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A B S T R A C T   

The vibration signals of rolling bearings are complex and changeable, and extracting meaningful features is 
difficult. Currently, the commonly used empirical mode decomposition (EMD) algorithms have the problem of 
mode aliasing. In this paper, a new feature extraction method based on the improved complete ensemble 
empirical mode decomposition with adapted noise (ICEEMDAN) and permutation entropy is proposed. In this 
method, the ICEEMDAN algorithm is first improved and optimized to enable a self-selection function The vi-
bration signal is then decomposed into several intrinsic modal functions using this algorithm, and the permu-
tation entropy is extracted as the fault feature of rolling bearings, which improves the accuracy of fault 
classification and realizes the intelligent feature extraction of different fault states. Then, the Case Western 
Reserve University dataset is used for verification, and the results show that this scheme can effectively separate 
the vibration signal characteristics of bearings in different states, and can be used to characterize the charac-
teristics of different bearing signals. Finally, based on the mechanical transmission system bearing experimental 
platform independently developed by our school, the experimental results show that compared with the unim-
proved ICEEMDAN algorithm, the diagnostic accuracy rate of the proposed method is 99.5%, which is increased 
by 6.4%, and it can be effectively used for feature extraction of rolling bearings.   

1. Introduction 

Rolling bearings are widely used in rotating machinery [1]. Given 
the advantages of its high precision, low cost and long service life, it is 
widely used in wind power generation, shipbuilding, aerospace and 
other fields [2]. However, about 50% of motor failures in mechanical 
equipment are caused by damage to rolling bearings [3]. Therefore, the 
fault diagnosis of rolling bearings has always been a hot and difficult 
point in the study of the stable operation of mechanical equipment. 
When a bearing fails, its vibration signal contains a large amount of fault 
characteristic information, showing nonlinear, non-stationary and 
intermittent characteristics [4]. For this type of fault diagnosis, it is 
helpful to improve the diagnosis efficiency and accuracy [5,6]. The 
process of mechanical fault diagnosis is essentially a process of fault 
pattern recognition. Different fault diagnosis methods and pattern 
recognition methods may have different classification accuracy [7]. 

Many experts and scholars have studied the fault diagnosis of rolling 

bearings. The use of signal processing, neural network, pattern recog-
nition and other methods has continuously improved the efficiency and 
accuracy of fault diagnosis [8]. Signal processing methods mainly 
include wavelet de-noising, Fourier transform and modal decomposition 
[9,10]. The wavelet denoising method is simple and clear, and the 
calculation speed is fast. However, the scope of application is not very 
wide, and the denoising effect of white noise widely existing in practical 
applications is poor. Fourier transform is fast, but it may cause some 
errors when dealing with unsteady signals, resulting in spectrum alias-
ing, spectrum leakage and fence effect. However, the signal processing 
method of modal decomposition avoids data redundancy to some extent, 
and has a good advantage in processing non-intermittent component 
signals. With the continuous emergence of new modern processing 
methods of vibration signals, nonlinear and unsteady time-frequency 
analysis and other methods are more and more widely used [11], 
which can effectively extract fault features and improve the diagnosis 
level of bearing faults. Neural network processing methods include 
convolution neural network and support vector machine [12,13], which 
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are mainly used for pattern recognition of fault types, thus improving 
the classification accuracy of signals. Other methods include deep fault 
feature extraction analysis [14], permutation entropy [15], CNN [16] 
and so on. With the continuous development of machine learning and 
big data technology, deep mining of data features has become the future 
development trend, so signal representation has become the direction of 
further research. 

Empirical mode decomposition (EMD) algorithm is an adaptive 
signal processing method proposed by Huang et al. [17]. This method 
decomposes the signal according to its own time scale characteristics, 
and obtains a limited number of intrinsic mode functions (IMF) [18]. 
Each IMF component contains local characteristic signals of the original 
signal with different time scales. Compared with traditional signal 
processing methods, this method is intuitive, direct, posterior and 
adaptive [19]. However, there are still some phenomena of endpoint 
extension and modal aliasing [20,21]. 

The advantage of EMD algorithm is that it can better reflect the 
physical characteristics of vibration signals, but it also has some limi-
tations. When dealing with vibration signals with intermittent compo-
nents, it is easy to produce modal aliasing, which leads to the wrong 
decomposition results. To solve the modal aliasing problem of EMD, 
many experts and scholars have proposed further improved algorithms 
(e.g., ensemble empirical mode decomposition (EEMD) [22–24], com-
plementary ensemble empirical mode decomposition (CEEMD) [25–27], 
complete ensemble empirical mode decomposition with adaptive noise 
(CEEMDAN) [28–30], and so on) and verified their anti-noise. 

Among these algorithms, CEEMDAN has the best signal decomposi-
tion effect, but some problems (e.g., slow-running speed and a large 
amount of calculation) also exist. The reason is that it needs to add 
complex noise signals to the original signal, and it does not fundamen-
tally solve the problem of modal aliasing. Therefore, experts and 
scholars further put forward the algorithm of improved complete 
ensemble empirical mode decomposition with adapted noise (ICE-
EMDAN) [31], which can reduce the reconstruction error of the intrinsic 
mode function (IMF) and is widely used in traffic, earthquake, fault 
diagnosis, and other fields. Special noise is added to the signal pro-
cessing process for the ICEEMDAN algorithm, which reduces the resid-
ual noise in the IMF component and alleviates the modal aliasing to 
some extent. However, the addition of special noise also brings some 
problems, e.g., a large amount of calculation and slow iteration speed. In 
addition, the selection of key parameters of ICEEMDAN has great in-
fluence on the elimination of modal aliasing and noise [32,33]. There-
fore, this paper will make an improvement on the basis of ICEEMDAN 
algorithm. For the intermittent signals in the original signal, ICEEMDAN 

algorithm is used for decomposition, while the signals without inter-
mittent signals are decomposed by EMD algorithm, so as to improve the 
accuracy of adaptive signal feature extraction and speed up iteration. 

The permutation entropy algorithm is a signal mutation detection 
method based on the characteristics of time series, which can effectively 
amplify the weak changes of time series [34]. It has the following ad-
vantages: Simple calculation and strong anti-noise ability; High sensi-
tivity to time and high resolution; The output result is intuitive and has 
good recognition [35]. Therefore, it has a good effect when applied to 
fault signal feature extraction of rolling bearings. 

The commonly used EMD algorithms have a problem with modal 
aliasing, and removing the noise is difficult and decomposing takes a 
long time because of the addition of complex noise. To solve the 
aforementioned problems and accurately extract the features of the 
rolling bearing’s running state, this paper proposes a new feature 
extraction for the rolling bearings vibration signal based on an improved 
self-selected ICEEMDAN and permutation entropy algorithm. Improving 
the ICEEMDAN algorithm adaptively decomposes the vibration signal of 
rolling bearings and obtains the intrinsic mode function, and then ex-
tracts the permutation entropy from the intrinsic mode function to 
characterize the fault characteristics of rolling bearings. Finally, the 
experiment was carried out on the bearing experimental platform of 
mechanical transmission system, and compared with EMD, EEMD, 
ICEEMDAN and other algorithms. The results show that the self-selected 
ICEEMDAN algorithm has more advantages, and its diagnostic accuracy 
rate is 99.5%, which is 6.4% higher than that before optimization. It can 
be effectively used for feature extraction of rolling bearings. 

The remaining sections of the paper is organized as follows: Section 2 
discuss about the proposed improved self-selection ICEEMDAN-Permu-
tation entropy method. Section 3, we perform the simulation signal test 
using the existing and proposed approaches. Section 4 test the measured 
signal. Section 5, we carry out experimental research and analyze the 
results. Finally, the paper is concluded in Section 6. 

2. The proposed improved self-selection ICEEMDAN- 
Permutation entropy method 

2.1. The improved self-selected ICEEMDAN algorithm 

2.1.1. Empirical Mode Decomposition (EMD) 
Empirical Mode Decomposition (EMD) algorithm is an adaptive 

analysis method for analyzing nonlinear and nonstationary signal se-
quences, with a high signal-to-noise ratio [36]. The key to this method is 
that the complex signal can be decomposed into a finite number of IMF 

Notations used in this paper 

Nomenclature 
x(t) Original signal 
h1 The first deviation 
m1 The first average of the sum of the upper and lower 

envelopes 
h1k Average of the kth upper and lower envelope sums 
r1 The first residual 
c1 The first IMF component 
ci The ith IMF component 
rn The nth residual 
n Order of IMF 
N The length of time 
k The number of intrinsic mode function 
K Order of matrix 
x(i) New signal after adding noise signal 
D1

(
w(i) ) The first noise signal 

Dk(⋅) The kth noise signal 
A(⋅) The operator of local mean 
t Time period 
w(i) The ith white noise added 
β0,β1,…,βk− 1 Adjustment coefficient of the 0th,1th,…, k− 1th time 
X Time series matrix 
Y Matrix composed of time sequence X 
j1,j2,…,jm Column index 
m! Number of arrangement modes 
m Phase dimension 
P Probability of the reconstructed component 
Hpe Permutation entropy 
w(t) Gaussian white noise 
Y(t) Composed of four signals 
y1(t) Simulation signal 1 
y2(t) Simulation signal 2 
y3(t) Simulation signal 3  
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and a trend component. Each IMF component contains local character-
istic signals of different time scales and has the characteristics of self- 
adaptation. The EMD decomposition process [37] is as follows: 

(1) The first step is to determine the local maxima and minima of the 
signal x(t) to be measured, and use the fitting method to make the upper 
and lower envelope values of the signal image. Then, the deviation h1 of 
the signal to be measured from the average value m1 will be calculated 
according to the average value of the upper and lower envelopes. 

(2) If h1 meets the conditions of IMF, it is recorded as the first IMF 
component of x(t); If h1 does not meet the conditions of IMF, the above 
steps will be repeated k times, so that h1k will meet the conditions of 
IMF, and the first IMF component obtained through the above steps will 
be marked as c1. 

(3) Then, the difference between the signal x(t) and c1 is taken as the 
residual r1.  

r1 = x(t) − c1 (1) 

(4) The residual r1 is used as the original signal, and the above steps 
are repeated until rn can no longer decompose the IMF. And finally, n 
IMF components are obtained.  

x(t) =
∑n

i=1
ci + rn (2) 

From the principle of EMD algorithm decomposition, it can be found 
that if there is a discontinuous signal in the original signal (a high- 
frequency signal with a small amplitude appears at a certain moment 
or a small time interval), the obtained IMF is meaningless. 

2.1.2. ICEEMDAN 
The ICEEMDAN method is further proposed to solve the problems of 

CEEMDAN, e.g., slow running speed and mode aliasing. The charac-
teristic of its vibration signal feature extraction is that a special noise is 
added when extracting the kth IMF. In detail, ICEEMDAN first adds the 
special noise of non-Gaussian white noise to the decomposition layer of 
each signal and then decomposes the added special noise signal into a 
plurality of intrinsic mode functions and corresponding residual signals 
[38], thus solving the problem of inconsistent IMF numbers. 

(1) First, the first noise signal D1(w(i)) is added to the original signal x 
(t).  

x(i) = x(t) + β0D1
(
w(i)) (3)  

where w(i) represents the ith white noise added. 
(2) Then, EMD algorithm is used to calculate the local mean value of 

signal x(i), and the first residual r1 is obtained by taking the mean value, 
and the first natural modal function value c1 is then obtained. 

Assuming that the operator of local mean is A(.), the value of the kth 
intrinsic mode function obtained by EMD decomposition is Dk(.).  

D1(x(t)) = x(t) − A(x(t)) (4)   

c1 = x(t) − r1 (5)   

c1 =
1
I

∑I

i=1
DI(x(t)) = x(t) −

1
I

∑I

i=1
A
(
x(i)

)
(6)   

r1 =
1
I

∑I

i=1
A
(
x(i)

)
(7)  

where I is the number of modal decomposition. 
(3) Then, by analogy, noise is added to the k− 1 residual to get the k 

residual, and finally the k intrinsic mode function value will be obtained. 

ck = rk− 1 − rk (8)   

rk =
1
I

∑I

i=1
A
(
rk− 1 + βk− 1Dk

(
w(i) ) ) (9) 

According to the comparison, the advantage of ICEEMDAN algo-
rithm used for fault diagnosis signal processing is that it can accurately 
generate the numerical value of IMF, and can extract features through 
Fourier spectrum or time domain diagram or directly serve as fault 
features of rolling bearings. 

2.1.3. The improved self-selected ICEEMDAN algorithm 
EMD, EEMD, CEEMDAN, and other algorithms encounter some 

problems when decomposing high-frequency intermittent component 
signals, e.g., a large calculation error and slow iteration speed. Among 
them, the high-frequency intermittent component refers to the weak 
signal embedded in the signal. The signal component that should belong 
to one frequency band is mistakenly divided into the signal component 
of another frequency band, which is the phenomenon of modal aliasing, 
because of the existence of the high-frequency intermittent component. 
In the bearing fault diagnosis, the mode aliasing phenomenon will lead 
to the fault features hidden in the signal being concealed or the wrong 
features being obtained, thus reducing the diagnosis accuracy. 

Based on this, this paper proposes an improved self-selected ICE-
EMDAN algorithm. In this method, the original signal is accurately 
decomposed. Firstly, whether an intermittent signal in the signal is 
detected, the segments with an intermittent signal are decomposed by 
the ICEEMDAN algorithm, and the segments without an intermittent 
signal are decomposed by the EMD algorithm to improve the accuracy of 
adaptive signal feature extraction and further diagnose the bearing fault. 
Through different signal decomposition methods, the accuracy of indi-
rect signal processing is improved. This method can judge the existence 
of intermittent signals, so that the signal decomposition mode can be 
selected adaptively, and the fault features can be extracted effectively. 

In this method, whether the high-frequency component in the signal 
is intermittent or not is judged by the change in the distance between the 
extreme points of the first IMF [39]. If the distance between the two 
poles exceeds the set threshold, it is considered that there is a high- 
frequency component, and the first IMF component contains more 
signal characteristics. Because the first-order IMF decomposed by the 
EMD algorithm represents the high-frequency component of the signal, 
its extreme point corresponds to the extreme point of the original signal 
in the time sequence. The interval between extreme points of high- 
frequency signals is small, so the position of intermittent components 
can be judged by using the interval between extreme points of the first 
IMF. 

The distance between the extreme points suddenly changes at the 
beginning and end of the intermittent signal because the frequency of 
the intermittent signal usually processed is higher than the frequency of 
the background signal in this period. Based on this, the extreme point 
sequence of the intermittent signal is determined, and then the start and 
end time of the intermittent signal is predicted by mode or mean pre-
diction [40]. 

Therefore, the decomposition steps of the improved self- selected 
ICEEMDAN algorithm are as follows: 

Step 1: Check whether an intermittent component exists in the 
original time series. If there is, follow step 2. Otherwise, follow step 3. 

Step 2: Detect the interval of intermittent components by mean value 
prediction, adding special white noise to the original signal in this in-
terval by using the ICEEMDAN method, and decompose the whole 
original signal using the EMD algorithm to obtain n IMF and a residual 
signal. 

Step 3: Decompose the original signal by EMD algorithm to obtain n 

M. Xiao et al.                                                                                                                                                                                                                                    



ISA Transactions 143 (2023) 536–547

539

IMF and a residual signal. 
The steps to improve the self-selected ICEEMDAN algorithm are 

shown in Fig. 1. After getting n IMF and a residual signal, it is difficult to 
distinguish different signals from the waveform, so it is necessary to use 
the method of quantitative evaluation signal sequence to characterize 
the signals, and finally input them into the classifier to classify the faults.  

2.2. Permutation Entropy (PE) 

Permutation entropy is a method that can detect signal mutation and 
random time series as well as quantitatively evaluate the complexity 
contained in signal series. The permutation entropy is widely used in 
fault signal processing because of its strong anti-noise ability, high 
calculation efficiency and sensitivity to signal mutation. The specific 
steps are as follows: 

(1) Reconstruction of information space 
Because the fault signal of rolling bearings is periodic, m groups of 

data with the same delay time t can be extracted, thus forming the signal 
space matrix. Through the analysis of space matrix, it is more conducive 
to the identification of fault types. The reconstructed object is a set of 
time series X of length N. Then the constructed signal space matrix Y is as 
follows:  

Y =

⎡

⎢
⎢
⎢
⎢
⎣

x(1) x(1 + t) ⋯ x(1 + (m − 1)t)
x(2) x(2 + t) ⋯ x(2 + (m − 1)t)
x(j) x(j + t) ⋯ x(j + (m − 1)t)
⋮ ⋮ ⋮ ⋮

x(K) x(K + t) ⋯ x(K + (m − 1)t)

⎤

⎥
⎥
⎥
⎥
⎦

(10) 

K = N− (m− 1)t. Each row in matrix Y represents a reconstructed 
component, and k reconstructed components are noted. 

(2) Ascending order 
The time period of adjacent data in the signal space matrix Y is t. In 

order to reflect the arrangement of elements, they need to be arranged in 
ascending order.  

{x(i + (j1 − 1)t) ≤ x(i + (j2 − 1)t) ≤ ⋯ ≤ x(i + (jm − 1)t)} (11) 

Fig. 1. The flowchart of the improved self-selected ICEEMDAN algorithm steps.  

Fig. 2. Time domain diagram is decomposed by four algorithms: (a) time domain diagram of EMD decomposition; (b) time domain diagram of EEMD decomposition; 
(c) time domain diagram of ICEEMDAN decomposition; and (d) time domain diagram of the improved self-selection ICEEMDAN decomposition. 
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If the elements in the components are equal, the index sequence is 
obtained by index sorting according to the column in which the elements 
are located.  

{j1, j2,…, jm} (12) 

By analogy, the index sequence of each reconstructed component 
will be obtained. 

(3) Calculate permutation entropy 
The calculated permutation entropy can be used to identify fault 

signals. When the matrix dimension is m, there are m kinds of arrange-
ment modes of index sequences, and the probability of each sequence is 
Pr (r = 1,2,…, N N ⩽ m!). The formula for calculating the permutation 
entropy of time series X is as follows:  

Hpe = −
∑N

r=1
PrlnPr (13) 

The selection of embedding dimension m has great influence on the 
reconstruction of spatial matrix. If the value of m is too small to reflect 
the sequence mutation, the ability of the algorithm to detect signal 
mutation will also be reduced. If the value of m is too large, the length of 
the reconstructed component will be greatly increased, the sequence 
will be homogenized, and it is difficult to reflect the slight changes of the 
sequence, and the amount of calculation will be greatly increased. In the 
process of practical application, the recommended range of m is [3,7]. 
Based on experience and research analysis, the embedding dimension m 
selected in this paper is 5. 

(4) Data normalization 
For the convenience of use, it is necessary to normalize the permu-

tation entropy. When Pr = 1/m!, Hpe will reach the maximum value, so 
the normalized expression is as follows:  

PE =
Hpe

ln(m!)
(14)  

3. Simulation signal test 

To verify the superiority of the rolling bearing feature extraction 
method based on the improved self-selected ICEEMDAN-PE, this section 
uses EMD, CEEMD, ICEEMDAN and the improved self-selected ICE-
EMDAN algorithm to decompose the following analog signals.  
⎧
⎪⎪⎨

⎪⎪⎩

y1(t) = cos(10πt)
y2(t) = cos(40πt)
y3(t) = cos(100πt)
Y(t) = y1(t) + y2(t) + y3(t) + w(t)

(15)  

where y1(t), y2(t), and y3(t) are the three component signals that make 
up the analog signal with a sampling frequency of 16 kHz. The added 
interval of y1(t) and y2(t) signals is [0,16000], and the added interval of 
y3(t) is [7000,9000], which is used as high-frequency intermittent 
components. w(t) is Gaussian white noise with a mean value and a 
variance of 0 and 0.1, respectively. Therefore, Y(t) is composed of four 
signals. 

As shown in Fig. 2, the mixed analog signal is decomposed by EMD, 
EEMD, ICEEMDAN and the improved self-selected ICEEMDAN algo-
rithm respectively, and different numbers of intrinsic modal functions 
(IMF) are obtained. It can be seen from each time domain diagram and 
frequency spectrum diagram that although the number of IMF obtained 
by EMD algorithm is the smallest, the 4th and 5th IMF after decompo-
sition have strong modal aliasing and distortion at both ends of the 
signal. Compared with EMD algorithm, the modal aliasing of EEMD and 
ICEEMDAN algorithm is much reduced, but not completely eliminated, 
while the modal aliasing of the improved self-selected ICEEMDAN 

Fig. 3. Modal signal and spectrogram.: (a) Modal signal of ICEEMDAN; (b) Spectrum diagram of ICEEMDAN; (c) Modal signal of the improved self-selection 
ICEEMDAN; and (d) Spectrum diagram of the improved self-selection ICEEMDAN. 
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algorithm is basically eliminated, with high signal integrity and no 
distortion, and its comprehensive performance is better than other al-
gorithms. In this section, the simulation signals are decomposed by 
various algorithms, and the advantages of the improved self-selected 
ICEEMDAN algorithm are verified by visual comparison from the 
graph. The following section will verify the measured signals through 
authoritative data sets. 

In order to verify the advantages of the algorithm proposed in this 
paper, a set of simulation signals are constructed for verification. It is 
mainly composed of three groups of signals x1, x2 and x3, in which the 

frequency modulation of x1 signal is 5 Hz and 100 Hz, and the funda-
mental frequency is 7.5 Hz. The frequency modulation of x2 is 30 Hz, 
and the fundamental frequency is 5 Hz. The fundamental frequency of x3 
is 7.5 Hz and 0.1 Hz. The sampling frequency is set at 1000 Hz, the 
number of sampling points is 2000, and the sampling time is 2 s. The 
original simulation signal is obtained by superimposing three different 
signals. Then, the time domain signal of each component signal is con-
verted into frequency domain signal, and its frequency spectrum is 
drawn. The respective decomposition results are shown in Figs. 3 and 4. 
⎧
⎪⎪⎨

⎪⎪⎩

x1 = (1 + 0.3cos10πt) × sin(200πt + sin15πt)
x2 = cos(60πt + sin10πt)
x3 = 0.6sin(15πt + 0.2πt)
y = x1 + x2 + x3

(16) 

As can be seen from the above figure, the improved self-selected 
ICEEMDAN can decompose the original simulation signal accurately, 
and can decompose the original signal according to a specific frequency, 
resulting in a more stable waveform and less aliasing signals. It can be 
seen from the IMF1 spectra of the two algorithms that the IMF1 
component of ICEEMDAN algorithm has an extra frequency spectrum of 
0.2 Hz, which has a certain influence on signal decomposition. However, 
the improved self-selected ICEEMDAN has less components, less time 
and more advantages for signal decomposition. 

Fig. 4. Bearing fault test bench of Case Western Reserve University.  

Table 1 
Bearing specifications and parameters.  

Type Specifications Outside diameter/ 
mm 

Inner diameter/ 
mm 

Thickness/ 
mm 

Roller 
number 

Roller diameter/ 
mm 

Nodal diameter/ 
mm 

Contact 
angle/◦

Deep groove ball 
bearing 

6205-2RS 52 25 15 9 7.94 39 0  

Fig. 5. Vibration signals of rolling bearings in four different states: (a) normal bearing; (b) inner ring fault bearing; (c) rolling element fault bearing; and (d) outer 
ring fault bearing. 
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4. Test of measured signal 

In this section, The Case Western Reserve University dataset 
commonly used in rolling bearing fault diagnosis is used to verify the 
new feature extraction of the improved self-selected ICEEMDAN and 
permutation entropy algorithm proposed in this chapter. The bearing 
failure test bench used by Case Western Reserve University is shown in 
Fig. 4. The test-bed is equipped with sensor measuring points near the 
bearings to record data. There are four types of bearings, namely normal 
bearing, inner ring fault bearing, outer ring fault bearing and rolling 
element fault bearing. Because this data set is widely used and author-
itative in the field of bearing fault diagnosis, this section uses this data 
set to verify the practicability of the method proposed in this paper. 

Select the bearing fault data measured under the condition that the 
inner ring speed of the bearing is 1797 r/min and the size of the fault 
point is 0.1778 mm as the research object. Table 1 shows the parameters 
of the bearing used in the test. Select 8000 sampling points from various 
bearings, as shown in Fig. 5. 

It can be seen from Fig. 4 that the vibration signals of the four states 
of bearings are quite different, mainly because the vibration signals 
generated by different faults are different, so their time domain wave-
forms are also different, which can be used for later analysis. The above 
four signals are decomposed by the improved self-selected ICEEMDAN 
to obtain multiple IMF and residual signals, as shown in Fig. 6. 

It can be seen from Fig. 6 that 11 IMF components and one residual 
component are obtained by using the improved self-selected ICEEMDAN 
decomposition method to decompose the signal. Because it is a time- 
domain waveform diagram, the fault characteristics can only be 
judged from the waveform of the curve, which will result in a large error. 
Because the original signal is complex, with multiple decomposition, 
there will be the accumulation of errors and other reasons. Therefore, it 
is necessary to combine these waveform characteristics with the 

permutation entropy, and then compare them in the next step by 
calculating the entropy values. Draw the calculated permutation en-
tropy into a histogram, as shown in Fig. 7. 

As can be seen from Fig. 7, there are obvious differences in the 
arrangement entropy of the bearings. The highest alignment entropy in 
the normal state is less than that of the faulty bearing. Moreover, the 
difference of the arrangement entropy of the outer ring fault bearing is 
relatively obvious, but the arrangement entropy of the inner ring fault 
bearing and the rolling element fault bearing is similar. In order to 
facilitate the comparison of different signals, the calculated arrange-
ment entropy value is plotted as a curve for comparison, as shown in 
Fig. 8. 

As can be seen from Fig. 8, although the permutation entropy of each 
IMF component is concentrated in the normal motion state of the 
bearing, the entropy value of the normal bearing is smaller than that of 
the other three kinds of bearing signals with different faults. This is 
because the energy fluctuation of the vibration signal of the bearing is 
small, the distribution is uniform and the uncertainty is small. When the 
bearing is cracked and other faults occur, the energy of the vibration 
signal changes, which increases the permutation entropy. From the 
perspective of classification, the permutation entropy of different types 
of bearing signals is obviously different. Although data coincidence 
occurs in the later stage of the curve, it does not affect the difficulty of 
fault data classification. Because the higher data coincidence is mainly 
the later modal component, and with the increase of decomposition 
times, the later component has little influence on the fault classification 
effect, which can be ignored. Through comparison, it can be concluded 
that the entropy obtained by the improved self-selected ICEEMDAN and 
permutation entropy algorithm can effectively separate the vibration 
signal characteristics of bearings in different states, and can be used to 
characterize the characteristics of different bearing signals. 

Fig. 6. Vibration signals of rolling bearings in four different states after decomposition: (a) decomposition of normal bearings; (b) decomposition of inner ring fault 
bearing; (c) decomposition of rolling body fault bearing; and (d) disassembly of outer ring fault bearing. 
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5. Experimental study 

5.1. Scheme design 

In order to further verify the effectiveness of the proposed method 
under actual working conditions, a bench test was carried out. This 
experiment adopts the mechanical transmission system bearing 

experimental platform independently developed by Nanjing Agricul-
tural University, as shown in Fig. 9. The testbed is mainly composed of 
controller, variable frequency drive motor, bearing seat, coupling, vi-
bration sensor, axial loading device and radial loading device. The 
controller is responsible for starting the gantry and loading device, and 
can also accurately adjust the rotating speed. The variable frequency 
drive motor is mainly responsible for providing power for the motion of 
the gantry. Sensors are responsible for collecting information. Axial 
loading device and radial loading device are mainly responsible for 
adding load to the working bearing to simulate the actual working 
environment of the bearing and accelerate the damage process of the 
bearing. 

In order to obtain the vibration signal of the rolling bearings in the 
test bed during operation, signal acquisition equipment is needed. This 
test is mainly completed by acceleration signal sensor and signal 
acquisition equipment, as shown in Fig. 10. The model of acceleration 
sensor is PCB35A26, and its sensitivity is 10.08 mV/g. The signal 
acquisition device is a 16-channel dynamic information acquisition 
module. Start the switch of the controller, and adjust the speed of the 
variable frequency drive motor to 1500 r/min, so that the whole rack 
can run. The acceleration sensor with a magnet at the bottom is adsor-
bed on the periphery of the bearing seat of the rolling bearings to be 
tested. At last, the vibration signal can be transmitted to ZZDASP, the 
data acquisition and analysis software of the upper computer, through 
the acquisition equipment, to complete the acquisition and storage. The 
signal acquisition interface is shown in Fig. 11. One end of the infor-
mation collector is connected with the acceleration sensor, and the other 
end needs to be connected with the data acquisition and analysis soft-
ware on the computer. Set the IP address and connect them successfully. 

Fig. 7. Four permutation entropy characteristic parameter values: (a) permutation entropy of normal bearing; (b) permutation entropy of inner ring fault bearing; (c) 
permutation entropy of rolling element fault bearing; and (d) permutation entropy of outer ring fault bearing. 

Fig. 8. Permutation entropy line chart of four kinds of bearings.  
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First, create a new acquisition scheme, close all channels 3 to 16, and 
then fill in the sensitivity parameters of the sensor in channels 1 and 2. 
The measured physical quantity is changed to acceleration, and various 
parameters of the analyzer are set, including sampling frequency, sam-
pling mode, duration, etc. 

The bearings used in the experiment are cylindrical roller bearings, 
and the specific parameters are shown in Table 2. In this experiment, a 
crack with a width of 0.2 mm and a depth of 0.5 mm was processed by 
laser to simulate the faulty bearing. The actual working condition is 
simulated by replacing the bearings with different fault types on the 
bearing seat. Collect the vibration signals of bearings in four states: 
normal bearing, inner ring fault bearing, outer ring fault bearing and 
rolling element fault bearing. In order to quantitatively analyze the in-
fluence of the new feature extraction method proposed in this paper on 
the fault diagnosis effect, the common ICEEMDAN algorithm and the 
improved self-selected ICEEMDAN algorithm proposed in this paper are 
used for signal decomposition, and then the new feature extraction is 
carried out by permutation entropy algorithm (see Fig. 12).  

5.2. Test procedure 

(1) Start the mechanical transmission system equipment bearing 
experimental platform and ZZDASP acquisition system and collect the 
bearing vibration signals of normal bearing, inner ring fault bearing, 
outer ring fault bearing, and rolling element fault bearing. The typical 
vibration signals of four different states are shown in Fig. 13. 

(2) The improved self-selected ICEEMDAN algorithm is used to 
decompose different fault signals of bearings. The permutation entropy 
extracted by IMF components after decomposition is used as a feature 
vector, and a plurality of feature vectors form a feature matrix, which is 
used as the input of PSO-SVM model. The reliability of the new feature 
extraction algorithm proposed in this paper is verified by fault diagnosis 
results. 

(3) Too many eigenvalues will affect the training speed, so only the 
first 8 permutation entropy values of each group of signals are calcu-
lated, and a eigenvector is formed. A total of 480 eigenvectors are 
constructed into a 480-row eigenvector matrix. Due to the large amount 

Fig. 9. Bearing experimental platform of mechanical transmission system.  

Fig. 10. Schematic diagram of acceleration sensor and signal acquisition card: (a) acceleration sensor; (b) signal acquisition card.  

Fig. 11. Signal acquisition interface.  

Fig. 12. Four rolling bearings to be tested.  
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of data in the characteristic matrix, Table 3 only lists five characteristic 
vectors for each bearing type, and uses numbers as labels for different 
types. 

(4) Finally, the characteristic matrix is divided into training samples 
and testing samples at the ratio of 5 to 1, with the number of 400 and 80 
respectively, and each type of bearing is evenly divided, that is, each 
type of bearing contains 100 groups of training samples and 20 groups of 
testing samples. The final diagnosis result is shown in Fig. 14.  

Fig. 14 shows that the improved self-selected ICEEMDAN algorithm 
decomposes the vibration signal of rolling bearings, extracts the 

permutation entropy features, and uses the SVM improved by PSO for 
diagnosis, which has excellent results. All the groups of data tested are 
correctly diagnosed. It shows that this algorithm has a good advantage 
in feature extraction. To highlight the superiority of the improved self- 
selected ICEEMDAN algorithm in feature extraction, the decomposi-
tion algorithm in the above step (2) is replaced by the common ICE-
EMDAN algorithm, and the other steps remain unchanged. The 
diagnosis effect is shown in Fig. 15.  

Fig. 15 shows that tags 3 and 4 (which represent the outer ring fault 
and the rolling element fault, respectively) are confused. This is because 
the white noise added to the original vibration signal has residue or the 
noise in the collected signal leads to the mode aliasing phenomenon, 

Table 2 
Rolling bearings specifications and parameters.  

Type Specifications Outside diameter/ 
mm 

Inner diameter/ 
mm 

Thickness/ 
mm 

Roller 
number 

Roller diameter/ 
mm 

Nodal diameter/ 
mm 

Contact 
angle/◦

Cylindrical roller 
bearing 

N205EM 52 25 15 13 6.5 38.5 0  

Fig. 13. Vibration signals of rolling bearings in four different states.  

Table 3 
Partial feature vector.  

Bearing category Feature vector Label 

Normal conditions 1.7805 1.5562 1.2803 1.0708 0.9235 0.832 0.7734 0.7386 1 
1.7831 1.5702 1.2898 1.0824 0.9412 0.8441 0.7752 0.7371 1 
1.7823 1.5649 1.2806 1.0707 0.9269 0.8347 0.7752 0.7362 1 
1.7828 1.5683 1.2756 1.0693 0.9397 0.8387 0.7712 0.7440 1 
1.7831 1.5644 1.2858 1.0730 0.9272 0.8229 0.7634 0.7353 1 

Inner ring fault 1.7454 1.5256 1.2582 1.0697 0.9195 0.8312 0.7837 0.7460 2 
1.7452 1.5225 1.2460 1.0640 0.9166 0.8312 0.7751 0.7450 2 
1.7399 1.5214 1.2427 1.0628 0.9205 0.8246 0.7746 0.7432 2 
1.7445 1.5204 1.2416 1.0585 0.9212 0.8333 0.7817 0.7465 2 
1.7420 1.5231 1.2244 1.0489 0.9171 0.8292 0.7828 0.7456 2 

Outer ring fault 1.7591 1.5345 1.2750 1.0757 0.9408 0.8476 0.7889 0.7547 3 
1.7595 1.5363 1.2797 1.0834 0.9359 0.8467 0.7812 0.7458 3 
1.7584 1.5395 1.2952 1.0955 0.9455 0.8473 0.7917 0.7558 3 
1.7570 1.5317 1.2817 1.088 0.9417 0.8512 0.7844 0.7435 3 
1.7553 1.5397 1.2876 1.0848 0.9312 0.8485 0.7851 0.7459 3 

Rolling element fault 1.7593 1.5353 1.3019 1.0900 0.9386 0.8447 0.7747 0.7425 4 
1.7613 1.5305 1.2670 1.0756 0.9340 0.8305 0.7685 0.7371 4 
1.7557 1.5218 1.2828 1.0797 0.9286 0.8324 0.7781 0.7429 4 
1.7592 1.5325 1.2767 1.0711 0.9275 0.8257 0.7714 0.7330 4 
1.7602 1.5365 1.2765 1.0731 0.9246 0.8213 0.7672 0.7334 4  

Fig. 14. The diagnosis results obtained by using the improved self-selected 
ICEEMDAN algorithm. 
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which masks the characteristics of the signal, so that the fault diagnosis 
rate decreases. 

In order to further verify the diagnostic accuracy of each model, the 
signals are input into EEMD and CEEMDAN models for decomposition 
and fault classification. From the classification results, the diagnostic 
rates of the test data of EEMD and CEEMDAN models are 88.75% and 
91.25% respectively (see Figs. 16 and 17). 

To avoid the error in a single test, four more tests are conducted 
following the above steps, and the test results, i.e., the classification 
accuracy rate, are shown in Table 4. As can be seen from the table, The 
classification accuracy of EEMD and CEEMDAN is 87.75% and 91.5%, 
and the overall classification accuracy is low, indicating that the effect of 
fault feature extraction is poor. The accuracy of the improved self- 
selected ICEEMDAN algorithm is much higher than that of the unmod-
ified ICEEMDAN algorithm, and the accuracy of fault diagnosis is 
increased by 6.4%, which shows that the algorithm proposed in this 
paper has certain advantages in bearing feature extraction.  

6. Conclusions 

Through analyzing and simulating, the verification of measured 
signals as well as testing the measured signal of the testbed, the 
improved self-selected ICEEMDAN algorithm proposed in this paper has 
excellent decomposition performance, and the new feature extraction of 
rolling bearings can be realized by combining with the permutation 
entropy algorithm. The conclusions are as follows: 

1. Through the simulation signal analysis, compared with the tradi-
tional empirical mode decomposition algorithm, the improved self- 
selected ICEEMDAN algorithm has an excellent decomposition effect 
and the ability to suppress modal aliasing. 

2. The bearing dataset of Case Western Reserve University is used for 
verification, and the energy entropy obtained by the improved self- 
selected ICEEMDAN and permutation entropy algorithm can effec-
tively separate the vibration signal characteristics of bearings in 
different states, which can be used to characterize the characteristics of 
different bearing signals. 

3. Through the test of the measured signals on the testbed, it is found 
that the improved self-selected ICEEMDAN algorithm has excellent 
performance, and it can be combined with permutation entropy algo-
rithm and PSO-SVM algorithm to realize the fault diagnosis of rolling 
bearings, with the diagnosis accuracy rate of 99.5% and excellent 
diagnosis effect. Under the condition of keeping other algorithms un-
changed, the improved self-selected ICEEMDAN algorithm improves the 
fault diagnosis accuracy by 6.4% compared with the common ICE-
EMDAN algorithm, and the diagnosis effect is more excellent. 
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Fig. 15. Diagnostic results obtained using ICEEMDAN algorithm.  

Fig. 16. Diagnostic results obtained using EEMD algorithm.  

Fig. 17. Diagnostic results obtained using CEEMDAN algorithm.  

Table 4 
Classification accuracy of the four algorithms.  

Algorithm The correct rate of each time Average correct 
rate 

EEMD 88.75 86.25 87.5 87.5 88.75 87.75 
CEEMDAN 91.25 92.5 92.5 90 91.25 91.5 
ICEEMDAN 93.75 93.75 92.5 93.75 92.5 93.1 
Methods of this 

paper 
100 100 97.5 100 100 99.5  
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