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Abstract—IOTA blockchain system is lightweight without
heavy proof-of-work mining phases, which is considered a
promising service platform of Internet of Things applica-
tions. IOTA organizes ledger data in a directed acyclic graph
(DAG), called Tangle, rather a chain structure as in traditional
blockchains. With arriving messages, IOTA tangle grows in a
special way, as multiple messages can be attached to the tangle
at different locations in parallel. Hence, the network dynam-
ics of an operational IOTA system would justify a thorough
study, which is currently unexplored in the literature. In this
article, we present the first theoretical modeling for the evolv-
ing IOTA tangle based on stochastic analysis. After analyzing
snapshots of the real-world IOTA ledger data, our key find-
ing suggests that IOTA tangle follows a rather atypical double
Pareto Lognormal (dPLN) degree distribution. In contrast, typ-
ical power-law and exponential distributions do not accurately
reflect the fact. For model parameter estimation, we further real-
ize that using generic optimization solvers cannot yield quality
fitting results. Thus, we design an alternative algorithm based
on expectation–maximization (EM) framework. We evaluate the
proposed model and fitting algorithm with official data provided
by the IOTA Foundation. Quantitative comparisons confirm
the fitting quality of our proposed model and algorithm. The
whole analysis reveals a deeper understanding of the internal
mechanism of the IOTA network.

Index Terms—Expectation–maximization (EM) algorithm,
IOTA blockchain, network dynamics, parameter estimation,
theoretical modeling.

I. INTRODUCTION

IN 2016, IOTA Foundation (IF)—The official IOTA devel-
opment and operation consortium—launched a new type

of blockchain system, called IOTA. Rather than using a chain
topology, the ledger of the IOTA system is organized as a
directed acyclic graph (DAG), called Tangle, wherein every
vertex represents a single message record (either a value trans-
action or a data payload) [1]. In IOTA, every participating
node holds a copy of the tangle, responsible for committing
incoming messages independently and forming consensus in
a distributed manner among participants.
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IOTA is lightweight and feeless without heavy proof-of-
work mining phases. Hence, IOTA is considered suitable for a
decentralized service platform of IoT applications, characteris-
tic to a massive exchange of instant, typically tiny information.
Although IOTA recently has gained high research popularity,
most of the works focus on its empirical studies [2], protocol
extensions [3], and applications [4], [5]. Nevertheless, we are
not aware of any graph- and network-theoretical analysis on
the ledger tangle evolution, especially for the operational IOTA
network deployed in the real world. Undoubtedly, theoretically
understanding how the tangle evolves is important to capture
the core mechanism underlying IOTA network dynamics.

Due to the particular structure and the distributed consensus
mechanism, the evolving ledger tangle in IOTA would justify
such a network dynamics analysis. Specifically, when a new
message arrives, it is attached as a new vertex, with directed
edges pointing to the existing vertices. As in a DAG, many
candidate vertices exist, the location the vertex will attach
to is determined by a selection algorithm—part of the IOTA
distributed consensus protocol. In IOTA, a directed edge repre-
sents an approval from the source vertex to the referred vertex.
The key principle is to encourage new messages approving yet
unapproved vertices, so-called tip vertices, whose in-degree is
zero. The ledger tangle chronologically grows in such a man-
ner over time. More details about IOTA’s mechanism will be
introduced in a later section.

In this article, we study how the tangle topology evolves
in IOTA. Particularly, we try to answer, if there exists a theo-
retical network model governing this process; and if so, what
a degree distribution would best represent it. Several typical
network models, such as the random graph model [6], [7], [8]
and Barabási’s preferential attachment (PA) model [9] have
gained a wide recognition, after they were shown to have
good fitting properties for many naturally occurring processes.
However, during our initial investigation, we realized that the
existing network models did not fit well with the observed
data sets generated from the IOTA network. The key reasons
are explained as follows.

First, IOTA tangle grows with a batch arrival mode, in
which multiple new vertices may come and every new ver-
tex may add more than one new edge. The key fact behind
this is that a copy of the tangle exists on every participat-
ing node; and every node can attach new messages to its
local tangle independently; thus, after individual ledger copies
are merged, multiple messages and edges can appear to one
vertex at burst. Existing models, however, often assumed a
single vertex sequential arrival mode, where only one new
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vertex is added at each time. Most even further assumed
a single edge addition. Hence, it is inaccurate to simplify
IOTA tangle developing with such a simple way. The network
modeling for IOTA’s tangle evolution has a different growing
behavior.

Second, vertex and edge addition in IOTA tangle do not
follow a similar logic of the PA model (or of its variants). In
the PA model, a vertex is randomly selected proportional to
(or modeled as a function with explicit form of) its degree
value. In IOTA, however, vertex selection is a much more
complicated process, which involves evaluating other existing
vertices (i.e., historical ledger records) in a subtangle topology.
Clearly, it cannot be attributed to a simple vertex property (e.g.,
a degree value) characteristic to the PA model. The above two
key features of the formation process makes IOTA’s tangle
evolution show a unique behavior, which was not studied in
the scope of network modeling research.

In addition to deriving the model, another technical
problem that is equally important is parameter estimation.
Unfortunately, the issue we encounter is that a generic
optimization solver (typically gradient-descent (GD)-based
methods) cannot give a satisfactory parameter estimation for
the derived model. We then develop a dedicated algorithm
based on expectation–maximization (EM) framework [10] as
an alternative. In summary, our main contributions are listed
as follows.

1) Using stochastic analysis, we characterize operational
IOTA network dynamics with an stochastic differen-
tial equation (SDE) that approximates vertex degree
evolution over time.

2) Based on the analytical solution of the modeled SDE,
we derive that IOTA tangle dynamics follow a double
Pareto Lognormal (dPLN) distribution.

3) For parameter estimation, we develop an EM-based
algorithm, which can provide more reliable and higher
quality fitting results than using generic GD-based
solvers; our source code is also published to benefit the
community.1

4) We evaluate the fitting quality of the derived model and
proposed algorithm with realistic snapshot data gener-
ated from IOTA mainnet,2 and the results justify our
findings.

To the best of our knowledge, in short, this work is the first
trying to model the tangle evolution in IOTA, whose network
dynamics behaviors combine a batch vertex arrival and a com-
plex attachment process. However, modeling of such a unique
network dynamic, meanwhile providing a more efficient fitting
algorithm, were not seen so far in the past literature.

The remainder of this article is organized as follows. Related
work is reviewed in Section II and IOTA preliminary is intro-
duced as a background in Section III; Section IV presents our
model and Section V introduces our model fitting algorithm;
after that, Section VI shows the evaluation results; Section VII
concludes this article.

1Github: https://github.com/goldrooster/IOTA-Tangle-Evolution-Model.
2IOTA mainnet is an IOTA network deployed on Internet by IF and ledger

data were created by anonymous users over the world.

II. RELATED WORK

With the high popularity of blockchain, there are many
survey works on research activities of blockchain and IoT
systems, such as [15], [16], [17], [18], [19], and [20]. Most
of them focused on inventing/proposing consensus protocols,
improving system performances, applications of blockchain
for IoT services, and security issues. For example, as an
application presented, Dhall et al. [16] provided a solution
to utilize blockchain platform for reducing fake information
propagation on social media/messaging systems; additionally,
Hayyolalam et al. [20] provided a comprehensive review on
using edge-assisted solutions for healthcare systems based on
IoT devices. Nevertheless, few of them mentioned the theo-
retical analysis research about blockchain systems; and even
fewer had an eye on the theoretical modeling on the tangle
dynamics of the IOTA blockchain network.

A. Theoretical Work in IOTA (DAG-Based) Blockchain

Though there are very limited relevant theoretical works, we
observed several attempts on analytical performance modeling
of DAG-based blockchain systems. Kusmierz et al. [11], [12]
built a rule-based discrete- and continuous-time models for
IOTA, in order to build a relationship of the number of tip ver-
tices and the vertices’ cumulative weights over time. In [14],
it theoretically analyzed the probability of being left-behind
of confirmation of a message in IOTA tangle by simulating
the IOTA protocol. Popov et al. [13] analyzed the message
attachment behavior of the IOTA network and proved that
there exists a Nash equilibrium, revealing that selfish nodes
will cost more than nonselfish nodes. Our interest in this work
targets to a different goal, which aims to theoretically model
how the tangle topology evolves and what a degree distribution
could best represent it.

B. Network Graph Models

Network graph modeling is an active research area. The
famous growing/evolving network model (i.e., PA model) was
proposed in [9]. In this model, new vertices prefer to attach
on existing vertices with higher degrees, which models a com-
mon phenomenon where the rich becomes richer. The authors
proved that the graph will become a scale-free network (i.e.,
a power-law (PL) distribution) at the end.

As a variant of the PA model, cyclic PA (CPA) was intro-
duced in [21]. The attachment probability of the CPA model
depends on the shortest path from the node to all other nodes.
The author used this model to analyze the real-world network,
such as Facebook and company directors. They showed that
the CPA model can provide more flexibility to model the
networks in the real life. Furthermore, in [22], another PA
model’s variant is proposed to model a phenomenon where
a vertex acquires a new vertex depending on the density of
its local area in a graph. It also shows that a PL distribution
appears. The work in [23] introduced a burst model based on
the PA model. However, this burst model only extends the
PA model with a random vertex mutation behavior where a
new vertex randomly duplicates to multiple ones at its original
point.
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TABLE I
COMPARISON OVERVIEW OF THE SELECTED LITERATURE

Recently, Pandey and Adhikari [24], based on the PA model,
proposed a network reconstruction model for structural recon-
struction of scale-free real networks. Liu et al. [25] used
two jointly evolving graphs, i.e., K-partite graph and gener-
ated graph, to characterize intertype and intratype interactions
among nodes, respectively, and establishes the evolving pro-
cess of them. Its underlying assumption is also based on
the PA model where higher degree vertices are preferred
when the graphs evolve. Tajeuna et al. [26] modeled the
community structure changes of social networks to facilitate
predictions of critical events. It applied a sliding window
analysis from which it developed a model that simultane-
ously exploits an autoregressive model and survival analysis
techniques. Qiao et al. [27] proposed a variant of stochastic
block models in order to characterize clusters or community
structures of network data with PL degree features.

In summary, although the PA model and its variants provide
decent modeling for a large number of evolving networks,
to our problem, IOTA tangle evolution cannot be simplified
like that due to its special burst arrival mode and the vertex
selection mechanism, explained before.

In reality, many phenomena do not follow the logic of a
PA model. The degree distributions of their topology are also
not PL/Exponential (Expon) distributions. For instance, the
authors, respectively, showed that the file size [28], the city
size [29], and mobile call graphs [30] follow dPLN distribu-
tions [31]. Comparing to them, the main challenge of this work
is that IOTA is a distributed network system and its network
dynamics are implicit. Hence, a correct modeling with rigor-
ous verification is needed. In fact, initial results in [33] already
realized that the PL model does not fit the empirical data of
IOTA mainnet.

C. Modeling Tools

Technically, there are two main approaches used for network
modeling: 1) master equation system (MES) and 2) SDE
approaches.

The MES approach uses the Markov chain theory to derive
a set of differential equations that describe the transition of the
probability distribution of an interested system state [34]. For
example, Wing et al. [23] used this approach and presented
a generalized framework to unify different evolution stages
of complex networks. Its network growing strategy is sim-
ilar to the PA model. The advantages of using the MES
approach are its accuracy and flexibility, while its disadvan-
tage is that modeling with MES may render the problem
intractable. We will see that our problem drops into this

case. This also explains why most of the existing works only
covered simplified network behaviors.

The SDE approach describes a dynamic system in a proba-
bilistic view by introducing stochastic terms in modeling [32].
Reed and Jorgensen [31] explained the genesis of dPLN dis-
tribution with such an approach. The advantage of using the
SDE approach is its simplicity. It can help to simplify the
original problem to an easier case and get a decent approxi-
mation. Its disadvantage is that sometime it may oversimplify
the problems thus lose its original properties. We will see that
our problem can benefit from the SDE approach, where after
approximation, the original problem becomes solvable without
sacrificing any key property.

D. Summary

In order to give a more concise and direct comparison, we
compose Table I to highlight the aimed subjects of our work
and the mismatch of the past literature.

First, this work mainly targets to theoretically understand
and model the tangle ledger dynamics in IOTA. This differs to
the works analyzing the performance KPIs as in Section II-A
(refer the 1st row of Table I), and this work is also orthogonal
to those work exploring IOTA’s applications, such as [15],
[16], [17], [18], [19], and [20] (refer the 2nd row of Table I).

Second, in the scope of network dynamics modeling, due
to the unique features of IOTA, modeling its tangle evolution
faces the challenges combining both batch vertex arrivals and
a complex vertex attachment process. This differs to the exist-
ing network modeling works (as discussed in Section II-B)
often with oversimplified assumptions, which cannot accu-
rately reflect the behaviors of IOTA’s ledger evolution over
time (refer the 3rd row of Table I).

Third, we utilize the long-standing mathematical tools in
literature (refer the 4th row of Table I). However, the theory
does not tell how to translate IOTA’s tangle evolution into the
mathematical language. This is one of our key contributions
in this work, where not only a full modeling with stochastic
analysis will be provided, but also a customized fitting algo-
rithm will be designed for parameter estimation of the derived
model.

In short, only our work (refer the last row of Table I) covers
all the highlighted subjects and problem features shaded with
yellow color in Table I comparing with the past literature.

III. IOTA PRELIMINARY

For improving the readability of this article, here we briefly
review IOTA network’s two key mechanisms as follows.
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Fig. 1. Ledger tangle evolution in IOTA (“A”–“F” are existing messages in
the tangle; “M1” and “M2” are new messages).

A. Message Attachment

A standard way is to attach new messages (e.g., “M1” or
“M2” as shown in Fig. 1) to vertices with in-degree 0 (e.g.,
“D,” “E” and “F” in Fig. 1), i.e., tips. In IOTA’s syntax,
messages at tips are unapproved yet; thus, their confidence
is low. In contrast, the more attachments a message gets
(through direct and indirect approvals), the more confidence
the message owns. The motivation behind this is to create a
mechanism, encouraging every node approving other nodes’
messages. In IOTA, every node should run a tip selection
algorithm (TSA) module dedicated for tip selection. So far,
IOTA released two protocol versions, i.e., IOTA 1.0 (released
in June 2016) and 2.0 (released in June 2021). Although TSAs
are different in the two versions, the purpose of the two dif-
ferent protocol versions are always the same. They all aim to
identify the most appropriate tips where a new message can
attach to. Their main features are compared as follows.

IOTA protocol 1.0’s TSA is based on weighted DAG ran-
dom walk. Jumping on a DAG along with reversed edge
directions always stops at one tip. Additionally, the outcomes
are biased, where some tips get higher preferences after ran-
dom walk. In general, the weighted random walk gives one
way to select the most “appropriate” tip(s). IOTA protocol
2.0’s TSA proposed a more efficient mechanism by intro-
ducing many auxiliary modules in order to prepare extra
information in advance to facilitate the tip selection. For
example, every node now has to prepare and update unspent
transaction output (UTXO) graphs ahead to maintain indi-
vidual groups of nonconflict messages (transactions). Thus,
a nonconflict tip can be identified faster for a new message.
Therefore, expensive random walk as in IOTA 1.0 can be
avoided.

However, no matter which protocol version is used, this
cannot change the fact of conflicting messages in the ledger.
A tip vertex that will be selected by weighted DAG random
walk (IOTA 1.0) will probably be selected by the new selection
mechanism (IOTA 2.0) and vice versa. In short, IOTA 1.0 and
2.0 differ with efficiency and internal auxiliary data structures.
The change or outcome resulted to the evolution of the tangle
topology is similar.

In addition to the standard IOTA protocols, IOTA does not
prohibit using other principles for message attachment. For
example, a node can attach a message to a nontip vertex (e.g.,
“M2” attaching to “C” in Fig. 1). Attaching to nontip mes-
sages makes a message easier get approved later on. Selfish
nodes may utilize a nonstandard way to launch parasite chain
attacks [35]. Such abnormal behaviors reflect self-interest
behaviors and were indeed observed in IOTA mainnet online.

Fig. 2. Tangle consolidation via message propagation.

Note that since the distributed consensus, as an intermediate
phase, is already integrated within message attachment when
every node makes its vertex selection decision, it does not
fundamentally change the manner of network dynamics.

B. Tangle Consolidation

Every node in IOTA has a local ledger view in form of
a tangle. Tangle consolidation aims to propagate messages
across the network so that tangle copies are merged into one
(e.g., “M1” as “Node 1” s newly attached message is propa-
gated to “Node 2”; and “M2” and “M3” as “Node 2” s newly
attached messages are propagated to Node 1 in Fig. 2). If a
forwarded message exists in the local tangle, the node ignores
it but still forwards to other neighbors (except to the expe-
dient); otherwise, a node saves the message and checks, if
the referenced messages can be found in its tangle; if so,
the node merges the message; if missing, the message is sus-
pended, until all previous messages are found from neighbors
by sending message requests recursively.

In summary, the key mechanism behind IOTA is that
new messages always approve old messages. Attached mes-
sages will be propagated across the whole network thus
ledgers converge and consensus opinions are formed. For
more details, readers are referred to the full IOTA protocol
specifications [1], [36].

IV. IOTA TANGLE NETWORK DYNAMICS

A. Modeling

Our modeling consists of two components: 1) a batch
attachment model and 2) a state transition model.

1) Batch Attachment Model: As explained, messages in the
IOTA network arrive in batches, because different nodes may
independently select the same message to attach new messages
to their own tangle copies. Hence, a vertex can get multiple
referencing messages after consolidation. A typical random
process to model this phenomenon is a multivariate Poisson
process Poi(λt, λm), where one or more messages arrive with
an average rate λt and an average size λm.

Denoting all new messages arriving at time t as a set Mt,
IOTA requires each new message (vertex) to select s ∈ [2, 8]
existing vertices3 in the tangle for approval. This would create
maximally s · |Mt| new directed edges, denoted as an edge set

3The parameter s will be configured to a fixed value in a deployment (e.g.,
in IOTA mainnet, s = 2). Whenever a new participating node joins in, this
parameter s will be shared or synchronized with other nodes. Hence, every
new message can attach to at most 2 different existing vertices. An example
with s = 2 is shown in Figs. 1 and 2, every vertex has at most two egress
edges.
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Fig. 3. New messages and edge set partition at time t.

Et. We further denote the subset of new messages selecting
the same vertex as Vet ∈ Mt; these messages will introduce
a subset of new edges et ⊂ Et to the selected vertex. Fig. 3
illustrates such an example, where three new messages (ma,
mb, and mc) select the same vertex U and bring three new
edges to U. Note that a new message can have its new edges
in multiple edge subsets at the same time (e.g., ma has its
second edge to e′t).

The total new message set Mt splits into several subsets
(such as Vet), which results in a partition πi on the whole edge
set Et split into many edge subsets (such as e′t and e′′t ). We
denote all possible partitions on Et caused by Mt’s attachment
as �Et . Obviously, there are many possible ways to partition
Et, depending on where the new messages in Mt are exactly
attached/clustered. In the following analysis, it is sufficient to
analyze the outcome of an edge partition πi ⊂ �Et , because
only newly attached edges increase the vertex degree.

2) State Transition Model: The total new message set Mt

always changes degrees of selected vertices and likewise, the
size of the tangle. Hence, the system state of the tangle can be
described with a 2-D state vector 〈k, n〉, representing a state
of vertex degree type k given the current tangle size n. There
are three possible state transitions involving the system state
〈k, n〉, which are illustrated in Fig. 4 and elaborated as follows.

1) Transition gτ1 : Suppose that the current tangle size is
n− |Vet |, an edge subset et attaches to a type of vertex
whose original degree is k−|et|. It changes the vertex’s
degree type to k and increases the tangle size to n, thus
transiting into the state 〈k, n〉

〈
k − |et|, n− |Vet |

〉 gτ1→ 〈k, n〉
2) Transition gτ2 : Suppose that the current tangle size is

n−|Vet |, an edge subset et attaches to any type of vertices
whose degree ∀ki 
= k − |et|. It keeps vertices whose
degree type is already k untouched while only increases
the tangle size to n, thus also transiting into the state
〈k, n〉

〈
k, n− |Vet |

〉 gτ2→ 〈k, n〉
3) Transition gτ3 : Suppose that the current tangle size is n,

an edge subset et attaches to any type of vertices possibly
with any degree. If the selected vertex has its degree
type kj == k, this changes the vertex’s degree type to
k + |et| (i.e., the right horizontal transition in Fig. 4);
if the selected vertex has its degree type ∀kj 
= k, this
changes the vertex’s degree type to another k′ 
= k+|et|

Fig. 4. State transition graph. (For the case k = 0, gτ1 and gτ2 do not exist;
for the case k = K, gτ3 does not exist.)

(i.e., the upper right transition in Fig. 4). In either case,
the tangle size increases to n + |Vet |. This makes the
state jump out of the state 〈k, n〉

〈k, n〉 gτ3→ 〈k′, n+ |Vet |
〉
.

The state transition graph in Fig. 4 is a 2-D Markov chain.
The evolution of the probability distribution of the system
state pk,n(t) follows the Chapman–Kolmogorov equation [37]
below:

dpk,n(t)

dt
= Poi(λt, λm) ·

∑

πi⊂�Et

∑

et⊂πi

⎛

⎜⎜⎜⎜⎜
⎝
gτ1(k − |et|) · pτ1(t)︸ ︷︷ ︸

Gain term 1

+
∑

∀ki 
=k

gτ2(ki) · pτ2(t)

︸ ︷︷ ︸
Gain term 2

−
∑

∀kj

gτ3

(
kj
) · pk,n(t)

︸ ︷︷ ︸
Loss term

⎞

⎟⎟⎟⎟⎟
⎠

(1)

where each gτi(·) defines the generalized transition rate. Such
a differential equation system is called a MES in statisti-
cal mechanics [38], formulating the probability distribution
change of a system state by aggregating all possible “Gain”
and “Loss” transitions. If only the standard way of attachment
is preferred, we can limit the state transitions to tip vertices
with an indicator function 1(k == 0).

Unfortunately, the MES in (1) does not permit an analytical
solution thus hinders our further analysis, because: 1) the MES
enumerates over set partitions �et and further over subsets
(i.e., every edge subset et) of every possible edge set partition
πi ⊂ �Et . Both of them are set permutations thus do not have
explicit expressions and 2) transition rate functions gτi(·) do
not possess an analytical form either, as it represents a vertex
selection algorithm involving subtangle operations. Clearly, a
new approach is needed for the problem.

B. Modeling Approximation

Instead of analyzing the detailed transitions between degree
types, our idea is to analyze a macro effect resulted from the
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Fig. 5. Dynamics of DGS sk(t) at time t.

new message set Mt. Recalling from Section IV-A, an edge set
partition πi ⊂ �Et simultaneously leads to degree changes on
multiple vertices, this motivates us to model the size change
of a degree group Gk(t) in a tangle, denoted as the degree
group size (DGS) sk(t). A degree group Gk(t) represents ver-
tices all having the same degree k. In IOTA, DGS sk(t) may
dynamically change due to the following two events, which
are illustrated in Fig. 5 and explained as follows.

1) “In”-Event: DGS sk(t) may increase, because there
could be a vertex va, whose original degree is less than
k, but an edge subset et makes va’s degree increase to k
with adding |et| new edges;

2) “Out”-Event: DGS sk(t) may decrease, because there
could be a vertex vb, whose original degree is already
k, but another edge subset e′t makes vb degree increase
to k′ with adding |e′t| new edges.

In IOTA, “In”-Event can happen to any vertex whose degree
value is between [0, k), and “Out”-Event can happen to any
vertex whose degree value is equal to k, thus covering all
degree groups in a tangle.

From a probabilistic point of view, the macro effect of
“In”- and “Out”-Events to a degree group Gk can be roughly
viewed as a Brownian motion [39], because whether or not the
DGS sk(t) will eventually change is uncertain, which is driven
by the random vertex selections from participating nodes.
Mathematically, the rate of the changing ratio can be either
positive, zero, or negative during an infinitesimal period. Such
a stochastic process can be formulated with an SDE of sk(t)
as follows:

dsk(t)

sk(t)
= ω(t)dt + σ(t)dB(t) (2)

where ω(t) is a growing rate coefficient, and σ(t) is a fluctu-
ation coefficient of random behaviors modeled as a Brownian
motion dB(t). Note that, we did not use the absolute change
of sk(t), because the variation of sk(t) might be negative due
to the Brownian motion term, which would conflict with the
reality, as size cannot be negative. A benefit of using a relative
ratio here is that it guarantees sk(t) a nonnegative value.

C. Degree Distribution

Based on the SDE modeling, we sketch the main theoret-
ical results regarding the stationary distribution of sk. Since
related properties are well studied, interested readers are kindly
referred to [31] for the concrete steps to derive the results
below.

First, the SDE in (2) takes the form of geometric Brownian
motion (GBM). If ω(t) and σ(t) are independent of time t,

this SDE is analytically solvable, and we have

sk(t) = sk(0) · exp

{(
ω − σ 2

2

)
t

︸ ︷︷ ︸
μ term

+σBt

}
(3)

where the μ term is referred in the following equations.
Second, the probability density function (PDF) of DGS

sk(t) at any observation time t follows a lognormal (LN)
distribution:

fLN(x) = 1

σ
√

2πx
exp

{
−(log x− μ)2

2σ 2

}

. (4)

Additionally, if the observation time t is exponentially dis-
tributed as pT(t) = ξe−λt, the PDF of sk(t) follows a dPLN
distribution as follows:

fdPLN(x) = αβ

α + β

[
x−α−1A(α)�

(
log x− μ− ασ 2

σ

)

+ xβ−1A(−β)�c
(

log x− μ+ βσ 2

σ

)]
(5)

where A(z) = exp(zμ + (z2σ 2/2)), �(·) is the cumulative
distribution function (CDF) of a standard normal distribution,
and �c(·) is the complementary CDF of �(·). Although the
form of dPLN distribution in (5) looks complicated, it can be
interpreted as a multiplicative process of LN quantities over
exponentially distributed observation time t.

To our problem, the interpretation is that the DGS sk(t)
grows along with the tangle over time t and the stoppage time
t is assumed exponentially distributed. Importantly, the PDF
in (5) tells what the probability density the size of a certain
degree group Gk(t) will be. After normalized with the total
tangle size n, it represents exactly the degree distribution of a
tangle that we target.

V. PARAMETER ESTIMATION

A. Problem Formulation

The PDF of a dPLN distribution can be converted to a
more friendly form—normal-Laplace (nLP) distribution—by
substituting y = log x

fnLP(y) = αβ

α + β
�

(
y− μ

σ

)[
R

(
ασ − (y− μ)

σ

)

+ R

(
βσ + (y− μ)

σ

)]
(6)

where R(·) = ([1−�c(·)]/�(·)) is Mills’ ratio/survival func-
tion. The model parameter θ is [α, β, μ, σ 2] for both dPLN
and nLP distributions. In the following sections, we use the
nLP distribution in (6) for parameter estimation due to its
simplicity.

Denoting the observed data (i.e., the observed degree dis-
tribution of a tangle) as Y , the log-likelihood is written as

�nLP(θ;Y) =
n∑

i=1

log fnLP(θ; yi). (7)
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A corresponding maximization likelihood estimation (MLE)
problem is

θ∗ ← arg max
θ

�nLP(θ;Y). (8)

The problem in (8) is usually not a concave (convex)
problem due to the sum of a series of log-PDF terms.
Therefore, the rest of this article focuses on the parameter
estimation for the derived model, especially after we realize
that in our trials generic optimization solvers cannot provide
quality estimation results.

B. Main Idea

According to the result in [40], the visible/observed ran-
dom variable Y of an nLP distribution can be considered a
sum of two invisible/latent variables Z and W (i.e., Y = Z +
W), following Normal distribution fZ(μ, σ 2) and Skewed-
Laplace distribution fW(α, β), respectively.

Based on this feature, it is possible to construct an EM algo-
rithm [10]. An EM algorithm moves to a maximized likelihood
in iterations with the help of an augmented likelihood func-
tion of complete data by introducing auxiliary latent variables.
Such an augmented likelihood function usually enables a sim-
plification to the original likelihood function. Specifically, the
simplified version calculates a set of expectation quantities
of the augmented latent variables. This, in turn, eliminates
the introduced latent variables after the expectation opera-
tion; in addition, that simplified version usually becomes a
linear function of the unknown parameters, much easier for
optimization.

The key benefits of an EM algorithm are: 1) neither a gradi-
ent nor Hessian matrix is needed, unlike generic optimization
techniques such as Newton–Raphson methods and 2) iteration
steps usually enjoy closed forms, thus quite efficient for com-
putation. Nevertheless, a known obstacle of adopting EM
framework is that no generic way exists to transform an MLE
problem automatically into a form suitable in the EM frame-
work. Always, a case-by-case design/transformation is needed,
for which we will develop upon next.

C. dPLN EM Algorithm

The PDF of an nLP distribution with the visible random
variable Y can be considered the marginal PDF of a joint dis-
tribution fY,Z(·) integrating over an introduced latent variable
z. Hence, the likelihood in (7) is extended as

�nLP(θ;Y) =
n∑

i=1

log
∫

fY,Z(yi, z; θ) dz. (9)

The following result gives a lower bound of �nLP(θ;Y).
Theorem 1: A lower bound Q(θ) of the likelihood

�nLP(θ;Y) in (9) is

�nLP(θ;Y) ≥ Q(θ)
def.=

n∑

i=1

E
[
log fY,Z(yi, z, θ)

]
(10)

where E[ · ] is the expectation over an arbitrary distribution
g(z) of Z.

Proof: See Appendix A.

Theorem 1 says that we can consider to maximize Q(·)
instead of �nLP(·) in (9). The question is how to find a proper
g(z).

Since g(z) used in Q(·) can be arbitrary, it is convenient
to use the conditional probability fZ|Y=yi(·) as gi(z), which
represents, how likely z will be in terms of an observed data
point yi ∈ Y with a specified parameter θ (s). This gives us an
explicit gi(z) as follows:

gi(z)
def.= fZ|Y=yi

(
z; θ (s)

)

=
fY,Z

(
yi, z; θ (s)

)

fY
(

yi; θ (s)
) =

fZ
(

z; θ (s)
)

fW
(

yi − z; θ (s)
)

pnLP

(
yi; θ (s)

) .

(11)

Note that gi(z)’s exact form in (11) is completely given since
θ (s) has a specific value and all PDFs are known to us.

With gi(z), the lower bound Q(·) in Theorem 1 also gets an
explicit form as follows (see Appendix B for its derivation):

Q
(
θ; θ (s)

)
= n log

(
1√

2πσ 2

)
− nμ2

2τ 2
+ n log

(
αβ

α + β

)

+ μ

σ 2

n∑

i=1

E[zi]︸︷︷︸
(1)

− 1

2σ 2

n∑

i=1

E
[
z2

i

]

︸ ︷︷ ︸
(2)

+ β

n∑

i=1

E
[
yi − z

]yi

−∞︸ ︷︷ ︸
(3)

−α

n∑

i=1

E
[
yi − z

]+∞
yi︸ ︷︷ ︸

(4)

(12)

where θ (s) is absorbed in gi(z), which is only used when calcu-
lating the four E[·] quantities (1)-(4) with every yi. Although
Q(θ; θ (s)) looks complicated, its structure is much simpler than
�nLP(·) in (9). This is the augmented likelihood function with
complete data Z and Y −Z (i.e., W) mentioned before. Let us
review the two important features of Q(θ; θ (s)) as follows.

1) If the four summation terms with the four E[·] quantities
(1)–(4) are treated as coefficients, Q(θ; θ (s)) only con-
tains seven terms, much simpler than (9) with n terms
(i.e., the number of data points).

2) Q(θ; θ (s)) is (almost) a linear function of elements
[α, β, μ, σ 2] of θ after the values of the four E[ · ]
quantities (1)–(4) are determined, then much easier
for optimization.

These two features match our initial expectations. More
importantly, these two features also provide the algorithmic
procedures of our dedicated EM algorithm.

Feature 1 defines an “E-Step” to calculate the four E[ · ]
quantities (so as the summation terms) by assigning θ (s) a
specific value, starting with an initial guess θ (0). When calcu-
lating the four E[ · ] quantities, the introduced latent variable z
is thus eliminated with expectation operations. Since summa-
tion terms become coefficients, Q(·) reduces to a linear form
of parameter θ . The closed forms to calculate the four E[ · ]
quantities are provided in Appendix C. θ (s) will be repeatedly
updated with a new value in an “M-Step” below.

Feature 2 defines the M-Step to optimize the Q(·) function.
In this step, only the model parameter θ is treated as a variable,
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Fig. 6. Algorithm 1: dPLN model parameter estimation.

because the four E[ · ] quantities, which were already fixed in
the E-Step, have become coefficients. To yield an optimal θ∗ in
this iteration, we maximize Q(·) by taking partial derivatives
in terms of θ and solving an equation system ∇θ Q(·) = 0.
As Q(·) is linear to θ , this equation system has an analytical
solution. Hence, the optimal θ∗ can be directly calculated with
the closed form given in Appendix D.

Iterating between the two steps defines the body of our
parameter estimation algorithm. As said, the old value θ (s)

is updated with θ∗ derived in the M-Step, becoming θ (s+1).
Based on θ (s+1), the E-Step recalculates the four new E[ · ]
quantities, and this once again modifies Q(·). Then, the M-Step
is repeated with the new Q(·) function, and it gives another
θ∗ used to replace θ (s+1), and so on so forth. Once the opti-
mized parameter in the M-Step does not change anymore or
fulfill a predefined threshold, then a (local) optimal estimate
is obtained. A diagram of the algorithm is shown in Fig. 6.

D. Remarks

In the literature, EM-based methods are often used for
estimating parameters with a mixed Gaussian model.
Differently, the nLP (dPLN) model is rather a mixture of
Normal and Skewed-Laplace distributions, which can-
not trivially reuse the existing algorithms developed for other
models. How a dPLN model can be estimated under an EM
framework is partly discussed in [31] and [41]. Unfortunately,
none of them shows evidences of executable implementations
and reports comprehensive performance evaluations; some of
them even contain errors after our examination. In contrast,
we not only provide explicit mathematical derivations, pub-
lish our source code but also compare its fitting performance
against using existing optimization solvers.

VI. RESULTS

Considering the nature of the technical contributions, this
work neither modified any existing system nor proposed any
new system. Instead, this work theoretically analyzed the
dynamics of a real-world system—IOTA network—by deriv-
ing a new model and designing a fitting algorithm. Therefore,
the rationale of our evaluation plan is to directly evaluate:
1) whether the derive model (dPLN) does fit better with the
observed data and 2) whether the proposed fitting algorithm
does provide a better parameter estimation.

A. Settings

1) Data Set Information: Our evaluation uses real-
world historical data generated from IOTA mainnet. Some
information about the used data are introduced as follows.

First, IOTA mainnet was launched on 11 July 2016. IOTA
mainnet regularly maintains a network scale of more than 400
active nodes running the IOTA protocol on the Internet.

Second, the used data were officially published by IF.4

The whole data set contains message records from two
archive periods: Period I is November 2016–June 2019 (gen-
erating 96 tangle snapshots) and Period II is April 2020–
August 2020 (generating 16 tangle snapshots). Except these
two periods, we do not see any newer official data set
available.

Third, tangle snapshots vary in size, which is mainly deter-
mined by the message arrival rate and the number of active
participating nodes during the period of the tangle snapshot
was created. The former information can be calculated by
dividing the number of messages over the period length.
However, for the latter information, it is difficult to restore
because IF does not make the history record of participating
nodes public.

Last but not least, the tangle size refers the total number of
messages contained in an archived ledger snapshot. Snapshots
are periodically created and archived by IF every two or three
months since June 2016. After a snapshot is created, IOTA
mainnet resets and starts over a new empty ledger. Hence,
the tangle size is not additive between two snapshots. For a
vertex’s original degree, it particularly refers to its in-degree
value in this work, which equals the total number of direct
references from other messages.

An overview of some properties about the tangle snap-
shots is provided in Table II. Averagely, a tangle contains
approximately 1.7 millions of messages.

2) Data Set Preparation: To prepare the reference data,
given a snapshot, the in-degree of a vertex (message) can be
calculated by summarizing the total number of messages that
reference to the considered message. After that, for each tangle
snapshot, we first count the DGS sk of every degree group Gk,
and then we calculate its proportion yk = (sk/n) in the tangle,
giving the observed degree distribution of a tangle. This is the
reference data Y = {Gk, yk}Kk=1 for parameter estimation of
one tangle snapshot, where each degree group Gk corresponds
sk data points (vertices).

3) Candidate Models: The candidate models for compar-
isons are listed in Table III. Besides the dPLN model, the
other three candidates are chosen because they are widely
acknowledged network models representative for many natural
phenomena. The complexity of candidate models increases
from the simplest ones (i.e., PL and Expon) to complicated
ones (i.e., LN and dPLN). The number of their model param-
eters also increases from 1→ 2→ 4. Table III also lists the
solution methods of MLE for each candidate model.

4) Fitting Quality Metric: We use root mean squared loga-
rithmic error (rMSLE) to quantify the fitting quality. Its classic

4Online archive: https://dbfiles.iota.org/.
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TABLE II
STATISTICAL PROPERTIES OF THE IOTA MAINNET SNAPSHOT DATA SETS

TABLE III
LIST OF CANDIDATE MODELS (ζ AND ξ : NORMALIZATION CONSTANTS)

definition is given as follows:

rMSLE =
√√√√1

n

n∑

i=1

(
log yi − log ŷi

)2 (13)

where n is the total number of observed data points, and ŷi is
the predicted value of yi. rMSLE can be considered a relative
error of the predicted and actual values. The smallest rMSLE
is zero when every predicated value ŷi is equal to its observed
value yi.

The key reason to choose rMSLE is because it is a
unit/scale-independent metric. Note that in our problem, the
probabilities (proportions) of degree groups may differ signif-
icantly in scale. In this situation, unit-dependent measures like
the mean absolute error (MAE) and the root mean squared
error (RMSE) turn out to be unsuitable, because the abso-
lute error distances from the prediction on data points with
smaller proportions will be insignificant. With those met-
rics, since only dominant features matter, this will falsely
reflect the fitting quality. rMSLE solves this issue by tak-
ing a log-difference/relative ratio so that it becomes unit
independent.

For our evaluation, we can get a more succinct form, as
the log-difference term for every data point (vertex) in one
degree group Gk is identical. Therefore, we only need to calcu-
late once the log-difference for all data points in every degree
group Gk weighted by its proportion yk as follows:

rMSLE =
√√√√

K∑

k=1

yk
(
log yk − log ŷk

)2
. (14)

The benefits of using (14) are as follows:

First, it speeds up the calculation, because the summation
in (14) only has K terms (i.e., K observed degree groups),
much less than the summation of n terms in (13). In our
data sets, n means millions of vertices while K means only
hundreds types of degree groups.

Second, if we remove the root and square operators in (14),
rMSLE recovers to Kullback–Leibler (KL) divergence5 that is
widely used to measure the divergence between two proba-
bility distributions. Therefore, one metric acts as two. More
importantly, rMSLE removes a cumbersome constraint in
using KL divergence where both yk and ŷk ∀k = 1, . . . , K must
be perfect probability distributions (i.e., the sum of probabil-
ity values equal to 1). Practically, since the predicted value
ŷk will be sampled from a continuous PDF of a candidate
model, this constraint is not always met, leading an invalid
KL divergence, thus making the evaluation failed. Then, it is
inevitable to introduce extra techniques to discretize every can-
didate model’s PDF. However, this may cause uncertainty to
our evaluation, as it is unknown yet which discretization tech-
nique fits the best for our case. Instead, rMSLE measures in
the similar way as KL divergence does but free of such a
constraint.

B. Model Selection

1) Quantitative Comparison: In this part, we examine the
fitting quality of the four candidate models. We rank the can-
didate models in a decreasing order in terms of their fitting
qualities. The model getting rMSLE closest to the optimal
value 0 (highlighted with yellow bar) is put at the top.

The first comparison is on overall interval where all degree
groups are considered, shown in Fig. 7. In this comparison, we
show both the CDFs of rMSLEs of the four candidate models
and a statistical boxplot on top. We can observe that dPLN
model achieves the least average rMSLE below 0.2 with a
concentrated variance distribution (shown as the short green
boxplot). Besides, the LN model (in blue) ranks as the second
best but its mean rMSLE (around 0.55) is already worse two

5KL(yk || ŷk) =
∑K

k=1 yk log (yk/ŷk), where yk and ŷk ∀k = 1, . . . , K are
two discrete probability distributions.
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Fig. 7. rMSLE comparison on overall interval (degree group Gk ∈ [1, max],
EM‘s θ (0) = [0.1, 0.1, 0.1, 0.1]).

times more than dPLN model’s; in addition, the LN model has
the largest variance of rMSLE. Furthermore, neither Expon
nor PL models (in purple and orange, respectively) seems a
correct model to explain the degree distribution of the realistic
tangles generated in the real world, where both of them have
much worse rMSLE, especially the PL model.

The large variances of rMSLE values show the instabil-
ity of the three compared candidate models when they fit the
observed in-degree distributions. Actually, their mean values
of rMSLE are also worse than the dPLN model’s performance.
In contrast, the variance of dPLN model’s rMSLE is concen-
trated and much less than the variances of the other three
models. This again justifies that the performance of the dPLN
model is not only better on average but also relatively more
stable than the other three models can do.

The second comparison is on segmented intervals as shown
in Fig. 8. We compare three separate intervals that split
the data points into three parts: 1) header; 2) middle; and
3) rear parts. Specifically, the header part contains vertices
in degree groups Gk ∈ [1, 2], which often roughly occupy
45%; the middle part contains vertices in degree groups
Gk ∈ [3, 5], which occupy another 30%–45%; and the rear
part is all the rest kinds of vertices (i.e., in degree groups
Gk ∈ [6, max]).

Specifically, in the header part [shown in Fig. 8(a)], the
ranking is the same as in the overall interval but the perfor-
mances of dPLN and LN models become closer, though dPLN
model’s rMSLE is slightly smaller. This implies that for ver-
tices with degree values in [1, 2], both models fit well and
achieve small errors. In the middle part [shown in Fig. 8(b)],
the ranking is also the same but every candidate model gets a
smaller rMSLE, meaning that all candidate models fit better to
the distribution of vertices with degree values between [3, 5].
Particularly, dPLN and LN models even get their rMSLE
smaller than 0.1. In the rear part [shown in Fig. 8(c)], the
ranking becomes different, where the second-best model is
now PL, the third place is LN, and the last one is Expon.
In fact, LN and Expon show much worse performances when
fitting to the degree distribution of vertices with large degree
values.

(a)

(b)

(c)

Fig. 8. rMSLE comparison on segmented intervals (EM‘s θ (0) =
[0.1, 0.1, 0.1, 0.1]).

Note that there are deeper reasons behind the observation
where every model performs well in the middle part. We
explain as follows.

1) The head part (vertices with in-degree between [1, 2])
is also a majority (∼ 45%). However, due to the shape
of their distributions bending down, the other three
models cannot cover the both head and middle parts.
Specifically, PL model as a straight line cannot bend
obviously (the worst), Expon model can slightly bend
(the second worst), and LN model can do more (the
third worst). Only the dPLN model can nicely balance
the two parts. This is why we see distinct performances
at the head part in Fig. 8(a).

2) The rear part (vertices with in-degree ≥ 6) is not a
majority (< 5%). For the same reason, not all the other
three models are able to cover this part. The order of the
fitting performance changes, the Expon model becomes
the worst, the LN model becomes the second worst, and
the PL model (as a straight line to fit the right tail)
becomes the third worst. Still, dPLN performs the best
in Fig. 8(c).

This observation can be seen more directly in our graphical
comparison next.

In summary, we can clearly observe that on any considered
interval dPLN model ranks always the best and its rMSLEs
are relatively stable.

2) Graphical Comparison: We then give a graphical com-
parison. This helps readers to understand how the four can-
didate models fit the reference data in a visual way. Here,
in Fig. 9 we pick three tangle instances, to which dPLN model
yields its min, median, and max rMSLEs, respectively. The
subplots therein particularly zoom in on the fittings of degree
groups Gk ∈ [1, 3].

In the graphical fitting comparison, we can visually observe
that dPLN’s fittings (the green solid curves) indeed stick much
closer to the actual distribution of the data points (gray empty
circles). In contrast, we can see that the other three models
are far away either to the header part (such as Expon and PL
models) or to the rear part (such as the LN model).

In the zoom-in subplots (on upper right corners), we can
see that only dPLN and LN models can fit the data points
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(a) (b) (c)

Fig. 9. Graphical fitting comparison of candidate models. (a) Tangle34 (rMSLEmin: 0.06). (b) Tangle39 (rMSLEMedian: 0.15). (c) Tangle64
(rMSLEmax: 1.08).

in the header part (curves in green and blue, respectively).
They are slightly different, where the LN model tends to
overestimate while the dPLN model relatively underestimates
the data points. Nevertheless, neither Expon nor PL model
performs reasonably in the header part fitting, where the
Expon model largely underestimates (purple curves) and the
PL model significantly overestimates (orange curves) the data
points.

The key factor making the dPLN model better than the other
models is that it can not only characterize dominant features
like majority vertices with degrees in [1, 3] (as LN model), but
also reflect special features like existences of high degree ver-
tices (as the PL model does), which is unique to the real-world
tangles. Generally, we can conclude that the dPLN model can
explain much better the observed degree distributions of tan-
gle data generated in the IOTA mainnet. This confirms our
theoretical modeling for IOTA network dynamics.

C. Fitting Algorithm Comparison

We then evaluate the performance of our algorithm in Fig. 6
named “EM” against “BFGS” [42]. The BFGS algorithm
is a typical example of GD-based methods already imple-
mented in the Python.scipy package, considered a default
optimization Python library. Both algorithms aim to find the
optimal solution for the MLE problem defined in (8).

We set the maximum iteration number equal to 2000 for
both algorithms. We set the convergence threshold to 10−4

for BFGS. Particularly, we set the convergence threshold to
our algorithm as follows:

max

{

�s|�s =
√(

θ (s+1) − θ (s)
)2 ∀s ∈ W

}

≤ 10−4 (15)

where it requires the maximum norm of the difference in W
consecutive θ (s) less than 10−4. Note that our threshold is
harsher than BFGS uses.

For both algorithms, we evaluated ten different initial θ (0)

values generated with the following rules. We first fix (μ, σ 2)

pair but triple the (α, β) pair from 0.1 → 2.7 (giving four
initial values). Then, we fix (α, β) pair but triple (μ, σ 2) pair
from 0.1 → 2.7 (giving another 3 initial values). Last, we
triple both pairs 0.1→ 2.7 (giving the last three initial values).
This gives a set of initial values differ with several magnitudes.

Fig. 10. Termination status comparison.

We did not use a random strategy to generate the initial val-
ues in order to guarantee the reproducibility of all presented
results.

1) Algorithm Termination Status: There are three possible
termination states of the two algorithm candidates as follows.

1) “Loc-Opt.”: An algorithm terminates, because it fulfilled
its convergence condition before reaching the configured
maximum iteration number;

2) “MaxIter”: An algorithm terminates, because it reached
the configured maximum iteration number (i.e., 2000
here);

3) “Boundary Condition”: An algorithm terminates,
because some temporal solution violated some boundary
conditions. In our case, this bound is that all elements
of θ should be positive.

It has to emphasize that all three termination statuses give
parameter estimation solutions but with different fitting qual-
ities. With the ten different initial values and 112 tangle
snapshots, the termination states of the 112×10 times’ fitting
tests with the two algorithms are summarized in Fig. 10.

Our EM-based algorithm shows 60.36% of convergence
rate, versus 15.18%, when using BFGS. In contrast, 84.82%
times of using the BFGS solver triggered boundary condi-
tion versus 30.08%, when using our EM-based algorithm.
Additionally, less than 10% of using our EM-based algo-
rithm reached the maximum iteration number. Using the BFGS
solver never reached the maximum iteration number, because
we have seen that BFGS easily terminated due to bound-
ary condition violation. This confirms that our algorithm has
higher chances to get a local optimal solution, which is several
magnitudes higher than using the existing solver—BFGS.

2) Fitting Quality: We again evaluate the two algo-
rithms with rMSLE shown in Fig. 11. In all intervals, the
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(a) (b) (c) (d)

Fig. 11. rMSLE comparison of using EM and BFGS on (segmented) intervals. (a) Overall (Gk ∈ [1, max]). (b) Header part (Gk ∈ [1, 2]). (c) Middle part
(Gk ∈ [3, 5]). (d) Rear part (Gk ∈ [6, max]).

Fig. 12. Time to reach termination statuses in all estimation tests with the proposed EM-based algorithm.

performance of using BFGS is worse than using our EM-based
algorithm. We can observe a larger variation of the rMSLE
of the fitting results given by the BFGS solver. Instead, the
rMSLEs of our EM-based algorithm are closer to the optimal
value 0 and the variations are not only more consistent but also
much smaller than BFGS has. With different initial values,
we observe a similar result where our EM-based algorithm
achieves a better fitting quality (i.e., smaller rMSLE) than
using BFGS.

The results from the termination status and fitting quality
suggest that for parameter estimation of a dPLN model, an
EM-based algorithm is recommended. It also shows that it is
difficult for GD-based methods to handle optimization prob-
lems within a high-dimensional space (our problem has four
elements in θ thus it is 4-D). In fact, we had also tested
Nelder–Mead (downhill simplex) method as a third candidate,
which was chosen as an opponent that is without calculat-
ing gradient/Hessian matrix [43]. Since its fitting quality was
even much worse than BFGS can provide, it is less valuable
to report its results here.

3) Fitting Time: Finally, we report the time cost spent on
fitting every tangle with our EM-based algorithm in Fig. 12.
The heatmap plot indicates individual execution time to reach
one of the three termination states in every tangle fitting
test (1120 times in total). Specifically, blocks in green, blue,
and yellow colors represent termination states of “Loc-Opt.,”
“Boundary Cond.” violation, and “MaxIter,” respectively. The
proportions of the three color blocks correspond to the sum-
mary result in Fig. 10.

First, we observe that when estimating parameters for tan-
gles 8–18, 20–25, 36, 73, 74, and 109, our EM-based
algorithm triggered the boundary conditions with any initial
value. This is a known outcome when the given data are not
perfectly dPLN distributed [31]. Second, we observe that θ

(0)
4

seems to be a challenging initial value. With this particu-
lar initial value, our EM-based algorithm did not terminate
at the Loc-Opt. status. Actually, for BFGS, with θ

(0)
4 , it also

yielded poorer rMSLEs. It needs further investigation to check
whether such an initial value is at a location blocked to a
local optimal in the solution space. Except θ

(0)
4 , our algorithm

performs coherently, where we observe not only similar ter-
mination states but also similar execution times. Third, we
observe that our algorithm reaches the MaxIter termination
status when fitting tangles 97–112. This can be because of
our the harsh convergence threshold defined in (15).

One important reason why the fitting time may vary among
different tangles is because of the tangle size. If the tangle
size n is large, the number of terms in (9) grows as well.
As a result, a fitting algorithm may take longer time in each
iteration when evaluating (9). In contrast, a different vertex’s
degree will not immediately influence the fitting performance.
Instead, the population distribution of vertices with a certain
degree will statistically influence the fitting quality of a model.
The nature of the fitting data (i.e., the observed in-degree
distribution) determines whether or not a model can fit well.

The execution time falls in the range with an upper limit
of 100s (except for those reaching MaxIter status). From the
color distribution, execution time seems more relevant to the
size of the tangles (i.e., the number of vertices). Instead, it
seems rather less dependent to the initial values because no
matter which initial value is used, the variation of execution
time across the entire data sets are similar. On average, a tangle
has a million vertices, we can expect approximately 40–60 s
with our EM-based algorithm.

D. Statistics of Estimated Parameters

Finally, we provide a summary of the estimated parameters
for the tangle data sets of IOTA mainnet, shown in Table IV.
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TABLE IV
STATISTICS OF ESTIMATED MODEL PARAMETERS

(θ (0) = [0.1, 0.1, 0.1, 0.1])

As part of our future work, with the estimated parameters, the
derived network model gives a new way to design an IOTA
simulator. Specifically, it can initialize a dPLN distribution,
then sample from the distribution, and rewire sampled ver-
tices to construct a tangle topology. This can largely improve
the efficiency because simulating heavy network protocols is
avoided completely.

VII. CONCLUSION

In this article, we developed a theoretical model for IOTA
network dynamics with stochastic analysis. The key finding
is that realistic tangles follow a dPLN distribution, which is
not as usual belief, such as PL and Expon distributions. We
designed a dedicated model estimation algorithm that can pro-
vide more reliable and quality solutions, which overcomes the
deficiencies of using the existing solvers. Based on the real-
world official data sets, the evaluation results confirmed our
finding where our proposed model outperforms the existing
popular network models; the evaluation results also justified
the performance of our proposed parameter estimation algo-
rithm. The whole work also gave a deeper understanding on
the internal mechanisms of the IOTA network.

APPENDIX A
SKETCH PROOF OF THEOREM 1

Given an arbitrary PDF g(z), the log-likelihood �nLP(θ;Y)

can be transformed as follows:

�nLP(θ;Y) =
n∑

i=1

log
∫

fY,Z(yi, z; θ) dz

=
n∑

i=1

log
∫ {

fY,Z(yi, z; θ)

g(z)

}
g(z) dz.

According to Jensen’s inequality (i.e., log E[X] ≥ E[ log X]),
after moving “log” into the integration, we have

�nLP(θ;Y) ≥
n∑

i=1

∫
log

{
fY,Z(yi, z; θ)

g(z)

}
g(z) dz

=
n∑

i=1

∫
log
{
fY,Z(yi, z; θ)

}
g(z) dz

−
n∑

i=1

∫
log{g(z)}g(z) dz

=
n∑

i=1

E
[
log fY,Z(yi, z; θ)

]

︸ ︷︷ ︸
Q(θ)

−
n∑

i=1

E
[
log g(z)

]

︸ ︷︷ ︸
Constant≥ 0

.

Since −E[ log g(z)] ≥ 0, �nLP(θ;Y) is at least no less than
the Q(θ) part. This proves the result.

APPENDIX B
SIMPLIFICATION OF Q(θ)

We directly substitute with all PDFs and gi(z). Note that
gi(z) is the PDF with known parameters set to θ (s). Let Qi(·) =
E[ log fY,Z(yi, z; θ)] for simplicity of notations

Qi(θ) = E
[
log fY,Z(yi, z; θ)

]

= E
[
log {fZ(z; θ)fW(yi − z; θ)}]

= E
[
log fZ(z; θ)+ log fW(yi − z; θ)

]

= E
[
log fZ(z; θ)

]+ E
[
log fW(yi − z; θ)

]

=
∫

log

⎡

⎣
exp
(
− (z−μ)2

2τ 2

)

√
2πτ 2

⎤

⎦gi(z) dz

+
∫

log

[
αβ

α + β

{
eβ(yi−z), yi − z ≤ 0
e−α(yi−z), yi − z > 0

]
gi(z) dz.

(16)

After integration and rearrangement, it becomes

Q(θ) =
n∑

i=1

Qi(θ)

= n log

(
1√

2πσ 2

)
− nμ2

2σ 2
+ n log

(
αβ

α + β

)

+ μ

σ 2

n∑

i=1

E[zi]︸︷︷︸
(1)

− 1

2σ 2

n∑

i=1

E
[
z2

i

]

︸ ︷︷ ︸
(2)

+ β

n∑

i=1

E
[
yi − z

]yi

−∞︸ ︷︷ ︸
(3)

−α

n∑

i=1

E
[
yi − z

]+∞
yi︸ ︷︷ ︸

(4)

.

This obtains the results.

APPENDIX C
CLOSED FORMS OF EXPECTATION QUANTITY IN E-STEP

Here, we directly give the calculations

E[zi] =
∫ ∞

−∞
zgi(z)dz = μ+ σ 2 αR(pi)− βR(qi)

R(pi)+ R(qi)

E
[
z2

i

]
=
∫ ∞

−∞
z2gi(z)dz = μ2 + σ 2 − σ 2(pi + qi)

R(pi)+ R(qi)

+ σ 2

(
2να + α2σ 2

)
R(pi)+

(
β2σ 2 − 2μβ

)
R(qi)

R(pi)+ R(qi)

E
[
yi − z

]yi

−∞ =
∫ yi

−∞
(yi − z)gi(z)dz = σ(1− piR(pi))

R(qi)+ R(pi)

E
[
yi − z

]+∞
yi
=
∫ +∞

yi

(yi − z)gi(z)dz = σ(qiR(qi)− 1)

R(qi)+ R(pi)
(17)

where pi = ασ − (yi −μ)/σ , qi = βσ + (yi −μ)/σ and R(·)
is also the Mills ratio.
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APPENDIX D
CLOSED FORMS OF OPTIMAL PARAMETERS IN M-STEP

The optimal solutions of the parameters can be easily calcu-
lated by evaluating the partial derivative ∇θ Q(·) equal to zero,
to which we have

∇θQ(·) = 0

⇒ θ∗ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μ∗ = 1
n

∑n
i=1 E[zi](

σ 2
)∗ = 1

n

∑n
i=1

(
μ∗ − 2μ∗E[zi]+ E

[
z2

i

])

α∗ = 1
P+√PQ

β∗ = 1
Q+√PQ

(18)

where

P = 1

n

n∑

i=1

E
[
yi − z

]+∞
yi

, Q = P− 1

n

n∑

i=1

E
[
yi − z

]yi

−∞
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