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Abstract—Volumetric video provides a more immersive
holographic virtual experience than conventional video services
such as 360-degree and virtual reality (VR) videos. However, due
to ultra-high bandwidth requirements, existing compression and
transmission technology cannot handle the delivery of real-time
volumetric video. Unlike traditional compression methods and the
approaches that extend 360-degree video streaming, we propose
AITransfer, an AI-powered compression and semantic-aware
transmission method for point cloud video data (a popular
volumetric data format). AITransfer targets the semantic-level
communication beyond transmitting raw point cloud video or
compressed video with two outstanding contributions: (1) designing
an integrated end-to-end architecture with two fundamental
contents of feature extraction and reconstruction to reduce
the bandwidth consumption and alleviate the computational
pressure; and (2) incorporating the dynamic network condition
into end-to-end architecture design and employing a deep
reinforcement learning-based adaptive control scheme to provide
robust transmission. We conduct extensive experiments on the
typical datasets and develop a case study to demonstrate the
efficiency and effectiveness. The results show that AITransfer
can provide extremely efficient point cloud transmission while
maintaining considerable user experience with more than 30.72x
compression ratio under the existing network environments.

Index Terms—Point cloud video, reinforcement learning,
adaptive transmission, semantic-aware.
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I. INTRODUCTION

POINT cloud video, a representative volumetric video, can
provide viewers with 6-DoF (degrees of freedom) immer-

sive experiences, which has been widely used in many areas,
including holographic communication, education, and health-
care [2], [3]. Point cloud video comprises a set of unstructured
3D points with attribute information, which is fundamentally
different from 2D pixel-based video services with 3-DoF expe-
riences, such as 360-degree panoramic video and virtual reality
(VR) video [3], [4]. Naturally, delivering point cloud video is
valuable but faces severe problems. The most typical difficulty
is massive volumetric frames require ultra-high bandwidth at a
Gbps scale, which surpasses the capability of current 5G net-
works. For example, a Microsoft Kinect for Windows v2 [5]
camera captures 2.06 Gb of raw point cloud at 30 FPS [3],
whereas a 16 K 360-degree video requires only 100∼500 Mbps
bandwidth. Furthermore, the amount of raw point cloud data will
increase with more cameras placed at multiple angles, higher
resolutions, and frame rates.

Existing point cloud video transmission techniques can be
grouped into two categories. (i) Designing efficient compression
methods to intuitively reduce the transmitted data volume [6],
[7], [8], including 2D projection-based and 3D tree-based com-
pression [6]. The former decomposes and projects the point
cloud onto a 2D image with dense packing to extend existing
full-fledged 2D video codecs. Typically, MPEG V-PCC [9] can
optimize video compression with incremental differences be-
tween frames, providing a high compression ratio and real-time
decoding. However, the encoding speed is very slow [6], com-
monly requiring 11 (lossy compression) to 42 (lossless com-
pression) minutes to encode a one-second longdress video [10].
The latter method uses octree [11] or kd-tree [12] data structures
to process each point cloud frame independently and efficiently
exploit the sparsity of 3D data. However, the most representa-
tive PCL [13] and Draco [14] are tested on a desktop showing
that both could only reduce the overall size by a ratio of 3.35×
to 4.22× [6]. To summarize, these methods have either high
coding latency or limited compression ratio, which are difficult
when used to meet the real-time requirement. (ii) Extending
techniques applied in 360-degree and VR video to volumetric
video services to enhance adaptive transmission quality under
different network conditions. For example, several existing sys-
tems modify the viewport prediction, tiling, and adaptive bi-
trate streaming (ABR) to selectively transfer the video content
in users’ field of view (FoV) [2], [4], [15], [16]. However, these
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approaches usually suffer from high mobile energy consumption
and unacceptable processing latency on the receiving devices.
Each transmitted tile is vulnerable to the fluctuating network and
various packet losses in the reorganizing process.

Although these two types of technology are not contradictory
and could be combined to provide a better performance [4], [6],
it is still far from the bandwidth requirement for real-time point
cloud video delivery. To this end, we propose AITransfer, an
AI-powered and semantic-aware transmission technique, which
remarkably and adaptively reduces the transmitted data volume
for point cloud video service. AITransfer extracts deep semantic
features from raw point cloud for efficient transmission and then
performs point cloud reconstruction. The AI-based end-to-end
design eschews cumbersome multiple processing such as com-
pression and codec in conventional transmission schemes. Be-
sides, AITransfer integrates dynamic network conditions into
the above design and develops a deep reinforcement learning
(DRL)-based adaptive control scheme to guarantee the trans-
mission quality under different network environments. Nev-
ertheless, there are two technical challenges to the design of
AITransfer.

i) How to extract as few but critical semantic features as
possible from massive unordered raw point clouds? Com-
pared with compressing all raw point clouds, only transferring
a few deep semantic features can achieve a greater compression
ratio. However, it is difficult to extract only a few features rep-
resenting all original video information, due to the unordered
and unstructured data characteristics. In addition, we also have
to consider the impact of extracted features on subsequent re-
construction quality. The AI-powered approaches, while good at
extracting features, will also bring expensive computation cost
due to massive parameters. To address this challenge, we design
an integrated neural network by fusing the feature extraction
and reconstruction to achieve end-to-end training. In this way,
we can directly render and replay the reconstructed result from
the raw video acquisition on the premise of ensuring quality. At
the data sending side, we extract the point clouds’ deep semantic
features inspired by PointNet++ [17], providing an extreme com-
pression and energy-saving transmission. At the data receiving
side, we employ a lightweight reconstruction neural network to
recover the semantic features to the original video as closely as
possible, providing a real-time point cloud reconstruction on the
resource-constrained devices. We divide the trained model and
deploy them onto the data sender and receiver respectively for
distributed inference. Only a few extracted semantic features
are transmitted, immensely reducing bandwidth consumption
and protecting privacy.

ii) How does the semantic-aware point cloud transmis-
sion mechanism adapt to dynamic network environments?
Fluctuating network environments are inevitable. Conventional
adaptive video streaming techniques are unavailable in this
framework because AITransfer adopts a fundamentally different
transmission mechanism from DASH-based (Dynamic Adap-
tive Streaming over HTTP) systems [2], [15]. To provide var-
ious compression ratios (i.e., bitrate) matching the dynamic
network environment, AITransfer can only change the struc-
ture of the integrated neural network. Thus, we incorporate the

TABLE I
COMPARISONS WITH OTHER VIDEO SERVICES [2]

network condition into the design of the end-to-end architec-
ture and train multiple models with feature extraction and re-
construction. In practical transmission, AITransfer selects the
corresponding model according to the network condition at that
time. However, this strategy brings the challenge of overhead
caused by model selection, which must be solved in millisec-
onds to support real-time transmission. To this end, we de-
sign a DRL-based adaptive control scheme, with the purpose
of maximizing transmission performance to select the opti-
mal model from an offline-trained model set. Boosted by the
scheme, AITransfer can provide a quick-response and adaptive
transmission.

We have implemented AITransfer using TensorFlow [18] and
trained the model on a high-performance server equipped with
eight Tesla V100 GPUs. We conduct extensive experiments on
typical datasets and comparisons with baselines, showing a more
than 30.72x compression ratio while maintaining considerable
visual quality. We also conduct experiments on real-world point
cloud videos to verify the effect of the adaptive control scheme,
showing adaptive transmission under dynamic network condi-
tions. In summary, the key contributions are summarized as
follows:
� AITransfer provides AI-powered and semantic-aware

transmission for real-time volumetric video, reducing
bandwidth and energy consumption and changing the con-
ventional transmission mechanism.

� We design and train an integrated end-to-end compression
architecture, which transfers the semantic features instead
of raw data, significantly reducing the transmitted data vol-
ume and protecting privacy.

� We design a DRL-based control scheme to underpin the
adaptive transmission, monitoring realistic network con-
ditions and matching the optimal inference model in
millisecond-level decision time.

� Evaluation on typical datasets demonstrates promising re-
sults, and we develop a prototype deploying AITransfer
into practice to verify its effectiveness.

II. BACKGROUND AND MOTIVATION

We compare point cloud video with conventional video ser-
vices in Table 1 to better understand the critical characteristics
and differences.

Point cloud video is generated by simultaneous acquisition
and fusion of multiple depth cameras from different angles. As
illustrated in Table I, point cloud video supports 6-DoF expe-
riences, which differs from other video types in terms of data
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Fig. 1. System workflow and components of AITransfer.

volume, coding research status, and key techniques. Delivering
point cloud video requires ultra-high bandwidth consumption
and more complex processing. At present, 2D pixel-based video
codec technology has been quite mature, and some codecs can
even compress VR content by a factor of 100 or 500. How-
ever, the development of point cloud video compression is still
in its infancy. Existing representative 3D tree-based compres-
sion methods can only achieve several times the compression
ratio [6].

Current point cloud compression methods are still difficult
to support real-time transmission in the existing network envi-
ronment, and not all points are needed to be transmitted intact.
Hence, we can achieve a similar visual effect to the original
point cloud video using AI technology for reconstruction when
rendering and replaying at the receiving side. Deep learning
is a promising method to extract semantic features, which en-
courages us to consider transferring the deep semantic features
instead of raw point cloud video or compressed video, achieving
a significant reduction of the transmitted data volume.

III. DESIGN OF AITRANSFER

In this section, we first introduce the overview of the point
cloud video transmission system in Section III-A to help com-
prehend each component of AITransfer. Afterward, we design
the integrated end-to-end transmission neural network architec-
ture in Section III-B, including feature extraction, feature re-
construction, and training loss function. Lastly, we design the
adaptive control scheme into a DRL-based model and give its
details in Section III-C.

A. System Overview

We introduce the workflow to help understand the charac-
teristics in Fig. 1, which consists of the following four core
components.

1) Multiple Camera Views. Generally, we employ multiple
depth-cameras placed at different angles to capture raw
point clouds and synchronize the point cloud streamings
from each camera to a high-performance edge server using
USB cables for pre-processing.

2) Edge Server. Multiple point cloud streams from differ-
ent views need to be spliced due to redundant overlapped
information. Besides, the edge server plays the role of
extracting deep semantic features from the spliced point
cloud using feature extraction. Note that the edge server
uses an adaptive control scheme to sense the connected

terminals’ network conditions before extracting and trans-
ferring features. The scheme then decides on the optimal
inference model matching the current network condition.

3) Base Station. AITransfer provides real-time point cloud
video delivery in the current network environment. Point
cloud semantic features are transferred over wireless con-
nections to various terminals using existing base stations.

4) Terminals. AITransfer is deployable on various terminals
and usable in a wide range of scenarios. For instance,
we use AITransfer to implement real-time holographic
communication on a smartphone. A more immersive ex-
perience is to use head-mounted displays (HMDs) (e.g.,
Nreal [19], HoloLens [20]) to render the point cloud, and
the users can interact with such immersive point cloud
video.

AITransfer’s workflow consists of offline end-to-end neural
network training and online resilient transmission.

Offline Phase. For the offline training, we use the spliced
point cloud video as the input and ground truth. AITransfer in-
fers reconstructed results and defines the loss function to com-
plete end-to-end training. Note that the network condition in
Fig. 1 is also a hyperparameter during the training, and plays the
role in adjusting the volume of extracted semantic features for
online transmission, which matches the dynamic network con-
dition. After training a number of end-to-end neural networks
with different network condition hyperparameters, we use dy-
namic network bandwidth as the input and train another DRL
neural network in adaptive control scheme to select the optimal
inference model from the candidate set.

Online Phase. During the online phase, AITransfer first
processes various point cloud streamings to obtain a com-
plete spliced result and then extracts semantic features using
the selected inference model. Next, the terminals reconstruct
the point cloud video using feature reconstruction to recover
these transmitted features. To achieve instant network condi-
tion sensing, once the communication channel is established be-
tween the sender and the receiver, the adaptive control scheme
senses the network condition and takes it into the DRL net-
work to complete the forward inference. The scheme adaptively
switches the optimal inference model (i.e., with the purpose
of maximizing transmission performance) to execute semantic
features’ extraction and reconstruction. Overall, AITransfer’s
AI-powered transmission architecture with a DRL-based adap-
tive control scheme provides excellent capability to remarkably
reduce network bandwidth and energy consumption in dynamic
environments.

B. Design of the Transmission Network Architecture

1) Hierarchical Feature Extraction: As shown in the top
half of Fig. 2, we design a hierarchical extraction architec-
ture based on the backbone of PointNet++ [17]. We first ex-
plain why the PointNet++ architecture is leveraged as it only
deals with point clouds and not videos directly. (i) PointNet++
has the capability of directly handling point cloud inputs for
feature extraction. (ii) At present, existing 3D tree-based point
cloud video streaming systems [2], [4], [6] transfer video as a
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Fig. 2. Design of end-to-end network architecture.

sequence of individually compressed frames. This is because
directly compressing the dynamic point cloud while consid-
ering the incremental differences between frames is very dif-
ficult. This may be a research point further studied in future
work.

Specifically, we adopt the multiple layers called Set Abstrac-
tion Levels (SAL) for hierarchical feature learning due to the
invariance of the unordered point set’ permutation, capturing the
local structure of the raw point cloud. Thus, the input point set is
represented more abstractly with a smaller number of points and
features when passing a basic SAL. After multiple layers of fea-
ture extraction, the point cloud is represented by a point-wise
semantic feature matrix (N,M) for subsequent transmission.
A basic SAL consists of three essential layers: Sampling Layer,
Grouping Layer, and Mini-PointNet Layer [17]. More precisely,
the Sampling Layer selects a point subset from the output of
the previous layer, representing the centroids of local regions.
The Grouping Layer constructs local region sets by finding a
certain number of nearest neighbors around the centroids, and
the Mini-PointNet Layer uses three 2D convolution layers and
one max pooling layer to encode local region patterns into fea-
ture vectors. We set three SALs’ number of centroids as 128,
64, and N for gradual extraction. Empirically, the numbers of
out channels in the Mini-PointNet Layer are set as [64, 64, 64],
[64, 64, 32], and [32, 32,M ]. We keep other parameters as the
default configuration as found in [17].

2) Feature Expansion Reconstruction: We design a rela-
tively lightweight and efficient feature expansion module for
point cloud reconstruction, considering that advanced GAN-
based method like PU-GAN [21] is too heavy and cumbersome
to be deployed in mobile or resource-constrained terminals. As
mentioned in [22], employing the generator of PU-GAN can
achieve an approximately smaller model than 10 MB. Hence,
we adopt the Feature Expansion component and Point Set Gen-
eration component in the generator of PU-GAN, as shown in
the bottom half of Fig. 2. The received semantic feature ma-
trix (N,M) is first delivered to a multilayer perceptron (MLP)
layer for unifying the dimension to (N, 128). Besides, its fea-
tures are expanded to (256, 128) by an up-down-up expansion
unit. This unit’s design can produce more diverse point distribu-
tions to enhance the feature variations rather than a simple du-
plication strategy in PU-Net [23]. Then, the expanded feature is
reconstructed into the point set with 3D coordinates by two MLP
layers. Moreover, more details about parameter settings and the

structure of the up-down-up expansion unit can be referred to
in [21].

3) End-to-End Training: We first discuss two representative
loss definitions in processing conventional point clouds, in-
cluding the repulsion loss and uniform loss, and explain the
non-universality for AITransfer. The repulsion loss avoids the
generated points located near the original points, which is de-
scribed in [23]:

Lrep =

N̂∑
i=1

∑
i′∈K(i)

η(‖xi′ − xi‖)w(‖xi′ − xi‖), (1)

where N̂ denotes the number of output points, K(i) is the index
set of the k-nearest neighbors of point xi. η(r) and w(r) are
the repulsion term and fast-decaying weight function. Also, the
uniform loss is to improve the generative ability to generate point
sets in a uniform distribution, which is described in [21]:

Luni =
M∑
j=1

(|Sj| − n̂)2

n̂
·
|Sj |∑
k=1

(|dj,k − d̂|)2
d̂

. (2)

The former and the latter terms account for the nonlocal and
local distribution uniformity, respectively. Sj denotes a point
subset in a patch, and n̂ is the expected number. dj,k represents
the distance from each point in Sj to its nearest neighbor. Note
that it follows the chi-squared model to measure the deviation
of dj,k from d̂.

However, in this work, AITransfer aims to train an end-to-end
neural network to minimize the distance between the outputs
and inputs as much as possible, which is fundamentally different
from the existing advanced methods’ task. Therefore, we use the
earth mover’s distance (EMD) [24] as the reconstruction loss to
encourage the generated points to lie on the target surface and
be similar to original input data, which can be calculated by:

Lrec = minφ:P→Q

∑
pi∈P
‖pi − φ(pi)‖2, (3)

where φ :P→Q represents the mapping from the input to the
output. Furthermore, we provide the whole formulation of the
training loss in AITransfer as follows:

L(θ) = λrecLrec + ‖θ‖2 , (4)

where λrec represents the weight, and‖θ‖2 represents regulariza-
tion. In Section IV-B2, we conduct experiments on the influence
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of the above loss functions to illustrate our design’s effective-
ness. Although the repulsion loss and uniform loss make a no-
table contribution to the point cloud upsampling task, they are
not ideally suited to the point cloud video transmission scenario.

To train AITransfer with the discussed loss function, we em-
ploy the patch-based training strategy. More precisely, each 3D
training mesh model is decomposed of 200 patches, and each
patch occupies 5% of whole objects, grouping 256 points and
normalized in a unit sphere. As for a point set in the testing
phase, we follow the same strategy to use the farthest sampling
and extract a local patch with a fixed number of points. Then the
patches are fed into AITransfer, compressed, and reconstructed
to a point set with the same size as the original input. Lastly, all
patches of this point set are combined into the final output for
replaying.

C. Design of the Adaptive Control Scheme

The adaptive control scheme is committed to matching the
most appropriate inference model to various network conditions
for providing the best transmission performance. Until now,
there exists a significant variance in user preferences for volu-
metric video quality of experience (QoE) [2]. To the best of our
knowledge, how to measure the QoE of point cloud video ser-
vices still lacks research and clear definition. The current quality
assessment tool for point cloud videos is a variant or extension
of counterparts from conventional approaches, such as Peak Sig-
nal to Noise Ratio (PSNR). Notably, traditional PSNR cannot be
directly used because it only represents color information of 2D
video [25], and cannot represent position information of point
cloud, especially since the number and position of points will
change after our semantic-aware compression.

In this work, we conservatively consider two main objective
metrics: the transmission latency and users’ perceived video
quality. To enable real-time point cloud video delivery with
high reconstructed video quality, we consider establishing a re-
lationship between the above two metrics to achieve an optimal
trade-off. However, in previous research [1], the relationship be-
tween latency and quality is difficult to be precisely expressed as
a simple formulation. Inspired by recent advances in DRL, we
build an adaptive control scheme that learns to select inference
models directly from experience. The question arises as to why
additional effort should be expended to explore a new adaptive
control scheme, when there is an existing one that we previously
proposed [1]? The reason is that when the number of candidate
models becomes wildly large, it will take an increased amount
of time to infer the optimal solution. In Section IV-C2, we com-
pare these two schemes to illustrate the necessity and efficiency
of the DRL-based adaptive control scheme.

A variety of DRL algorithms could be considered as the
framework of the adaptive control scheme. We choose Asyn-
chronous Advantage Actor-Critic (A3C) [26], because:

1) A3C is a state-of-the-art DRL algorithm, effectively solv-
ing the non-convergent problem of Actor-Critic;

2) A3C has been successfully applied to traditional video
streaming applications such as adaptive-bitrate control and
resource management [27];

Fig. 3. Design of adaptive control scheme.

3) The asynchronous parallel training framework supports
online training in which many users concurrently send
their experience feedback to the agent; and

4) The asynchronous parallel training framework can accel-
erate the convergence of neural networks, better meeting
the real-time requirement in our scenario.

LetMs = {m1,m2, . . . ,mN} be the trained transmission in-
ference model set, and each model mi in Ms has a different size
of the transmitted feature matrixF . As shown in Fig. 3, the adap-
tive control scheme’s training uses A3C which involves one cen-
tral brain (global net) and multiple parallel workers (local nets),
each worker has two types of neural networks: actor network and
critic network. We describe the detailed functionalities below.

State: Adaptive control scheme’s learning agent takes state
input st = vt to its neural networks, where vt is the network
transmission bitrate at time t.

Action: After receiving st, the agent takes an action at that
corresponds to the transmission inference model for the next
video chunk (i.e., a group of point cloud frames), represented as
at = mt, where mt ∈Ms.

Reward: Supposing in one video chunk t, the edge server
sends nt frames of video to the receiver, then the transmission
latency Tt is calculated as:

Tt =
F(mt) · nt

vt
, (5)

where F(mt) represents the data volume of semantic feature
matrix (N,M) for transmission.

Note that in this work, we only focus on transferring the co-
ordinate (X, Y, Z) of the point cloud without taking (R, G, B)
information into the design of AITransfer. Traditional PSNR is
not suitable for measuring the quality of videos without color in-
formation under this transmission framework. Thus, we measure
the users’ perceived video quality by the point-to-point distance
between input and output point cloud in each frame like in [21],
meaning the similarity from the reconstructed video to the orig-
inal video.

We define At as the reconstruction accuracy representing the
video quality of chunk t. Intuitively, the larger of the size of the
feature matrix F(mi) has, the more accurate the reconstruction
performance becomes. This is because a large size of F(mi)
means more informative semantic features extracted from the
original point cloud can be retained for subsequent decompres-
sion. Also, the accuracy is influenced by the data volume, and
by the specific values in it.
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We calculate the accuracy At by adopting two kinds of
commonly used point-to-point distances, Chamfer distance
(CD) [28] and Hausdorff distance (HD) [29], which are respec-
tively defined as:

dCD(S1, S2) =
1

|S1|
∑
x∈S1

min
y∈S2

‖x− y‖22

+
1

|S2|
∑
y∈S2

min
x∈S1

‖y − x‖22 (6)

dHD(S1, S2) = max(h(S1, S2), h(S2, S1))⎧⎨
⎩
h(S1, S2) = max

x∈S1

min
y∈S2

‖x− y‖
h(S2, S1) = max

y∈S2

min
x∈S1

‖y − x‖ , (7)

where S1 and S2 are two point sets. The smaller the metric
values are, the better the reconstruction results are. Let J be the
number of point cloud frames in each video chunk, the average
reconstruction accuracy At is represented as:

At =
1

J
J∑

j=1

dCD(S1, S2), (8)

or

At =
1

J
J∑

j=1

dHD(S1, S2). (9)

In reinforcement learning, the design of reward plays an im-
portant role in helping neural networks achieve convergence fast
and obtain a global optimal solution. As a matter of experience,
we define the QoE in (10) as the reward, where wT , wA ∈ R+

represent the weights of latency and accuracy, respectively:

QoEt = −wTTt − wAAt. (10)

Actor network: The agent takes an action at upon receiving st
based on a policy, which is a probability distribution over ac-
tions: π(st, at) = P (at|st)→ [0, 1]. In practical problems, the
transmission rate is a continuous real number and there will be
too many pairs of (st, at). To overcome this, we use a neural
network (actor network) to output the policy, because it can take
input directly from observation without any hand-crafted fea-
tures and the number of policy parameters is easily manageable
by the neural network. As is well-known, the primary purpose of
a DRL agent is to maximize the expected cumulative discounted
reward received from the environment. A3C algorithm trains its
policy based on the policy gradient method [26]. The gradient
of the cumulative discounted reward with respect to (w.r.t) the
policy parameters θ is calculated as:

∇θEπθ

[ ∞∑
t=0

γtrt

]
= Eπθ

[∇θ log πθ(s, a)A
πθ (s, a)] , (11)

where γ is the discounted factor. Aπθ (s, a) is the advantage
function, which represents the difference between the expected
total reward deterministically taking action a in state s and the
expected reward for actions drawn from policy πθ. The com-
mon activation function of policy function πθ(s, a) is a softmax

function. Building on actor-critic, A3C also adds an entropy reg-
ularization term H(·) to the actor’s update rule for helping the
agent converge to a better policy [26]. In summary, the actor’s
accumulative gradient update is:

θ ← θ +
∑
t

∇θ log πθ(st, at)A(st, at) + c∇θH(π(st; θ)).

(12)
Critic network: A critic network merely helps to train the actor
network. In online testing, only the actor network is required to
output the optimal transmission inference model. To calculate
A(st, at), we need an estimation of the value function V πθ (s),
the expected total reward starting at state s and following the pol-
icy πθ. The critic network will learn the estimation of V πθ (s)
from empirically observed rewards. The mean-square loss func-
tion is used to update the critic network parameter θv .

θv ← θv −
∑
t

∇θv (rt + γV πθ (st+1; θv)− V πθ (st; θv))
2

(13)
Since A3C is asynchronous and multi-threaded, we describe

one of the threads in Algorithm 1 to clarify the details.

IV. EVALUATION

We evaluate AITransfer from the system-level performance
and in-depth analysis to answer the following three questions:

1) Does AITransfer enable a high compression ratio while
guaranteeing a considerable experience?

2) How AITransfer performs when compared with conven-
tional point cloud compression methods?
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3) Can AITransfer provide adaptive sensing and transmis-
sion under a dynamic network environment? We first in-
troduce the datasets, the baselines, and then the detailed
experimental settings.

Datasets. (1) We use 145 3D mesh models from the released
dataset by PU-GAN [21], including a variety of diverse objects
with different point set sizes. We select 40 simple, 40 medium,
and 40 complex models for training AITransfer and the rest of
the 25 models are used for testing. (2) To train the A3C net-
work in the adaptive control scheme and test its performance,
we collect 4 large-scale dynamic point cloud video datasets [10].
There are four sequences in the dataset, known as longdress, loot,
redandblack, and soldier. In each sequence, the full body of a
human subject is captured by 42 RGB cameras at 30 FPS, over
a 10 s period. For simplicity of evaluating the reconstruction ac-
curacy of each video frame, we uniformly preprocess all human
subjects to 100,000 points by using the farthest point sampling
technique.

Baselines. Several existing point cloud video streaming sys-
tems [2], [4], [15], [16] adopt the 3D tree-based compression
method to independently process each point cloud frame, and
the total video is transmitted as a sequence of individually com-
pressed frames. More importantly, they target the viewport pre-
diction and tiling mechanism, which adaptively transfers parts
of the video content. For fair comparability, we pay more atten-
tion to conducting comparisons on compression method rather
than adaptive mechanisms for system-level evaluation. We com-
pare AITransfer with two conventional compression methods:
the octree-based method [30], Draco [14], and a representative
deep learning-based approach, Geo-CNN [31]. Conventional
compression methods generally specialize in data structure and
remove redundancy by compressing the number of data bits.
We unify the original point cloud coordinates into 15 bits before
executing the compression for a fair comparison.
� Octree [30] is a representative compression method for

point sampled models based on an octree decomposition
of space, which is applied in PCL. We use Oct (d=5) and
Oct (d=10) to denote the depth of 5 and 10, meaning 3x
and 1.5x quantization compression ratios.

� Draco [14] is a popular library for compressing and de-
compressing 3D geometric meshes and point clouds. We
use Draco (d=5) and Draco (d=10) to represent the quan-
tization parameter (qp) of 5 and 10, meaning 3x and 1.5x
compression ratios. We set the compression level (cl) and
other parameters as default.

� Geo-CNN [31] is a data-driven geometry compression for
static point clouds based on learned convolutional trans-
forms and uniform quantization. Since the training and
testing datasets need to be converted to a voxel grid with
a fixed size before compression, we retrained the network
using the default 64 resolution. It compresses a 643 voxel
grid into an 83 feature with 32 channels, meaning a 16x
compression ratio.

Experimental Settings. We implement AITransfer using
TensorFlow and train it on a high-performance server with eight
Tesla V100-PCIE-32 GB GPUs. (1) For the end-to-end network
training settings, we set the training epoch as 200 and define

the parameter β as 0.9 with an optimizer of Adam. The initial
learning rate is set as 0.001 and reduced by a decay rate of 0.7
per 50 k iterations until 10−6. The batch size is set as 28, λrec is
set as 100. (2) For the DRL network training settings, we set the
number of threads as 5, discount factor γ as 1, and the weight
of entropy c as 0.001. The weights of latency and accuracy in
QoE are 0.6 and 0.4. One video chunk t is 1 s, and nt is 10. The
learning rates of the actor network and critic network are set to
0.0005.

A. System-Level Evaluation

1) Qualitative Comparisons: We compare the reconstruc-
tion results of AITransfer (5-5) and AITransfer (15-15) with
baselines. Since each patch of the object is composed of (256,
3) information, AITransfer (5-5) and AITransfer (15-15) de-
note 30.72x and 3.41x compression ratios, respectively. We
give some representative visual comparison examples includ-
ing Star (2502 points), Tiger (58370 points), Gramme-aligned
(249366 points), Statue-rome-aligned (500506 points), and
Statue-dragon-aligned (997892 points) in Fig. 4.

We observe that: (1) Oct (d=10) and Draco (qp=10) out-
put uniform results that are similar to the inputs in all cases,
while Oct (d=5) and Draco (qp=5) perform a nonuniform and
“blocky” phenomenon. This is because when the number of
each point’s bits is 10, there is still enough precision to rep-
resent the coordinate information. When the depth drops to 5,
some points close to each other overlap, and the number of
points with diacritical coordinates reduces exponentially. (2)
Geo-CNN’s outputs look fuzzy and distorted with a resolution
of 64. It tends to produce more noisy points and loses many
surface details at the edge of objects. (3) For AITransfer, when
dealing with sparse point sets, AITransfer (5-5) may produce
fewer irregular points and lightly lose some fine-grained de-
tails, such as Star’s angles and Tiger’s tail. This is because a
(256, 3) point set is compressed into just a (5, 5) feature ma-
trix, and the spatial distribution information of the original input
point set is transferred with high limitation. AITransfer (15-15)
further alleviates this kind of distortion. Mainly, when deal-
ing with denser point sets, the reconstruction results show that
AITransfer can acquire all uniform and almost undistorted point
clouds. In summary, the qualitative evaluation demonstrates
that AITransfer can achieve at least a 30.72x compression ratio
while ensuring a visually similar reconstruction result against the
ground truth on sparse point sets and nearly lossless results on
denser ones. This is promising to transfer intensive point cloud
video across the existing network environment including 5G
networks.

2) Quantitative Comparisons: We employ three commonly
used metrics: (1) Chamfer distance (CD) [28], (2) Hausdorff dis-
tance (HD) [29] and (3) point-to-surface distance (P2F) [32] for
quantitative evaluation. The number of points in the input and
output of Geo-CNN is not precisely consistent, resulting in the
inability to calculate these metrics. Thus, we compare AITrans-
fer with Octree and Draco in this part. We conduct comparisons
on 25 testing models, sorted by the number of points from the
smallest (1023) to the largest (997892) in Table II.
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Fig. 4. Qualitative comparisons on the reconstruction results with other methods.

TABLE II
QUANTITATIVE COMPARISONS ON THE RECONSTRUCTION RESULTS WITH OTHER METHODS

The results show that: (1) Octree achieves the lowest CD in
almost all cases, and the Octree (d=10) is a little bit lower. Com-
pared with Draco (qp=5), AITransfer (15-15) achieves more
than 3x compression ratio while performing well on nine of
the selected datasets. (2) In view of HD, AITransfer (15-15)
achieves lower values than Octree (d=5) on eleven of the
selected datasets, and AITransfer (15-15) evaluates lower values
than Draco (d=5) on eight of the selected datasets. (3) As for
P2F, Draco gets the highest value in each case, and Oct (d=10)
is the lowest. At an approximately equal compression ratio,
AITransfer (15-15) gets lower results than Oct (d=5) on the

last eight of the selected datasets, and these datasets contain
a relatively large number of points. AITransfer (5-5) acquires
better performance than Oct (d=5) under this circumstance,
demonstrating it can obtain more uniform and better 3D sur-
face reconstruction quality on the denser point sets even at an
extremely high compression ratio.

To sum up, the quantization results of AITransfer are some-
times inferior to the other two comparison methods, especially
on sparse point cloud datasets with the same compression ra-
tio. This is because the compression mechanism in AITrans-
fer is based on semantic-level features, and the output object
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TABLE III
COMPARISONS ON AVERAGE ENCODING/DECODING TIME

point cloud is reconstructed by extending these features. When
the input point is sparse, each point contributes vital distributed
information to a complete 3D model. This compression mech-
anism will inevitably bring spatial deviation and some noise
points. However, Octree and Draco are based on traditional
signal-processing mechanisms. Each point in the decompressed
point set is offset in its original position, and if the point cloud
is sparse, this offset may not result in overlap between points.
The above quantitative metrics CD and HD are defined with the
point-to-point distance, thus Octree and Draco can sometimes
achieve shallow values of CD and HD. Consequently, AITrans-
fer achieves a relatively even and stable performance, and it
prefers to be employed in intensive point cloud video transmis-
sion tasks.

3) Performance of Encoding and Decoding: AITransfer can
significantly reduce the transmitted data volume and latency.
Besides, we verify the efficiency of compression and decom-
pression. Since AITransfer has different compression mecha-
nism from other methods, we record the time of feature ex-
traction and reconstruction, respectively, as the encoding and
decoding time. For a fair comparison, we compare AITransfer
(10-10) with Octree (d=10) and Draco (qp=10) on the longdress
dataset. The experiment was repeated 1000 times on the Tesla
V100 GPU-enabled server. The average time required to encode
and decode one raw longdress point cloud frame is shown in
Table III.

The result shows that AITransfer consumes less time on both
encoding and decoding than conventional compression methods.
The reason is that AI-powered compression can leverage GPUs
to accelerate the efficiency of the codec. The inference time of
AITransfer is closely tied to the structure of neural networks, so
it can be further optimized by network lightweight technologies.

B. Understanding AITransfer In-Depth

1) Analysis of the Compression Ratio: We trained a vari-
ety of models with different sizes of transmitted feature matrix
(N,M). The row N and column M of the matrix F(m) can be
arbitrarily set according to actual situations. Hence, we just set
the matrix to a square matrix ranging from (05,05) to (20,20)
with 5×5 interval as a group of examples, representing 30.72x,
7.68x, 3.41x, and 1.92x compression ratios, roughly exploring
the relationship between the reconstruction accuracy and com-
pression ratio. In practice, the relationship between them can
be fitted by training more combinations. We show the average
performance on 25 testing datasets in Table IV.

We conclude that: (1) As the compression ratio reduces from
30.72x to 1.92x, the three metrics CD, HD, and P2F on av-
erage, all decrease. This illustrates that the more features our
system transfers, the more similar the decompressed point set is

TABLE IV
QUANTITATIVE COMPARISONS WITH DIFFERENT MATRIXES

TABLE V
QUANTITATIVE COMPARISONS WITH DIFFERENT LOSSES

to the ground truth, and the higher surface reconstruction perfor-
mance of AITransfer achieves. (2) We observe that CD, HD, and
P2F reduce by 25.46%, 18.88%, and 32.48%, respectively, when
changing the size of the (5,5) to (10,10). When compared with
that of (10,10), the CD, HD, and P2F with the size of (15,15)
further reduce by 4.09%, 5.84%, and 9.08%, respectively. Com-
pared with (15,15), the size of (20,20) only reduces by 2.88%,
1.97%, and 2.30% of the three metrics. (3) The P2F standard
deviation shows a similar characteristic of change, illustrating
the model’s stability with more transmission features. When our
system transfers more information from the original point cloud,
more features can be retained and received to support the recon-
struction on the terminals. (4) The negative correlation may not
be a linear gradient strictly. This is because the accuracy is in-
fluenced by transmitted data volume and the specific values in
it. Note that the training processes among different models are
independent of each other, and there is no inclusion relationship
between the feature matrixes. Hence, we know that the adaptive
control scheme chooses different compression ratios for future
video chunk transmission based on forecasts of available band-
width. Therefore, the model selected by the adaptive control
scheme is up to the actual network condition.

2) Analysis of the Loss Function: We validate the EMD re-
construction loss’ effectiveness for training AITransfer, com-
paring it with other representative loss functions in Table V.
We conduct a comparison study taking the (15,15) transmitted
semantic feature matrix to evaluate the influence of different
loss functions, including CD loss, repulsion loss, and uniform
loss. For experimental settings, we replace the EMD with CD
as reconstruction loss, add the repulsion loss to the total loss
function, and add the uniform loss to the total loss function. We
also follow [21] and [23] to set the w(r) in (1), set the expected
percentage in (2) as {0.4%, 0.6%, 0.8%, 1.0%, 1.2%}, and λrep

and λuni are set as 1 and 10, respectively.
We can see that EMD loss achieves an increase of 0.07% and

0.80% on the CD and HD metrics, and a decrease of 8.63% on
the P2F, compared with using CD as the loss function. When
compared with using EMD+repulsion as the loss function, we
find using a single EMD loss increases by 0.76% of the CD
metric, while it decreases by 4.95% and 2.06% on the HD and
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TABLE VI
MAPPING FROM FEATURE MATRIX TO COMPRESSION RATIO

Fig. 5. A realistic example of a bandwidth trace.

P2F, respectively. Besides, EMD loss improves 0.97% on the CD
metric and decreases 1.64% and 9.58% on the HD and P2F com-
pared with EMD+uniform loss. Also, using EMD loss achieves
the smallest standard deviation of P2F. We conclude that em-
ploying a single EMD as total loss can achieve considerable
performance. Replacing EMD with CD and adding repulsion
loss and uniform loss, respectively, into the total loss will not
improve the performance in all cases and might even have a neg-
ative impact. This is because the repulsion loss and uniform loss
are designed for point cloud upsampling to expand the number
of points on a sparse point set while making the output look
uniform. Besides, adding the latter two losses also increases the
training time of the network.

C. Demonstrating Adaptive Control Scheme In-Depth

In this subsection, we verify whether the adaptive control
scheme can provide compliant transmission under a dynamic
network environment. For comparison purposes and better con-
vergence when training the DRL network, we first explore the
relationship between the reconstruction accuracy and compres-
sion ratio by training more inference models. We trained 8 ad-
ditional inference models, whose transmitted semantic feature
matrix sizes and corresponding compression ratios are shown in
Table VI.

Due to CD and HD being point-to-point distances with the
same order of magnitude, we just measure the reconstruction
accuracy of one video frame by taking the average of CD and
HD. Then, we calculate the accuracy of each frame in the 4 point
cloud video datasets (1200 frames in total) and fitted the rela-
tion between accuracy and compression ratio by a polynomial.
Without loss of generality, we simulate an environment from a
realistic bandwidth trace (0∼100 Mbps) [33] in Fig. 5, where the
network condition is constantly changing dynamically as time
passes.

Fig. 6. (a) Selection of inference model as bandwidth changes. (b) Comparison
with different RL algorithms.

TABLE VII
RUNNING TIME OF TWO ADAPTIVE CONTROL SCHEMES

1) Effectiveness of Adaptive Control Scheme: On the one
hand, to test the effectiveness of the adaptive control scheme,
we have trained the A3C network and used the trained actor
network to infer the transmission model for a new point cloud
video. We draw the decision results in 1∼30 s as an example,
shown in Fig. 6(a). The black solid line represents the change of
bandwidth over time, and the red points represent the inference
models over time selected by the adaptive control scheme.

In Fig. 6(a), when the bandwidth is sufficient, the adaptive
control scheme will select an inference model with a large fea-
ture matrix to provide a more satisfactory visual quality. Other-
wise, it will select a model with a high compression ratio. This
kind of adjustment with the same trend as the dynamic change of
network condition demonstrates the effectiveness of the adaptive
control scheme.

2) Efficiency of Adaptive Control Scheme: On the other hand,
to test the efficiency of the adaptive control scheme, we com-
pare the adaptive control scheme based on DRL with the online
adapter based on a simple formulation in our previous work [1].
To develop a case study, we experiment on a PC equipped with
an AMD Ryzen 5 2600X Six-Core Processor (3.60 GHz), 8 GB
RAM, and an Nvidia GTX 1060 6 GB GPU. We record the run-
ning time of selecting the inference model in Table VII, where
model-num denotes the number of inference models; oa1-sum
and oa2-sum respectively denote the total time (for 30 seconds)
of the online adapter in [1] and DRL-based adaptive control
scheme; oa1-mean and oa2-mean respectively denote the av-
erage time (for once). Note that the results of the DRL-based
adaptive control scheme in Table VII contain the GPU startup
and warm-up time. To alleviate the effect by this time and ran-
domness, we conduct each experiment 1000 times to obtain the
average.

As observed in Table VII, when there are only 8 candidate
models, the time of oa1-sum and oa1-mean are respectively less
than oa2-sum and oa2-mean. The reason is that the number of
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Fig. 7. A case study of holographic communication.

models is so few that it can be quickly traversed once. However,
when the number of candidate models increases to 64, 256, 1024,
or more, the running time using the online adapter in [1] will
grow non-linearly. This is because the previous scheme is based
on the sort algorithm, having at leastO(nlogn) time complexity.
The time using the DRL-based adaptive control scheme does not
increase as the number of models increases, because the time is
only related to the depth and structure of the neural network.

Compared with our previous work, the DRL-based adaptive
control scheme proposed in this paper has the advantages of em-
ploying a neural network for direct forward inference to make
decisions and leveraging GPUs to accelerate the calculation pro-
cess, which demonstrates the efficiency of the DRL-based adap-
tive control scheme.

3) Evaluation of A3C Framework: We compare A3C with
the other two RL algorithms: Deep Q Network (DQN) and Policy
Gradients (PG) to verify the superiority of A3C. For fairness,
we adjust three models’ parameters including the learning rate,
and set the neural node number of the hidden layer to 96, then
we train three algorithms to ensure neural network convergence.
We show the absolute value of QoE (i.e., (10)) evaluated on the
testing video in Fig. 6(b). The smaller the value, the better the
QoE. The results show that A3C can help the adaptive control
scheme provide a more satisfactory QoE than DQN and PG.
Considering the characteristics of A3C mentioned in Section
III-C, we finally choose it in this bandwidth-aware point cloud
video delivery scenario.

D. Case Study of Holographic Communication

We prototype AITransfer into a case study for enabling holo-
graphic communications in Fig. 7. We use four Kinect V2 [5]
depth-cameras, respectively, placed at the front left, back left,
front right, and back right of interest to collect a surrounding
real-time point cloud, and fuse different angles of the camera
by using the PCL [13] tool. We use the nearest edge cloud
server equipped with the NVIDIA Tesla V100 GPUs to match
the network condition and extract point cloud semantic features.
We use an Aruba WiFi router to broadcast compressed features
by WiFi to the receivers, a laptop and a HoloLens 2. The de-
vices feed the received features into the reconstruction part to
complete the inference, render and play the inference result. The
playback result shown on the laptop can be seen in Fig. 7.

V. RELATED WORK

Point Cloud Compression. The most intuitive way is to
compress point clouds and reduce the transmitted data vol-
ume, including geometry compression, attribute compression,

and motion-compensated compression [34], [35]. Most of these
focus on static kd-tree and octree-based solutions. Typical ex-
amples include PCL [13] and Draco [14]. Besides, transforming
3D point clouds to 2D maps and compressing them with conven-
tional algorithms may lead to a loss of some key features [36].
Recently, deep learning-based geometry compressions [8], [37]
divide raw point clouds into 3D voxels, which results in large
consumption for converting raw data to voxels due to a sparse
Euclidean space. The existing point cloud compression meth-
ods explore compressing from space and pixel characteristics
to reduce storage memory, ignoring the point cloud’s transmis-
sion features. More importantly, the computational overhead of
conventional compression techniques is also unacceptable for
real-time transmission. Our AITransfer explores compressing
the point clouds by extracting key features instead of raw point
data and providing real-time transmission services.

Point Cloud Video Streaming. Point cloud video services
have attracted growing interest in academia and industry [4],
[38], [39], [40]. Most recent works optimize the transmission
by extending VR streaming techniques, such as viewport predic-
tion, bitrate adaptation, and tiling mechanism [41], [42]. PCC-
DASH [15] is a standards-compliant method for HTTP adaptive
streaming of scenes comprising multiple dynamic point clouds.
Hosseini and Timmerer [43] reduce the number of point clouds
using various sampling schemes and provide dynamic adaptive
streaming with octree-based representation. Narwhal [42] max-
imizes the viewing experiences based on the optimization of the
computational and communication resources. ViVo [4] is the
first practical three visibility-aware volumetric video stream-
ing method for mobile devices. Zhang et al. [44] propose a
lightweight edge differential privacy preservation framework,
effectively protecting user privacy and ensuring service delay,
which is of great significance to the security of point cloud video
communications. These schemes have optimized conventional
frameworks of video delivery, but do not fully exploit the point
cloud video features and degrade the transmission. Our work is
fundamentally different from these efforts, which uses AI tech-
nology to deeply analyze the point cloud’s semantic features for
efficient transmission.

Reinforcement Learning on Video Streaming. Reinforce-
ment learning (RL) has been a powerful means of resource
management and bitrate adaptation in 2D video streaming. Pen-
sieve [27] is a system that generates ABR algorithms using RL, it
trains a neural network to select bitrates for future video chunks
based on observations collected by client video players. In most
recent years, RL has been further extended to 360-degree video
and VR video streaming [45], [46], [47]. DRL360 [45] is a
DRL-based framework for 360-degree video streaming, which
helps improve the system performance by jointly optimizing
multiple QoE objectives across a broad set of dynamic features.
Kan et al. [46] propose a DRL-based rate adaptation algorithm
for adaptive 360-degree video streaming. Du et al. [47] propose
a DRL-based approach to learn the optimal viewport rendering
offloading and transmit power control policies for high-quality
immersive VR video services. Revisiting the above works, RL
has been widely analyzed in conventional video streaming, but to
the best of our knowledge, it is now more seldom to find research
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avenues focused on point cloud video streaming. Deploying an
RL-based optimizer in real-time systems has to confront addi-
tional challenges.

VI. DISCUSSION

We discuss the superiority and some limitations of AITrans-
fer. First, AITransfer achieves a higher compression ratio and
real-time requirements with flexibility than other point cloud
video streaming systems. On the one hand, AITransfer extracts
and transfers the deep semantic features instead of geometri-
cal raw data, obtaining a significant improvement in transmis-
sion with a small data volume. On the other hand, AITransfer
fuses the training process of reconstructing the features back
to the original point cloud into the feature extracting phase for
an end-to-end training. Second, AITransfer adapts to different
network conditions and matches the optimal model within an
impressive response time. Third, we find that AITransfer cannot
provide high quantitative performance for some sparse point
clouds. This illustrates that sparse point cloud contains more
informative key features, and AITransfer has difficulty recov-
ering the complete point cloud from the insufficient features
in the reconstruction stage. A potential way is to explore a
well-designed neural network to address the shortcomings of
the reconstructed model, closing the gap between the output
and raw input point cloud. Besides, this paper fundamentally
provides a basic AI-powered transmission framework and can
be extended with other techniques such as feature extraction and
expansion that can actually be adjusted by other advanced deep
learning network modules.

VII. CONCLUSION

In this paper, we design and implement AITransfer to ex-
plore a semantic-aware transmission mechanism different from
traditional bulky video transmission frameworks. It allows the
critical transmission of point cloud semantic features at the send-
ing side, significantly reducing the amount of transmitted data
and making it more suitable in existing network environments.
Also, it provides lightweight point cloud reconstruction on the
receiver side to obtain a visual result similar to the original point
cloud. Furthermore, AITransfer considers the dynamic and un-
stable nature of the network environment, incorporates it into
the end-to-end network design, and provides an adaptive trans-
mission control scheme to balance the trade-off between latency
and quality. In future work, we will explore more lightweight
and efficient decoding technologies than AITransfer to deploy
them on mobile devices in a wide range of fields.
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to point cloud compression–Part I: Attribute compression,” IEEE Trans.
Image Process., vol. 29, pp. 2203–2216, 2019.

[36] A. Dai et al., “ScanNet: Richly-annotated 3D reconstructions of in-
door scenes,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017,
pp. 5828–5839.

[37] A. F. Guarda, N. M. Rodrigues, and F. Pereira, “Point cloud geometry
scalable coding with a single end-to-end deep learning model,” in Proc.
IEEE Int. Conf. Image Process., 2020, pp. 3354–3358.

[38] J. Du, F. R. Yu, X. Chu, J. Feng, and G. Lu, “Computation offloading
and resource allocation in vehicular networks based on dual-side cost
minimization,” IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1079–1092,
Feb. 2019.

[39] Y. Zhang et al., “Efficient query of quality correlation for service com-
position,” IEEE Trans. Serv. Comput., vol. 14, no. 3, pp. 695–709,
May/Jun. 2021.

[40] Y. Zhang et al., “Covering-based web service quality prediction via
neighborhood-aware matrix factorization,” IEEE Trans. Serv. Comput.,
vol. 14, no. 5, pp. 1333–1344, Sep./Oct. 2021.

[41] F. Qian, B. Han, J. Pair, and V. Gopalakrishnan, “Toward practical vol-
umetric video streaming on commodity smartphones,” in Proc. 20th Int.
Workshop Mobile Comput. Syst. Appl., 2019, pp. 135–140.

[42] J. Li et al., “Narwhal: A dash-based point cloud video streaming system
over wireless networks,” in Proc. Conf. Comput. Commun. Workshops,
2020, pp. 1326–1327.

[43] M. Hosseini and C. Timmerer, “Dynamic adaptive point cloud streaming,”
in Proc. 23rd Packet Video Workshop, 2018, pp. 25–30.

[44] Y. Zhang, J. Pan, L. Qi, and Q. He, “Privacy-preserving quality predic-
tion for edge-based IoT services,” Future Gener. Comput. Syst., vol. 114,
pp. 336–348, 2021.

[45] Y. Zhang et al., “DRL360: 360-degree video streaming with deep re-
inforcement learning,” in Proc. IEEE Conf. Comput. Commun., 2019,
pp. 1252–1260.

[46] N. Kan et al., “Deep reinforcement learning-based rate adaptation for adap-
tive 360-degree video streaming,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., 2019, pp. 4030–4034.

[47] J. Du et al., “MEC-assisted immersive VR video streaming over terahertz
wireless networks: A deep reinforcement learning approach,” IEEE Inter-
net Things J., vol. 7, no. 10, pp. 9517–9529, Oct. 2020.

Yuanwei Zhu is currently working toward the Ph.D.
degree with the State Key Laboratory of Network-
ing and Switching Technology, Beijing University of
Posts and Telecommunications, Beijing, China. His
research interests include point clouds, video stream-
ing transmission, and deep reinforcement learning.

Yakun Huang received the Ph.D degree in com-
puter science from the Beijing University of Posts
and Telecommunications, Beijing, China, in 2021.
He has authored or coauthored more than ten tech-
nical papers in international journals and at confer-
ences, including the IEEE TRANSACTIONS ON MO-
BILE COMPUTING, IEEE TRANSACTIONS ON SERVICE

COMPUTING, IEEE NETWORK, INFOCOM, ICDCS,
MM. His research interests include video streaming,
mobile computing, edge computing, and distributed
deep learning.

Xiuquan Qiao is currently a Full Professor with the
Beijing University of Posts and Telecommunications,
Beijing, China, where he is also the Deputy Director
of the Key Laboratory of Networking and Switching
Technology, Network Service Foundation Research
Center of State. He has authored or coauthored more
than 60 technical papers in international journals
and at conferences, including the IEEE Communica-
tions Magazine, PROCEEDINGS OF IEEE, Computer
Networks, IEEE INTERNET COMPUTING, the IEEE
TRANSACTIONS ON AUTOMATION SCIENCE AND EN-

GINEERING, and the ACM SIGCOMM Computer Communication Review. His
research interests include the future internet, services computing, computer vi-
sion, distributed deep learning, augmented reality, virtual reality, and 5G net-
works. Dr. Qiao was the recipient of the Beijing Nova Program in 2008 and
the First Prize of the 13th Beijing Youth Outstanding Science and Technology
Paper Award in 2016. He was an Associate Editor for the Magazine Computing
(Springer) and the Editor Board of China Communications Magazine.

Zhijie Tan is currently working toward the M.S.
degree with the State Key Laboratory of Network-
ing and Switching Technology, Beijing University of
Posts and Telecommunications, Beijing, China. His
research interests include simultaneous localization
and mapping (SLAM), sensor fusion, and computer
vision.

Boyuan Bai is currently working toward the Ph.D.
degree with the State Key Laboratory of Network-
ing and Switching Technology, Beijing University of
Posts and Telecommunications, Beijing, China. His
research interests include point clouds, video stream-
ing transmission, and deep reinforcement learning.

Huadong Ma (Fellow, IEEE) received the Ph.D. de-
gree in computer science from the Institute of Com-
puting Technology, Beijing, China, in 1995. He is
currently a Professor with the Beijing University of
Posts and Telecommunications, Beijing, China. He
has authored or coauthored more than 300 papers
in prestigious journals (such as ACM/IEEE Trans-
actions) and conferences (such as ACM SIGCOMM,
MobiCom, IEEE INFOCOM). His research interests
include multimedia system and networking, Internet
of Things, and sensor networks. He is an Editorial

Board Member of the IEEE TMM, IEEE IoT Journal, ACM T-IoT, and MTAP.
He is the Chair of ACM SIGMOBILE China.

Schahram Dustdar (Fellow, IEEE) was an Honorary
Professor of Information Systems with the Depart-
ment of Computing Science, University of Gronin-
gen, Groningen, The Netherlands, from 2004 to 2010.
From 2016 to 2017, he was a Visiting Professor
with the University of Sevilla, Sevilla, Spain. In
2017, he was a Visiting Professor with the Univer-
sity of California at Berkeley, Berkeley, CA, USA.
He is currently a Professor of computer science with
Distributed Systems Group, Technische Universität
Wien, Vienna, Austria. Dr. Dustdar was an Elected

Member of the Academy of Europe, where he is the Chairman of the Informat-
ics Section. He was the recipient of the ACM Distinguished Scientist Award
in 2009, the IBM Faculty Award in 2012, and the IEEE TCSVC Outstanding
Leadership Award for outstanding leadership in services computing in 2018. He
is the Co-Editor-in-Chief of the ACM Transactions on Internet of Things and
the Editor-in-Chief of Computing (Springer). He is also an Associate Editor of
the IEEE TRANSACTIONS ON SERVICES COMPUTING, IEEE TRANSACTIONS ON

CLOUD COMPUTING, ACM Transactions on the Web, and the ACM Transactions
on Internet Technology. He serves on the Editorial Board of IEEE INTERNET

COMPUTING and the IEEE Computer Magazine.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 08,2023 at 07:19:05 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


