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Abstract—Head motion tracking is a promising research field with vast applications in ubiquitous human-computer interaction (HCI)
scenarios. Unfortunately, solutions based on vision and wireless sensing have shortcomings in user privacy and tracking range,
respectively. To address these issues, we propose IA-Track, a novel head motion tracking system that combines inertial measurement
units (IMU) and acoustic sensing. Our wireless earphone-based method balances flexibility, computational complexity, and tracking
accuracy, requiring only an earphone with an IMU and a smartphone. However, we still face two challenges. First, wireless headsets
have limited hardware resources, making acoustic Doppler effect-based method unsuitable for acoustic tracking. Second, traditional
Kalman filter-based trajectory restoration methods may introduce significant cumulative errors. To tackle these challenges, we rely on
IMU sensor data to recover the trajectory and use smartphones to emit ”inaudible” acoustic signals that the earphone receives to
adjust the IMU drift track. We conducted extensive experiments involving 50 volunteers in various potential IA-Track usage scenarios,
demonstrating that our well-designed system achieves satisfactory head motion tracking performance.

Index Terms—Head motion tracking, Acoustic Signal, Human-machine interface.

✦

1 INTRODUCTION

H EAD motion tracking has become a research field of in-
creasing interest in recent years. Head tracking offers a

more natural, direct, and efficient way of human-computer
interaction, thus enhancing the user experience. Through
the identification of the user’s head position and orientation,
head tracking technology accurately combines AR/VR con-
tent with the user’s surrounding environment. Equipping
smart glasses or earphones with head tracking technology,
as exemplified by Google [1] and Apple [2], allows users to
conveniently control smart devices by merely moving their
heads. Given the prospect of ubiquitous human-computer
interaction functions in future intelligent environments,
head motion tracking technology has become a prerequisite
for optimal human-computer interaction.

Recent work has made significant progress in achieving
head motion tracking in vision-based systems [3]–[7] and
wireless sensing-based systems [8]–[14]. Vision-based head
tracking methods mainly use special equipment (VR glasses,
etc.) [1], [5], [15] or use cameras [4], [6], [16]–[18] to use
the gaze direction of the eyes and face orientation for
head tracking, Alternatively, analyze the face model and
the relative positions of facial organs (mouth corners, eye
corners, nose, and pupils) [19], [20]. These methods require
the camera to capture the user’s face at all times, which
brings privacy issues [18], and the user’s face needs to be
kept within the camera’s field of view at all times.

Wireless sensing-based systems have recently received
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widespread attention because they do not require additional
equipment and do not violate privacy. Sensing methods [21],
[22] based on Wi-FI CSI (Channel State Information) have
attracted extensive attention due to the large-scale inte-
grated deployment of Wi-Fi devices. However, Wi-Fi-based
methods can only provide coarse-grained measurements
due to their narrow Wi-Fi bandwidth. Acoustic-based meth-
ods [23], [24] require an array of acoustic emitters (an
infrastructure that is not always available) to achieve cm-
level tracking accuracy, which may limit their applicability
to smart environments. In addition, limited by the signal
strength, the tracking accuracy drops significantly [12], [25]
when the distance between the speaker and the microphone
exceeds 1m. As a result, existing methods face challenges in
balancing computational complexity, user experience, and
accuracy.

In this paper, we propose IA-Track, which extends cur-
rent applications of wireless earphones in head tracking.
Consider that most wireless earphones are interconnected
with smartphones or laptops. The specific workflow of IA-
Track is as follows. We use an IMU sensor configured on
a wireless earphone to acquire accelerometer data and then
use a Kalman filter to recover the trajectory. However, the
traditional Kalman filter will bring severe accumulation and
affect trajectory recovery. We use a stationary smartphone
as an acoustic reference point and continuously emit an
”inaudible” acoustic signal (16kHz) to correct IMU-driven
motion tracking. As the capabilities of wireless headsets
continue to evolve, our proposed wireless headset-based
head-tracking solution has great potential to enable exciting
new applications.

The idea of using wireless earphones for head motion
tracking sounds simple, but two serious challenges remain:

• Due to limited hardware resources, the frequency
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offset generated by the built-in oscillator of wireless
earphones is much larger than that of professional
acoustic equipment. Secondly, the frequency range
of acoustic signals supported is narrower, which
makes it unusable in traditional Doppler effect-based
ranging methods.

• Severe cumulative error caused by Kalman filtering.
Traditional IMU-based schemes usually use Kalman
filtering for trajectory recovery. But with the contin-
uous update of the state of motion. The traditional
Kalman filter will bring serious cumulative error
so that the head movement trajectory is difficult to
recover.

To address the first challenge, we abandon the traditional
motion tracking scheme based on Doppler effect signals
and use constant frequency signals for motion tracking.
We found that when the relative position of the wireless
earphone and the smartphone did not change, the sinu-
soidal signal received had the same duration as the signal
sent by the wireless earphone. Moreover, when the wireless
earphone is far from the smartphone, the signal received
by the smartphone is stretched relative to the signal sent
by the wireless earphone. Conversely, when the wireless
earphone is close to the smartphone, the signal received by
the smartphone will be compressed relative to the signal
sent by the wireless earphone. Based on this finding, we
used a ranging scheme based on the peaks and valleys of
sinusoidal signals for head tracking used by IA-Track. We
use a sliding window to detect how much the signal is
compressed and stretched. We calculate the phase difference
by calculating the difference between the peaks and troughs
in the transmitted signal and the received signal in a sliding
window and convert this phase difference to distance. Then
we perform interpolation and filtering on the final signal
to improve the ranging accuracy. To address the second
challenge, IA-Track uses an acoustic-ranging approach to
opportunistic calibration of the IMU’s tracking. We perform
trajectory recovery based on traditional Kalman filtering
and continuously revise the filtering results by measuring
the distance between the wireless earphone and the smart-
phone. The acoustic signal ”pulls” the wireless earphone
like a string attached to a kite as shown in Fig. 2.

In summary, we make the following major contributions
in designing IA-Track:

• We use a pair of wireless earphones and smartphones
to achieve high-accuracy head tracking. Through the-
oretical and experimental analysis, the IMU data at
the ear is an important part of restoring the head tra-
jectory. The design of IA-Trackcan effectively expand
the application of wireless earphones in VR/AR.

• We address the challenge that wireless headsets can-
not use conventional Doppler effect ranging due
to hardware limitations. We adopt a novel sig-
nal peak/valley based constant frequency ranging
scheme for acoustic ranging.

• We optimize traditional Kalman filter-based trajec-
tory recovery methods. We propose an acoustic-
based opportunity calibration method to reduce ac-
cumulated errors. Our carefully designed system

Fig. 1: Head motion tracking is performed using an IMU
configured on wireless earphones, and the acoustic signal
emitted by the smartphone is used to calibrate the results of
the Kalman filter.

strikes a balance between computational complexity,
accuracy, and equipment cost.

The rest of this paper is organized as follows. Section 2
presents the feasibility analysis of applying wireless ear-
phone for head track. Section 3 introduces the overview of
the system. Section 4 present the whole system. Section 5
present the implementation of IA-Track. Section 6 presents
the system evaluation. Section 7 introduces the related work.
Section 8 discussed the limitation and Section 9 conclusion
of our work.

2 BACKGROUND

2.1 Earphone and IMU basics
The most crucial function of a wireless earphone is to
convert electrical signals to acoustic signals. The speakers
in the earphone convert electrical signals into acoustic sig-
nals. Currently, leading wireless earphones such as AirPods
Pro have multiple built-in microphones to achieve noise
reduction and recording. Advanced wireless Earphones in-
tegrate various sensors, such as IMU and optical sensors,
for human-computer interaction. Considering that not all
wireless earphones are integrated with IMU sensors, we also
configured a miniature IMU sensor for the IA-Track. The
IMU sensor [26] we use has a sampling rate of 400Hz and
can transmit data to the smartphone with a delay of 15ms.
The size of the chip is 30x30x5mm, and the weight is only
10g. We attached this IMU sensor to the Wireless earphone
and Wireless headphone as shown in Fig. 2(a) and Fig. 2(b).

(a) Wireless earphone taped
with a wireless IMU.

(b) Wireless headphone taped
with a wireless IMU.

Fig. 2: Hardware prototype used by IA-Track.

2.2 Doppler effect based tracking
Previous works [27], [28] use Doppler effect for tracking.
When the Doppler shift occurs, the moving speed of the
receiver relative to the transmitter is:

v =
∆f

f
c (1)
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For a f = 16kHz constant frequency signal. Based on
the Eq. (1), the ranging error caused by a frequency offset of
1Hz is 21.3mm at 1s. Such range resolution is not sufficient
for fine-grained head motion tracking. In addition, the time
delay of ranging using Doppler frequency shift is also a
problem.

The central process in Doppler Effect-based tracking
involves the computation of the frequency shift ∆f . This
is achieved by subjecting the received acoustic signal to fre-
quency analysis, such as the Short-Time Fourier Transform
(STFT), which yields the spectral distribution of the received
signal. In practical applications, STFT is performed on a
sliding window. The resolution of the frequency shift ∆f
can be expressed as:

∆̂f =
Fs

Lw
(2)

where Fs represent the sampling rate and Lw is the
length of sliding window. Combing Eq. (1) and Eq. (2), we
dervie resolution the moving speed v as:

v̂ =
∆̂f

f
c =

Fs

Lwf
c (3)

From Eq. (3), We can see that the resolution of v is only
related to the sliding window length Lw. A larger window
provides better frequency domain resolution. However, a
larger window contains more samples and results in a larger
delay. Considering that the commonly used sampling rate
of devices is Fs = 48kHz. Then, for a sliding window
with 2048 samples, the delay of processing 1s data is
2048/48000 = 43ms.

2.3 Frequency Offset in wireless earphones
Wireless earphones are smaller than smartphones and use a
castrated hardware version. So the oscillator in the wireless
earphone is not as good as in the smartphone, so the fre-
quency offset between the transmitted signal and the actual
signal will also be greater than that in the smartphone. This
frequency shift has no noticeable effect on calls and music
playback, but the effect is disastrous for fine-grained acous-
tic ranging and tracking. For traditional Doppler effect-
based ranging, based on the Eq. (3), the ranging error caused
by a frequency offset of 1Hz is 21.3mm at 1s. This error is
intolerable for fine-grained head motion tracking.

We set comparative experiments to compare the fre-
quency offset of smartphones and wireless earphones. We
use five wireless earphones (Bose quietComfort2, Beats Fit
Pro, Huawei FreeBuds 2, Samsung Buds, and Apple Air-
Pods) and one smartphone (Huawei P40) to detect a con-
stant 16kHz frequency offset. The results are shown in Fig. 3.
We found that the frequency offset of Bose quietComfort2
and Beats Fit Pro is 0.1Hz-0.2Hz. As a comparison, the
frequency offset of Huawei FreeBuds 2, Samsung Buds,
and Apple AirPods are over 0.8Hz (we think it may be
that the high-frequency response of these three earphones
is relatively weak).

2.4 IMU-BASED TRACKING
We attach the IMU to the wireless earphone as shown in
Fig. 4(a). The movements of the human ear can well reflect
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0

0.5

1

1.5

F
re

q
u

en
cy

 o
ff

se
t 

(H
z)

Fig. 3: Frequency offset of different devices.

the trajectory of the human head. Fig. 4(b) and Fig. 4(c),
we show the three-axis acceleration data corresponding to
the two head movements of yawning and nodding. Differ-
ent head movements will produce different data patterns.
Usually, we use Kalman filtering to process these IMU data
to restore the motion trajectory. However, the traditional
Kalman filter will produce serious cumulative errors that
seriously affect the accuracy of the final trajectory restora-
tion. We uses an opportunity calibration algorithm based on
acoustic measurements to optimize the traditional Kalman
filter results in Section 4.3.2.

(a) Three-axis.
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(b) Yawning.
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(c) Nodding.

Fig. 4: The head motion acceleration data obtained by the
IMU.

3 SYSTEM OVERVIEW

Fig. 5 shows the overall architecture of IA-Track, mainly
composed of three modules. (1) Acoustic and IMU signal
sensing. (2) Acoustic-based distance ranging. (3) IMU-based
trajectory recovery. These three modules make up the IA-
Track system.

Acoustic and IMU signal sensing: This module mainly
connects the smartphone with wireless earphones through
the sound signal. The module first accepts IMU sensor
data as input. The input data comes from the IMU’s three-
axis accelerometer data. The smartphone then continuously
transmits an inaudible high-frequency signal to the wireless
earphone.

Acoustic based distance ranging: To accomplish this
goal, we need to solve two problems. First is the prepro-
cessing of acoustic signals. The second problem is how to
measure the distance. In the case of a significant frequency
deviation of the wireless headset, we abandoned the tradi-
tional Doppler effect-based distance measurement solution
and used a peak/Valley-based Distance Measurement.

IMU-based trajectory recovery: We use a traditional
Kalman filter as a basis. Then use the continuously mea-
sured distance from the previous module as an opportunity
calibration. Finally, we can restore the motion trajectory of
the wireless earphone.
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Fig. 5: System Architecture of IA-Track.

4 SYSTEM DESIGN

4.1 Acoustic Signal Preprocessing
Due to its hardware limitations, the wireless earphone will
produce more significant frequency leakage in the sensing
of acoustic signals, and we must first solve this problem.
We define that the acoustic signal Sr(t) is composed of the
airborne signal Sa(t) and the leakage signal Sl(t). Since
Sa(t) and Sl(t) share the same original signal, they have the
same frequency but different phases and amplitude. Con-
sidering that only Sa(t) contains the tracking information
of the target, the phase and amplitude decays are constant
under a fixed frequency leakage. We can estimate frequency
leakage from the measured phase and amplitude decay.

We ”connect” the wireless earphone to the smartphone
by emitting an acoustic signal at a fixed frequency of 16kHz
as shown in Fig. 6(a). We first define the signal V = A sinϕ,
A represents the transmitted signal amplitude, ϕ represents
the phase. Since we cannot know the initial values of ϕ
and A for running smartphones and wireless earphones,
we obtain the bias of the received signal 90◦ by Hilbert
transform Move V ′ = A cosϕ. Through this step, we get
A, which can be expressed as:

A =
√
(A sinϕ)2 + (A cosϕ)2 (4)

and ϕ calculated as:

ϕ = arctan

(
A sinϕ

A cosϕ

)
(5)

When the transmitted signal is a single-frequency sinu-
soidal signal, the leaked signal can be expressed as:

Sl(t) = A′ sin (2πft+ ϕ′) (6)

where ϕ′ and A′ are the phase shift and amplitude of the
received signal, respectively, and the frequency f is the same
as the transmitted signal. In order to measure the frequency
leakage at one time, we kept the wireless earphone and the
smartphone at a fixed distance in the initial laboratory, and
at the same time used sound insulation material to attenuate
the signal transmission in the air to reduce the strength of
the signal in the air to the microphone. In this way, the signal
component in the air is small and negligible. We can get
ϕ′ and A′ by comparing the phase difference between the
transmitted signal and the received signal. The remaining
signal after we remove the leak is shown in Fig. 6(b).

4.2 Phase-based Distance Measurement
In section 2.2, We analyze why acoustic ranging on wireless
earphones cannot be performed using the Doppler effect.
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(a) 16kHz acoustic signal emit-
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(b) The clean signal after leakage
elimination.

Fig. 6: Acoustic signal preprocessing.

Therefore, for the fine-grained tracking required for head
motion tracking, we tend to use changes in the computed
signal phase for motion distance detection. Based on [11],
the change in distance ∆d and the change in phase ∆ϕ can
be expressed as:

∆d =
∆ϕ

2π
λ. (7)

For a constant frequency signal of 16kHz, λ = 2cm. For a
wavelength of phase change (2π), the phase resolution and
range resolution are 0.1π and 1mm, respectively. Such phase
resolution and range resolution are sufficient for commonly
used head motion tracking.

4.2.1 Compression and stretching of acoustic signals
Since the relative movement between the signal transmitting
end and the receiving end, the signal will be compressed
or stretched at the receiving end relative to the original
signal, we next demonstrate how the signal changes when
the smartphone and the wireless earphone undergo various
relative motions. When the smartphone and the wireless
earphone are held relatively still. Smartphones emit si-
nusoidal signals, and wireless headphones receive 16kHz
acoustic signals. At this time, the transmitted signal and the
received signal have no compression and stretching and are
exactly the same in period. But as shown in Fig. 7(a) when
the wireless earphones approach the smartphone. At this
time, the signal transmission time is longer than the signal
receiving time. Since the received signal is contained in a
smaller time window, we find that the received signal is
compressed relative to the transmitted signal. Similarly, as
shown in Fig. 7(b). When the wireless headset is far away
from the smartphone, the signal transmission time is shorter
than the signal reception time. Since the transmission time
window required to receive the signal becomes larger, the
reception signal is relatively shorter than the transmission
time window, and the signal will be stretched.

IA-Track uses a 16kHz constant signal of constant fre-
quency, so the phase difference between the received signal
and the transmitted signal changes from time to time. We
define the phase change ∆ϕ as the difference between the
phase of the transmitted signal and the received signal as:

∆ϕ = ∆ϕr −∆ϕt. (8)

We get the phase change of the transmitted signal ∆ϕt

by multiplying the frequency of the transmitted signal by
the time interval. We note that Delta ∆ϕr is the phase
∆ϕr = ϕi − ϕj collected at the beginning and end of each
time window To get the data, we use this data to estimate
the phase change of the received signal (∆ϕr). When the
smartphone and the wireless earphone move relative to each
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(a) Compression. (b) Stretching. (c) Distance calculation.

Fig. 7: IA-Track uses signal compression or stretching phenomenon for distance calculation.

other, the path between the transmitter and the receiver will
also change, so the signal phase difference ∆ϕr on the path
will also change accordingly.

Current acoustic-based tracking systems employ sliding
windows to process acoustic signals in timestamps. Smart-
phones typically have a sampling rate of 48kHz, and we
calculate the phase change by sampling points in carefully
crafted timestamps. We calculate the phase change ∆ϕr

in the starting and ending sample points in the sliding
window and count the phase values in each sliding window.
We transmit a constant signal at 16kHz. We calculate the
phase by measuring the phase value at the sample points
in each time window, then calculating the in-phase (I) and
quadrature (Q) components of the signal, and then by the
arctangent (I/Q). However, this method improves efficiency
compared to FFT, but requires the use of Hilbert transform
or mixed signal and processing through filters, such compu-
tational complexity is still optimized for smartphones and
wireless earphones with limited computing power space.

We use another method based on the difference be-
tween peaks and valleys to calculate the phase difference
between the transmitted signal and the received signal. For
a sinusoidal signal of constant frequency, the phase change
between two adjacent local extreme points (i.e., peaks and
valleys) is π. After setting the size of the sliding window,
we use the phase difference between the sample points at
the beginning of the window and the end of the window
to calculate. Further, we use the dynamic time window
scheme. Compared with the general sliding window, we
calculate the difference between the local extreme points
(peak and trough) in the window instead of the difference
between all sampling points. We assume that each window
contains L local extreme points. Then the phase change of
each window signal can be expressed as:

∆ϕr = Lπ. (9)

Compared with the traditional acoustic ranging scheme
based on FFT and phase difference. The method based on
the peak-to-valley difference has very low computational
complexity and overhead. We don’t need to do complicated
FFTs, and Hilbert transforms on the signal. We just count
the number of differences between the peaks and valleys
in the sliding window. Since the smartphone and wireless
earphones are in relative motion, the signal will be com-
pressed or stretched. When the peak-to-valley difference
between the transmitting signal and the receiving signal
becomes smaller, the distance between the transmitting end
and the receiving end increases, and when the difference

between the transmitting and receiving signals becomes
larger, the transmitting end and the receiving end, The
distance between the ends becomes smaller.

4.2.2 Peak/Valley-based Distance Measurement

In this section, we will specifically describe how to use the
peaks/valleys of a sinusoidal signal for specific ranging.
When the smartphone and the wireless earphone move
relative to each other, the received signal will stretch and
compress relative to the transmitted signal. We can calculate
the phase difference of the signal by accepting the degree
of compression or stretching of the signal. This phase differ-
ence can be converted into time, and the product of time and
the speed of sound is the final signal propagation distance
we need.

Commonly used commercial smartphones and wireless
earphones use a sampling rate of 48kHz. But at this sam-
pling rate, the 16kHz signal in the sliding window we set
has only three samples. This leads to the fact that there may
not be the peaks and valleys (extreme points) we need in a
sliding window. Therefore, in order to more accurately cal-
culate the phase difference between the received signal and
the transmitted signal, we use interpolation and low-pass
filtering to upsample the signal once to obtain more sam-
pling points. We use 8 times of upsampling, the phase mea-
surement error is reduced from 2π

3 to 2π
3×8 . The ranging error

can be expressed as ∆̂d = ∆ϕ
2π λ = 2π

2π×3×820 = 0.83mm,
which is lower than the Doppler ranging error of 21.3mm.
We finally calculate the phase change of the received signal
∆ϕr in the window containing L extreme points.

We assume the sampling rate and upsampling coefficient
to be Fs and M , respectively. Each sliding window has N
sampling points and contains L extreme points. We define
the initial frequency of the emitted signal as f0. Therefore,
the phase difference ∆ϕt can be expressed as:

∆ϕt = 2πf0t = 2πf0
N

FsM
. (10)

Then the relative displacement distance in each sliding
window is:

∆d =
∆ϕr −∆ϕt

2π

c

f0
= c

(
L

2f0
− N

FsM

)
(11)

where c is the speed of sound. N is the number of sample
points contained in a window. When the signal is stretched,
the value of N will keep getting larger in successive win-
dows. When the received signal is compressed, the value of
N will keep getting smaller in successive windows.
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(a) Ground truth.
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(b) Position with calibration.
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(c) Position with Kalman Filter.

Fig. 8: Three-axis position (first row) and trace (second row) of our opportunistic calibration and Kalman filter.

As shown in Fig. 7(c), The received signal is compressed
relative to the transmitted signal. The parameters are set as
follows: c = 340m/s, L = 4, f0 = 16kHz, FS = 48kHz and
M = 4. In the window of Fig. 7(c), we observe that there are
14 sampling points (N = 19). Based on Eq. (11), We can cal-
culate the distance ∆d = 340( 4

2×16000 −
19

48000×4 = 9.18mm.
Because the receiving signal is compressed, the earphone
moves 9.18mm toward the smartphone.

4.3 IMU-based head tracking
Traditional IMU-based trajectory tracking technology is
widely used in UAVs and intelligent robots, and Kalman
filtering is used for attitude estimation based on accelerome-
ters and gyroscopes. But the traditional Kalman filter cannot
be used well on IA-Track. There are two main reasons.
One is that Kalman filtering needs to consume a lot of
computing resources, which is too large for small smart
devices such as smart phones, wireless earphones and smart
watches. The second point is that the traditional Kalman
filter will produce a large amount of cumulative error, which
is acceptable if it is only used for attitude estimation, but it
will have a catastrophic effect on noise such as trajectory
restoration. Therefore, we propose an acoustic-based oppor-
tunity calibration to optimize the Kalman filtering process.
We have optimized the IMU motion tracking scheme based
on Kalman filter to meet the head motion tracking based on
wireless earphone.

4.3.1 Kalman filter basics
For a traditional motion tracking model, Based on [29], we
have the true state sk =

[
qT
k ,v

T
k ,p

T
k

]T
, Where qk is a

quaternion used to represent the direction, which consists
of a real part and three imaginary parts. vk and pk repre-
sent the three-dimensional vectors of velocity and position,
respectively. The relationship between true state sk at time
k and previous state sk−1 at time k− 1 can be expressed as:

sk = Aksk−1 +wk, (12)

where wk and Ak are respectively the noise and state
transition matrices. Moreover, at time k, an observation ok

is made and we have:

ok = Hksk + vk (13)

where vk is the state observation noise and Hk is the state
observation matrix. Then, the following calculations are
performed sequentially to estimation Ŝk on ŝk from Ŝk−1:

ŝk|k−1 = Akŝk−1, rk = ok −Hkŝk|k−1,

Pk|k−1 = AkPk−1A
T
k +Wk, Rk = HkPk|k−1H

T
k + Vk.

(14)
where rk represent the residual value, Kk is Kalman gain.
To derive the estimated minimum mean square error ŝk:

Kk = Pk|k−1H
T
k R

−1
k , ŝk = ŝk|k−1 +Kkrk,

Pk = (I −KkHk)Pk|k−1.
(15)

However, IMU-based motion tracking may have the
problem of accumulating errors, mainly for the following
three reasons: i) The acceleration measured by the IMU is
not completely accurate. Every measurement can be loaded
with noise and drift, and especially over long runs, these
errors can accumulate, leading to discrepancies between the
final estimated trajectory and the true trajectory. ii) Kalman
filters generally assume that the system is linear and that
the errors between states and measurements are Gaussian
distributed. However, there may be nonlinear effects in the
real world, or the error distribution does not conform to
a Gaussian distribution, and these factors may cause the
cumulative error of the filter. iii) The Kalman filter requires
an initial state estimate, and if the initial state is inaccurate,
or if the uncertainty in the initial state is not properly
modeled, then the estimated trajectory may deviate from
the true value.

4.3.2 Tracking through opportunistic calibrations
To solve this accumulated error, we design an acoustic-
based opportunistic calibration algorithm based on the
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Algorithm 1: Opportunistic State Calibration
Require: ŝk|k−1, rk, tprv, ε
Ensure: ŝk, tprv

1: t← clock time− tprv
2: ŝk ← ŝk|k−1

3: if ok < ε then
4: v̂k ← v̂k|k−1 −

p̂k|k−1

t
5: p̂k ← 0
6: else
7: j ← argmini rki

8: if rjk < ε and j ∈ {1, 2, 3} then

9: v̂k ← v̂k|k−1 −
p̂−j

k|k−1

t

10: p̂k ← p̂j
j,k|k−1

11: else if rjk < ε and j ∈ {4, 5, 6} then

12: v̂k ← v̂k|k−1 −
p̂

(j−3)

k|k−1

t

13: p̂k ← p̂
−(j−3)
k|k−1

14: end if
15: end if
16: tprv ← clock time

configuration of wireless earphones and smartphones to
correct the deviated trajectory back to the correct direction.
Specifically, We establish a global coordinate system (x,y,z)
with the smartphone as the origin. Basically, we redefine
the observation value ok as the radial distance through
the cumulative radial displacement obtained by acoustic
ranging, and correct the calculation of the residual rk as:

rk =



rxk
ryk
rzk
ryzk
rxzk
rxyk
rxyzk


=



|ok−| pxk||
|ok−| pyk||
|ok−| pzk||∣∣ok − ∥[pyk, pzk]∥2∣∣∣∣ok − ∥[pxk, pzk]∥2∣∣∣∣ok − ∥[pxk, pyk]∥2∣∣
|ok − ∥pk∥2|


(16)

Whenever the IMU sensor updates data, we use the steps in
Eq. (14) and Eq. (15) to obtain ŝk|k−1, and after obtaining a
new observation ok, we use Eq. (16) to calculate the residual
rk. Then use Algorithm 1 (we use

[
p1k, p

2
k, p

3
k

]
= [pxk, p

y
k, p

z
k]

to simplify the expression) to correct ŝk|k−1. As shown in
Fig. 8, taking the use of wireless earphones to do circular
motion in three-dimensional space as an example, only
using Kalman filtering will produce serious cumulative
drift, as shown in Fig. 8(c). Fortunately, applying our chance
calibration can largely recover the motion trajectories shown
in Fig. 8(b).

4.3.3 Head trajectory reduction
We have previously optimized the traditional Kalman filter-
ing process using an acoustic-based opportunity calibration
strategy. Here’s a complete review of the IA-Track workflow.
In IA-Track the smartphone continuously transmits acoustic
signals and returns from the wireless earphone. The data
obtained by the wireless earphone and the IMU is returned
to the smartphone via Bluetooth.

The main task of IA-Track is to restore the head move-
ment trajectory, so the core of the system is to optimize

Fig. 9: Multi-threaded execution pipeline.

the trajectory recovery based on Kalman filtering through
opportunity calibration. First, we acoustically track the ob-
servations needed to obtain the opportunity calibration.
Then, the IMU continuously obtains the acceleration data,
and IA-Track uses the smartphone as the origin of the three-
dimensional coordinate system to convert the acceleration
data in the IMU into the motion acceleration data of the
head in the three-dimensional coordinate system. Then we
continuously track the head movement direction and accel-
eration through the Kalman filter optimized by opportunity
calibration. Since the smartphone is the origin of the entire
three-dimensional coordinate system, we need to calibrate
the system every time we use IA-Track. We only need to
keep the wireless earphone and the smartphone relatively
still for a period of time to complete the calibration. The
whole process lasts about 5s.

While smartphones and wireless earphones are getting
more powerful, it’s not easy to assemble the required com-
ponents in the IA-Track in the device. Fig. 9 shows how IA-
Track coordinates multiple threads to complete the complex
tracking process. There are two separate threads in the An-
droid system that perform acoustic and IMU data recording.
The smartphone first calculates the current distance from
the wireless earphone. Then, the opportunistic calibration
module retrieves the IMU data obtained at the previous and
current time points. And we match it with the observation
point, filter the acceleration value, and restore the current
trajectory. The direction-tracking thread runs in parallel
based on all IMU sensor readings and its output is used
to adjust the acceleration.

5 PROTOTYPE IMPLEMENTATION

(a) 1-D tracking. (b) 3-D tracking.

Fig. 10: Experiment setup.

We will introduce the prototype Implementation of IA-
Trackin this section.
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Experiment Hardware. We have implemented head
tracking on both Android smartphones and PC. On the An-
droid platform, we developed an app that emits a sinusoidal
signal at 16 kHz via connected wireless earphones and
receives the signal at a sampling rate of 48 kHz via a built-
in microphone. The application performs signal processing
and displays the motion trajectory on the screen in real time.
We used Huawei P40 and Samsung Galaxy S8 to track wire-
less earphones on this platform. We have selected 6 wire-
less earphones with different price configurations: Apple
AirPods, Bose, Beats, Honor, Audio-Technica, and Samsung
Galaxy Buds+. In addition, considering the popularity of
personal PC in daily office and indoor environments. We set
the IMU sensing rate to the highest level, so the sampling
frequency is roughly 400Hz for all IMU sensors, though
their samples may still arrive irregularly.

Experiment Setup. We recruited 50 participants (28
males and 22 females) for IA-Track, each participating
in three experiments. We first conducted two benchmark
Studies to test the IA-Track’s acoustic ranging module and
the tracking function in the handheld earphones state as
shown in Fig. 10. Specifically, we set 15 locations from
10cm to 150cm with a step size of 10cm to detect the
ranging error of IA-Track at different locations. Then, We
verified IA-Track’s ability to recover trajectories by asking
participants to hold an earphone and perform motion tra-
jectories, which were displayed on the screen and consisted
of lines, circles, squares, and triangles at different scales.
It is worth noting that when performing these gestures,
they do not need to return to the exact starting position
deliberately but only follow the gesture tracking. Finally,
we asked the participants to wear earphones to perform
three kinds of head movements (1) The head moves back
and forth for 5 seconds; (2) The head moves left and right
for 5 seconds; (3) The head moves randomly for 5 seconds.
Before starting each experiment, we calibrated the IA-Track
system to ensure accurate tracking results. Participants can
wear the earphones according to their preferences, as our
algorithm is not sensitive to their wearing habits. As a
token of appreciation, each participant received a 50-dollar
shopping card after completing the experiment.

Ground truth. For performance testing, we use VR head-
sets and Kinect-acquired head positions as ground truth. We
then compare the ground truth with the measurements of
the IA-Track system to complete the evaluation. We use
wireless headphones to transmit data while running IA-
Track, and then complete the data analysis on the smart-
phone. Due to the small amount of collected acoustic data
and IMU data, it is easy to complete trajectory recovery on
a smartphone.

6 EVALUATION

In this section, we first conducted two benchmark Studies to
evaluate the acoustic ranging and 3-D tracking performance
of IA-Track and then evaluate the overall head-tracking
capabilities of the system. Finally, we discuss the application
of IA-Track in practical scenarios.

6.1 Benchmark studies
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Fig. 11: Ranging accuracy interconnected with smartphone.

0 2 4 6 8 10

Y(cm)

0

2

4

6

8

10

X
(c

m
)

HeadTrack

Ground truth

(a) Square.
0 2 4 6 8 10

Y(cm)

0

2

4

6

8

10

X
(c

m
)

HeadTrack

Ground truth

(b) Circle.
0 2 4 6 8 10

Y(cm)

0

2

4

6

8

10

X
(c

m
)

HeadTrack

Ground truth

(c) Triangle.

Fig. 12: Performance of track restoration.

Ranging accuracy: The acoustic-based ranging function is
the basis for IA-Track to achieve head tracking. We evalu-
ated the acoustic ranging accuracy of IA-Track in the range
of 10cm to 150cm. The results are shown in the Fig. 11.
When the distance between the smartphone and the wireless
earphone is within 0.8m, the average error is less than
2.0mm, and when the distance exceeds 1.5m, the ranging
error reaches 3.9mm. We recommend that users place their
smartphones within 80cm of wireless earphones, which is
a reasonable assumption since users need to place their
smartphones close enough to themselves to interact.

Track restoration: We evaluate the tracking accuracy of
IA-Track after adding the IMU and opportunity calibration
mechanism. In this experiment, we asked volunteers to hold
a wireless earphone and spend a triangle, a circle and a
square on the table. The starting position of the wireless
earphone is 30cm away from the Smartphone. Fig. 12(a),
Fig. 12(b) and Fig. 12(c) shows examples of plot trajectories
for squares, circles, and triangles. We have found that these
graphs can be reproduced well for IA-Track. But after a
more in-depth observation, we found that IA-Track is better
than square and triangle for the restoration of circular
trajectories. Because the system is using the IMU as the
basis for trajectory restoration, while the square will have a
sudden change of direction during the drawing, the process
of this direction change may introduce errors in the way of
opportunity calibration. On the other hand, the error of the
circle will be small in the way of restoring the trajectory. In
practical application scenarios, the motion trajectory of the
head will also be closer to a circular trajectory.

6.2 overall performance
Performance vary across different participants: We assess
the tracking accuracy of IA-Track across a diverse range of
participants’ head motions. The 50 participants were cate-
gorized into five distinct groups according to their height:
161cm-165cm, 166cm-170cm, 171cm-175cm, 176cm-180cm,
and 181cm-185cm. As shown in Fig. 13, when evaluating
two specific movement typesbackward and forward, as well
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as left and rightthe positional tracking error of IA-Track
hovers around 6cm. However, in the case of random head
movements, this error margin expands to 8cm. Notably, it’s
important to highlight that the tracking accuracy of IA-
Track remains consistently reliable across all participants,
indicating its applicability across a broad spectrum of user
groups.
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Fig. 13: Ranging Accuracy Interconnected with Smartphone.

Comparison with other approaches: We compare the
performance of IA-Track with ArmTrack (IMU-based) [30],
EchoTrack (FMCW-based) [31], and LLAP(Phase-
based) [11]. As shown in Fig. 14(a), IA-Track performs
best in 3-D spatial tracking, because acoustic-based
methods suffer from severe multipath interference during
tracking. Although enabling a microphone array can
solve this problem, it will greatly increase hardware costs.
Besides, IA-Track is ahead of the other three approaches in
terms of delay as shown in Fig. 14(b), because IA-Track does
not use complex FFT algorithms. From the perspective of
performance comparison, IA-Track has achieved a balance
between accuracy and computational complexity.
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Fig. 14: Tracking performance comparison with different
approaches.

6.3 Other factors

Different smartphone placement: We place the smartphone
in different positions (holder, on a table, and in the hand as
shown in Fig. 15(a)) to study the effect of different positions
on IA-Track. We control the distance between the earphone
and the smartphone at 50cm in these three positions. The
final results are shown in Fig. 15(b). The average position
errors of IA-Trackunder three different conditions are 6.5cm,
6.5cm, and 8.2cm, respectively. When a smartphone is held
in the hand, the hand produces involuntary movements,
thus interfering with tracking accuracy.
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Fig. 15: The impact of different placements.
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Fig. 16: Impact of noise strength and earphone diversity.

Impact of noise strength: Acoustic-based ranging sys-
tems all face the problem of environmental noise interfer-
ence. The potential application scenarios of IA-Track are
AR/VR, driving, and other scenarios with severe acoustic
interference. In order to verify the anti-interference ability
of IA-Track under different noise levels, we conducted ex-
periments in a quiet conference room. The distance between
the smartphone and the wireless earphone is controlled
between 50cm. We used speakers next to the system to
play noises with different sound pressure levels. The exper-
imental results are shown in Fig. 16(a). It can be seen that
the IA-Track can maintain stable operation under different
noise levels. This is because IA-Track uses a constant 16kHz
signal for acoustic ranging, and this frequency band can
be effectively distinguished from acoustic signals in the
”audible” range.

Impact of earphone diversity: Wireless earphones are
the platform on which IA-Track can implement functions, so
it is important to implement functions on different wireless
earphones. We have selected six wireless earphones with
varying configurations of price: Apple AirPods, Bose, Beats,
Honor, Audio-Technica, and Samsung Galaxy Buds+. The
result is shown in Fig. 16(b). We found the Boser and Beats to
perform the best, possibly because the transmission ability
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Fig. 17: Impact of other Factors.
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(a) head movements during driving. (b) Experiments in real driving environments.
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Fig. 18: Applications in driving.

of these two types of high-frequency signals could be more
robust. Therefore, if the acoustic tracking function is to be
implemented on the earphone, it is necessary to improve
the high-frequency transmission capability of the wireless
earphone.

The impact of different movement states: We evaluated
the performance of IA-Track in different motion states of the
participants. Specifically, we set four movement states of sit,
stand, walk and run. The experimental results are shown in
Fig. 17(a). When the participant maintains a fixed posture
such as sit and stand, the average position error does not
exceed 6.5cm, but when the participant walks and runs, the
position error increases, which is due to the tracking error
caused by body movement. Especially when running, the
movement of the smartphone will also cause the failure of
the opportunity calibration.

The impact of usage environment: We conducted tests
on the IA-Track across four distinct environments: a meeting
room, a living room, a street setting, and a moving car.
Within the meeting room and living room scenarios, we
instructed our volunteers to maintain a stationary posture.
For the street trials, participants were guided along a pre-
determined path. Meanwhile, the car remained in motion at
a consistent velocity during the vehicular assessment. The
results, illustrated in Fig. 17(b), revealed median positional
errors of 6.5cm, 6.6cm, 8.8cm, and 9.1cm for the respective
environments. Although there is an observable impact on
the IMU in walking and when subjected to vehicular vibra-
tions, the effect on performance remains limited.

6.4 Application in driving
IA-track has a wealth of potential application scenarios, and
we test the performance of IA-track in a driving environ-
ment. In a real driving scene, the driver’s head movement
can reflect the driver’s driving state. For example, the driver
needs to frequently look to the left and to the right to
observe the driving route. When the driver feels drowsy, the
driver may perform actions such as nodding and yawning,
and these actions can be abstracted into the trajectory of the
head in three-dimensional space as shown in Fig. 18(a).

As shown in Fig. 18(b), we asked the driver to wear
earphones in a smooth-driving car, and we fixed the mobile
phone on the air outlet of the vehicle. The vehicle is driving
on an unmanned closed road at a speed of 15km/h. We
ask drivers to nod, yawn, turn left, turn right, etc. We
used the same DTW algorithm as DriverSonar [13] for

benchmarking to classify the trajectories of these actions.
Then we experiment. During the driving process, we will
randomly instruct the driver to make him nod, yawn, turn
left, turn right, etc. In contrast, we compare the accuracy and
latency of IA-track with existing work DriverSonar [13] and
D3-Gurad [32] on driving maneuvers. We found that the
motion detection accuracy of IA-track is higher than that
of DriverSonar and D3-Gurad in Fig. 18(c) because IA-track
captures the complete trajectory of the driver’s head motion
in the time domain, while DriverSonar and D3-Gurad are
trained only with incomplete motion trajectories.

7 RELATED WORK

We discuss the recent work on earphones, IMU-based, and
acoustic-based separately below:

Sensing based on earable devices: As an important in-
terface of human-computer interaction equipment, wireless
headsets are expected to fundamentally promote the devel-
opment of human wireless sensing applications. There are
many excellent ear-worn devices in the field of ubiquitous
computing. EarphoneTrack [12] has designed an acoustic
headphone motion tracking system. Sabrina et al. [33] used
an accelerometer in an in-ear headset to sense the user’s
facial expression. McGill et al. [34] discussed the impact
of acoustic transparency, compared the directional tracking
and acoustic noise reduction capabilities of different indoor
and outdoor headphones through experiments, and put
forward suggestions on how to improve the application
of headphones in the field of mixed reality. EarHealth [35]
uses commercial smart earphones to monitor the health of
the user’s ear canal, which is a low-cost, non-invasive and
efficient way to monitor ear health. Ferlini et al. [36] used
eSense [37] to study the value changes of gyroscopes and
acceleration sensors when people’s head is moving, but they
did not carry out more in-depth trajectory restoration. IA-
Track enables fine-grained head motion restoration.

IMU-based sensing: Most of the work using IMU for
perception is related to trajectory restoration and authentica-
tion. The benefit of tracking the elbow is to overcome the dif-
ficulty of obtaining valid observations with a smart watch.
Li et al. [38] originally used the IMU in the mobile phone
to restore the moving vehicle trajectory. Li found that the
traditional Kalman filter would produce severe cumulative
errors and introduced chance calibration. ArmTrak [30] uses
an IMU based on human elbow tracking. For the IMU-based
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authentication problem, Cao et al. [39] found that different
users generated different vibration characteristics when they
tapped into their smartphones. Su et al. [40] used the IMU
in a smartphone to restore voice calls, revealing a major pri-
vacy hazard in commercial smart devices. Taprint [41] uses
unique knuckle vibration characteristics to authenticate the
position of the user’s hand when tapping. TouchPass [42]
deploys an additional built-in motor to generate vibrations,
and then analyzes the characteristics of the user’s finger
feedback for authentication when the user’s finger touches
the screen.

Acoustic-based sensing: Acoustic-based sensing has
been greatly developed recently, and with the development
of smart devices, more and more commercial smart devices
can use acoustic sensors for wireless sensing. Xu et al. [43]
used an acoustic sensor on a smartphone to capture changes
in the angle of the driver’s hand on the steering wheel.
BatMapper [44] proposes a system for restoring corridor
maps by emitting ultrasonic waves into the environment
from a user’s handheld smartphone. EchoPrint [45] pro-
vides a user authentication scheme that combines visual
and acoustic features. UltraSE [46] uses ultrasound for
single-channel speech enhancement in commercial equip-
ment. DriverSonar [13] uses commercial smart devices to
detect dangerous driving in a moving vehicle. BlinkLis-
tener [47] finds out the acoustic response characteristics
corresponding to the blink pattern, and uses commercial
smart devices to perform blink detection for the first time.
CanalScan [48] uses existing smartphones to detect lingual
and jaw movements by capturing sound signals from the
ear canal. SpeedTalker [49] uses the phone’s built-in micro-
phone and camera to estimate the speed of the car through a
combination of sound and image signals. Earecho [50] uses
acoustic signals to capture unique structural features in the
human ear canal for authentication.

8 DISCUSSION

Although IA-Track has many attractive advantages and
features, it is still only a conceptual prototype and is far from
practical application. At the same time, there is still room for
improvement in user experience, computational complexity,
and reliability. The specific limitations are as follows:

High frequency response of wireless earphone: The
high frequency response of the wireless earphone is very
limited, if the wireless earphone can have higher bandwidth
and higher frequency response in the future. Then more
fine-grained acoustic tracking can be done on the wireless
earphone. At the same time, we also support manufacturers
to expand more hardware devices into wireless earphones,
and truly expand the application of wireless earphones in
human-computer interaction.

Sensing range: This acoustic-based perception scheme is
still deficient in perception range. When the sensing range
exceeds 1.8m, the sensing error will increase greatly. In
actual VR/AR applications, a farther perception range is
required. Therefore, IA-Track is only suitable for simple
human-computer interaction and a small range of head
movements. Such as monitoring the driver’s head move-
ment in the driving environment.

User experience: Head tracking with wireless earphones
is not optimal due to the ear discomfort associated with
long-term wear of wireless earphones. In future work, we
could actually use the same IMU combined with oppor-
tunistic calibration ideas in VR glasses or everyday glasses.
The application of head tracking is not limited to VR/AR
scenes but can also be used for daily head and neck health
monitoring.

9 CONCLUSION

In this paper, we propose IA-Track. A low-cost, friendly,
low-computational, ear-worn, and universal head-tracking
solution. It can be easily applied in VR/AR and daily life
scenarios. Based on the IMU’s trajectory restoration, we
connect the wireless earphone with the smartphone through
an acoustic signal (a high-frequency signal with a con-
stant frequency that exceeds the range of human hearing).
We introduce opportunistic calibration into the traditional
Kalman filter-based trajectory restoration method to achieve
high-precision and high-efficiency trajectory restoration. It
provides an up-and-coming solution for the application of
wireless earphones in VR/AR environments and more life
scenarios.
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