service requests will also matter in
optimizing the system performance.

III. RELATED WORK

In this section, we will review some representative works
that are related to our problem to see what efforts are made
to optimize the performance and cost of service provisioning
systems in the MEC environment.

A. Resource Allocation in Service Provisioning
Resource allocation is a long-standing and significant con-

cern that is extensively discussed in research on distributed
systems to achieve optimal performance and cost balance.

For example, in the environments where the MEC paradigm
is used for performance improvement, the researchers
care more about the effective running of the services:
Brik et al. [11] introduced an algorithm to address the
challenge of balancing computational load among mobile
edge platforms by leveraging the Tabu-Search meta-heuristic
to solve the service resource allocation problem, subject to
constraints on computing resources and latency. Subsequently,
Moubayed et al. [12] and Liu et al. [13] extended this
work to future intelligent transportation systems, where they
formulated the problem of optimal vehicle service deployment
in a hybrid core/edge/vehicle environment as an optimization
problem. This optimization problem determines whether to
allocate resources to services or not, and they developed
approximate algorithms to solve this problem. On the other
hand, in environments where the issue of energy saving is on
the table, the researcher will spare no effort to consider com-
pleting tasks with minimum energy consumption. Bi et al. [14]
further explored a similar topic, they devised a mixed
integer non-linear programming that jointly optimized ser-
vice caching, computation offloading decisions, and system
resource allocation. They employed a derived closed-form
expression for optimal resource allocation to convert the
problem into an equivalent pure binary integer linear pro-
gramming. Additionally, the researchers utilized the under-
lying structures of caching causality and task dependency
models, which enabled them to develop a reduced-complexity
alternating minimization technique. This technique facilitated
the updating of caching placement and offloading decisions
alternately, ultimately reducing time cost and energy con-
sumption. In order to achieve service resource allocation in
a highly dynamic mobile network, Ning et al. [15] proposed
a sample average approximation-based stochastic algorithm.
This algorithm approximates the future expected system utility,
which is the sum of energy consumption of different peri-
ods. They then utilized a distributed Markov approximation
algorithm to determine the service deployment configurations.
Considering the fact that too many small cells may increase
operational costs and emit more CO2, Mohajer et al. [16]
proposes a dynamic optimization model which maximizes the
total uplink/downlink energy efficiency along with satisfying
the necessary QoS constraints by associating user equipment
with the right cells.

B. Traffic Scheduling in Service Provisioning
Traffic scheduling issues arise due to the distribution and

redundancy of resources, necessitating judicious decision-
making when faced with alternatives. Optimal choices depend
on the objectives under consideration, leading to the study of
how to satisfy demands from various perspectives.

Some researchers analyze the structure of their target sys-
tem and propose different traffic scheduling approaches to
ensure the flexibility of network services at the network edge:
Poularakis et al. [17] considered the situations that emerging
services exhibit asymmetric bandwidth requirements. Besides
the joint optimization of service resource allocation, they
further studied request routing in dense MEC networks with
multidimensional constraints and proposed an algorithm that
achieved close-to-optimal performance using a randomized
rounding technique. Liu et al. [18] studied the joint service
function chain deployment and resource management problem
in heterogeneous edge environments to minimize the total
system delay. Based on the game theory, they proposed an
intelligent approach to deploy service function chains and
manage resources. Akhtar et al. [19] investigated the problem
of optimizing the layout of application function pipes and
directing traffic through them on a multi-technology edge
network model consisting of wired and wireless millimeter
wave links. They use a comprehensive “microscopic” binary
integer program to model the system, and a heuristic to
achieve high data rates and low latency. Another related study
from Kim et al. [20] focuses on queuing delay of mobile
devices, it investigated new self-learning network management
algorithms at edge nodes, proposed an approach based on deep
reinforcement learning techniques, and introduced a scaling
factor in the reward function to achieve a trade-off between
queuing delay and throughput.

Some other researchers try to optimize the basic facil-
ities by introducing novel traffic scheduling strategies:
Bukhsh et al. [21] have used decentralized techniques to
process tasks in a parallel manner and build groups of edge
nodes when they find cluster management and grouping lead to
additional overhead. In distributed edge computing networks,
local information of edge nodes is used by them to improve the
reliability of the network while a high-availability technique is
proposed to enhance the overall edge computing environment.
Also, they propose a latency-aware algorithm for edge comput-
ing with high availability to detect edge node failures, repair
edge nodes, and replace edge nodes with backups. Aiming at
the problem of edge system fault handling, Ergun et al. [22]
proposed new dynamic reliability management technology
for edge computing systems to meet the quality of service
requirements while maximizing the remaining energy of the
devices.

These studies elucidate fundamental concepts and inspire
optimization approaches for service provisioning systems in
MEC environments. Building on this work, we aim to balance
performance and cost in MEC service provisioning systems by
developing a joint allocation, delivery, and scheduling strategy
that optimizes system performance while ensuring reasonable
expenses.

IV. SYSTEM MODEL AND PROBLEM DESCRIPTION

In summary, the EPS serves as the governing body for edge
servers and their corresponding services, which are responsible
for managing user requests at the network’s edge. In this
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Fig. 2. Architecture of mobile edge computing (left) Using an undirected graph to describe the structure of the network (right).

section, we shall explicate our approach to modeling the enti-
ties and their respective behaviors within the EPS, followed by
a formulation of the target problem based on these introduced
concepts. To make it easier to follow the formulation, we’ve
provided a notation table for quick reference in the notation
table provided in supplementary material.

In this paper, we endeavor to employ a symbol system to
precisely depict the problem at hand. Accordingly, we hereby
establish a uniform convention, whereby the variable i denotes
the index of services, j and k denote the indices of servers,
p denotes the index of data paths, and q denotes the index
of servers within a data path. On the other hand, to dif-
ferentiate between the variables that may change in the
data forwarding (uploading data for processing) and backing
(getting the computation results), we’ll employ the symbols
“→” and “←” to mark them accordingly. For example, when
seeing a variable µk,i you will catch that it is related to the
i-th service and the k-th edge server, and will keep still in
the forwarding and backing phases. As another illustration,
whenever encountering the variable←−ϱ i,k,j,p, it should be noted
that it pertains to the i-th service, the k-th and j-th edge server,
and the p-th path, and furthermore, it is exclusively employed
in the “backing” phase.

A. EPS Entity Modelling
Suppose H = {h1, h2, . . . , hN } is the set of the widely

distributed edge servers. For the users (U) in the serving
area of edge servers in H, they will send service requests
about services in S = {s1, s2, . . . , sM } to their nearby edge
servers to fulfill different tasks. Here S is the set of services
that a service provider has. In a typical MEC environment,
if corresponding service instances are running on these edge
servers, the nearby edge servers will handle these requests.
What’s more, as mentioned above, these edge servers may
also cooperate with each other to make full use of the edge
resources — they can dispatch the service requests to more
appropriate edge servers via the network links among them.
If we denote the network link between the j-th edge server (hj)
and the k-th edge server (hk) with ej,k, then we can describe
those edge servers with a graph G = (H, E) like Fig.2, where
E = {ej,k | hj , hk ∈ H}. Therefore, an EPS can be represented
with a 3-tuple EPS = (G, S , U).

B. EPS Performance Evaluation
To assess the performance of an EPS, we calculate the aver-

age latency of any given service request, which encompasses
five constituent parts:

Fig. 3. An example to show the process of data delivery. The access server
is h1 and the executor server is h5 in this case, and there are 3 possible
delivery paths: ϕ1,5

1 = (h1, h3, h4, h5), ϕ1,5
2 = (h1, h3, h2, h5), ϕ1,5

1 =
(h1, h3, h2, h6, h5). When we set −→ϱ i,1,5,1 = 0.2, −→ϱ i,1,5,2 = 0.3,
−→ϱ i,1,5,3 = 0.5, it means 20%, 30% and 50% of the related data in si’s request
will go through ϕ1,5

1 , ϕ1,5
2 and ϕ1,5

3 individually from h1 to h5. The executor
server will use a service instance of si on it to fulfill the corresponding task
when data of these 3 paths are all received by it.

1) Edge Access, EA: First, when a user u intends to execute
a particular task associated with service si, he/she will connect
and send a related service request to the nearby edge server hj

(namely, the access server). This radio access network (RAN)
latency can be estimated with:

ℓAi,j =
Ii
νj

(3)

if the average data size of si’s input is denoted with Ii and νj

is the wireless transmission rate between edge server hj and
its users.

2) Service Scheduling, SS: Then, hj will dispatch the
request of si (with the input data) to hk (we can call it executor
server) via possible delivery paths ϕj,k

p ∈ Φj,k in parallel under
the delivery strategy −→ϱ . Here the sequence ϕj,k

p = (hj , ℏj,k,p
1 ,

ℏj,k,p
2 , . . . , ℏj,k,p

nj,k,p
, hk) is used to denote the p-th possible

delivery path from hj to hk in graph G, and nj,k,p is the
number of intermediate edge servers the path ϕj,k

p has. For all
q ∈ [1, nj,k,p], the edge server ℏj,k,p

q ∈ H acts as an intermedia
to deliver the request (it is obvious that ∀ℏj,k,p

x , ℏj,k,p
y ∈ ϕj,k

p

and x ̸= y, we will have ℏj,k,p
x ̸= ℏj,k,p

y to ensure that there is
no loop in all delivery paths). An example is shown in Fig.3.

Therefore, by denoting data delivery strategy −→ϱ i,j,k,p as
how many percentages of service si’s input data is transmitted
through ϕj,k

p in this phase constrained by:

|Φj,k|∑
p=1

−→ϱ i,j,k,p = 1,∀i, j, k

0 ≤ −→ϱ i,j,k,q ≤ 1,∀i, j, k, p (4)
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Therefore, this delivery latency can be represented with:

ℓRi,j,k = max
ϕj,k

p ∈Φj,k

{
ℓPj,k,p + ℓTi,j,k,p

}
, (5)

where ℓPj,k,p is the propagation latency of the network, and
ℓTi,j,k,p is the transmission latency for delivering si’s input
data through ϕj,k

p . As is known, the propagation latency
is strongly related to the distance between both ends. For
example, there will be about 5.0 µs of propagation latency
for every kilometer.4 In practice, things will be more complex,
because the optical fiber between edge servers is rarely straight
lines. But we can still use an equivalent parameter κ to depict
the relationship between the actual propagation latency and
the distance — suppose D⟨hx, hy⟩ is the distance between hx

and hy , the propagation latency of ex,y can be represented
with the following constraints:

latencyx,y = κ ·D⟨hx, hy⟩ (6)

Then, denote hj and hk with ℏj,k,p
0 and ℏj,k,p

nj,k,p+1 in ϕj,k
p , the

propagation latency ℓPj,k,p can be represented with:

ℓPj,k,p = κ ·
nj,k,p∑
q=0

D⟨ℏj,k,p
q , ℏj,k,p

q+1 ⟩ (7)

Besides this, suppose B⟨hx, hy⟩ (in mbps) is the bandwidth
of link ex,y , the transmission latency ℓTi,j,k,p is:

ℓTi,j,k,p =
nj,k,p∑
q=0

Ii · −→ϱ i,j,k,p

B⟨ℏj,k,p
q , ℏj,k,p

q+1 ⟩
(8)

3) Service Execution, SE: Now, the executor server hk

will process the service request about si. Suppose wi is the
average workload for service si (in Million Instructions, MI),
the actual service request arrival rate about si on hk is λk,i,
and the processing capacity for si on hk is µk,i (in Million
Instructions per Second, MIPS), it can handle γk,i = µk,i/wi

requests for si per second in average, then the service latency
can be represented with Little’s Law if the service requests
are described with the M/M/1 model [23]:

ℓEi,k =
1

γk,i − λk,i
(9)

It is worth noting that we should keep

λk,i

γk,i
< 1 (10)

in the serving queue to avoid congestion. Here, the M/M/1
model is used because it is a common model which has
been widely used in describing service systems like the works
of [24], [25], and [26]. To validate the rationality of this model,
here we also analyze the UMass network trace dataset5 which
contains a collection of user requests for specific services [27].
The histogram of the time intervals of the neighboring service
requests is shown in Fig.4.

We can find in this figure that the assumption of the service
request as a Poisson stream is very close to the real world,
so the selected model will be able to describe their behaviors
with it. But it is also necessary to be informed that the M/M/1

4https://en.wikipedia.org/wiki/Latency_(engineering)
5http://skulddata.cs.umass.edu/traces/network

Fig. 4. The histogram of time intervals between requests.

is not the only suitable model, the followers can replace it
with other queue models like M/G/1 and M/Ek/1 to extend
the capability of the approach. Besides this, if the maximum
resource of hk is µ⋆

k, then ∀k ∈ [1, N ], we have:

0 ≤ µk,i (11)
M∑
i=1

µk,i ≤ µ⋆
k (12)

the reason we can represent the constraints of resource limita-
tion like this is that the sum of K Poisson distributions whose
parameters are λ1-λK is still a Poisson distribution, and the
parameter of it is

∑K
i λi.

4) Edge Back, EB: After processing the service request on
the executor server hk, the expected result of si whose average
data size is Oi will be obtained and it needs to be sent back to
the user via the access server hj . Similarly, by denoting data
delivery strategy ←−ϱ i,k,j,p as how many percentage of service
si’s input data is transmitted through ϕk,j

p in this phase, the
routing latency ℓBk,j will be:

ℓBi,k,j = max
ϕk,j

p ∈Φk,j

{
ℓPk,j,p + ℓTi,k,j,p

}
, (13)

where corresponding propagation and transmission latency can
be represented with:

ℓPk,j,p = κ ·
nk,j,p∑
q=0

D⟨ℏk,j,p
q , ℏk,j,p

q+1 ⟩ (14)

ℓTi,k,j,p =
nk,j,p∑
q=0

Oi · ←−ϱ i,k,j,p

B⟨ℏk,j,p
q , ℏk,j,p

q+1 ⟩
(15)

5) Callback, CB: Finally, the access server, which is
connected to the user u, will send the received result of si

to that user’s device. Obviously, this transmission latency is:

ℓUi,j =
Oi

νj
(16)

Now, the total service latency for a service si’s request, which
is received by hj and processed by hk, will be:

ℓi,j,k = ℓAi,j + ℓRi,j,k + ℓEi,k + ℓBi,j,k + ℓUi,j (17)
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C. The Pricing Model of EPS
In the end, service providers must pay for the used

resources, but the final expense depends on the actual pric-
ing models of the infrastructure vendors [10]. These models
determine the relationship between price and resource usage.
Vendors typically employ diverse pricing models based on
their marketing strategies to enhance competitiveness. Regard-
less of how these models may change, the underlying prin-
ciple remains constant: greater resource usage incurs higher
costs, reflecting an on-demand pricing model. In our work,
we employ a representative linear pricing model to evaluate
expenses for processed workloads using allocated computa-
tional resources:

C(µ) =
N∑

k=1

M∑
i=1

ηkµk,i. (18)

when ηk is denoted as the unit price for using resources
of hj . As our work focuses solely on computational resources,
readers can readily extend the on-demand pricing model by
incorporating additional resource costs.

D. Problem Formulation
As described above, we have a complete and detailed analy-

sis of the latency for an arbitrary service request. To go a step
further, if we use ϑi,j,k to denote the routing strategy which
describes the probability of “hj choose hk for processing when
receiving requests of si”, we can also get the probability of
< i, j, k >, the event “hj receives the request about si and
dispatches it to hk for processing”:

Pr(< i, j, k >) = Pr(hk|si, hj) · Pr(si|hj) · Pr(hj)

= ϑi,j,k ·
∑M

z=1 Λz,j∑M
i=1

∑N
j=1 Λi,j

· Λi,j∑M
z=1 Λz,j

= ϑi,j,k ·
Λi,j

ΛU
, (19)

where Λi,j means the average service request arrival rate for
service si (in req/s) on hj , and ΛU =

∑M
i=1

∑N
j=1 Λi,j is the

total service request arrival rate of all the users served by H.
It is obvious that we will have the following constraints for
ϑ, ∀(i, j) ∈ [1,M ]× [1, N ]:

N∑
k=1

ϑi,j,k = 1 (20)

0 ≤ ϑi,j,k ≤ 1 (21)

while λk,i, the actual request arrival rate about si on host hk

that can be inferred recursively with {Λ∗,∗} according to the
Burke’s theorem [28]:

λk,i =
N∑

z=1

ϑi,z,kΛz,i. (22)

Therefore, for a given edge service provisioning system EPS =
(G, S, U), the expectation of service latency can be represented
with Equation (23) and expanded in (24), as shown at the
bottom of the page

Eℓ(ϑ,ϱ,µ) =
∑
i,j,k

Pr(si, hj , hk) · ℓi,j,k (23)

According to the expressions of Pr(si, hj , hk) shown in
Equation (19) and that of ℓi,j,k shown in Equation (3) - (17),
the value of it can be further measured with Equation (24),
where in Equation (23) and (24) µ is the matrix containing
all the {µk,i} for ∀(k, i) ∈ [1, N ]× [1,M ] and ϱ denotes the
combination of −→ϱ and←−ϱ who have {−→ϱ i,j,k,p} and {←−ϱ i,k,j,p}
as their elements separately.

Due to the dynamic nature of users’ service requirements,
static models are insufficient for characterizing and assessing
the performance costs of systems over time. Hence, inspired
by the works like [29] and [30], we separate time into several
discrete time slots to evaluate the EPS over a long time period,
where each time slot has an appropriate duration that matches
the timescale in which the service provisioning strategy can
be updated. In this way, if we rewrite the above Eℓ(ϑ,ϱ,µ)
with Et

ℓ(ϑ
t,ϱt,µt) to represent the average service latency in

the t-th time slot, and rewrite C(µ) as Ct(µt), Λi,j as Λt
i,j

etc. in the same way, then the average latency of a service
request can be described as follows:

ℓ̂(ϑ,ϱ,µ) = lim
T→∞

1
T

T−1∑
t=0

Et
ℓ(ϑ

t,ϱt,µt) (25)

and the budget constraint can be described with:

lim
T→∞

1
T

T−1∑
t=0

Ct(µt) ≤ C⋆ (26)

In summary, the EPS performance optimization problem can
be described as follows:

P1 : min
ϑ,ϱ,µ

ℓ̂(ϑ,ϱ,µ)

s.t. (4), (10), (12), (20), (21), (26) (27)

It is worth noting that there in Equation (25) and Equa-
tion (26), limT→∞

1
T

∑T−1
t=0 gt(x) is used to represent the

long-term time-average of function g(x) of a time sequence to
describe the performance and expense. Furthermore, to avoid
a large variance of the sequence {gt(x)}T−1

t=0 , we use con-
stant C⋆ in Equation (26) so that the expense in every time slot
is acceptable. This constraint ensures a stable and predictable
financial expenditure for the service providers.

V. THE RDC ALGORITHM AND ANALYSIS

In this section, we will introduce the approach to the
request routing, data delivery, and resource allocation (RDC)
problem. The proposed approach or algorithm shares the same

Eℓ(ϑ,ϱ,µ) =
1

ΛU

∑
i,j,k

(
max

ϕj,k
p ∈Φj,k

{nj,k,p∑
q=0

[
κ ·D⟨ℏj,k,p

q , ℏj,k,p
q+1 ⟩+

Ii · −→ϱ i,j,k,p

B⟨ℏj,k,p
q , ℏj,k,p

q+1 ⟩
]}

+ max
ϕk,j

p ∈Φk,j

{nk,j,p∑
q=0

[
κ ·D⟨ℏk,j,p

q , ℏk,j,p
q+1 ⟩+

Oi · ←−ϱ i,k,j,p

B⟨ℏk,j,p
q , ℏk,j,p

q+1 ⟩
]}

+
Ii +Oi

νj
+

1
γk,i − λk,i

)
ϑi,j,kΛi,j (24)
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name RDC with the problem for simplification. Basically, the
RDC algorithm is developed under the Lyapunov optimization
framework [29], [31], [32]. With the help of this framework,
the long-term optimization problem can be translated into
an optimization problem for every slot with a controllable
optimum loss.

A. Lyapunov-Based Optimization Framework
In order to generate ϑ, ϱ and µ in every time slot, we should

solve the problem P1. It can be found that the constraint
of long-term average expense shown in Constraint (26) is
denoted over all the time slots while those constraints from
(4), (10), (12), (20), (21) are claimed in every time slot. So we
would like to find out whether the long-term constraint can be
translated into an every-slot constraint. First, we will create an
expense deficit queue c which is virtual and is used to control
the expense per slot. Suppose c(t) is the queue backlog (c(0)
= 0) in the t-th time slot that describes the current deviation of
current expense according to the constraint satisfactory, then
the backlog of queue c can be estimated iteratively [10] with:

c(t+ 1) = max[c(t) + Ct(µt)− C⋆, 0] (28)

It is easy to be found that the Constraint (26) will hold when
the queue c is mean rate stable (limt→∞

E[|c(t)|]
t = 0) so that

the problem of managing Constraint (26) will be transformed
into a stability control problem for queue c. Therefore, it’s
necessary to check the conditions that make the expense
deficit queue c mean rate stable. We can denote our Lyapunov
function which describes c’s congestion with

L(c(t)) ≜
1
2
c2(t) (29)

According to the Theorem 4.8 and related proofs in [31],
we can greedily minimize the drift-plus-penalty (DPP):

DPP = B + V Et
ℓ(ϑ

t,ϱt,µt) + c(t)(Ct(µt)− C⋆) (30)

to generate appropriate ϑ∗, ϱ∗ and µ∗ in every time slot,
where B is a constant [10], [31] that can be derived from
system settings in advance and V is the importance factor. By
denoting

ψ(ϑt,ϱt,µt) = V · Et
ℓ(ϑ

t,ϱt,µt) + c(t)Ct(µt)

=
V

ΛU

∑
i,j,k

[−→
F i,j,k(ϱt) +

←−
F i,j,k(ϱt) +

Ii +Oi

νj

+
1

γk,i − λk,i

]
ϑt

i,j,kΛi,j + c(t)
∑
j,i

ηjµ
t
j,i (31)

as the objective of the original problem P1, where the
routing latency is denoted as

−→
F i,j,k(ϱt) and

←−
F i,k,j(ϱt) for

simplification:

−→
F i,j,k(ϱt) = max

ϕj,k
p ∈Φj,k

nj,k,p∑
q=0

[
κ ·D⟨ℏj,k,p

q , ℏj,k,p
q+1 ⟩

+
Ii · −→ϱ t

i,j,k,p

B⟨ℏj,k,p
q , ℏj,k,p

q+1 ⟩
]

(32)

←−
F i,k,j(ϱt) = max

ϕk,j
p ∈Φk,j

nk,j,p∑
q=0

[
κ ·D⟨ℏk,j,p

q , ℏk,j,p
q+1 ⟩

+
Oi · ←−ϱ t

i,k,j,p

B⟨ℏk,j,p
q , ℏk,j,p

q+1 ⟩
]

(33)

the one-slot optimization problem can be represented as:

P2 : min
ϑt,ϱt,µt

ψ(ϑt,ϱt,µt) (34)

s.t. (4), (10), (12), (20), (21) (35)

It is worth noting that it is proved in [31] if P2 is solved
with a α-additive approximation [33], the performance of the
obtained P1 objective will be guaranteed by:

ℓ̂(ϑ,ϱ,µ) ≤ ℓopt +
B + α

V
(36)

B. Problem Analysis
After showing the formulation of the RDC problem, we will

now investigate its structure to develop an appropriate algo-
rithm and make a detailed analysis.

1) Delivery Path Exploring: It is worth noting that in the
RDC problem, request data can be delivered in different paths
in parallel, and the path set between hj and hk is denoted
with Φj,k. As Φj,k is determined by the network structure,
we can then get all the path sets for (j, k) ∈ [1, N ]× [1, N ]
in advance. The delivery path mining (DPM) method shown
in Algorithm-1 describes the process of finding all the paths
of Φj,k.

Algorithm 1 Delivery Path Mining (DPM)
Input: G = the graph in which we’re to find the path set

hj : the start server of the data delivery path
hk: the end server of the data delivery path

Output: Φ: the set of delivery paths
1: if hj = hk then
2: ϕ← (hk)
3: return {ϕ}
4: else
5: Φ = {}
6: for hn ∈ Adjcent(G, hj) do
7: G′ ← G − {hj}
8: Φ′ ← DPM(G′, hn, hk)
9: for ϕn ∈ Φ′ do

10: ϕs ← (hj , ϕn)
11: Φ.add(ϕs)
12: end for
13: end for
14: return Φ
15: end if

The DPM algorithm will stop when the start edge server
and the end edge server are the same (Line 1-3). Otherwise,
suppose hn is one of the neighbor edge servers of hj , then
the paths in Φj,k can be constructed with hj → ϕn,k

p ,
where ϕn,k

p ∈ Φn,k is one possible path between hn and hk

(Line 5-12). Particularly, to ensure that there will be no loops
in paths, the DPM algorithm uses the induced graph G′ in
Line 7. Therefore, we use DPM(G, hj , hk) to enumerate all the
possible paths between hj and hk. To analyze the complexity
of DPM algorithm on G, here we assume that hj = h1 and
hk = hN in DPM algorithm because we can always renumber
the edge servers by setting hj as the first one and hk as the last
one. Therefore, we can focus on analyzing the paths between
h1 and hN . Denote CDPM (N) as the computation cost for
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DPM on a fully connected graph G to evaluate the worst case.
According to the process of DPM algorithm, we can easily find
the relation between CDPM (N) and CDPM (N − 1):

CDPM (N) = N − 1 + (N − 2) · CDPM (N − 1) (37)

With the proof shown in the supplementary material, we can
find the computation complexity of DPM is O((N − 2)!).
Admittedly, the complexity of the approach may not be
optimal. However, this is not a significant concern as the DPM
algorithm can be executed offline in advance.

2) Optimal Data Delivery Strategy: From Equation (31) we
can clearly find that the objective of P2 is strongly related to
the value of min

−→
F i,j,k(ϱt) and min

←−
F i,k,j(ϱt). Because

their values are independent to (µt, θt) according to the
expressions in Equation (32) and (33), we can try to optimize
them individually. Taking the optimization of

−→
F i,j,k(ϱt) as an

example: with the definition of ∞-norm of vector x ∈ R+n:

||x||∞ = max{x1, x2, . . . , xn} (38)

the minimum value of
−→
F i,j,k(ϱt) can be transformed into:

min ||Diag(wi,j,k) · −→ϱ t
i,j,k + Dj,k||∞ (39)

under the constraint shown in Equation (4), where −→ϱ t
i,j,k

= (−→ϱ t
i,j,k,1, −→ϱ t

i,j,k,2, . . . „ −→ϱ t
i,j,k,|Φj,k| )T , Diag(wi,j,k) is

diagonalized matrix that comes from vector

wi,j,k =



∑nj,k,1
q=1

Ii

B⟨ℏj,k,1
q ,ℏj,k,1

q+1 ⟩∑nj,k,2
q=1

Ii

B⟨ℏj,k,2
q ,ℏj,k,2

q+1 ⟩
...∑n

j,k,|Φj,k|
q=1

Ii

B⟨ℏj,k,|Φj,k|
q ,ℏj,k,|Φj,k|

q+1 ⟩

 (40)

and

Dj,k =


κ
∑nj,k,1

q D⟨ℏj,k,1
q , ℏj,k,1

q+1 ⟩
κ
∑nj,k,2

q D⟨ℏj,k,2
q , ℏj,k,2

q+1 ⟩
...

κ
∑n

j,k,|Φj,k|
q D⟨ℏj,k,|Φj,k|

q , ℏj,k,|Φj,k|
q+1 ⟩

 (41)

are used for simplification. Note that Dj,k is fixed when j
and k are given, and it will not contribute to the searching
of optimal −→ϱ t

i,j,k. Therefore, we can temporally ignore it and
obtain the simplified problem of PN :

P−−→
NR

: min ||Diag(wi,j,k) · −→ϱ t
i,j,k + Dj,k||∞

s.t.


|Φj,k|∑
p=1

−→ϱ t
i,j,k,p = 1

0 ≤ −→ϱ t
i,j,k,q ≤ 1

With slack variables ξ ∈ R and auxiliary vector z ∈ R|Φj,k|

introduced, the problem PNR can be transformed into the
following linear programming problem (LP):

P ′−−→
NR

: min ξ

s.t.


1 · −→ϱ t

i,j,k = 1
Diag(wi,j,k) · −→ϱ t

i,j,k + Dj,k + z = 1 · ξ
−→ϱ t

i,j,k ≥ 0
z ≥ 0

As a result, the simplex method or the dual simplex method
can be applied here to find the optimal solution of P ′−−→

NR
, and

it is clear we can solve the problem P ′←−−
NR

in the same way

if we change the variables from −→ϱ t
i,j,k to ←−ϱ t

i,j,k and change
replace the Ii in wi,j,k with Oi. It is worth noting that the
problems are not related to any time-varying variables, thus it
is not necessary for us to solve them in every time slot.

3) Optimal Request Routing and Resource Allocation:
Denote the optimal value derived from P ′−−→

NR
and P ′←−−

NR
with

−→
F i,j,k and

−→
F i,j,k, and let Fi,j,k =

−→
F i,j,k +

←−
F i,j,k, we will

have the reduced problem (PCT∗
2 ):

PCT∗
2 : min

ϑt,µt

V

ΛU

∑
i,j,k

[Ii +Oi

νj
+

1
γk,i − λk,i

+ Fi,j,k

]
· ϑt

i,j,kΛi,j + c(t)
∑
j,i

ηjµ
t
j,i

s.t. (10), (12), (20), (21)

To solve PCT∗
2 , we will first analyze the properties of the

objective and the constraints. Denote τi,j,k = (Ii +Oi)/νj +
Fi,j,k to describe the transmission latency, we can obtain the
lower bound of Et

ℓ(ϑ
t,ϱt,µt), as shown at the bottom of the

next page.
Here, the equality holds if-and-only-if,
ϑt

i,1,1 ϑt
i,2,1 . . . ϑt

i,N,1

ϑt
i,1,2 ϑt

i,2,2 . . . ϑt
i,N,2

...
...

. . .
...

ϑt
i,1,N ϑt

i,2,N . . . ϑt
i,N,N




Λt
1,i

Λt
2,i
...

Λt
N,i

 =


γt
1,i − κt

i

γt
2,i − κt

i
...

γt
N,i − κt

i

 (42)

where the variable κt
i is

κt
i =

∑N
k=1 γ

t
k,i −

∑N
k=1 Λt

k,i

N
> 0 (43)

Therefore, we can have the lower bound of the objective:

ψ(ϑt,ϱt,µt) ≥ ψ1(µt) + ψ2(ϑt) (44)

where ψ1(ϑt) and ψ2(µt) are denoted with:

ψ1(µt) =
M∑
i=1

V N
∑N

j=1 Λt
j,i

Λt
U (
∑N

k=1 γ
t
k,i −

∑N
k=1 Λt

k,i)

+ c(t)
[∑

j,i

ηjµ
t
j,i

]
(45)

ψ2(ϑt) =
V

Λt
U

∑
i,j,k

ϑt
i,j,kΛt

j,iτi,j,k (46)

and the gap between ψ(ϑt,ϱt,µt) and its lower bound ∆ =
ψ(ϑt,ϱt,µt) - ψ1(µt) - ψ2(ϑt) will be at most:

∆ = V
M∑
i=1

(∑
j,k

ϑt
i,j,kΛj,i

γt
k,i − λk,i

−
N
∑N

k=1 Λk,i∑N
k=1 γk,i −

∑N
k=1 Λk,i

)

≤
M∑
i=1

(
V λ1,i

γ1,i − λ1,i
+ . . .+

V λN,i

γN,i − λN,i

−
NV

∑N
k=1 Λk,i∑N

k=1 γk,i −
∑N

k=1 Λk,i

)
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Based on the stable queue constraint (10), ∀ϵ > 0, we can
also control the value of γk,i/λk,i to make it greater than or
equal to 1 + ϵ. Thus, we will have:

∆ ≤ VM

ϵ
−

M∑
i=1

V N2Λ◦∑N
k=1 γk,i −

∑N
k=1 Λk,i

≤ VM

ϵ
− V N2M2Λ0∑M

i=1

∑N
k=1 γk,i −

∑M
i=1

∑N
k=1 Λk,i

(12)

≤ VM

ϵ
− V N2M2Λ◦
µ̂⋆/w◦ − ΛU

= O(1/ϵ) (47)

where µ̂⋆ =
∑N

k=1 µ
⋆
k is the total available resources of the

system, Λ◦ = minj,i Λj,i and w◦ = mini wi are used here for
simplification. At the same time, given an origin problem Pold:
minx f(x) where f(x) ≥ g(x) holds for all x ∈ Domf , and
the gap between these two functions is guaranteed by f(x) -
g(x) ≤ ∆, the difference of the f and g’s optimal minimum
values for x ∈ Domf is:

f(x∗f )− g(x∗g) ≤ f(x∗g)− g(x∗g) ≤ ∆ (48)

Therefore, we can greedily translate the problem P2 into
minimizing the right-hand side lower bound of ψ(ϑt,ϱt,µt)
in Equation (44) while adding the constraint (43) with an
objective value bias of O(1/ϵ) according to Inequality (47),
and the performance gap in Equation (36) can be updated with:

ℓ̂(ϑ,ϱ,µ) ≤ ℓopt +
B +O(1/ϵ)

V
(49)

It is worth noting that in Equation (44) the right-hand side
lower bound can be decomposed into two parts that are related
to µt and ϑt individually. Therefore, we can finally decompose
the problem P2 into 2 subproblems — optimal resource
allocation (ORA) and optimal request routing (ORR), and the
optimal solution can be found when these two problems are
solved:

Optimal Resource Allocation (ORA). In this subproblem,
the optimal resource µt allocated to services on different hosts
can be obtained by solving PORA

2 :

PORA
2 : min

µt
ψ1(µt)

s.t. (11), (12), (43) (50)

As ∀µ∗,i ∈ Domψ1, we have:

ψ1(µt) =
M∑
i=1

ψ1(µt
∗,i) (51)

if we denote x1≜µt
∗,i, x2≜µt

∗,i+vec(δj) where vec(δj) is a
vector with all of its elements are zero except δj ≥ 0, ∀α ∈
[0, 1] the difference of V (x1) = αψ1(x1) + (1 − α)ψ1(x2)
and V (x2) = ψ1(αx1 + (1− α)x2) can be represented with:

V (x1)− V (x2)

=
α(1− α)(δjµt

j,i)
2

(1 · x1 −
∑N

j=1 Λt
j,i)(1 · x1 −

∑N
j=1 Λt

j,i + δj)

. As the constraint (43) ensures the non-negativity of 1 · x1 -∑n
j=1 Λt

j,i, the difference of V (x1) and V (x2) will be always
be non-negative. Therefore, for any x ≤ y, we can construct
a series of intermediate vectors in the form of

x(z) = x(z−1) + vec(δz) (52)

where x(0) = x and x(n) = y. Therefore, we can get

V (x)− V (y) =
n∑

z=1

(
V (xz−1)− V (xz)

)
≥ 0 (53)

which guarantees the convexity of ψ1 in its feasible region.
Besides, the Constraints (11), (12), (43) can also be sum-
marized with a linear system. Thus, PORA

2 can be solved
by existing and mature nonlinear optimization algorithms like
the Generalized Reduced Gradient (GRG) method described
in [34] which are implemented in commercial solvers [35],
like LINGO6 and MOSEK.7 It is worth noting that constraint
Equation (10) is replaced with Equation (43) in PRA

2 , because
we can easily prove that they are equivalent when we recon-
struct Equation (42) with κt

i = γt
k,i - λt

k,i.
Optimal Request Routing (ORR). In this sub-problem,

the optimal service scheduling strategy that guides how hosts
should process requests of different services ϑt can be
obtained by solving the following optimization problem:

PORR
2 : min

pt
ψ2(ϑt)

s.t. (20), (21), (42) (54)

6https://www.lindo.com/
7https://www.mosek.com/

Et
ℓ(ϑ

t,ϱt,µt) =
1

Λt
U

∑
i,j,k

ϑt
i,j,kΛt

j,i ·
[
τi,j,k +

1
γt

k,i − λt
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∑
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This sub-problem PORR
2 can be transformed into a linear

programming when the decision variable ϑt={ϑt
i,j,k} is vec-

torized with the order of i, j and k. Then the constraint
Equation (42) can be transformed to:

Λt
1,i . . . Λt

n,i . . . 0 . . . 0
0 . . . 0 . . . 0 . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . 0 . . . Λt
1,i . . . Λt

n,i

ϑt
i =


γt
1,i − κt

i

γt
2,i − κt

i
...

γt
n,i − κt

i


Here ϑt

i means the elements related to ϑt
i,∗,∗ in vectorized ϑt.

Therefore, the PRR
2 problem will be solved by adopting the

dual-simplex algorithm [36].

Algorithm 2 request Routing, Data Delivery and Resource
Allocation Algorithm (RDC)
Input: the target EPS = (G,S,U)
Output: ϱt: the data delivery strategy in t-th time slot

µt: the resource allocation strategy in t-th time slot
ϑt: the service routing strategy in t-th time slot

1: for every time slot t do
2: ϱt ← solve P ′−−→

NR
and P ′←−−

NR
with simplex method

3: µt ← solve PORA
2 with GRG method

4: ϑt ← solve PORR
2 with simplex method

5: end for

VI. RDC WITH NETWORK PARTITION

Though we’ve divided the original problem P1 into several
easy problems so that better request routing, data delivery,
and resource allocation strategies can be found in a not
time-consuming way in the former sections, it requires a
long waiting to obtain the paths between all edge server
pairs, even when this computation can be executed offline in
advance. Besides this, the increasing of possible paths will
enlarge the scale of problems P ′−−→

NR
and P ′←−−

NR
as shown in

Section V-B.1. In fact, except for some extreme scenarios,
it is really not necessary to have too many candidate paths
for data delivery and request routing in most edge computing
application scenarios, because this multi-hop transmission will
result in external latency and unreliability, which is against the
original intention of the MEC architecture [37], [38]. Thus,
it will be acceptable to consider the data delivery and routing
paths within a limited hop number. This limitation will lead
to the partition of the graph into several sub-graphs because a
part of edge servers will become unreachable for other edge
servers in this case. Therefore, when we successfully partition
the origin edge graph G into K sub-graphs (G1, G2, . . . , GK),
the proposed algorithms in former sections can be applied
to them in parallel, so that the total computation complexity
can nearly be reduced to at most |V̄s!|

N ! · 100% of the origin
when V̄s is the average edge server number of the sub-graphs.
It will be obvious that in partitioning the original graph G
into several appropriate sub-graphs, the key point is to find
the cliques where the edge servers of the same clique can
have good communication quality with each other. Therefore,
we use Qj,k to measure the communication quality between
the edge servers, where it is quantified with

Qj,k = ζ ·D⟨hj , hk⟩+
∑M

i=1(
∑N

z=1 Λz,i)(Ii +Oi)
ΛUB⟨hj , hk⟩

(55)

Thus, when we use

M(σ) =
1

2Υ

∑
j,k

[
Qj,k −

NjNk

2Υ

]
σ(hj , hk) (56)

to describe the modularity [39] of the partition result where
Nj =

∑
k Qj,k is the sum of the communication quality for

edge server hk in transmission, Υ = 1
2

∑
j,k Qj,k is the global

communication quality of the network and the value partition
function σ(hj , hk) is 1 if edge server hj and hk are in the
same group otherwise 0. Obviously, the modularity is a scalar
value in [-1, 1] when given a partition function σ(·) of a graph.
What’s more, we can also review the modularity expression
from the perspective of the partition results derived by the
partition function σ(·):

M(σ) =
1

2Υ

[∑
j,k

σ(hj , hk)Qj,k −
∑

j,k NjNkσ(hj , hk)
2Υ

]

=
1

2Υ

[∑
G′

 ∑
hj ,hk∈G′

Qj,k


−
∑
G′

(∑
hj∈G′ Nj

) (∑
hk∈G′ Nk

)
2Υ

]

=
∑
G′

[∑
hj ,hk∈G′ Qj,k

2Υ
−
(∑

hz∈G′ Nz

2Υ

)2
]

where
∑

hj,hk∈G′ Qj,k

2Υ measures the communication quality

among edge servers inside group G′ and
(∑

hz∈G′ Nz

2Υ

)2

mea-
sures the communication quality of the edge servers inside
and outside of group G′, then the modularity can measure
the density of interactions inside groups as compared to
interactions between groups — if we can maximize the mod-
ularity, the groups represented with σ∗ that have high internal
communication qualities will be found:

σ∗ = argmax
σ

M(σ), (57)

and we follow the approach of Blondel et al. [40], [41] to
achieve this goal for its outstanding O(n log n) time complex-
ity by checking and maximizing the modularity gain ∆M(σ)
of adding edge server hz into group G′:

∆M(σ) =

[∑
hj∈G′ Qz,j +

∑
hj ,hk∈G′ Qj,k

2Υ

−

(
Nz +

∑
hj∈G′ Nj

2Υ

)2 ]
−

[∑
hj ,hk∈G′ Qj,k

2Υ

−

(∑
hj∈G′ Nj

2Υ

)2

+ 0−
(

Nz

2Υ

)2
]

=
1

2Υ

[ ∑
hj∈G′

Qz,j +
Nz

∑
hj∈G′ Nj

Υ

]
Based on this idea, the original graph of the EPS G can be
divided into several clusters by greedily integrating the edge
servers that maximize ∆M(σ) in an iterative way, so that edge
servers of the same cluster can interact with each other within
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Fig. 5. An example of constructing a VM-based MEC service system.

Fig. 6. The sequence diagram to show the interactions in the system.

a small number of hops, and then the proposed RDC algorithm
can have its parallel version, whose name is RDC-NeP,
on these individual clusters.

VII. EXPERIMENTS AND ANALYSIS

A. Preliminary
Owing to the absence of well-defined platforms and fully

developed datasets, this study employs a synthetic approach to
generate experimental data. Prior to commencing the numeri-
cal experiments, it is imperative to ascertain the validity of our
model. To this end, we establish a micro-MEC environment
utilizing virtual machines as edge servers and regulate the
communication quality using bandwidth-control tools. By col-
lecting the time costs of requests in the micro-MEC system and
comparing their average with the theoretical model, we can
verify the reliability of the theoretical model — the rationality
of the theoretical model will allow us to run the following
numeric experiments of comparing our solution with some
representative baselines. Fig.5 shows the components that the
micro-MEC environment is constructed with (mainly powered
by java.nio.*), and Fig.6 is the sequence diagram that
describes the interactions among these components.

Fig.7 is a violin plot8 to show the time cost distribution
of different service requests in the created micro-MEC envi-
ronment. In this figure, the dark dot stands for the average
time cost of the service requests and the dark solid line
shows the median value of the time costs. In summary, the
result shows that the average response time of the requests in
the micro-MEC environment is ∼1.354s while the theoretical

8https://ww2.mathworks.cn/matlabcentral/fileexchange/91790-al_goodplot-
boxblot-violin-plot

Fig. 7. The violin plot of the response time distribution in the micro-MEC
environment and a normal distribution.

model obtains ∼1.296s. With less than 4.28% error in estimat-
ing the average response time, it will be tolerated to accept the
appropriateness of our theoretical models and perform further
analysis based on the numerical experiment results.

In the following sections, the comparison experiments
are conducted first to check whether the proposed method
can outperform other baselines and whether the heuristic
pre-processing in network partition can help to accelerate the
computation without much optimum loss. Besides, a series of
parameter experiments are also conducted to check the impacts
of different MEC-based service system settings.

B. Baselines
Because the RDC and RDC-NeP algorithm is the first

attempt to solve this particular problem in an edge-cloud coop-
eration service provisioning system, existing algorithms are
not suitable to be applied directly here. Therefore, we select
some popular and representative approaches which aim at
solving similar problems in this section as baselines:
1) Random Strategy (RS) [42]. As used in our former work,
the random strategy RS is the goalkeeper of all the possible
approaches. It means no external knowledge is taken advantage
of to solve the problem, where all the decision variables are
randomly determined (but constraints will hold).
2) Frequency-based Strategy (FBS) [43]. In this approach,
FBS will allocate resource according to the service frequency
so that the most frequently used services will have the most
resource and requests.
3) Workload Sensitive Strategy (WSS) [44]. In the WSS
approach, it is necessary for the hosts to improve resource
utilization based on the actual workload needs of services.
When the workload is increased or reduced, some service
resource will be added or released accordingly so that the
heaviest services will have the most resource and requests.
4) Adaptive Popularity Strategy (APS) [45]. The APS can be
regarded as a dynamic version of FBS where some details
may vary. In this approach, the popularity is not totally
determined by the current frequency but also considers the
contributions of historical service frequency. It will allocate
resources according to the dynamically updated popularity of
services so that the most popular services will have the most
resource and requests.

To make the comparison more persuasive, the evaluation of
these approaches is conducted with the settings in Table. I in
which the settings are reasonable in the real world. It is worth
noting that though the paper extends the existing work in [10],
the proposed PCA-CATS strategy in that is not suitable to be
selected in the comparison experiments. This is because the
selected baselines should have the ability to determine how
the data is delivered, how the resource is allocated, and
how the request is routed. However, the PCA-CATS cannot
generate a correct data delivery strategy.
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TABLE I
SYSTEM CONFIGURATIONS

Fig. 8. The average service request latency of different methods.

C. Comparison With Baseline Algorithms

From the average latency curves shown in Fig.8, we can
see that RDC has a significant advantage over the baseline
methods when the system configurations are set equal for these
approaches, but the differences among the baseline methods
are relatively small. This result shows that our approach can
better utilize the given resources to achieve higher performance
while the baselines may be not good at it. Though the final
comparison results highlight the improvement of the RDC,
it is not suitable to deny the practicalities of the baselines.
Actually, since the baselines are easy to implement and show
generality for similar problems, it will be a good trial to apply
them to start the system. Among the baselines, we can also
see that the APS and FBS have some advantages in terms of
performance compared to the WSS and RS. At the same time,
it is worth noting that the difference between APS and FBS in
performance is hard to discern in the figure when all curves are
illustrated on it. This may be due to the fact that the APS and
FBS are also able to adjust the resource allocation dynamically,
like ours, according to the changes in request traffic.

As only observing the performance of the methods from the
perspective of average latency cannot exhibit the comparison
in a multifaceted way, here we draw Fig.9 as well to illustrate
the detailed differences among the proposed approach RDC and
the baselines from multi-dimension perspectives. To generate
Fig.9, we randomly change the set of average service request
arrival rate {Λi,j} to simulate the different request patterns,
and then apply RDC and other baselines on these independent
sets to obtain the pair of average service request expense
and latency with a big enough T=200. When all the pairs
of (average expense, average service request latency) are col-
lected and drawn on the expense-latency coordinate, we further
count their frequency and visualize the distribution with a
heat-map in Fig.9(c), Fig.9(d), Fig.9(e), Fig.9(f) then, while
the histograms of these two types of values are also shown
individually in Fig.9(a), Fig.9(b). From these sub-figures,
we can clearly see the advantage of RDC in performance-cost
optimization because the strategies generated by it will always

TABLE II
DPM AND RDC RUNNING TIMES BEFORE AND AFTER PARTITION

achieve a better performance and a better expense at the same
time while the other baselines are not able to.

D. Impact of Network Partition
A further comparison lies in the application of the net-

work partition, or the NeP module. In order to illustrate the
effectiveness of RDC-NeP method, we first apply the NeP
algorithm on an MEC-based service system with 50 edge
nodes and partition it into multiple sub-graphs (see in Fig. 10,
the sub-graphs are labeled with different colors). Then,
the average service request delay of each sub-graph and the
original graph will be solved by the RDC algorithm. At the
same time, we will also record the time cost in DPM when
enumerating the delivery paths of each sub-graph and that of
the original graph to check how much computation time it will
reduce after using the NeP algorithm.

As shown in Fig. 11, the average service request latency
curve for RDC-NeP stands higher than that of RDC, and this
slight gap, around 6% advantage, tends to be stable after
several time slots. This is because that the RDC algorithm
can have a global overview of the system information and
make use of all the resources to make final decisions, while
some requests may not be routed to the best server for
processing with the RDC-NeP algorithm. But the earning of
using RDC-NeP will still please us. As shown in Table II
RDC-NeP has an overwhelming advantage over RDC in the
total time cost, it enables the dynamical adjusting for the
MEC-based service system, especially when solving the DPM
problem for a complex and volatile network topology is a
great deal. In conclusion, RDC-NeP method can provide a
good solution when the problem scale is large, and greatly
reduce the time consumption of solving DPM problem without
an unacceptable loss of the final performance.

E. Impact of System Configurations
To explore how the system configurations will affect the

resource allocation and request routing strategies under the
RDC algorithm, we try to apply the RDC algorithm to groups
of different system configurations in this section.

1) Impact of Service: First, we will check the impacts of
services, including the data size of input and output, as well
as the workloads.
1) Impact of input and output data size: In Fig. 12(a),
we show how the expectation of service latency will change
with the increase of input and output data size. Obviously, with
the increase in the data size, the average service request time
shows will also increase. This is because with the increase of
input and output data size, the value of τi,j,k that is defined
with τi,j,k = (Ii +Oi)/νj + Fi,j,k will be enlarged, and this
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Fig. 9. (a) The performance distributions with different request flows (b) The expense distributions with different request flows (c) The performance-expense
distribution heat-map of WSS vs. RDC (d) The performance-expense distribution heat-map of APS vs. RDC (e) The performance-expense distribution heat-map
of FBS vs. RDC (f) The performance-expense distribution heat-map of WSS vs. RDC.

Fig. 10. A test case of a 50-edge server system after network partition.

Fig. 11. The average service request latency of RDC and RDC-NeP.

will finally result in the increase of average request delay. It is
still worth noting that the impacts of Ī and Ō are really close
in these figures, this is because Ii and Oi are symmetric in
Equation (31).
2) Impact of workload: The workload of service measures
the effort that the executor needs to make on processing this
service. In Fig.12(b), we have shown how the expectation
of service latency will change with the increase of service
workload. In this figure, it can be observed that as the
workload increases, the average request latency shows an
upward trend. This is because the increase in workload will
result in a longer time in request execution, and the increase
of ℓEi,k in Equation (17) will rise up the total latency.

2) Impact of Edge Server: Secondly, we will check the
impacts of edge servers, including the arrival rate of service
requests they have received and the available resource they
have.

1) Impact of arrival rate: After all, the service requests can
be seen as inputs if we regard the MEC-based service system
as a black box, and large request arrival rates stand for frequent
interactions within the system. The experiment about service
request arrival rate will evaluate the flexibility of the system.
From Fig. 12(c), we can find that the expected time cost rises
steadily with the increase of service request arrival rate. The
busily working IoT devices will definitely result in burdens
and reduce performance. Like typical queue systems, the total
time cost here does not increase linearly — the increase from
10 qps to 15 qps is higher than that from 5 qps to 10 qps
in this experiment. If a higher requirement of arrival rate is
claimed by the users, it will be suggested to scale up or scale
out the original system.
2) Impact of available resource: The available resource of
an edge server measures the capacity of this edge server in
handling service requests. In Fig. 12(d), we show how the
expectation of service latency will change with the increase
of the average available resources. It can be found that as
µ⋆ increases (from 300 to 400 MIPS), the average request
latency shows a downward trend. This is because, with more
available resource provided, more resource can be allocated to
individual service instances so that the processing of individual
service requests can be completed more quickly. Formally,
we can extract the related term from the latency estimation
expression in Equation (24) to analyze how the available
resource will affect the result:

(∑
i,j,k

wiΛi,jϑi,j,k

µk,i − wiλk,i

)−1

≤
∑

j,k(
∑

i
µk,i

wiΛi,jϑi,j,k
−
∑

i
λk,i

Λi,jϑi,j,k
)

M2

≤ 1
M2

∑
j,k

∑
i

µk,i

wiΛi,jϑi,j,k

≤ 1
M2w◦ΛU

∑
j,k

∑
i

µk,i ≤
1

M2w◦ΛU

∑
j,k

µ⋆
k

⇒ M2w◦ΛU∑
j,k µ

⋆
k

≤
(∑

i,j,k

wiΛi,jϑi,j,k

µk,i − wiλk,i

)
(58)
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Fig. 12. Impact of system configurations.

With the AM-HM inequality and w◦ representing the mini-
mum workload of the services, it can be found that the increase
of µ⋆

k will reduce the lower bound of the expected total time
cost for a service request, which means the increasing of
available resource on edge servers can provide more room
for the RDC to optimize the performance.

3) Impact of Network: 1) Impact of wireless transmission
rate: The wireless transmission rate νj measures how fast
the mobile devices can communicate with the edge server hj .
In Fig. 12(e), we have shown how the expectation of request
time will change with the increasing of wireless transmission
rate νj . It can be found that as the wireless transmission
rate increases, the average request latency shows a downward
trend. This decline is mainly due to the fact that the increase
of νj makes the value of τi,j,k, which is defined with τi,j,k =
(Ii +Oi)/νj + Fi,j,k, be smaller. And the value of τi,j,k will
further reduce the final result in Equation (24). In this situation,
the average wireless transmission rate νj is homogeneous for
all the mobile devices for its meaning of “average” because the
wireless bandwidth allocation is usually not managed by the
EPS for its scope of responsibility. However, if we can break
the barrier between the facility providers (e.g. the operators
of h1-hN ) and the service providers (e.g. the operators of s1-
sM ), then we can do more in dynamical wireless bandwidth
allocation. In this case, the related problem is:

Pν : min
νi,j

1
ΛU

N∑
j=1

M∑
i=1

Λi,j(Ii +Oi)
νi,j

s.t.
M∑
i=1

νi,j ≤ νj , (59)

if νi,j is the wireless bandwidth allocated to service si on
hj and νj becomes the total wireless resource of hj . The
reason that this problem can be picked out from the original
problem is that other items are not related to νi,j . Obviously,
the optimal wireless bandwidth allocation strategy {νi,j} can

be easily generated by νi,j =
√

Λi,j(Ii+Oi)∑M z=1
√

Λz,j(Iz+Oz)
· νj with

the Lagrange multiplier method. The comparisons are shown
in Fig.12(f), we can clearly find the differences after the EPS
becomes able to take charge of the wireless management —
the rearranged wireless bandwidth allocation strategies out-
perform the original one which treats every service equally.
What’s more, the wireless bandwidth allocation strategy gen-
erated by solving problem Pν shows the best result in reducing
the final latency.
2) Impact of wired transmission rate: The wired transmis-
sion rate is B measures how fast the edge servers can commu-
nicate with each other, namely, the communication quality or
cooperation efficiency in the edge cluster. In Fig 12(g), we use
three curves to show how the expectation of request time will
change with the increasing of wired transmission rate. It can
be found that as the wired transmission rate increases, the
average request time shows a downward trend. Similarly, this
decline is mainly due to the fact that the increase of B makes
τ smaller.

4) Impact of Pricing Model: As depicted in Fig. 12(h),
the expectation of request time exhibits an upward trend with
the increase in resource prices. This increase in latency can
be attributed to the fact that the final cost is proportional to
the price η. Given a fixed total cost ceiling Cmax, the actual
resources allocated to each service decrease, resulting in an
increase in the average service request time.

VIII. CONCLUSION AND FUTURE WORK

In conclusion, this study introduces a novel approach for
determining an approximate optimal service provisioning strat-
egy in an MEC environment with respect to resource alloca-
tion, traffic scheduling, and data delivery. Utilizing the Lya-
punov optimization technique, we develop an online service
provisioning strategy analysis framework that dynamically
adapts the system to achieve optimal performance within
acceptable costs. Experimental results demonstrate that our
approach, referred to as RDC, surpasses other baseline meth-
ods while its variant, RDC-NeP, also exhibits commendable
performance on large-scale networks However, there are still
some points that we do not reach:
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1) Services do not play alone in many scenarios. This means
that it is not enough to consider the cooperation of edge servers
or clouds, the cooperation (or composition) of services [46] is
also of great importance.
2) Services may be redundant in practice. As software-as-
a-service technology and the market evolve, there will be
many services with the same functionality but different qual-
ities [47]. We need to consider the choices among them.
3) Strategies may be more simple. As shown in the for-
mer sections, though the targeted problem can be decom-
posed into several convex optimization sub-problems, the
problem-solving may also be time-consuming. Therefore,
it is necessary to find whether there were some simple but
practical approaches in strategy generation or to train some
learning-based strategy models offline.

In the future, we would like to go further by investigating
how these listed factors will affect service provisioning in the
MEC environment.

ACKNOWLEDGMENT

Author Contributions: Zhengzhe Xiang analyzed the prob-
lem and proposed the algorithm and analyzed the experiment
results; Yuhang Zheng was responsible for the experiments,
while Zhengzhe Xiang and Zengwei Zheng also contributed to
the plotting; and Shuiguang Deng, Minyi Guo, and Schahram
Dustdar contributed to the modeling and formulation.

REFERENCES

[1] Y. Guo, R. Zhao, S. Lai, L. Fan, X. Lei, and G. K. Karagiannidis,
“Distributed machine learning for multiuser mobile edge computing sys-
tems,” IEEE J. Sel. Topics Signal Process., vol. 16, no. 3, pp. 460–473,
Apr. 2022.

[2] Y. Siriwardhana, P. Porambage, M. Liyanage, and M. Ylianttila, “A sur-
vey on mobile augmented reality with 5G mobile edge computing:
Architectures, applications, and technical aspects,” IEEE Commun. Sur-
veys Tuts., vol. 23, no. 2, pp. 1160–1192, 2nd Quart., 2021.

[3] Z. Chang, S. Liu, X. Xiong, Z. Cai, and G. Tu, “A survey of recent
advances in edge-computing-powered artificial intelligence of things,”
IEEE Internet Things J., vol. 8, no. 18, pp. 13849–13875, Sep. 2021.

[4] Z. Xiang, S. Deng, Y. Zheng, D. Wang, J. Tehari, and Z. Zheng, “Energy-
effective IoT services in balanced edge-cloud collaboration systems,” in
Proc. IEEE Int. Conf. Web Services (ICWS), Sep. 2021, pp. 219–229.

[5] A. Shahidinejad, F. Farahbakhsh, M. Ghobaei-Arani, M. H. Malik,
and T. Anwar, “Context-aware multi-user offloading in mobile edge
computing: A federated learning-based approach,” J. Grid Comput.,
vol. 19, no. 2, pp. 1–23, Jun. 2021.

[6] Z. Liang, Y. Liu, T.-M. Lok, and K. Huang, “Multi-cell mobile edge
computing: Joint service migration and resource allocation,” IEEE Trans.
Wireless Commun., vol. 20, no. 9, pp. 5898–5912, Sep. 2021.

[7] T. Bahreini, H. Badri, and D. Grosu, “Mechanisms for resource allo-
cation and pricing in mobile edge computing systems,” IEEE Trans.
Parallel Distrib. Syst., vol. 33, no. 3, pp. 667–682, Mar. 2022.

[8] X. Ma, S. Wang, S. Zhang, P. Yang, C. Lin, and X. Shen, “Cost-efficient
resource provisioning for dynamic requests in cloud assisted mobile edge
computing,” IEEE Trans. Cloud Comput., vol. 9, no. 3, pp. 968–980,
Jul./Aug. 2021.

[9] P. Lai et al., “Cost-effective app user allocation in an edge com-
puting environment,” IEEE Trans. Cloud Comput., vol. 10, no. 3,
pp. 1701–1713, Jul./Sep. 2022.

[10] Z. Xiang, S. Deng, F. Jiang, H. Gao, J. Tehari, and J. Yin, “Computing
power allocation and traffic scheduling for edge service provisioning,”
in Proc. IEEE Int. Conf. Web Services (ICWS), Oct. 2020, pp. 394–403.

[11] B. Brik, P. A. Frangoudis, and A. Ksentini, “Service-oriented MEC
applications placement in a federated edge cloud architecture,” in Proc.
IEEE Int. Conf. Commun. (ICC), Jun. 2020, pp. 1–6.

[12] A. Moubayed, A. Shami, P. Heidari, A. Larabi, and R. Brunner, “Edge-
enabled V2X service placement for intelligent transportation systems,”
IEEE Trans. Mobile Comput., vol. 20, no. 4, pp. 1380–1392, Apr. 2020.

[13] L. Liu, M. Zhao, M. Yu, M. A. Jan, D. Lan, and A. Taherkordi,
“Mobility-aware multi-hop task offloading for autonomous driving in
vehicular edge computing and networks,” IEEE Trans. Intell. Transp.
Syst., vol. 24, no. 2, pp. 2169–2182, Feb. 2023.

[14] S. Bi, L. Huang, and Y.-J.-A. Zhang, “Joint optimization of ser-
vice caching placement and computation offloading in mobile edge
computing systems,” IEEE Trans. Wireless Commun., vol. 19, no. 7,
pp. 4947–4963, Jul. 2020.

[15] Z. Ning et al., “Distributed and dynamic service placement in pervasive
edge computing networks,” IEEE Trans. Parallel Distrib. Syst., vol. 32,
no. 6, pp. 1277–1292, Jun. 2021.

[16] A. Mohajer, M. S. Daliri, A. Mirzaei, A. Ziaeddini, M. Nabipour,
and M. Bavaghar, “Heterogeneous computational resource allocation for
NOMA: Toward green mobile edge-computing systems,” IEEE Trans.
Services Comput., vol. 16, no. 2, pp. 1225–1238, Mar./Apr. 2023.

[17] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Service placement and request routing in MEC networks with storage,
computation, and communication constraints,” IEEE/ACM Trans. Netw.,
vol. 28, no. 3, pp. 1047–1060, Jun. 2020.

[18] Y. Liu, X. Shang, and Y. Yang, “Joint SFC deployment and resource
management in heterogeneous edge for latency minimization,” IEEE
Trans. Parallel Distrib. Syst., vol. 32, no. 8, pp. 2131–2143, Aug. 2021.

[19] N. Akhtar, I. Matta, A. Raza, L. Goratti, T. Braun, and F. Esposito,
“Managing chains of application functions over multi-technology
edge networks,” IEEE Trans. Netw. Serv. Manage., vol. 18, no. 1,
pp. 511–525, Mar. 2021.

[20] M. Kim, M. Jaseemuddin, and A. Anpalagan, “Deep reinforcement
learning based active queue management for IoT networks,” J. Netw.
Syst. Manage., vol. 29, no. 3, pp. 1–28, Jul. 2021.

[21] M. Bukhsh, S. Abdullah, and I. S. Bajwa, “A decentralized edge
computing latency-aware task management method with high availability
for IoT applications,” IEEE Access, vol. 9, pp. 138994–139008, 2021.

[22] K. Ergun, R. Ayoub, P. Mercati, D. Liu, and T. Rosing, “Energy and
QoS-aware dynamic reliability management of IoT edge computing sys-
tems,” in Proc. 26th Asia South Pacific Design Autom. Conf., Jan. 2021,
pp. 561–567.

[23] Y. C. Lee, C. Wang, A. Y. Zomaya, and B. B. Zhou, “Profit-driven
service request scheduling in clouds,” in Proc. 10th IEEE/ACM Int. Conf.
Cluster, Cloud Grid Comput., May 2010, pp. 15–24.

[24] J. Vilaplana, F. Solsona, I. Teixidó, J. Mateo, F. Abella, and J. Rius,
“A queuing theory model for cloud computing,” J. Supercomput., vol. 69,
no. 1, pp. 492–507, Jul. 2014.

[25] M. Liu, Y. Mao, and S. Leng, “Cooperative fog-cloud computing
enhanced by full-duplex communications,” IEEE Commun. Lett., vol. 22,
no. 10, pp. 2044–2047, Oct. 2018.

[26] D. Ding, X. Fan, Y. Zhao, K. Kang, Q. Yin, and J. Zeng, “Q-learning
based dynamic task scheduling for energy-efficient cloud computing,”
Future Gener. Comput. Syst., vol. 108, pp. 361–371, Jul. 2020.

[27] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Watch global, cache local:
YouTube network traffic at a campus network: Measurements and
implications,” Proc. SPIE, vol. 6818, pp. 35–47, Jan. 2008.

[28] P. Burke, “The output process of a stationary M/M/s queueing system,”
Ann. Math. Statist., vol. 39, no. 4, pp. 1144–1152, 1968.

[29] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE J.
Sel. Areas Commun., vol. 34, no. 12, pp. 3590–3605, Dec. 2016.

[30] H. Zhao, S. Deng, C. Zhang, W. Du, Q. He, and J. Yin, “A mobility-
aware cross-edge computation offloading framework for partitionable
applications,” in Proc. IEEE Int. Conf. Web Services (ICWS), Jul. 2019,
pp. 193–200.

[31] M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Synth. Lectures Commun. Netw.,
vol. 3, no. 1 pp. 1–211, 2020.

[32] S. Kotera, B. Yin, K. Yamamoto, T. Nishio, M. Morikura, and
H. Abeysekera, “Latency-aware fair scheduling for spatial reuse in
WLANs: A Lyapunov optimization approach,” in Proc. IEEE 18th Annu.
Consum. Commun. Netw. Conf. (CCNC), Jan. 2021, pp. 1–6.

[33] Y. Kawase, T. Matsui, and A. Miyauchi, “Additive approximation
algorithms for modularity maximization,” J. Comput. Syst. Sci., vol. 117,
pp. 182–201, May 2021.

[34] L. S. Lasdon, R. L. Fox, and M. W. Ratner, “Nonlinear optimiza-
tion using the generalized reduced gradient method,” Revue Française
d’automatique, Informatique, Recherche Opérationnelle. Recherche
Opérationnelle, vol. 8, no. 3, pp. 73–103, 1974.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 21,2023 at 08:36:04 UTC from IEEE Xplore.  Restrictions apply. 



XIANG et al.: COST-EFFECTIVE TRAFFIC SCHEDULING AND RESOURCE ALLOCATION 2949

[35] E. Goodarzi, M. Ziaei, and E. Z. Hosseinipour, Introduction to Opti-
mization Analysis in Hydrosystem Engineering. New York, NY, USA:
Springer, 2014.

[36] A. Koberstein, “Progress in the dual simplex algorithm for solving large
scale LP problems: Techniques for a fast and stable implementation,”
Comput. Optim. Appl., vol. 41, no. 2, pp. 185–204, Nov. 2008.

[37] K. Kaur, S. Garg, G. S. Aujla, N. Kumar, J. J. P. C. Rodrigues, and
M. Guizani, “Edge computing in the industrial Internet of Things envi-
ronment: Software-defined-networks-based edge-cloud interplay,” IEEE
Commun. Mag., vol. 56, no. 2, pp. 44–51, Feb. 2018.

[38] H. Zhang, X. He, Q. Wu, and H. Dai, “Spectral graph theory based
resource allocation for IRS-assisted multi-hop edge computing,” in
Proc. IEEE Conf. Comput. Commun. Workshops (INFOCOM WKSHPS),
May 2021, pp. 1–6.

[39] T. Magelinski, M. Bartulovic, and K. M. Carley, “Measuring node
contribution to community structure with modularity vitality,” IEEE
Trans. Netw. Sci. Eng., vol. 8, no. 1, pp. 707–723, Jan. 2021.

[40] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” J. Stat. Mech., Theory
Exp., vol. 2008, no. 10, Oct. 2008, Art. no. P10008.

[41] X. Su et al., “A comprehensive survey on community detection with
deep learning,” IEEE Trans. Neural Netw. Learn. Syst., early access,
Mar. 9, 2022, doi: 10.1109/TNNLS.2021.3137396.

[42] H. Zhao et al., “DPoS: Decentralized, privacy-preserving, and low-
complexity online slicing for multi-tenant networks,” IEEE Trans.
Mobile Comput., vol. 21, no. 12, pp. 4296–4309, Dec. 2022.

[43] G. Li, J. Wu, J. Li, K. Wang, and T. Ye, “Service popularity-based smart
resources partitioning for fog computing-enabled industrial Internet of
Things,” IEEE Trans. Ind. Informat., vol. 14, no. 10, pp. 4702–4711,
Oct. 2018.

[44] C. Li, J. Liu, B. Lu, and Y. Luo, “Cost-aware automatic scaling
and workload-aware replica management for edge-cloud environment,”
J. Netw. Comput. Appl., vol. 180, Apr. 2021, Art. no. 103017.

[45] Z. Fan, W. Yang, F. Wu, J. Cao, and W. Shi, “Serving at the edge:
An edge computing service architecture based on ICN,” ACM Trans.
Internet Technol., vol. 22, no. 1, pp. 1–27, Feb. 2022.

[46] A. Palade and S. Clarke, “Collaborative agent communities for resilient
service composition in mobile environments,” IEEE Trans. Serv. Com-
put., vol. 15, no. 2, pp. 876–890, Mar. 2022.

[47] A. Hussain, J. Chun, and M. Khan, “A novel customer-centric method-
ology for optimal service selection (MOSS) in a cloud environment,”
Future Gener. Comput. Syst., vol. 105, pp. 562–580, Apr. 2020.

Zhengzhe Xiang (Member, IEEE) received the
B.S. and Ph.D. degrees in computer science and
technology from Zhejiang University, Hangzhou,
China. He was a Visiting Scholar with Shanghai Jiao
Tong University, Shanghai, China, in 2022. He is
currently a Lecturer with the School of Computer
and Computing Science, Hangzhou City University,
Hangzhou. His research interests include service
computing and edge computing. He serves as a
Reviewer for several international journals, such as
IEEE TRANSACTIONS ON MOBILE COMPUTING,

IEEE TRANSACTIONS ON SERVICES COMPUTING, IET Communications,
and Digital Communications and Networks. He also serves as a PC member
for many international conferences.

Yuhang Zheng is currently pursuing the M.S.
degree with the College of Computer Science and
Technology, Zhejiang University, Hangzhou, China.
His research interests include the Internet of Things
technology, edge computing, service computing, and
reinforcement learning.

Zengwei Zheng received the B.S. and M.Ec. degrees
in computer science and western economics from
Hangzhou University, China, and the Ph.D. degree
in computer science and technology from Zhejiang
University, China, in 2005. He is currently a Full
Professor with the School of Computer and Comput-
ing Science, Hangzhou City University, the Direc-
tor of Intelligent Plant Factory, Zhejiang Province
Engineering Laboratory, and the Director of the
Hangzhou Key Laboratory for IoT Technology and
Application.

Shuiguang Deng (Senior Member, IEEE) received
the B.S. and Ph.D. degrees in computer science
from Zhejiang University, China, in 2002 and 2007,
respectively. He is currently a Full Professor with
the College of Computer Science and Technology,
Zhejiang University. Previously, he was a Visiting
Scholar with the Massachusetts Institute of Technol-
ogy in 2014 and Stanford University in 2015. His
research interests include edge computing, service
computing, cloud computing, and business process
management. He is a fellow of IET. He serves as

an Associate Editor for the journals, such as IEEE TRANSACTIONS ON
SERVICES COMPUTING, Knowledge and Information Systems, Computing,
and IET Cyber-Physical Systems: Theory & Applications. In 2018, he was
granted the Rising Star Award by IEEE TCSVC.

Minyi Guo (Fellow, IEEE) received the Ph.D.
degree in computer science from the University
of Tsukuba, Japan. He is currently a Zhiyuan
Chair Professor and the Head of the Department of
Computer Science and Engineering, Shanghai Jiao
Tong University, China. His current research inter-
ests include parallel/distributed computing, compiler
optimizations, embedded systems, pervasive com-
puting, big data, and cloud computing. He is also on
the Editorial Board of the IEEE TRANSACTIONS ON
PARALLEL AND DISTRIBUTED SYSTEMS, IEEE

TRANSACTIONS ON CLOUD COMPUTING, and Journal of Parallel and
Distributed Computing. He is a fellow of CCF.

Schahram Dustdar (Fellow, IEEE) is currently a
Full Professor in computer science and the Head
of the Distributed Systems Group, TU Wien. His
research interests include distributed systems, and
complex and autonomic software systems. He has
received the ACM Distinguished Scientist Award
and the IBM Faculty Award. He is an Elected
Member of Academia Europaea, where he is the
Informatics Section Chairperson. He is the Editor-
in-Chief of Computing, the Co-Editor-in-Chief of
ACM Transactions on the Internet of Things, and

an Associate Editor of ACM Transactions on the Web, ACM Transactions
on Internet Technology, IEEE TRANSACTIONS ON CLOUD COMPUTING, and
IEEE TRANSACTIONS ON SERVICES COMPUTING. He is also on the editorial
boards of IEEE INTERNET COMPUTING and IEEE Computer Magazine.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 21,2023 at 08:36:04 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TNNLS.2021.3137396

