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Abstract—Self-service libraries need self-service book collec-
tion and monitoring of book quality to improve user experience
This paper proposes a privacy-preserving alternative RFbook,
a book classification and moisture sensing system formed from
an array of passive commercial RFID tags. We have three key
observations in designing RFbook for such benefits. The first ob-
servation is that when tags are in the vicinity, their interrogation
currents can alter each other’s circuit properties, based on which
unique phase and amplitude signatures can be obtained from the
backscattered signal. The second observation is that books with
different thicknesses and sizes of material will have different
signal features. Finally, we found that changes in book humidity
are reflected in the reader’s received signal strength (RSS). To
turn the high-level idea into a practical system, we built a
prototype of RFbook and conducted comprehensive experiments
to evaluate the system’s performance. The experimental results
show that RFbook can distinguish different types of books with an
average accuracy rate higher than 96% and monitor the humidity
change of the book.

Index Terms—Human-computer interaction (HCI), RFID, ma-
chine learning

I. INTRODUCTION

Self-service library has become the trend of library devel-
opment. Reducing costs and maintaining user satisfaction and
timely book maintenance forces libraries to optimize technol-
ogy to improve operations. One of the main problems with
self-service pickup is the need to manually align the labels on
the book with the scanner [1], another is the long waiting time
for camera processing [2]. The systems currently required for
these methods are relatively expensive. In addition, there are
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also loopholes in the quality management of books when self-
service books are collected and returned. At present, indoor
hygrometers are usually used to monitor the humidity in the
library, but this method cannot refine the humidity of each
book. In this paper, we propose RFbook an RFID-based
self-service book pickup and quality monitoring system. Book
classification and quality monitoring can be completed without
using a large number of cameras for complex image processing
algorithms. RFbook can greatly improve the user experience
of self-service libraries.

Fig. 1: Illustration of RFbook design. With a paper laying on
the tag array, the backscattered signals convey paper-dependent
and unique features so that the paper can be classified.

Radio frequency-based wireless sensing technology has ex-
cellent commercial prospects due to its low cost and ubiquitous
nature. Especially in recent years, RFID has made essential
breakthroughs in material identification. RFID sensing solution
has been used for material identification [3]–[13], vital signs
detection [14]–[19], indoor localization [20]–[25], human mo-
tion tracking [26]–[32] and humidity sensing [33], [34]. The
RFID tag is an essential part of a radio frequency sensing
system. Due to its low price and portability, it has been widely
used daily. Although traditional image recognition methods
have been developed very maturely, wireless perception sys-
tems have significant advantages in terms of privacy cost and
computational complexity. For example, in the security check
scene, the hidden weapons in the passenger’s clothes can be
known without infrared sensing. Artificial intelligence knows
through material recognition that the object is an apple, not a
pear, and can automatically adjust its grip. In addition, com-
pared to the potentially colossal computing power consump-
tion of image processing. The signal processing complexity of
wireless sensing is relatively low, and it is more suitable for
edge devices.

In this paper, we make a attempt by designing a solu-
tion based on commercial off-the-shelf (COTS) RFID tag
arrays [35], which can be easily applied to the application
scenarios of book classification and book humidity sensing.
Self-service libraries need self-service book collection and
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monitoring of book quality to improve user experience This
paper proposes a privacy-preserving alternative RFbook, a
book classification and moisture sensing system formed from
an array of passive commercial RFID tags. We have three
key observations in designing RFbook for such benefits. The
first observation is that when tags are in the vicinity, their
interrogation currents can alter each other’s circuit properties,
based on which unique phase and amplitude signatures can
be obtained from the backscattered signal. The second obser-
vation is that books with different thicknesses and sizes of
material will have different signal features. Finally, we found
that changes in book humidity are reflected in the reader’s
Received Signal Strength (RSS).

However, translating this idea into a practical system entails
multiple challenges:

• First, capturing the unseen features generated by RFID
signals penetrating the book is challenging. We need to
prove that RFID signals will produce different changes
when penetrating different types of book.

• Second, different types of books and the humidity of
books will affect the values of RSS and Phase at the
same time. How to detect the humidity while accurately
classifying books is a challenge.

• Finally, the placement of books may be different each
time. Our system needs to allow the existence of position
diversity.

To address the first challenge, we used tag arrays to capture
fine-grained features of the book. We conducted verification
experiments to demonstrate that different types of books will
reflect different RSS and phase changes to verify the feasibility
of using the RFID system to classify the paper. For the
second challenge, We design a neural network to classify
books accurately and detect the humidity of books. To address
challenge three, We design a multi-group sampling method to
solve the book position uncertainty, which can significantly
improve the system’s robustness. In summary, the contribution
of this work is as follows:

• We propose a book classifier and humidity sensor using
a passive RFID tag array. To the best of our knowledge,
RFbook is the first RFID-based book classifier system.

• We leverage solutions to the tag-antenna distance de-
pendence problem and the random position of book to
enable the RFbook design and address a set of technical
challenges to obtain a reliable and robust book classifier.

• We develop a RFbook system and conduct extensive
experiments to evaluate its performance. The results
demonstrate the effectiveness of our design: over 96%
different types of book classification accuracy and can
effectively monitor changes in book humidity over an
extended period of time.

The rest of this paper is organized as follows. Section II
presents the feasibility analysis of applying RFID signals for
book sensing. Section III present the whole system. Section IV
presents the implementation of RFbook. Section V presents
the system evaluation. Section VI introduces the related work.
Section VII discussed the limitation of our work.

II. FEASIBILITY ANALYSIS

In this section, we introduce the unique properties of paper
in terms of material and intrinsic structure, which can be
manifested by changes in the received tag array signal of an
RFID reader. Furthermore, we demonstrate that it is feasible
to exploit these features to identify different types of books.
Finally, we verified that RFbook can detect the change of sig-
nal characteristics of the same book under different humidity
conditions.

A. Unique structural characteristics

Different types of paper has different production param-
eters and processes, as reflected in the selection and ratio
of raw materials in the pulp. In addition, the dilution and
stacking thickness of the pulp during paper making can lead
to different densities and thicknesses of the finished paper,
which determines paper products’ application scenarios. As
shown in Fig. 2(a) and Fig. 2(b), under the electron micro-
scope, we observe that different papers are quite different in
microstructure, demonstrating the essential difference among
different papers. RFbook uses commercial RFID signals to
detect different papers, and later we will verify the feasibility
of using RFID to distinguish different papers.

(a) Microstructure of Paper 1 (b) Microstructure of Paper 2

Fig. 2: Different paper has different internal structure. (a) and
(b) is the microstructure of different papers under the electron
microscope.

B. Variation in the phase of the RF signal

The RFID reader captures the tag has reflected signal’s
RSS and phase changes. In this section, we first introduce
the parameters that affect the phase value. We define that the
phase value ϕ consists of the following three parts

ϕ = ϕtag + ϕpro + ϕcir

where ϕtag is the phase shift caused by the tag, which is
mainly related to the impedance Za of the tag’s resistance. ϕpro
is related to the flight distance d of the signal. ϕcir is the noise
phase shift caused by the system’s hardware. When we attach
the paper to the tag. The impedance Za of the tag changes
due to the influence of the paper, and this change causes the
phase ∆ϕM of the entire system to change as follow

∆ϕM = ϕtagB − ϕtagA

whereϕtagA represents the phase shift caused by the tag itself
and ϕtagB represents the phase shift after the paper is attached.
We define the paper-induced phase shift as ∆ϕM. As shown
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(a) RSS change of different paper
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(b) Phase change of different paper

Fig. 3: RSS and Phase change.
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(b) Insulating paper

Fig. 4: Phase and RSS vs paper thickness.

in Fig. 5. ϕA and ϕB Respectively, the readings before and
after the paper is attached to the label are expressed as{

ϕA = ϕtagA + ϕproA + ϕcir

ϕB = ϕtagB + ϕproB + ϕcir

ϕproA and ϕproB represent the phase change caused by signal
propagation before and after the paper is attached to the tag,
they do not need to be equal. By subtracting the two equations,
we get

ϕB − ϕA = (ϕtag B − ϕtag A) + ϕproB − ϕproA

Since ∆ϕM = ϕtagB − ϕtagA we obtain

ϕB = ∆ϕM + ϕproB + ϕA − ϕproA

where ϕA is the phase value caused by the tag itself, which we
call the reference phase. ϕA−ϕproA is the phase change caused
by the signal in the air and is related to the distance between
the antenna and the tag. So we can treat ϕA and ϕA − ϕproA
as constants. Therefore, we know that ϕB is only related to
the characteristics of the paper itself and the distance between
the tag and the antenna.

Fig. 5: Phase value of RFbook when paper is attached.
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(a) RSS versus humidity.
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(b) Phase versus humidity

Fig. 6: Effect of Humidity on RSS and Phase.

C. Variation in the RSS of the RF signal

RSS is an apparent characteristic value of the RFID system.
RSS is mainly affected by the signal propagation distance and

the impedance from the tag. Changes affecting RSS readings
are mainly composed of the following equations

RSS = 10 lg

(
G2

tΓtar
PTx

1mW
TrG

2
r

(
c

4πfd

)4
)

whereGt, Γtar, PTx and Tr represent the antenna gain, ra-
diation coefficient, antenna transmit power and transmit loss,
respectively, and are related to the system itself and can be
regarded as constant. The RSS value in RFbook is mainly
related to the antenna impedance and the distance d between
the antenna and the tag.

D. Different paper and humidity

Different paper. We placed an antenna on the table facing
the paper and connected the antenna to the reader. We put
the tag array on the table and placed the paper on the
array. The distance between the antenna and the tag array
is 15cm. We aimed to measure the RSS and phase changes
of different papers. To change the paper parameters. We
use six kinds of paper with varying production processes:
Printing paper, Wrapping paper, Drawing paper, Blotterpaper,
Insulating Paper, and Paperboard. We acquired changes in RSS
and phase value taken by the reader before and after the paper
attachment, as shown in Fig. 3(a) and Fig. 3(b). The phase
and RSS changes were entirely different for the six different
densities and thicknesses of paper. These results suggest
that different papers cause different changes in phase and
RSS value. In addition, we verified the following benchmark
experiments, where we selected five thicknesses of printing
paper and insulating paper and measured the relative changes
in RSS and Phase. Fig. 4(a) and Fig. 4(b) shows the variation
of the RSS and phase change between printing paper and
insulating paper with different thicknesses, and an apparent
linear effect can be observed.

(a) Paper 1 (b) Paper 2 (c) Paper 3 (d) Paper 4

Fig. 7: RSS distribution on the tag array corresponding to four
different papers.
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Fig. 8: Ten different types of paper Fig. 9: Identification accuracy for ten different types of paper.

(a) Printing paper. (b) Drawing paper (c) Bond paper. (d) Insulating paper.

Fig. 10: Printing paper, drawing, bond paper and insulating paper with different parameters.

Different humidity. We put the paper in the humidifier
and recorded the different humidity levels labeled 50%, 55%,
60%, 65% and 70%. The experimental results are shown
in the Fig. 6. Because the water inside the paper absorbs
the signal received by the tag [34]. The greater the ambient
humidity, the greater the signal attenuation on the tag antenna,
and the RSS decreases as the ambient humidity increases
in Fig. 6(a). However, the phase also changes with different
ambient humidity in Fig. 6(b), and there is no clear pattern of
change. It is worth noting that the impact of ambient humidity
on RSS and Phase is less than that caused by different types
of paper.

E. Fine-grained classification using tag arrays

Considering that a single tag cannot bring out the more
exclusive features of the paper, we use the tag array for more
fine-grained paper feature extraction. We used four sheets from
different manufacturers and used a 6x5 tag array placed under
the paper. The RSS distribution on the tag array we collected
is shown in Fig. 7, and the signal color’s depth represents the
RSS reading’s size. We further use a classifier to classify the
difference between the RSS value taken and the phase value.
We found that for the same paper, the distributions of RSS
and phase are very close, while the distributions of RSS and
phase are quite different for different paper types. Therefore,
fine-grained paper differentiation is feasible using the reads
from the tag array.

F. Paper diversity

We selected ten different types of paper with different
production processes, namely Printing paper, Wrapping pa-
per, Drawing paper, Blotterpaper, Electrical insulating paper,
Paperboard, Decorative paper, Notepaper, Filter paper and
Specially processed paper as shown in Fig. 8. We also selected

printing paper, drawing, bond paper and insulating paper with
different parameters (mass and density) for experiments to
verify similar material paper.

We collected samples for each paper and fed these data
into the neural network classifier. Fig. 9 shows that the
identification accuracy for these ten paper types is over 95%.
We also performed additional experiments to verify whether
papers with slightly different thicknesses and densities could
be distinguished. We selected printing, drawing, bonding, and
insulating paper with different parameters. As a result shown
in Fig. 10, the recognition accuracy of RFbook will decrease
for papers with slightly different density and thickness mate-
rials. This is because for the same paper material, the RSS
and phase difference change is tiny, but the accuracy of the
RFbook is still higher than 90%.

III. SYSTEM DESIGN

In this section, We introduce the detail design of RFbook.

Fig. 11: System overview of RFbook.

A. Overview

RFbook is an RFID-based book sensing system and the
architecture diagram of the system is shown in Fig. 1. It
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consists of four main modules: Data Preprocessing, Value
Calibration, Feature extraction and Classification Module.
• Data Preprocessing. We receive data samples from the

signal received by the directional antenna by attaching the
book to the tag array. We send the data obtained from the
reader to the server. We first need to perform data segmentation
to determine the start time when RFbook starts classifying
books. Then we need to solve a few problems to reduce the
hardware error generated by the system.

• Value Calibration. We use a phase calibration algorithm
to replace outliers in the raw phase values with normal values.
Finally, we use frequency hopping to reduce the extraction
error of RSS readings.

• Feature extraction. To suppress the influence of environ-
mental noise, we make the difference between the obtained
RSS and phase readings and the readings when no book is
attached and use this difference as the feature value. Then we
construct two sets of feature vectors and input these two sets
of feature vectors into our designed neural network.

• Classification. RFbook uses a neural network to classify
different books and humidity detection. The input to the
network is an eigenvector containing phase and RSS values.
The network’s output is the probability that this feature vector
belongs to a particular book. Finally, to solve the problem of
minor differences in the book placement each time, we propose
a strategy to sample features in groups to optimize our neural
network.

We designed extensive experiments to verify the robustness
of RFbook, and the experimental results have proved that RF-
book can classify different types of books and even distinguish
books of the same material with different thicknesses and
densities.

B. Signal preprocessing

1) Segmentation: Before the work of book identification
starts, we first need to determine whether RFbook starts to
detect book. When the book is attached to the tag array, the
part of the RSS reading on the array that is obscured by
the book changes significantly, and we detect this change to
determine the timestamp when the system starts working.

Specifically, we use the continuous RSS value changes of
the central position tag in the tag array over a period of time
to determine whether the detection starts. We use multiple
sliding windows, once the RSS value of a sliding window far
exceeds the previous sliding window and the RSS value after
this sliding window is consistent with the current window. We
set the start time of this sliding window to the time when the
detection started. Then the system starts to collect data. We
collect data from the initial timestamp for ten sliding windows,
where each sliding window corresponds to a set of RSS and
phase values. We will then calibrate the RSS and phase values
in all windows and construct two sets of eigenvectors.

Although these two sets of feature vectors contain book
features, there are still three challenges in identifying book
using these two sets of feature vectors.

• Random antenna starting position affects RSS and
phase readings.

• Normal phase values are mixed with abnormal phase
values.

• Ambient and hardware noise is included in the book
feature subblock.

To address these challenges, we design three modules,
Distance-independent removal, Phase Calibration, and RSS
quantization, to improve the robustness of RFbook.

2) Distance-independent: In book detection, the distance of
the directional antenna from the tag array causes uncontrol-
lable phase and RSS changes, making book feature extraction
challenging. We can eliminate this detection error if the system
can automatically obtain the exact distance (in millimeters)
between the antenna and the tag array at each detection.
However, this is not possible. We need a more appropriate
way to solve this problem. Specifically, we tested by placing
the antenna at two different positions to eliminate the problem
of distance dependence on the tag reader as shown Fig. 12.

Fig. 12: Eliminate distance dependence between antenna and
tag array.

For RSS readings of RFID antennas at different locations,
we have

RSSi = 10 lg

(
G2

tΓtar
PTx

1mW
TrG

2
r

(
c

4πfdi

)4
)

, i ∈ [1, 2] (1)

We extract the RSS readings for these two locations and get

40 lg

(
d2

d1

)
= RSS1 −RSS2 (2)

We can know that the difference in RSS readings is only
related to material and distance from Eq. 1 and Eq. 2 when the
tested material itself is unchanged. Likewise, We can calculate
the phase readings for these two different locations as follows

ϕBi
= ∆ϕM + 2π

(
2di

λ
− ki

)
+ ϕ0, ki =

⌊
2di

λ

⌋
, i ∈ [1, 2] (3)

By transforming Eq. 3, we can get

d2

d1
=

2πk2 + ϕB2
−∆ϕM − ϕ0

2πk1 + ϕB1
−∆ϕM − ϕ0

(4)

Both Eq. 2 and Eq. 4 have the same term d2

d1
, we combine

Eq. 2 and Eq. 4 to cancel the same item d2

d1
, get the following

relation

∆ϕM =
2π (Υk1 − k2) +

(
ΥϕB1 − ϕB2

)
Υ− 1

− ϕ0 (5)

where
Υ = 10

RSS1−RSS2
40 (6)

So far, we have successfully eliminated the dependence of
material characteristics on distances d1 and d2.
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C. Value calibration

1) Phase calibration: For wireless sensor systems, the
phase will vary periodically between [0,2π]. For RFbook, the
phase error when collecting data mainly comes from two parts:
the interference of the hardware itself and the slight change
of the book position causes the other. The error caused by
the hardware is caused by the unexpected position change of
the antenna and the tag array, which will add an extra phase
value to the standard phase value, resulting in an identification
error. Second, during data collection, the relative position of
the book to the tag array cannot be kept the same every time. It
also causes phase measurement errors. Therefore, the collected
phase values may cause serious identification errors.

Therefore, we design an algorithm to solve this problem.
We are given a specific sliding window with ten consecutive
phase values. Some of these ten phase values are greater than
π and some are less than π. When there are more phase values
greater than π than less than π, we use the average of the phase
values more marvelous than π to replace the array of phase
values less than π. This can effectively reduce the interference
of outliers in minority groups.

2) RSS quantization: We use frequency hopping, a com-
monly used method to find clean channels in rich multipath
environments, to reduce multipath’s effect on the system’s
detection results.

RFbook uses an Impinj 420 RFID reader with a frequency
range of 902.75 to 927.25MHz and 50 frequency channels. We
use frequency hopping to pass more channels and get a unique
frequency signature. Then, a 200ms delay is required for the
reader studio to perform frequency hopping, which means that
the more frequency hopping is completed, the more serious the
system delay will be. After many experiments (specifically in
Sec V), we found that after using more than 12 channels, the
system’s accuracy no longer improved significantly. So our
system uses 12 channels to do frequency hopping.

The accuracy of system RSS readings can be affected by
hardware noise. And we use the reader to get only 0.5dBm
RSS reading resolution. Therefore, we need a way to reduce
reading errors. To reduce RSS errors caused by multiple
channel readings, our strategy is to make the RSS errors
consistent across multiple channels. Since the RSS readings
in different channels are different, we only measure the RSS
on the first channel and use this RSS in place of the rest of the
RSS values. In this way, we unify the possible RSS errors of
all channels. Although RSS errors can lead to incorrect book
characteristics, all channel book obtained features will vary
in the same trend. We use this method during data collection
to effectively reduce measurement errors. For phase, we use
the phase values of multiple channels to measure. Compared
to RSS readings, the range of phase variation is smaller.
We use the measured phase value of multiple channels and
the measured RSS value of the first channel to reduce the
interference of hardware factors to the system.

D. Layout of the tag array

Since there is electromagnetic interference between adjacent
tags, the tags in the tag array may greatly interfere with the

reading of adjacent tags as the layout as shown in Fig. 13(a),
the generation of electromagnetic interference between adja-
cent tags under the dense layout of tags will seriously affect
the signal quality. We use a well accept tag array Layout [36]
to reduce the effect of this interference. Specifically, we disrupt
the orientation of tags by placing adjacent tags perpendicular
to each other, as shown in Fig. 13(b). This makes the elec-
tromagnetic interference perpendicular to each tag, which can
minimize the interference of adjacent tags.

(a) Universal layout. (b) Shuffled layout.

Fig. 13: Different tag array layout.

E. Feature extraction

After RFbook receives the signal from the tag array, it
uses RSS and Phase readings to differentiate the book. Below
we will introduce the feature extraction method adopted by
RFbook.

During RFbook’s signal acquisition process, random book
placement and hardware noise can affect the readings of
RSS and phase values read by the RFID reader. To improve
the system’s robustness, we reduce the effects of random
book placement and hardware noise by calculating the dif-
ference between adjacent RSS and phase readings in the
tag array. Specifically, the distance between adjacent tags
is much smaller than between the tag and the environment,
which means that even if adjacent tags receive environmental
interference, the interference is similar. Therefore, calculating
the difference between the RSS and phase readings of adjacent
tags can effectively reduce environmental interference. We
first calculate the phase difference between adjacent tags.
After signal preprocessing, we record the tag phase difference
calculated by RFbook as a feature, then the phase difference
between adjacent tags can be calculated as

∆θrc = θrc − θrc+1 =

(
4πdrc

λ
+∆θrctag

)
mod 2π (7)

where drc is the difference between the tag in row r and
column c and the tag in row r and column c+1 to the antenna
distance. ∆θrctag is the initial phase offset of the two tags. For
the entire tag array, we can derive

∆P =

∥∥∥∥∥∥∥∥∥
∆θ11 ∆θ12 . . . ∆θ1c
∆θ21 ∆θ22 . . . ∆θ2c

...
... . . .

...
∆θr1 ∆θr2 . . . ∆θrc

∥∥∥∥∥∥∥∥∥ (8)

∆P is the eigenmatrix of the phase of the tag array, where
∆θrc represents the phase value at row r and column c. By this
method, we get the eigenvector of the phase difference value,
and RFbook inputs this vector into the classification device.
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Fig. 14: The structure of neural network.

Similarly, after getting the feature vector about the phase,
we can get the feature vector of the RSS in the tag array as
follows

∆RSS =

∥∥∥∥∥∥∥∥∥
∆R11 ∆R12 . . . ∆R1c

∆R21 ∆R22 . . . ∆R2c

...
... . . .

...
∆Rr1 ∆Rr2 . . . ∆Rrc

∥∥∥∥∥∥∥∥∥ (9)

From Eq. 9 and Eq. 8 we get the feature vector of RSS
∆RSS and feature vector of phase ∆P of the book.

F. Classification module

In this section, we will detail the structure of our neural
network used in RFbook.

1) The structure of neural network: In this section, we
focus on the neural network structure used by RFbook. To clas-
sify the materials and shapes of books, we carefully designed
a two-branch neural network as shown in Fig. 14. The over-
all network structure mainly comprises Channel conversion,
Environment discriminator, Humidity and Book classification.
We read the RSS and Phase from the tag array as input. To
make full use of the high-dimensional features in the RSS
and Phase matrix, we also process the extracted features in
three modules: channel conversion, multi-scale sensing and
environment filter. Finally, we perform both classification and
humidity detection on the books.

2) Channel conversion: Due to the effects of multipath and
object occlusion, the received RF signal may experience fre-
quency selective fading. Therefore, we have the reader transmit
on multiple frequency channels to enhance the robustness of
our system. But in the case of multipath, different frequency
channels may produce irregular changes that interfere with
our reading. So, we need to select ’clean’ channels for further
classification.

We regard the choice of channels as the basis for accurate
classification by a classifier. On this basis, in order to balance
the weights of signals under different channels adaptively.
We used the channel attention component. Specifically, it can
adaptively learn the feature responses of channel directions by
explicitly modeling the interdependencies between channels.
Simply put, instead of discarding multipath interference, we

use it to suppress less important signals while activating
important ones for frequency calibration.

3) Multi-scale sensing: RFbook uses tag arrays for book
classification, which can provide more spatial information than
material classification systems that only use a single tag. This
kind of spatial information is very important for classification,
and we use neural network for spatial information extraction.
We need to increase the depth of the network while reducing
the computational burden of the network. Generally speaking,
the method of increasing the competitiveness of the network
is usually used to increase the depth of the network. But
using this method will cause excessive skewing of the neural
network. To solve this problem, we use ResNet V2 [37]
architecture to optimize neural network. For ResNet V2, the
identity mapping branch has no ReLU activation function, and
it can be unimpeded during forward propagation and backward
propagation, and the identity mapping is truly realized. Such
an architecture combines multi-scale features extracted from
tag arrays to enrich the sensing information greatly. At the
same time, the remaining connections do not lose low-level
key features, which can eventually speed up the training of
the network.

4) Environment discrimination: Due to some defects in the
radio frequency system itself, it will inevitably be affected
by environmental noise. At the same time, this influence also
limits the use of the system in new environments, and the
method of simply relying on Sec. III-B cannot completely
eliminate this interference. Therefore, to improve the system’s
robustness, we also optimized the neural network to improve
the system’s anti-interference ability to noise. Inspired by
domain adaptation techniques, we introduce an Environment
Discrimination module. Eliminate the effect of environmental
noise by exploring the reverse gradient loss.

Specifically, we take the stacked multi-scale features as
input, first into a 3D average pooling layer and then into a
fully connected layer to extract overall features. Then use this
component to perform reverse training with the previous com-
ponent, and use this method to eliminate the noise generated
by the environment.

5) Humidity detection: RFbook uses two networks for
humidity detection and book classification. In the process
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of humidity detection, the collected feature vectors are first
sent to the 3D convolutional layer. Then the FC layer is
activated using ReLU to form a new representation. In order
to reduce the complexity of the model, we use the average
pooling layer in the last layer to reduce the model’s complexity
and calculation, improve the model’s generalization ability,
and reduce the risk of overfitting. Average pooling fuses the
information into a single feature vector to perform the final
humidity detection.

6) Book classification: In the book classification module,
we first extract RSS and phase features from the book, which
are then fed into the convolutional layer of the neural network.
We incorporate Rectified Linear Units (ReLU) after each
convolutional layer to enhance the network’s nonlinearity and
reduce interneuronal dependencies. Additionally, to ensure
the network’s robustness to changes in data distribution, we
employ normalization functions following the convolutional
layers. Considering the relative stability of RSS features
compared to phase features, we assign weights of 0.6 and 0.4
to the outputs of the fully-connected layer associated with the
RSS value and phase, respectively. Doing so, we effectively
prioritize the RSS information in the final decision-making
process. Finally, the book with the highest probability, as
determined by the input feature vector, is classified as the
predicted book.

Fig. 15: Mixed Feature vector.

7) Dealing with different book positions: During the oper-
ation of the RFbook system, the biggest challenge is the irreg-
ular placement of the book because, in the actual application
scenario, the user cannot ensure that the book can be placed
in the same position every time. The feature vectors collected
in the training set may differ from those collected during the
testing process, which may affect the performance of RFbook
due to differences in book positions. We conducted a set
of experiments to test this hypothesis. We collected feature
vectors for the same book at two different positions. We used
the same feature vectors to train and test the neural network,
and the recognition accuracy was as high as 95%. However,
when we used another set of training classifiers and then cross-
validated them, the accuracy dropped to 80%. The results show
that differences in book placement do indeed degrade RFbook
performance.

To deal with random book potential positions, we use a
method that randomly draws feature vectors from multiple
training sets to deal with potential random book positions.

Specifically, as shown in Fig. 15. We extract different feature
vectors from different training sets to form a new feature
vector, which contains the RSS and Phase values of the book
at different positions. In this way, the book classifier can obtain
the feature vectors of the book in more positions, thereby
increasing the robustness of the system. In order to verify
whether this method is effective, we conduct classification
experiments. We first fix the number of feature vectors in
the training set to avoid the influence of the training set
size. Through the cross-experiment, the classification accuracy
of RFbook reaches 96%, which proves the feasibility of the
method.

IV. SYSTEM IMPLEMENTATION

Fig. 16: The experiment setup of RFbook.

Hardware prototype: The overall hardware prototype of
RFbook is shown in Fig. 16. We use an Impinj R420 reader,
which is currently a reader with high comprehensive perfor-
mance in the industry, providing a complete SDK development
kit, demo software, and documentation support. We used a
2.4G directional 8dbi high-gain panel antenna to adapt to our
experimental environment. We used the stand to align the
antenna to the tag array on the table. Our experiments used
cheap alien tags that cost only 0.3 cents per tag. A total of 30
tags are placed in a label array of 5x6.

Software: We use a desktop computer as a server with a
2.5GHz i9-11900H CPU and 32G RAM. All algorithms are
implemented using JAVA and Matlab. In the experiment, the
data returned by the tag array is transmitted to the reader
through the directional antenna. The reader transmits the data
packet to the server through the Ethernet cable, and then the
data analysis of RFbook is performed on the server.

Test targets and Metrics: To verify the RFbook system,
we selected 100 different types of books. These books con-
tain different thicknesses and different paper materials. We
collected the characteristics of each book. To characterize
the performance of RFbook, we mainly used three indicators:
the False positive rate (FPR), False negative rate (FNR), and
Accuracy.

V. EVALUATION

In this section, we evaluate the performance of RFbook in
classifying different books. We first evaluated the system’s
overall performance and then tested the effect of various
experimental parameters on the system. Note that To classify
different books, we first register the books to be classified, and
when detection is required, we match the features of the books
to be detected with the features of all books in the database.
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A. Overall performance

We first evaluate the overall performance of RFbook in
distinguishing different books. We use 100 books for our
experiments. We labeled each book and collected and validated
100 sets of data for each book. Table. I shows that the
median values for precision and F-score are 96.5% and 95.6%,
respectively. The average FAR of RFbook is less than 3%. It
is worth noting that the FRR of most books is less than 2%,
which means that RFbook can effectively distinguish different
types of books.

TABLE I: The overall performance of RFbook.

Mean Median Standard Deviation
Precision(%) 96.6 96.5 3.3
F-score(%) 95.8 95.6 4.1

FNR(%) 2.7 2.6 2.5
FPR(%) 1.7 1.5 0.5

Similar book. We also made some challenging settings for
RFbook, such as S1, S2, S3 and S4 as shown in the Fig. 17(a),
S1 and S2 have almost the same thickness but use different
paper materials, S3 and S4 have slightly different thickness but
use paper of the exact same material. We observed that their
FRR and FAR still did not increase significantly as shown in
the Fig. 17(b), which shows that RFbook can well distinguish
books with similar thickness or materials.

(a) The similar book.
S1 S2 S3 S4
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(b) FAR and FRR performance.

Fig. 17: FAR and FRR performance of similar books.
Humidity detection. We evaluated the detection of the

system in different humidity environments. We placed the
books in the humidity box and selected two humidity sensors
with different prices for comparison. As shown in Fig. 18,
we tested under 10 different humidity environments, and the
experimental results show that the accuracy of our system
is much higher than that of low-cost sensors, and the per-
formance of high-end sensors that sell for 200 dollars is
comparable.

53% 56% 59% 62% 65% 68% 72% 75% 78% 81%
0

5

10

15

M
ea

n
 a

b
so

lu
te

 e
rr

o
r 

(%
) RFbook

High-end sensor

Low cost sensor

Fig. 18: Humidity detection estimation error at different levels.

B. Impact of other factors

Effect of group sampling. To address differences in paper
placement, we use multiple sets of sampling features to reduce

the effect of random paper placement. We use one, two, and
three sets of feature vectors to train the neural network. The
experimental results are shown in Fig. 19(a). Among them,
We found that the classification and recognition accuracy of
RFbook increases with the increase in the number of groups
and feature vectors used, which proves that the grouping
strategy is effective.

Effect of distance. The distance between the antenna and
the tag will affect the RSS and Phase readings and thus affect
the recognition results. We conduct experiments at different
distances to test the effect on the robustness of RFbook. We
placed the antennas at six different distances from the tag ar-
ray, 10cm, 13cm, 16cm, 19cm, 22cm, and 25cm. In Fig. 19(b).
We found that the detection performance of RFbook is the best
when the distance is 16cm, and when the distance exceeds
22cm, the detection performance will decrease. The main
reason is that RSS readings exhibit logarithmic decay as the
antenna gets farther from the tag array, making the target
features less obvious than the ambient noise. Finally, the
system has a more flexible space in the choice of distance.

Effect of the number of tags. We further explore the impact
of the number of tags on RFbook. For each tag deployment,
we use 30 books to collect data 50 times in the tag column.
Then use the collected data to train again and use the trained
model to evaluate the impact of the number of tags. The
experimental results are shown in the Fig. 19(c). It can be
seen that more tags can provide the system with richer book
feature information. But when the number of tags exceeds 30,
the improvement is not obvious. Therefore, considering our
experimental results, we finally use an array of 30 tags.

Effect of environment. We selected four potential usage
scenarios for RFbook: library, classroom, restaurant, and cof-
fee shop. The multipath effects in libraries and classrooms are
mainly caused by static objects, and the multipath effects in
restaurants and cafes are mainly affected by human activities.
In each environment we collected 20 samples and built a new
dataset. For these four different scenarios, RFbook maintains
an accuracy rate of more than 96%, as shown in the Fig. 20(a).
The experimental results show that RFbook can still maintain
robustness in various environments. This is due to the fact that
the system focuses on paper and its features, while the antenna
is always aimed at the tag array, reducing interference from
surrounding objects.

Effect of number of frequency channels. More frequency
channels can generally achieve higher material identification
accuracy but also bring higher latency, so we need to find a
balance between accuracy and latency. As shown in Fig. 20(b),
for our system, the recognition accuracy of 4 channels is
85.5%, the recognition accuracy of 8 channels is 94.2%, the
average identification accuracy of 12 channels is 96.5%, and
the recognition accuracy of 16 channels is 96.5%. We find
that as the number of channels increases, the frequency and
eigenmodes of the system become more unique, increasing
detection accuracy. But after going up to 12 channels, the
increase in accuracy almost stops. Consider that the increase
in channels will bring delays. We use 12 channels for paper
recognition.

Effect of the number of books. We increased the number
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Fig. 19: The effects of different system settings.

of tested books from 30 to 100 to detect the impact of
increasing the detection range on the system. As shown in
Fig. 20(c), as the number of book detections increases, the
recognition accuracy of the system will decrease slightly.
When there are only 30 objects, the detection accuracy exceeds
99%, and when there are 100 detected objects. The detection
accuracy dropped to 96.6%. This result is understandable. As
the number of books in the database increases, the average
difference between books becomes smaller and smaller.

Effect of tag diversity. Since different RFID tags have
antenna structure and chip type differences, leading to different
working ranges, sizes and price differences between tags.
For RFbook, since paper produces a small range of RSS
and Phase changes, we need to know which tags are most
sensitive to RSS and Phase changes. To evaluate the effect of
different tags, we used 6 tags with different shapes as shown
in Fig. 21(a), then used these 6 tags to form an array to detect
the impact on RFbook performance. The experimental results
are shown in Fig. 21(b). Among them, tag F performed the
best. Because tag F is a relatively regular square, the formed
array is also a fairly standard shape and can be well adapted
to the array layout required by RFbook.

Effect of model adaption. To demonstrate the long-term
performance of RFbook and to emphasize the necessity of
model adaptation. The evaluation involved 100 books, each
initially trained on the dataset from the first session (called
S1) and subsequently tested on all six sessions. Each book
receives 100 tests per session. Figure 13 illustrates the results
obtained by averaging data collected from 50 books, with and
without model adaptation.

When model adaptation is not employed, the FNR increases
from 2.7% to 5.2% as shown in Fig. 22(a). In contrast, by
implementing model adjustments, the average FPR remained
at approximately 1.8% Fig. 22(b) even after 20 days.

VI. RELATED WORK

Sensing based on RFID signals has been widely used,
including vital signs detection, material identification, indoor
localization, etc. PaperID is inspired by these works and is
closely related to the following works.

Vital signs detection: Human behavior detection has a
long history, with early wireless signal-based detection using
Doppler radar [38] to record random human motion. Advances
in signal processing technology have driven the development
of passive sensing systems. Lv et al. [39] used a set of

matched filters to remove the interference of random body
motions on vital sign detection. As sensor system developers
became dissatisfied with the evolution of the sensor design
world, researchers began designing their sensors. ViFi [40]
can detect the breathing and heartbeat of drivers and passen-
gers in moving cars. More-Fi [41] extract fine-grained vital
signs information in the presence of human motion. MoVi-Fi
[14]can perform contactless vital signs recovery on almost any
commercial-grade radar. Zhao et al. [42] can use the reflected
signals of the human heartbeat and breathing for emotion
recognition. SitR [43] uses radio frequency signals for sitting
posture recognition, which neither compromises privacy nor
requires wearing various sensors on the human body.

Material identification: Material identification using low-
cost commercial RF equipment is now an exciting area of re-
search. TagScan [44] identified the liquid with an inexpensive
RFID device and was able to image the target simultaneously.
LIANG et al. [45] used mmWave radar to identify materials
contactless. Xie et al. [46] found that changes in liquid
concentration can cause changes in tag impedance. Based
on this, they used the method of attaching the tag to the
object for material identification. GreenTag [47] using a unique
threshold judgment method to detect soil moisture using an
RFID system. RF-Mehndi [48] uses an RFID-based method
of preventing the card from being lost or stolen, which cannot
be used illegally by an adversary. RF-ray [49] propose a
generic wireless sensing system, that could recognize the shape
and material of an object simultaneously, even for unseen
shape-material pairs. Akte-Liquid [50] e present a low-cost
solution for a liquid identiication system that exploits acoustic
signals generated by smartphones and relected by liquids as a
ingerprint of liquids.

Indoor localization: Compared with traditional vision-
based solutions, indoor positioning using wireless signals can
better protect user privacy. Rf-Echo [51] used well-designed
signal processing algorithms and machine learning techniques
to significantly improve indoor positioning accuracy with
limited bandwidth. Kotaru et al. [52] used the ubiquitous
basic wifi infrastructure for indoor positioning and improved
the positioning resolution to sub-meter level. Dina et al. [53]
proposed a novel algorithm to calculate the sub-nanosecond
flight time of commercial wifi signals to achieve centimeter-
level positioning. TagSort [54] uses physical layer information,
that is, the phase of RFID wireless signals to achieve relative
positioning of different tags.
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Fig. 20: The effects of different system settings.

(a) 6 different tags used in the
experiment.

A B C D E F
80

85

90

95

100

A
c
c
u

r
a

c
y

/%

(b) The accuracy of different tag.

Fig. 21: The impact of different tags on RFbook.
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Fig. 22: The impact of model adaptation.

VII. DISCUSSION

Status of book. Books will depreciate and wear out over
time, especially for old books displayed in some museums and
libraries. These books may not be complete. How to solve this
problem is also what we need to focus on in the next stage.

Latency. The delay of the RFbook system mainly comes
from the two parts of signal acquisition and paper identifi-
cation. In the current system, the signal collection is a time-
consuming task and the time cost of feature collection per
sheet is about 200ms, and the time for the neural network
network to process one feature block is about 0.02 seconds.
To improve accuracy, we may need to collect the signal
multiple times. Therefore RFbook needs 1-2s to complete the
paper classification detection. We believe that time costs can
be significantly reduced by applying more efficient hardware
device updates.

VIII. CONCLUSION

In this paper, we present RFbook, a system for book
maintenance and classification in unattended libraries. RFbook
is designed to accurately identify and classify different books
while monitoring the humidity levels of the books. To achieve
this, we developed a neural network model for book classifi-
cation and devised a set of algorithms to address challenges

related to distance dependence and book location uncertainty
in RFID systems. We conducted comprehensive experiments
to evaluate the system’s performance. We tested RFbook with
100 books, each with unique parameters. The experimental
results demonstrate that RFbook can well perform book classi-
fication and humidity detection using a commercially available
RFID system.
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