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Abstract—Vehicle-to-vehicle (V2V) computation offloading has
emerged as a promising solution to facilitate computing-intensive
vehicular task processing, where task vehicles (i.e., TaVs) will be
requested to offload computing-intensive tasks to server vehi-
cles (i.e., SeVs) in order to keep task delay low. However,
it is challenging for TaVs to obtain the optimal V2V com-
putation offloading decisions (i.e., realizing the minimal task
delay) due to the constraints, including: 1) incomplete offload-
ing information; 2) degraded Quality-of-Service (QoS) of SeVs;
and 3) privacy leakage risks. In this article, we develop a
learning-based V2V computation offloading algorithm enhanced
by SeV’s ability & trustfulness awareness to solve these problems.
We emphasize that the proposed algorithm learns the offload-
ing performance of candidate SeVs based on history offloading
selections, without requiring the complete offloading information
in advance. Additionally, both the QoS of SeVs and safe V2V
computation offloading are enhanced in the proposed learning-
based algorithm. Furthermore, we conduct extensive simulation
experiments to validate the proposed algorithm. The results
demonstrate that the proposed algorithm reduces the average
task delay by 35% and 40%, and at the same time decreases the
learning regret by 39% and 41%, compared to the algorithms
without SeV’s ability and trustfulness awareness.
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I. INTRODUCTION

W ITH the development of 6G and Internet of Vehicles
(IoV) technologies, vehicles have been more con-

nected and intelligent. These features facilitate the emergence
of various vehicular tasks for safe and convenient driving.
Several vehicular tasks, such as online path planning and traf-
fic abnormity detection, require massive computing resources
and completion within strict deadlines. Vehicular comput-
ers performing computing-intensive tasks could, due to the
constrained individual computing capabilities, suffer from
prolonged task delay [1], [2], [3].

A promising solution to resolve this problem is vehic-
ular computation offloading [4], [5], [6], [7], [8], where
computing-intensive vehicular tasks can be offloaded to
edge nodes. Currently, computation offloading in vehicular
networks involves vehicle-to-infrastructure (V2I) computation
offloading and vehicle-to-vehicle (V2V) computation offload-
ing [8], [9], [10]. In V2I computation offloading, fixed entities
serve as the vehicular edge nodes, such as base stations
(BSs) and road side units (RSUs). Clearly, V2I computa-
tion offloading relies on massive fixed edge nodes and, thus,
inevitably incurs high deployment and operation expendi-
ture [11]. Moreover, it is impractical for V2I computation
offloading to handle a mass of computation tasks due to lim-
ited computing resources [12]. For example, a conventional
fixed edge node only serves a few tens of vehicles per unit
area at a price of high cost in urban intelligent transportation
systems [13].

Compared with V2I computation offloading, V2V offload-
ing enables to overcome the above-mentioned issues. V2V
computation offloading stems from the fact that substantial
vehicular computation resources are chronically underutilized,
which is caused by the mismatches between vehicular tasks
and computing resources. In V2V computation offloading,
vehicles with surplus computing resources provide the offload-
ing services for computing-intensive vehicular tasks [14],
without requiring additional deployments of fixed entities.
Thus, V2V computation offloading offers a more flexible
offloading paradigm, alleviating computation workload of
the fixed entities and facilitating resource utilization among
vehicles. Additionally, advanced communication technologies
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support reliable wireless connectivity among vehicles, such
as dedicated short-range communication (DSRC), long-term-
evolution vehicle (LTE-V), and IEEE 802.11p. In particular,
the communication link duration of V2V computation offload-
ing is longer compared with that of V2I computation offload-
ing when the two vehicles have the same driving heading [15].
In V2V computation offloading, we call vehicles with sur-
plus on-board computation resources Server Vehicles (SeVs),
and vehicles requested by computing-hungry tasks task vehi-
cles (TaVs). SeVs deliver offloading services for TaVs to keep
vehicular task delay low.

Several previous efforts have studied V2V computation
offloading [5], [12], [16]. In these works, computation offload-
ing relies on complete offloading information, including com-
munication rate and available computing resources. On this
basis, marvelous algorithms are proposed to either minimize
task delay or maximize energy efficiency. Such assumptions,
however, are difficult if not impossible to be satisfied in real-
world V2V computation offloading. The reason is that there
is no prior offloading information about channel states and
available computing resources. Specifically, vehicular mobil-
ity complicates the prediction of network topology; worse
still, available computing resources dynamically fluctuate due
to heterogeneous computing capacity and diverse vehicular
tasks.

Although existing learning-based algorithms (e.g.,
[17], [18], [19]) enable to tackle incomplete offloading
information, we emphasize that the algorithms generally can-
not be applied to V2V computation offloading directly. The
reason is that they often ignore the impact of degraded SeV’s
Quality-of-Service (QoS) and task privacy leakage. V2V
computation offloading inevitably decreases the remaining
computing resources for processing tasks initiated from SeVs,
even may degrade QoS of SeVs. Additionally, computation
offloading increases the privacy leakage risks of these tasks.
An attacker can eavesdrop on the privacy of offloaded tasks
by attacking the target SeVs based on the history offloading
inference. For example, when an entertainment-related task
is offloaded from a TaV to the SeV, identity privacy may be
leaked. Evidently, without the considerations of SeV’s QoS
and task privacy, learning-based V2V computation offloading
is easily trapped by suboptimal offloading solutions.

To address these challenges, this article proposes a learning-
based V2V computation offloading approach enhanced by the
SeV’s ability & trustfulness awareness. Specifically, TaVs are
jointly aware of SeV’s ability and trustfulness, thereby ensur-
ing the QoS of SeVs and decreasing privacy leakage risks of
offloaded tasks. Considering the ability awareness and trust-
fulness awareness, TaVs select the optimal ones from the
candidate SeVs to achieve delay-minimal computation offload-
ing without requiring the complete offloading information in
advance. To the best of our knowledge, this learning-based
computation offloading algorithm has not been studied before
in V2V computation offloading. The contributions of this
article are highlighted as follows.

1) We study a V2V computation offloading problem
(details in Section III), where computing-intensive
vehicular tasks are offloaded to vehicles with surplus

computing resources. In the problem, we jointly con-
sider incomplete offloading information, SeV’s ability
and trustfulness issues, aiming to the minimal task delay
by optimizing V2V computation offloading decisions.

2) We propose a learning-based V2V computation offload-
ing algorithm. This algorithm enables TaVs to learn the
offloading performance of candidate SeVs based on the
history offloading selections. The unique feature of this
new algorithm is that it does not require the complete
offloading information in advance, thereby facilitating
its implementation and deployment in the real world.

3) We investigate two kinds of awareness to enhance the
proposed learning-based algorithm, i.e., SeV’s ability
awareness and SeV’s trustfulness awareness (detailed in
Section IV). Specifically, SeV’s ability awareness is ben-
eficial for ensuring SeV’s QoS via concerning the SeV
offloading abilities; besides, SeV’s trustfulness aware-
ness facilitates safe computation offloading by assessing
the SeV’s trustfulness based on privacy entropy.

4) We analyze the performance loss caused by observa-
tion variances in the proposed learning-based algorithm
(detailed in Section V-C). Additionally, we conduct
extensive simulations using real-world vehicle trajectory
data sets. The results validate the effectiveness of our
proposed algorithm in terms of various parameters, such
as task delay and learning regret (detailed in Section VI).

The remainder of this article is organized as follows.
Section II provides an overview of related works. Section III
presents the system models and problem formulation fol-
lowed by problem analysis in Section IV. Section V presents
the learning-based approach for V2V computation offloading.
In Section VI, we present the evaluations, followed by the
conclusion in Section VII.

II. RELATED WORKS

Computation offloading has been studied in many existing
works, such as [20], [21], and [22], where computing-intensive
tasks can be offloaded from end devices to edge nodes. In
this section, we review vehicular computation offloading and
learning-based computation offloading.

A. Vehicular Computation Offloading

In vehicular networks, existing works on computation
offloading can be divided into two categories: 1) V2I compu-
tation offloading and 2) V2V computation offloading [12]. In
the former offloading, vehicles commonly offload computing-
intensive tasks to static edge nodes, such as RSUs and
BSs [16], [23]. In [16], vehicular tasks are offloaded to RSUs
or executed locally. By optimizing task partition, computa-
tion offloading decisions, and system configuration, the authors
achieve the minimal task delay while maintaining the max-
imum application accuracy. In [23], a vehicle offloads its
tasks to the BS when the vehicle is within the V2I com-
munication coverage. Based on this, the authors formulate
computation offloading models to achieve the maximum com-
pletion ratio of time-critical vehicular tasks. Tang et al. [24]
proposed a dynamic offloading model, where multiple moving
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vehicles divide their tasks into sequential subtasks and can
offload the subtasks to RSUs to achieve the minimal total task
delay and waiting time. In [25], vehicles offload their tasks
to the RSU for execution under the long-term energy con-
sumption constraint, aiming at the minimal average response
time. Tang and Wu [26] designed a general caching-enabled
VEC scheme, where task caching and offloading are jointly
considered in VEC networks. Guided by this, the authors
strive for effective caching and offloading strategies to achieve
the minimal weighted sum of the service time and energy
consumption. In [27], computation-intensive vehicular applica-
tions are offloaded to RSUs to seek powerful edge processing
capabilities. Furthermore, each application can be divided into
multiple dependent tasks to be executed by different edge
servers, so as further to minimize the average completion
time of various applications. While V2I computation offload-
ing provides relatively stable computation offloading services
for user devices, such offloading relies on massive fixed edge
nodes and inevitably incurs high deployment and operation
expenditure [11]. What is worse, limited computing resources
render it impractical to handle a mass of offloading tasks and,
thus, incompetent to support computation demands from urban
intelligent transportation systems.

Different from V2I computation offloading, V2V compu-
tation offloading integrates underutilized vehicular computing
resources without requiring additional network deployments.
In this way, V2V computation offloading offers a more flex-
ible vehicular computation offloading paradigm and achieves
higher resource utilization efficiency [2], [5], [12]. Chen and
Xu [2] leveraged the task replication technique to improve
computation offloading performance. A vehicular task can be
offloaded to multiple candidate vehicles with surplus comput-
ing resources. Wang et al. [5] considered a dynamic vehicular
network, where computing-intensive vehicular tasks can be
offloaded to neighboring vehicular clusters for minimal system
energy consumption. Liu et al. [12] proposed a vehicle-
mounted edge mechanism to remedy the coverage limitation
of static edge nodes. By jointly considering path planning and
resource allocation, the maximum completed tasks of V-edge
can be achieved.

B. Learning-Based Computation Offloading

Learning-based algorithms have been studied in compu-
tation offloading [17], [18], [19], [28], [29], [30], [31],
[32], [33]. Ouyang et al. [17] proposed a Thompson-sampling-
enhanced online learning algorithm to cope with unknown
future information and system dynamics, aiming at optimizing
perceived latency and service migration cost. Sun et al. [18]
proposed an adaptive learning-based computation offloading
algorithm, enhanced by input awareness and occurrence aware-
ness, to minimize the average task delay. Zhou et al. [19]
proposed an online learning algorithm to achieve a well
tradeoff between delay and energy consumption. The algo-
rithm adopts adversarial multiarmed bandit theory to realize
ultrareliable and low-latency communication. Luo et al. [28]
derived a self-learning distributed computation offloading
scheme based on a game theorem, where vehicles make

computation offloading decisions to minimize the system
cost. Shang et al. [29] leveraged deep learning techniques to
optimize user association, data partition, transmit power and
computing resources, targeting the minimal energy consump-
tion of end-users. Lin et al. [30] investigated a contextual
clustering of bandits approach to address online computation
offloading in heterogeneous vehicular networks with unknown
environment dynamics. By learning the relationship between
historical observations and rewards, this approach minimizes
the expectation of total offloading energy consumption under
task delay constraints. Yang et al. [31] considered a computa-
tion offloading problem in dynamic fog networks, where end
users offload tasks to fog nodes under the unknown statis-
tics of arrival tasks. A learning-based approach is proposed to
achieve the minimal network latency. Tekin and Liu [32] inves-
tigated both the rested bandits’ and restless bandits’ online
learning problems in the manner of a centralized and a decen-
tralized setting. Liu et al. [33] studied a restless multiarmed
bandit problem, where the reward state of each arm follows
an unknown Markovian rule.

While the aforementioned learning-based algorithms enable
computation offloading without requiring the complete
offloading information, the following issues, which play a
vital role in effective and safe V2V computation offloading,
are insufficiently studied: 1) in V2V computation offloading,
SeVs are required to process the tasks offloaded from TaVs.
The offloading inevitably reduces the computation resources
of SeVs. In particular, when SeVs generate large own com-
putational workload, their QoS may be degraded and, hence,
decrease computation offloading efficiency and 2) the trust-
fulness issue is mostly ignored in the existing learning-based
algorithms. Without this consideration, task privacy leakage
risks increase. To address the above issues, we propose a
learning-based algorithm enhanced by SeV’s ability awareness
and trustfulness awareness in this article.

III. SYSTEM MODELS AND PROBLEM FORMULATION

In this section, we first elaborate on system models, includ-
ing system overview, task model, offloading model, and
delay model. After that, we formulate the V2V computation
offloading problem.

A. System Overview

The timeline of V2V computation offloading in our system
is discretized into time slots T = {1, . . . , t, . . . , T}. At time
slot t, vehicle v is characterized by a tuple (ltv, vt

v, ht
v, Fv),

where ltv indicates the location (in longitude and latitude),
vt

v represents the velocity (in meters per second), ht
v denotes

the driving heading (in directions) and Fv is the maximum
computing resources (in CPU cycles). Vehicular roles (i.e.,
TaV and SeV), due to diverse requested tasks, may change
across epochs Bb = [tb, tb′ ], where b = 1, . . . , B, t1 = 1
and tB′ = T . TaVs select SeVs to perform V2V computation
offloading per time slot in order to keep task delay low [34].
As shown in Fig. 1, three candidate SeVs (SeVs 1–3) could
provide V2V computation offloading service for TaV 1, and
currently SeV 3 is selected. It is noted that V2V computation
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Fig. 1. Illustration of V2V computation offloading. TaVs offload tasks to
SeVs for small task computation delay. The candidate SeVs are required to
keep the same driving heading as the TaV, be within the V2V communication
coverage, and be configured with the requested computation services.

TABLE I
SUMMARY OF THE MAIN SYMBOLS

offloading is easily integrated into V2I computation offload-
ing. Generally, a TaV can seek V2I computation offloading
when there is no candidate SeV. Yet, this scenario is beyond
the scope of this article. We list the key notations as Table I
for better readability.

B. Task Model

At each time slot t ∈ T , TaV u ∈ U t generates a computing-
intensive task. The vehicular tasks remain unchanged within
a time slot while may vary dynamically across different
time slots. We assume that the tasks have sequential depen-
dency [35]. Task n ∈ N t is performed as a tuple of
(bt

n, ct
n, τ

t
n, ot

n) at time slot t, where bt
n indicates the task input-

data size (in bits), ct
n represents computational workload (in

required CPU cycles), τ t
n denotes the task stipulated deadline

(in second) and ot
n is the output/input ratio (in percent) [12].

For notational convenience, task n is assumed to be generated
by TaV u in this work.

To process a task, dedicated computation services are
required. However, SeV s ∈ S t has constrained storage space
and only caches limited computation services. We introduce

a binary variable αn,s ∈ {0, 1} to illustrate whether a com-
putation service requested by task n is cached (αn,s = 1) or
not (αn,s = 0) in SeV s. Guided by the computation service
caching, TaVs offload computing-intensive tasks to the SeVs
for task processing.

C. Offloading Model

V2V computation offloading is divided into three phases,
i.e., vehicular role determination, candidate SeV recognition,
and computation offloading decisions.

Vehicular Role Determination: In V2V computation offload-
ing, vehicular roles (i.e., SeVs and TaVs) change across
epochs. For a specific vehicle, it may serve as a SeV when
requested by a lightweight computational task; or become a
TaV when requested by a computing-intensive video stream-
ing task [34]. To determine the roles, each vehicle calculates
local task delay ct

v/Fv, where ct
v is the computational work-

load of vehicle v at time slot t, and Fv denotes the maximum
computing resources of vehicle v. A vehicle performs as a SeV
when the local delay is less than the task deadline; otherwise,
the vehicle acts as a TaV.

Supported by DSRC standards, the periodic beaconing mes-
sages disseminate the physical information among vehicles,
such as the information of vehicular role, location, velocity,
and driving heading [18].

Candidate SeV Recognition: For a TaV u, SeV s is recog-
nized as a candidate SeV when ensuring: 1) SeV s is in the
same driving heading with TaV u, i.e., ht

s = ht
u; 2) the distance

between SeV s and TaV u is within the V2V communication
coverage of R at the beginning of time slot t, i. e., |lts−ltu| ≤ R;
and 3) SeV s caches the computation service requested by
task n, i.e., αn,s = 1. The former two constraints are used
to maintain reliable communication links between TaVs and
SeVs [18]; the latter one ensures the support of computation
service. Let S t

n �= ∅ denote the candidate SeV set for TaV u
at time slot t. Note that the candidate SeV set may change
across epochs due to vehicular mobility and diverse requested
tasks.

Computation Offloading Decisions: After determining can-
didate SeVs, each TaV offloads computing-intensive tasks
to the selected SeV in order to keep task delay low. Let
xt

n,s ∈ {0, 1} denote the V2V computation offloading deci-
sion. When xt

n,s = 1, task n is offloaded to SeV s at time slot
t; otherwise, SeV s is not selected. Without loss of generality,
we assume that each task can be offloaded to a single SeV per
time slot to maintain task continuity [36].

D. Delay Model

Task delay involves upload delay, processing delay, and
result feedback delay. Several factors affect task delay, includ-
ing communication links, data size, computational workload,
and allocated computing resources.

Upload Delay: Based on the computation offloading deci-
sion, a TaV uploads its task of bt

n data bits to the target SeV.
In V2V computation offloading, we assume that the network
states are identical per time slot, while the states vary across
time slots [37]. We define gt

u,s and It
u,s as the channel gain
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and the interference between TaV u and SeV s at time slot t,
respectively. Given fixed wireless bandwidth W, noise power
δ2 and transmission power p, we obtain the task upload rate
between TaV u and SeV s at time slot t

r(up),t
u,s = W log2

(
1+ pgt

u,s

δ2 + It
u,s

)
, s ∈ S t

n, t ∈ T . (1)

Based on the upload rate, we obtain the upload delay

T(up),t
n,s = bt

n

r(up),t
u,s

, s ∈ S t
n, t ∈ T . (2)

We emphasize that the upload rates between SeVs and TaVs
cannot be obtained in advance, since network states are hard
to model or predict in V2V computation offloading.

Processing Delay: After a TaV uploads its task to SeV s,
the SeV will allocate computing resources for processing the
task. Since a SeV may serve for multiple TaVs, we consider
that the computation resource allocation of SeV s to task n at
time slot t follows the allocation policy of Pt

n,s ∈ P t
s. Without

loss generality, the policy is assumed to be a set of discrete
coefficients of computation resource provisioning [38]. Guided
by this, the computation resources allocated from edge server
s to task n at time slot t are expressed as follows:

f t
n,s = fs

Pt
n,s∑

i∈N t
s

Pt
i,s
∀xt

n,s = 1, s ∈ S t
n, t ∈ T (3)

where fs is the total computation resources of SeV s and N t
s is

the tasks offloaded to SeV s at time slot t. Observe that when
Pt

n,s = 1 ∀xt
n,s = 1, edge server m evenly allocates compu-

tation resources for the offloaded vehicular tasks. In practice,
several process schedulers enable approximation of this com-
putation configuration process, such as distributed weighted
round-robin (DWRR) [39]. It is assumed that the allocated
computing resources remain fixed per time slot while changes
across time slots [18].

Hence, the processing delay of task n at time slot t can be
written as

T(pr),t
n,s = ct

n

f t
n,s

, s ∈ S t
n, t ∈ T . (4)

It is noted that the allocated computing resources are unavail-
able before computation offloading due to heterogeneous
computing capacity and diverse vehicular tasks.

Result Feedback Delay: After processing task n, SeV s
needs to feedback the computation result of bt

not
n bits to TaV u.

When the distance between SeV s and TaV u is within the
V2V communication coverage, SeV s can directly transmit
the computation results to TaV u. If the distance exceeds the
V2V communication coverage due to vehicular mobility, the
computation results need to be transmitted via edge relaying
and, hence, incur the relay delay ω. We denote T(fb),t

n,s as the
result feedback delay, expressed as

T(fb),t
n,s =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

bt
not

n

r(dl),t
s,u

, |lts − ltu| ≤ R (5)

bt
not

n

r(dl),t
s,u

+ ω, |lts − ltu| > R (6)

where r(dl),t
s,u is the result feedback rate between SeV s and

TaV u at time slot t.

E. Problem Formulation

In V2V computation offloading, task delay affects QoS
directly, especially for delay-sensitive vehicular tasks [18].
Conditioned on S t

n �= ∅ (i.e., there is at least one SeV for
task n at time slot t), task delay involves the upload delay,
processing delay and result feedback delay. When task n is
offloaded to SeV s at time slot t, task delay is expressed as

Tt
n,s = T(up),t

n,s + T(pr),t
n,s + T(fb),t

n,s , s ∈ S t
n, t ∈ T . (7)

To reduce the impact of randomness per time slot, our
objective is to minimize the average overall task delay within
T time slots [40]. Besides, a series of constraints need to
be guaranteed to implement V2V computation offloading.
Mathematically, we formulate the V2V computation offloading
problem as follows:

min
xt

n,s,P t
s

1

T

∑
t∈T

∑
n∈N t

∑
s∈S t

n

E
{
Tt

n,s

}
(8)

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f t
n,s ≤ Fs (9)

αn,s ∈ {0, 1} (10)

xt
n,s ∈ {0, 1} (11)∑

s∈S t
n

xt
n,s = 1. (12)

Constraint (9) is the computing resource constraint, i.e.,
the allocated computing resources cannot exceed the maxi-
mum SeV computing resources per time slot. Constraint (10)
denotes the service constraint, i.e., a computation service
will be cached or not in a SeV. Constraints (11) and (12)
are offloading decision constraints, i.e., each TaV selects a
single SeV s for task processing to maintain task continuity.

To address the above problem as defined in (8) under
the constraints of (9) through (12), the complete offload-
ing information is required in advance, including the
information on channel states and available computing
resources. Unfortunately, vehicular mobility complicates the
prediction of network topology; available computing resources
dynamically fluctuate caused by heterogeneous computing
capacity and diverse vehicular tasks. As such, TaVs need to
make V2V computation offloading decisions based on the
incomplete offloading information. This issue incapacitates
traditional optimization solutions, e.g., dynamic program-
ming algorithms. What is worse, V2V computation offloading
inevitably decreases the remaining SeV computing resources,
and may degrade QoS of SeVs. Additionally, computation
offloading increases the privacy leakage risks of these tasks.
While existing learning-based algorithms enable to tackle
incomplete offloading information, the algorithms often ignore
the impact of degraded SeV’s QoS and task privacy leakage.
Without these considerations, V2V computation offloading is
easily trapped by suboptimal offloading solutions. Thus, the
existing algorithms cannot be applied to the V2V computation
offloading problem directly.
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IV. PROBLEM ANALYSIS

To resolve the V2V computation offloading problem,
the above-mentioned challenges (i.e., incomplete offloading
information, degraded QoS of SeVs, and task privacy leak-
age risks) are required to be addressed. To this end, in this
section, we first analyze the offloading information, and then
we design SeV’s ability and trustfulness awareness to facilitate
effective and safe V2V computation offloading. After that, we
summarize the problem analysis.

A. Information Analysis

We analyze the offloading information based on whether
TaVs are aware of the information in advance.

On the one hand, TaVs generate computing-intensive tasks
per time slot, and the task information (i.e., bt

n, ct
n, τ t

n,
and ot

n) can be acquired by TaVs before computation offload-
ing. Besides, physical information of SeV s at time slot t
(i.e., lts, vt

s, and ht
s) can be obtained by TaVs via DSRC

standards and LTE-V. On the other hand, some offloading
information is unavailable for TaVs, such as the communica-
tion rate between TaVs and SeVs (i.e., rt

s,u) and the allocated
computing resources from SeVs (i.e., f t

n,s).
Remarks: It is noteworthy that V2V computation offloading

with complete offloading information is often not the case in
the real world since the following issues remain: 1) the trans-
mission rate between TaVs and SeVs is complicated to model
or predict due to vehicular mobility and varying network
topology and 2) TaVs generate diverse tasks and SeVs have
heterogeneous computing capacities. The facts hinder TaVs
from obtaining information on allocated computing resources.

The challenge motivates us to seek V2V computation
offloading without requiring complete offloading information
in advance. To that end, we propose a learning-based V2V
computation offloading algorithm, detailed in Section V.

B. Ability Awareness

In V2V computation offloading, all vehicles have an inher-
ent incentive to join the cooperation, since they may want
to use resources from other vehicles. If a vehicle is unco-
operative, e.g., always using computing resources from other
vehicles but never sharing its own resources, the vehicular
network does not have to allow the vehicle to receive compu-
tation offloading services. Based on the cooperative paradigm,
there are many works that study V2V computation offloading,
such as [12], [41], and [42].

While SeVs and TaVs behave in a cooperative manner, it
is not straightforward to achieve effective V2V computation
offloading. The reason is that V2V computation offloading
inevitably prolongs task computation delay of SeVs and,
hence, degrades the QoS, especially for the SeVs not hav-
ing excessive spare resources. More explicitly, for a specific
SeV, its tasks are processed locally and the delay is determined
by its task computational workload and computing resources.
When implementing V2V computation offloading, the SeV
will receive the offloading requests from TaVs. Then, the SeV
is required to allocate its computing resources to the TaVs for
task processing. In V2V computation offloading, we recognize

that the offloaded tasks hold the same priority as the local
tasks of SeVs. The intuition is that V2V computation offload-
ing concentrates on the whole system performance rather than
individual interests. When requested by TaVs, the SeVs with
moderate computing resources may have to sacrifice their own
QoS to guarantee the system’s performance. For example, the
computation delay of a SeV will double after contributing half
of its computing resources to TaVs.

More importantly, offloading abilities of SeVs are hetero-
geneous due to different individual computing resources and
heterogeneous computational workload. To achieve effective
V2V computation offloading meanwhile guaranteeing QoS of
SeVs, it is crucial to measure the abilities of SeVs in vehicu-
lar networks. To that end, we define a SeV’s ability-awareness
function to assess the offloading ability of SeV s at time slot
t, expressed as

At
s = γ Fs

√
σ t

s , s ∈ S t
n, t ∈ T (13)

where γ is a normalized coefficient to make the ability range
from 0 to 1, and Fs is the maximum computing resources of
SeV s. We define σ t

s = ct
s(c−ct

s), where ct
s represents the task

computational workload of SeV s at time slot t, c ∈ (ct
s, 2ct

s).
When SeV s has heavy computational workload, σ t

s will drop
sharply and, hence, go against large ability. Based on (13),
the ability of SeV s at time slot t is jointly determined by
the maximum computing resources (i.e., Fs) and the compu-
tational workload (i.e. ct

s). Suppose that: 1) SeV s has large
computing resources and 2) small computational workload,
then the SeV will possess a great ability for processing tasks
offloaded by TaVs.

Remarks: The ability-awareness scheme is beneficial for
V2V computation offloading via resolving the degraded QoS
of SeVs. Specifically, SeV’s ability awareness jointly considers
the maximum computing resources and computational work-
load of SeVs. When a SeV has moderate computing resources
and large own computational workload, the ability-awareness
scheme ensures that the SeV has less offloading ability. As
such, when implementing V2V computation offloading, TaVs
should incline to select SeVs with large abilities to maintain
the QoS of SeVs.

C. Trustfulness Awareness

Despite offloading computing-intensive tasks to SeVs facil-
itates less computation delay, privacy leakage risks in V2V
computation offloading cause tremendous difficulties for fully
reaping the benefits of task offloading [43]. Specifically, act-
ing as both resource requester and provider, vehicles are
often owned by individuals and generate massive private data;
besides, in the open V2V edge computing network, there are
inevitably malicious attackers which destroy the reliability and
stability of V2V computation offloading [44].

In V2V computation offloading, an attacker tries to eaves-
drop on the privacy information of the offloaded tasks when
tasks are offloaded to SeVs. Then, the attacker will infer
the selected probability of candidate SeVs based on his-
tory offloading selections and, hence, attack the SeV with
the largest probabilities [45]. If the attacked SeV is exactly
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selected to deliver computation offloading services, the privacy
leakage turns out. Consequently, the spatiotemporal interac-
tions of drivers with others may be exposed when mobility
data is leakages [46]. What is worse, the privacy leakage may
incur incorrect driving strategies and, thus, deteriorate traffic
safety for driving-related tasks.

To address the issue of privacy leakage, we assess SeV’s
trustfulness in providing computation offloading guidance,
facilitating safe V2V computation offloading. Since vehicles in
the same area often have similar task requests [47], the SeVs
equipped with large computing capabilities may be frequently
selected to deliver computation offloading services. The fre-
quent selections inherently increase the attacked risks of those
SeVs. On this basis, we introduce privacy entropy to measure
trustfulness [48]. The trustfulness of SeV s at time slot t is
expressed as

Ht
s = −pt

s log pt
s −

(
1− pt

s

)
log
(
1− pt

s

)
, s ∈ S t

n, t ∈ T (14)

where pt
s denotes the probability that SeV s is selected to pro-

vide computation offloading services at time slot t. A large
trustfulness of Ht

s represents low privacy leakage risks of
SeV s. Clearly, when pt

s = 1/2, SeV s holds the largest
selected uncertainty and has a large trustfulness to process the
offloaded tasks. In this case, the SeV is hard to be inferred
by an attacker and, thus, decreases privacy leakage risks of
offloaded tasks.

Remarks: Trustfulness awareness is beneficial for safe V2V
computation offloading. Specifically, privacy entropy quanti-
fies the trustfulness of SeVs. A SeV with larger trustfulness
offers a higher probability of safe computation offloading,
which provides guidance for SeV selections. As such, in V2V
computation offloading, TaVs are prone to selecting SeVs with
high trustfulness to reduce privacy leakage risks.

D. Summary

The above-mentioned three challenges impede effective and
safe V2V computation offloading, summarized as: 1) incom-
plete offloading information; 2) degraded QoS of SeVs; 3)
privacy leakage risks.

Incomplete offloading information calls for a learning-based
algorithm. The algorithm enables TaVs to make computa-
tion offloading decisions based on the history offloading
performance of SeVs, without requiring the complete offload-
ing information in advance. Furthermore, considering the
degraded QoS of SeVs and privacy leakage risks of offloaded
tasks, the proposed learning-based algorithm needs to be aware
of SeV’s ability and trustfulness to facilitate effective and safe
V2V computation offloading.

V. LEARNING-BASED V2V COMPUTATION OFFLOADING

In this section, we propose a learning-based V2V computa-
tion offloading algorithm. The algorithm enables SeV ability
& trustfulness awareness, named LTO-ATA. Besides, we con-
duct theoretical analysis on the upper regret bound for the
LTO-ATA algorithm.

A. Learning-Based Solution to Tackle Incomplete
Offloading Information

In V2V computation offloading, TaVs have to make offload-
ing decisions based on incomplete offloading information.
Specifically, vehicular mobility complicates the prediction
of network topology; fluctuant computing capabilities hinder
TaVs from obtaining the allocated computing resources from
SeVs. These facts lead to lacking transmission rate information
and computing resource information. Incomplete offloading
information motivates us to seek learning-based V2V com-
putation offloading. In this way, TaVs observe and learn
offloading performance of candidate SeVs based on history
offloading selections, so as to offload its task to the SeV with
minimal task delay, without requiring the complete offloading
information in advance.

MAB serves as a promising learning-based solution for
V2V computation offloading [49]. In an MAB problem, a
TaV acts as a “gambler” and a candidate SeV serves as an
“arm.” The gambler selects an arm without requiring com-
plete offloading information in advance and correspondingly
acquires a reward (i.e., task delay). To achieve maximum
rewards (i.e., the minimal task delay), there are two selec-
tions for the TaV: 1) exploring a new SeV for a possible
less task delay and 2) exploiting the SeV with minimal
task delay up to now to avoid unnecessary exploration.
Clearly, the selections inherently involve the exploration–
exploitation dilemma. The classical MAB algorithms enable
well-balanced exploration and exploitation via continuous
learning, such as the upper confidence bounds (UCBs)
algorithm [49].

However, V2V computation offloading incapacitates the
existing algorithms. The reasons are as follows.

1) Vehicular roles change across epochs. TaVs need to
implement the learning-based algorithm for different
“arms” at each epoch.

2) V2V computation offloading may degrade the QoS of
SeVs. As such, SeV’s ability should be considered in
the learning-based algorithm.

3) The learning-based algorithm is required to measure
SeV’s trustfulness to avoid privacy leakage risks in V2V
computation offloading.

Without these considerations, existing learning-based algo-
rithms cannot be applied for V2V computation offloading
directly.

B. LTO-ATA Algorithm

Motivated by the limitations of existing algorithms, we
propose the LTO-ATA algorithm. We emphasize that the LTO-
ATA algorithm enables SeV’s ability awareness and SeV’s
trustfulness awareness, without requiring the complete offload-
ing information in advance. Specifically, a TaV learns the
offloading performance of candidate SeVs based on history
offloading selections. Since the SeV states (i.e., transmis-
sion rate and available computing resource) are changing
across time slots, single learning cannot reflect the offload-
ing performance of the SeV. As such, continuous learning
is required in the LTO-ATA algorithm to smooth observation
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Algorithm 1: LTO-ATA Algorithm

Input : Physical information ltv, vt
v, ht

v, Fv and task
information bt

n, ct
n, τ

t
n, ot

n.
Output: Vehicular computation offloading decision xt

n,s,
computation resource allocation policy P t

s.
1 Phase 1: Initialization
2 Default S0

n = ∅, K0
n,s = 0 T̄0

n,s = 0.
3 for t = 1 to t = T do
4 Phase 2: Vehicular role determination
5 if ct

v/Fv < τ t
v then

6 Vehicle v acts as a SeV.
7 end
8 else
9 Vehicle v acts as a TaV.

10 end
11 Phase 3: Candidate SeV recognition
12 if ht

s = ht
u, |lts − ltu| ≤ R, and αn,s = 1 then

13 Sev s serves as a candidate, S t
n ← s.

14 end
15 Phase 4: Learning while offloading
16 Update TaV set U t and SeV set S t.
17 if ∃ SeV s, Kt−1

n,s = 0 then
18 SeV s is selected at the t-th time slot, ξ t

n = s and
Kt

n,ξ t
n
= 1.

19 end
20 else
21 Calculate the index value for each candidate SeV

s ∈ S t
n based on (15).

22 Offload task n to ξ t
n, such that (16) is satisfied.

23 end
24 Calculate the vehicular task delay Tt

n,ξ t
n
.

25 Update Kt
n,s based on (18).

26 Update T̄ t
n,s based on (19).

27 Phase 5: Computation resource allocation
28 Obtain the task set of N t

s of SeV s at time slot t.
29 Determine P t

n,s for each task n ∈ N t
s .

30 end

variance [50]. Besides, to ensure effective and safe V2V com-
putation offloading, TaVs need to be aware of SeV’s ability
and trustfulness in the algorithm. On this basis, TaVs decide
to select the current optimal SeV, or explore other candi-
date SeVs for possible less task delay. After several learning
iterations, the TaV finds out the optimal SeV to implement
V2V computation offloading. The computation offloading
achieves low task delay meanwhile considering QoS of SeV
and task privacy risks. Clearly, the proposed LTO-ATA algo-
rithm is extremely different from the existing learning-based
algorithms.

The LTO-ATA algorithm is presented in Algorithm 1, where
the number of learning times is equal to the number of
time slots. The reason is that each TaV learns the offload-
ing performance of SeVs and updates the V2V computation
offloading decisions per time slot. Algorithm 1 consists of
five phases, i.e., the initialization phase (lines 1 and 2), the

vehicular role determination phase (lines 3–10), the candidate
SeV recognition phase (lines 11–14), the learning while
offloading phase (lines 15–26), and the computation resource
allocation phase (lines 27–30).

In the initialization phase (lines 1 and 2), the candidate SeVs
for task n are defaulted as an empty set at the initial time slot.
Let Kt

n,s and T̄ t
n,s denote the selected times and the average

task delay of SeV s for processing task n after t time slots,
respectively. Both Kt

n,s and T̄ t
n,s are set as zero at the initial

time slot, i.e., K0
n,s = T̄0

n,s = 0.
In the vehicular role determination phase (lines 3–10), each

vehicle calculates the local task delay. When the local task
delay is less than the task deadline, the vehicle is categorized
as a SeV; otherwise, the vehicle is categorized as a TaV. In
V2V computation offloading, vehicular roles (i.e., SeVs and
TaVs) may change across epochs due to diverse requested
vehicular tasks.

In the candidate SeV recognition phase (lines 11–14), we
obtain the candidate SeV set for each TaV. The candidate SeV
needs to satisfy: 1) the physical constraint, i.e., the candidate
SeV needs to directly communicate and keeps the same driving
heading with the TaV and 2) the service caching constraint,
i.e., the SeV is required to configure the computation service
requested by the TaV. These two constraints ensure reliable
communication links and computation service support. When
the constraints are both satisfied, a SeV becomes one of the
candidate SeVs for the TaV.

In the learning while offloading phase (lines 15–27), the
TaV makes the V2V computation offloading decision based
on the history offloading performance of SeVs. To this end,
we update the candidate SeV set first. We then define ξ t

n to
represent the selected SeV for processing task n at time slot t.

1) If there exists SeV s not been selected once after t − 1
time slots, it will be selected at time slot t. This behavior
facilitates learning exploration, avoiding local optimum.
In this case, ξ t

n = s and Kt
n,ξ t

n
= 1.

2) When each candidate SeV has been selected at least
once after t − 1 time slots, we derive the index-based
minimal value research to implement V2V computation
offloading. We define the index function of SeV s at
time slot t as follows:

	 t
s =

(
1− At

s

)(
1− Ht

s

)(
T̄ t−1

n,s −ϒ t−1
n,s

)
, t ∈ T (15)

where (1 − At
s) and (1 − Ht

s) reflect the SeV’s ability
awareness and trustfulness awareness, respectively. For
a SeV, if it has higher offloading ability and trustfulness,
the SeV contributes to a smaller index value and, thus,
has a larger chance to be selected. Besides, T̄ t−1

n,s denotes
the average offloading delay of task n after (t− 1) time
slots. This demonstrates that the index-based research
is based on the SeV history offloading performance
(i.e., task delay), without requiring complete offloading
information in advance. ϒ t−1

n,s is the confidence bound,
which is used to achieve the balance between exploration
and exploitation [49]

ϒ t−1
n,s =

√
β ln t

Kt−1
n,s

, t ∈ T (16)
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where t denotes the current total learning times (i.e.,
time slots), t =∑s∈S t Kt

n,s. Besides, Kt−1
n,s is the selected

times of SeV s for processing task n after t − 1 times
learning. Less selected times contribute to a less index
value, which facilitates learning exploration. The param-
eter β is used to adjust the weight of exploration, we
will discuss the impact of β on offloading performance
in Section VI-E.

On this basis, we find out the target SeV (i.e., SeV ξ t
n) via

the index-based minimal value research

ξ t
n = arg min

s∈S t
n

	 t
s, t ∈ T . (17)

Overall, the index-based minimal value research enables to
find out the SeV with minimal task delay without requiring
the complete offloading information in advance, meanwhile
being aware of SeV’s ability and trustfulness.

After that, we update the selected times of SeV ξ t
n up to the

tth time learning, expressed as

Kt
n,ξ t

n
= Kt−1

n,ξ t
n
+ 1, t ∈ T . (18)

Furthermore, we obtain the task delay conducted by SeV ξ t
n

based on the (7). The average task delay of SeV ξ t
n needs to

be updated as follows:

T̄ t
n,ξ t

n
=

T̄ t−1
n,ξ t

n
Kt−1

n,ξ t
n
+ Tt

n,ξ t
n

Kt
n,ξ t

n

, t ∈ T . (19)

In the computation resource allocation phase (lines 27–30),
we obtain the task set for each SeV based on the offload-
ing decisions. Then, each SeV determines the computation
resource allocation strategies of P t

n,s, and offloaded tasks are
processed by the allocated computation resources.

Repeat the learning iterations for phases 2 to phase 5 in the
LTO-ATA algorithm until learning times t > T .

We emphasize that the proposed LTO-ATA algorithm is
easy to implement in real-world V2V computation offloading.
The reason is that the intractable offloading information is not
required in advance, such as a complicated network topology
and varying allocated computing resources. In V2V compu-
tation offloading, the proposed LTO-ATA algorithm imple-
ments computation offloading based on incomplete offloading
information. Furthermore, the proposed algorithm is enhanced
by SeV’s ability awareness and SeV’s trustfulness awareness,
facilitating effective and safe V2V computation offloading.

Ability & Trustfulness Awareness: From the index function
defined in (15), we find that lower SeV’s ability (i.e., At

s) and
trustfulness (i.e., Ht

s) contribute to a larger index value, thus
the SeV has less chance to be selected. In contrast, a SeV with
larger At

s and Ht
s is beneficial for a small index and, hence, is

more likely to be selected. In this way, the proposed LTO-ATA
algorithm empowers to dynamically optimize the computation
offloading strategies based on the SeV’s ability and the SeV’s
trustfulness and, thus, contributes to effective and safe V2V
computation offloading.

Computational Complexity of the LTO-ATA Algorithm:
Line 5 calculates the local task delay for overall vehicles in
V2V computation offloading. The computational complexity

is O(St +Ut), where St denotes overall SeVs and Ut is TaVs
at time slot t, St = |S t| and Ut = |U t|. Line 21 calculates the
index value for all candidate SeVs, the computational com-
plexity is O(St

n), where St
n denotes the overall candidate SeVs

for task n at time slot t, St
n = |S t

n|. Line 22 shows a minimum
value-seeking problem, occupying O(St

n) computational com-
plexity. Line 29 determines computation resource allocation
strategies. The complexity is O(Pt

n,s), where Pt
n,s = |P t

n,s|
is the strategy space of computation resource allocation.
Additionally, the update behaviors in lines 16, 25, and 26 have
the computational complexity of O(1). Therefore, we conclude
that the computational complexity of our proposed algorithm
is O(St + Ut + NtSt

n + Nt
sP

t
n,s), where Nt = |N t| is the total

offloaded tasks, and Nt
s = |N t

s | denotes the task set served by
SeV s at time slot t.

C. Regret Analysis

In this section, we study the learning regret conducted by the
proposed LTO-ATA algorithm. We define the learning regret
of task n as: �n = μn,s−μn,∗, where μn,s is the expected task
delay performed by SeV s, and μn,∗ is the minimal expected
task delay conducted by the optimal SeV. The total learning
regret after T times learning is defined as

RT =
T∑

t=1

Nt∑
n=1

St
n∑

s:μt
n,s>μt

n,∗

�nE
{
KT

n,s

}
. (20)

Theorem 1: Considering St
n candidate SeVs for task n at

time slot t, we drive the learning regret of the LOT-ATA algo-
rithm. After T times learning, the total learning regret is upper
bounded as

RT ≤
T∑

t=1

Nt∑
n=1

St
n∑

s:μt
n,s>μt

n,∗

�nE

{
(O(1)+ Tf (e))

+
⌈

4β�n
((

1− At∗
)(

1− Ht∗
))2 ln T(

μ∗
(
1− At∗

)(
1− Ht∗

)− μs
(
1− At

s

)(
1− Ht

s

))2
⌉}

.

(21)

Proof: See the Appendix.
Remarks: Based on Theorem 1, we find that more time slots

and vehicular tasks cause larger learning regret. The reason
is that the time slots and tasks increase the times of task
offloading, which raises the number of incorrect offloading
decisions. Additionally, when there are many SeVs with poor
offloading performance, the selection space of task offload-
ing enlarges, and the SeVs with poor offloading performance
become easier to be selected. This leads to larger learning
regret. Furthermore, Theorem 1 shows that the proposed LTO-
ATA algorithm can provide a performance guarantee under
incomplete offloading information, and the performance is also
related to SeVs’ ability and trustfulness.

VI. PERFORMANCE EVALUATION

In this section, we conduct simulations to evaluate the
proposed algorithm and analyze the total learning regret.
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TABLE II
PARAMETER SETTINGS

A. Simulation Setup

We use the urban vehicle trajectory data set [51] in Futian
District, Shenzhen, from 22◦31′N to 22◦33′N, from 114◦2′E
to 114◦7′E. It records the GPS coordinates of 500 vehicles,
logged approximately every 10 s, from 20 August 2019, to 9
September 2019. These trajectories are used to simulate the
vehicle traveling in the urban vehicular networks. The sim-
ulations of computation offloading are conducted based on
the MindSpore framework platform. We set the V2V com-
munication radius as 100 m. Taking the computing-intensive
vehicular video streaming tasks as an instance, in which each
task is regarded as a one-second video clip. For a video clip
with 176 –144 video resolution, 24.8k pixels per frame and
25 frames per second, its data size is 0.62 Mbits [52]. Without
loss of generality, we assume that input task data bits of bt

n fol-
low uniform distribution within [0.2, 1] Mbits, computational
intensity is set as 1000 Cycles/bit and the task deadline is
evenly distributed with (25, 1500) ms. The maximum comput-
ing resources of each vehicle are randomly distributed within
[1, 5] GHz. In addition, the channel bandwidth W is set
as 10 MHz, and the transmission power P is set as 0.1 W.
The channel gain between SeV s and TaV u is modeled as
gt

u,s = A(ltu,s)
−2, where A is −17.8 dB [18], and ltu,s denotes

the distance between TaV u and SeV s at time slot t. The
parameter settings are listed, shown in Table II.

We compare the proposed LTO-ATA algorithm with the
following algorithms.

1) Computation Offloading With the Complete Offloading
Information (CI): This offloading assumes that accurate
transmission rate information and computing resource
information are known prior to TaVs. Guided by the
complete offloading information, TaVs make offloading
decisions without requiring information learning [23].

2) UCB-Enabled Computation Offloading With SeV’s
Ability Awareness (UCB-AA): This algorithm considers
SeVs’ ability awareness in a UCB-enabled learning-
based offloading paradigm. The index function is

defined as 	 t
s = (1 − At

s)(T̄
t−1
n,s −

√
β ln t/Kt−1

n,s ) [53].
When implementing V2V computation offloading, TaVs
incline to select SeVs with large abilities to maintain
QoS of SeVs.

3) UCB-Enabled Computation Offloading With SeV’s
Trustfulness Awareness (UCB-TA): This algorithm con-
cerns SeVs’ trustfulness awareness in a UCB-enabled
learning-based offloading paradigm. The index function

(a)

(b)

Fig. 2. Illustration of (a) ability and (b) trustfulness of a SeV.

(a) (b)

Fig. 3. Comparison of different algorithms in (a) average task delay and
(b) suboptimal offloading probability.

is defined as 	 t
s = (1−Ht

s)(T̄
t−1
n,s −

√
β ln t/Kt−1

n,s ) [11].
In V2V computation offloading, TaVs are prone to
selecting SeVs with high trustfulness to reduce privacy
leakage risks.

4) UCB1: This is a traditional UCB algorithm, and
the index function is defined as 	 t

s = T̄ t−1
n,s −√

β ln t/Kt−1
n,s [50]. In the nonadjustable learning-

based computation offloading algorithm, neither the
SeV’s ability nor trustfulness awareness is taken into
consideration.

B. Ability and Trustfulness Awareness

Fig. 2 illustrates the ability and trustfulness of a SeV. From
the figure, we find that more computing resources contribute
to a larger ability. Furthermore, we observe that a SeV has the
largest trustfulness value when the selected probability is 0.5
(i.e., the largest uncertainty). The reason is that large uncer-
tainty effectively decreases the probability of the attacker’s
correct inference. In V2V computation offloading, TaVs are
prone to selecting SeVs with high abilities and trustfulness to
maintain the QoS of SeVs and reduce privacy leakage risks.

C. Performance Comparison

Fig. 3(a) shows the impact of the time slots (i.e., learning
times) on average task delay under different algorithms. As the
learning times increase, the optimal SeV can be found and,
thus, the average task delay decreases. The proposed algo-
rithm achieves smaller task delay than other learning-based
algorithms. In particular, UCB1 suffers from excessive delay
without awareness of SeV’s ability and trustfulness. Fig. 3(b)
presents the impact of learning times on the probability of
suboptimal offloading under various algorithms. Small learn-
ing times lead to a large probability of suboptimal offloading.
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(a) (b)

Fig. 4. Comparison of different variances in (a) average task delay and
(b) suboptimal offloading probability.

TABLE III
CANDIDATE SEV SET IN V2V COMPUTATION OFFLOADING

As learning times increase, the suboptimal probabilities of the
learning-based algorithms reduce. As the ideal case, CI always
maintains the optimal offloading since the complete offloading
information is available. The results in Fig. 3 indicate that the
overall performance is tightly related to the learning times.
For example, at least 50 times learning is essential for the
proposed algorithm to realize satisfactory delay performance.

Fig. 4 presents the comparison between different variances
in the average task delay and suboptimal offloading proba-
bility. Large observation variance hampers the deviation of
optimal SeV and, thus, prolongs the task delay and increases
the probability of suboptimal offloading. When there are no
observation variances, each TaV enables to find out the optimal
SeV after once selection of each candidate SeV. However,
observation variance is commonly inevitable due to vehicu-
lar mobility, complicated network environment, and diverse
requested tasks. In our simulations, we set the observation
variance as 20%.

D. Dynamic SeV Sets

We discuss the impact of dynamic SeV sets on average task
delay under different algorithms. As shown in Table III, we
focus on a representative TaV within three epochs, and each
epoch occupies 300 time slots in our simulation. For the TaV,
its candidate SeVs remain fixed at each epoch, while the can-
didate SeVs change across epochs. As such, at the beginning
of each epoch, the TaV needs to explore the newly appeared
SeVs for probably less task delay. If a SeV is available for the
TaV during a specified epoch, it is marked as “

√
”; otherwise,

the SeV is marked as “×.” We present the candidate SeV set in
Table III. In epochs 2 and 3, these learning-based algorithms
need to restart for seeking more suitable SeVs at time slots
201 and 601, respectively. For example, the SeV 8 has the
maximum computing resources and exactly appears in epoch
3. At the beginning of time slot 601, the TaV updates its can-
didate SeVs and restarts to learn the offloading performance
of the SeVs. After several times learning, the TaV offloads
computing-intensive tasks to the SeV 8 within epoch 3 and,
thus, achieves less task delay.

Fig. 5 illustrates the performance comparison of the
proposed algorithm with the existing ones under dynamic
SeV sets. From Fig. 5, we find that the proposed algorithm
shows superiority compared with other learning-based algo-
rithms in dynamic SeV sets. The reason is that both SeV’s
ability and SeV’s trustfulness are taken into account in the
proposed learning-based V2V computation offloading algo-
rithm. In this way, the offloading efficiency and safety are
significantly improved and, hence, contributing to better delay
performance.

E. Learning Regret

Fig. 6(a) shows the comparison of different algorithms in
the learning regret. Specifically, both UCB-AA and UCB-
TA achieve lower learning regret compared with UCB1. By
jointly considering SeV’s ability and SeV’s trustfulness, the
proposed LTO-ATA algorithm achieves better performance
compared with other learning-based algorithms. More explic-
itly, the proposed algorithm decreases the learning regret by
72.92%, 42%, and 39.81% from that of UCB1, UCB-AA,
and UCB-TA, respectively. Since CI has complete offloading
information, it enables to make the optimal offloading deci-
sion directly without learning. Furthermore, we observed that
the regret curves sublinearly rise with the increasing learn-
ing times. This observation demonstrates that the simulation
results are consistent with the proposed theorem (Theorem 1)
(detailed in Section V-C).

Fig. 6(b) presents the impact of observation variance on
the learning regret. Clearly, 30% variance incurs larger learn-
ing regret than that of 20% and 10%. The reason is that a
larger observation variance requires more learning times to
find the optimal SeV. These features slow down the learn-
ing convergence and incur excessive learning regret. When the
observation variance is zero, the TaV enables the optimal V2V
computation offloading after one connection between the TaV
and candidate SeVs. It is noted that no observation variance
is impractical in the real world.

Fig. 6(c) shows the impact of the weight factor β on
the learning regret. The parameter β denotes the exploration
weight in the learning-based algorithms, which is essential
to achieve the tradeoff between exploration and exploitation.
When β = 0, there is no exploration in learning. As a result,
the learning-based algorithms are easily trapped by suboptimal
SeVs and incur large learning regret. When β > 0, the learn-
ing regret is less than that of β = 0. Furthermore, β = 0.5
conducts a larger learning regret than that of β = 0.1. The
reason is that β = 0.5 pays excessive attention to the explo-
ration in learning, leading to degraded delay performance. In
our settings, only a small number of explorations are beneficial
to find the optimal SeV.

VII. CONCLUSION

In this article, we investigated a learning-based approach
for V2V computation offloading. Specifically, we proposed a
learning-based V2V computation offloading algorithm, which
is enhanced through the ability awareness and trustfulness
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(a) (b) (c)

Fig. 5. Comparison of different algorithms in the average task delay under the dynamic SeV sets. (a) Epoch 1. (b) Epoch 2. (b) Epoch 3.

(a) (b) (c)

Fig. 6. Comparison of the learning regret under different (a) algorithms, (b) variances, and (c) parameter β.

awareness of SeVs. Within the learning-based V2V computa-
tion offloading algorithm, TaVs are able to learn the offloading
performance from the candidate SeVs and make computation
offloading decisions without requiring the complete offload-
ing information in advance. Besides, both ability awareness
and trustfulness awareness of SeVs were emphasized in the
proposed algorithm, which facilitates effective and safe V2V
computation offloading. After that, we carried out extensive
simulations and the results showed the superiority of the
proposed algorithm compared with other algorithms. One lim-
itation of our work is that computing resources are randomly
allocated from a SeV to the TaVs. To address this issue, we
will extend our work by combining resource allocation and
offloading decisions into V2V computation offloading problem
in our future work.

APPENDIX

PROOF OF THEOREM 1

We analyze the total learning regret by bounding E{KT
n,s}.

To this end, we introduce an indicator function as I{x} ∈ {0, 1}.
When the event x is true, I{x} = 1; otherwise, I{x} = 0. Let
ε be a positive integer, denoting the selected times of SeV s.
Based on [49], we derive the following inequalities:

KT
n,s =

T∑
t=St

n+1

I
{
ξ t

n = s
}+ 1

≤
T∑

t=St
n+1

I

{
ξ t

n = s, Kt−1
n,s ≥ ε

}
+ ε

≤
∞∑

t=1

t−1∑
Kt

n,∗=1

t−1∑
Kt

n,s=ε

I

{(
1− At∗

)(
1− Ht∗

)

(
T̄ t

n−1,∗ −
√

β ln t

Kt−1
n,∗

)
≤ (1− At

s

)(
1− Ht

s

)
(

T̄ t
n−1,s −

√
β ln t

Kt−1
n,s

)}
+ ε. (22)

Then, we introduce the following two events:

V1 �
{

T̄ t−1
n,s ∈

[
μs −

√
β ln t

Kt−1
n,s

, μs +
√

β ln t

Kt−1
n,s

]}
(23)

V2 �
{(

1− At∗
)(

1− Ht∗
)(

T̄ t−1
n,∗ −

√
β ln t

Kt−1
n,∗

)

≤ (
1− At

s

)(
1− Ht

s

)(
T̄ t−1

n,s −
√

β ln t

Kt−1
n,s

)}
. (24)

Based on the Chernoff–Hoeffding bound, we obtain the
occurrence possibility of event V1

P

{
μs −

√
β ln t

Kt−1
n,s
≤ T̄ t−1

n,s ≤ μs +
√

β ln t

Kt−1
n,s

}
= 1− 2

t2β
. (25)

Correspondingly, we obtain the nonoccurrence possibility of
event V1, expressed as: P(

◦
V1) = 2/t2β .

Following that, we analyze the event V2. When one of the
following cases holds, we recognize that event V2 occurs.

Case i): Apart from the optimal SeV, the performance of
other SeVs is underestimated. We define the event as

C1 �
{(

1− At
s

)(
1− Ht

s

)
T̄ t−1

n,s > μs +
√

β ln t

Kt−1
n,s

}
. (26)

In this case, we obtain P(C1|V1) = 0.
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Case ii): The performance of the optimal SeV is overesti-
mated. The event is expressed as

C2,1 �
{(

1− At∗
)(

1− Ht∗
)
T̄ t−1

n,∗ < μ∗ −
√

β ln t

Kt−1
n,∗

}
. (27)

If At∗ = Ht∗ = 0, we derive P(C2,1|V1) = 0. When both
At∗ > 0 and Bt∗ > 0, we introduce the following event:

C2,2 �

⎧⎪⎪⎨
⎪⎪⎩
(
1− At∗

)(
1− Ht∗

)
<

μ∗ −
√

β ln t
Kt−1

n,∗

T̄ t−1
n,∗

⎫⎪⎪⎬
⎪⎪⎭. (28)

Besides, an single event C2,2 is not sufficient for the learning
regret, we introduce the following inequality:

C2,3 �

⎧⎪⎪⎨
⎪⎪⎩
(
1− At

s

)(
1− Ht

s

)
>

μs −
√

β ln t
Kt−1

n,s

T̄ t−1
n,s

⎫⎪⎪⎬
⎪⎪⎭. (29)

After that, we define the event C2,4 � C2,2 ∩ C2,3.
Case iii): Based on the definitions of event 1 and event 2,

we introduce the following event:

C3 �
{

μs >

(
1− At∗

)(
1− Ht∗

)
(
1− At

s

)(
1− Ht

s

)
(

μ∗ − 2

√
β ln t

Kt−1
n,∗

)}
. (30)

In order to find the optimal SeV, the following constraint of
the confidence interval needs to be satisfied:√

β ln t

Kt−1
n,∗

<
μ∗
2
− μs

(
1− At

s

)(
1− Ht

s

)
2
(
1− At∗

)(
1− Ht∗

) . (31)

It is noted that C3 will never happen when the confidence
intervals are too small. Based on (31), we derive the selected
times of SeV s for processing task n up to time slot T

ε >

⌈
4β
((

1− At∗
)(

1− Ht∗
))2 ln T(

μ∗
(
1− At∗

)(
1− Ht∗

)− μs
(
1− At

s

)(
1− Ht

s

))2
⌉

. (32)

Based on the above analysis, we rewrite (22) as follows:

KT
n,s ≤ ε +

∞∑
t=1

t−1∑
Kt−1

n,∗ =1

t−1∑
Kt−1

n,s =ε

I
{
P(C1|V1)+ P

(
C2,1|V1

)

+ P
(
C2,4|V1

)+ P(C3|V1)+ P
( ◦

V1

)}

≤
⌈

4β
((

1− At∗
)(

1− Ht∗
))2 ln T(

μ∗
(
1− At∗

)(
1− Ht∗

)− μs
(
1− At

s

)(
1− Ht

s

))2
⌉

+
t−1∑

Kt
n,∗=1

t−1∑
Kt

n,s=ε

I
{
P
(
C2,4

)}+O(1). (33)

Owing to the changing of the average task delay and con-
fidence interval, it is challenging to derive the closed-form
expression for the event C2,4. Based on the analysis from [11],
we conclude that the occurrence times of the event C2,4 is a

liner function of Tf (e), where f (e) is a prediction error func-
tion. When e = 1, f (e) = 0. As such, we obtain the upper
bound

KT
n,s ≤

⌈
4β
((

1− At∗
)(

1− Ht∗
))2 ln t(

μ∗
(
1− At∗

)(
1− Ht∗

)− μs
(
1− At

s

)(
1− Ht

s

))2
⌉

+O(1)+ Tf (e). (34)

Finally, we use the upper bound in (34) to substitute KT
n,s

in (20) and, thus, we obtain the total learning regret as shown
in Theorem 1.

REFERENCES

[1] J. Liu et al., “RL/DRL meets vehicular task offloading using edge and
vehicular cloudlet: A survey,” IEEE Internet Things J., vol. 9, no. 11,
pp. 8315–8338, Jun. 2022.

[2] L. Chen and J. Xu, “Task replication for vehicular cloud: Contextual
combinatorial bandit with delayed feedback,” in Proc. IEEE INFOCOM
Conf. Comput. Commun., 2019, pp. 748–756.

[3] X. Zhang, M. Peng, S. Yan, and Y. Sun, “Joint communication and
computation resource allocation in fog-based vehicular networks,” IEEE
Internet Things J., vol. 9, no. 15, pp. 13195–13208, Aug. 2022.

[4] A. Bozorgchenani, S. Maghsudi, D. Tarchi, and E. Hossain,
“Computation offloading in heterogeneous vehicular edge networks: On-
line and off-policy bandit solutions,” IEEE Trans. Mobile Comput.,
vol. 21, no. 12, pp. 4233–4248, Dec. 2022.

[5] X. Wang, Z. Ning, S. Guo, and L. Wang, “Imitation learning enabled task
scheduling for online vehicular edge computing,” IEEE Trans. Mobile
Comput., vol. 21, no. 2, pp. 598–611, Feb. 2022.

[6] Z. Zhou, H. Liao, X. Zhao, B. Ai, and M. Guizani, “Reliable task
offloading for vehicular fog computing under information asymmetry
and information uncertainty,” IEEE Trans. Veh. Technol., vol. 68, no. 9,
pp. 8322–8335, Sep. 2019.

[7] Y. Qi, Y. Zhou, Y.-F. Liu, L. Liu, and Z. Pan, “Traffic-aware task
offloading based on convergence of communication and sensing in
vehicular edge computing,” IEEE Internet Things J., vol. 8, no. 24,
pp. 17762–17777, Dec. 2021.

[8] X. Zhu, Y. Luo, A. Liu, M. Z. A. Bhuiyan, and S. Zhang, “Multiagent
deep reinforcement learning for vehicular computation offloading in
IoT,” IEEE Internet Things J., vol. 8, no. 12, pp. 9763–9773, Jun. 2021.

[9] S. Xu, C. Guo, R. Q. Hu, and Y. Qian, “BlockChain-inspired secure
computation offloading in a vehicular cloud network,” IEEE Internet
Things J., vol. 9, no. 16, pp. 14723–14740, Aug. 2022.

[10] A. Chopra, A. U. Rahman, A. W. Malik, and S. D. Ravana, “Adaptive-
learning-based vehicle-to-vehicle opportunistic resource-sharing frame-
work,” IEEE Internet Things J., vol. 9, no. 14, pp. 12497–12504,
Jul. 2022.

[11] H. Liao, Y. Mu, Z. Zhou, M. Sun, Z. Wang, and C. Pan, “Blockchain
and learning-based secure and intelligent task offloading for vehicu-
lar fog computing,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 7,
pp. 4051–4063, Jul. 2021.

[12] Y. Liu, Y. Li, Y. Niu, and D. Jin, “Joint optimization of path planning
and resource allocation in mobile edge computing,” IEEE Trans. Mobile
Comput., vol. 19, no. 9, pp. 2129–2144, Sep. 2020.

[13] F. Spinelli and V. Mancuso, “Toward enabled industrial verticals in 5G:
A survey on MEC-based approaches to provisioning and flexibility,”
IEEE Commun. Surveys Tuts., vol. 23, no. 1, pp. 596–630, 1st Quart.,
2021.

[14] T. Bahreini, M. Brocanelli, and D. Grosu, “VECMAN: A framework
for energy-aware resource management in vehicular edge computing
systems,” IEEE Trans. Mobile Comput., early access, Jun. 15, 2021,
doi: 10.1109/TMC.2021.3089338.

[15] J. Shi, J. Du, Y. Shen, J. Wang, J. Yuan, and Z. Han, “DRL-
based V2V computation offloading for blockchain-enabled vehicular
networks,” IEEE Trans. Mobile Comput., early access, Feb. 23, 2022,
doi: 10.1109/TMC.2022.3153346.

[16] Y.-J. Ku, S. Baidya, and S. Dey, “Adaptive computation partitioning
and offloading in real-time sustainable vehicular edge computing,” IEEE
Trans. Veh. Technol., vol. 70, no. 12, pp. 13221–13237, Dec. 2021.

[17] T. Ouyang, R. Li, X. Chen, Z. Zhou, and X. Tang, “Adaptive user-
managed service placement for mobile edge computing: An online
learning approach,” in Proc. IEEE INFOCOM Conf. Comput. Commun.,
2019, pp. 1468–1476.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 18,2023 at 06:50:56 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TMC.2021.3089338
http://dx.doi.org/10.1109/TMC.2022.3153346


DAI et al.: LEARNING-BASED APPROACH FOR VEHICLE-TO-VEHICLE COMPUTATION OFFLOADING 7257

[18] Y. Sun et al., “Adaptive learning-based task offloading for vehicular
edge computing systems,” IEEE Trans. Veh. Technol., vol. 68, no. 4,
pp. 3061–3074, Apr. 2019.

[19] Z. Zhou et al., “Learning-based URLLC-aware task offloading for
Internet of Health Things,” IEEE J. Sel. Areas Commun., vol. 39, no. 2,
pp. 396–410, Feb. 2021.

[20] J. Yan, S. Bi, Y. J. Zhang, and M. Tao, “Optimal task offloading and
resource allocation in mobile-edge computing with inter-user task depen-
dency,” IEEE Trans. Wireless Commun., vol. 19, no. 1, pp. 235–250,
Jan. 2020.

[21] W. Chang, Y. Xiao, W. Lou, and G. Shou, “Offloading decision in edge
computing for continuous applications under uncertainty,” IEEE Trans.
Wireless Commun., vol. 19, no. 9, pp. 6196–6209, Sep. 2020.

[22] R. Lin et al., “Distributed optimization for computation offloading in
edge computing,” IEEE Trans. Wireless Commun., vol. 19, no. 12,
pp. 8179–8194, Dec. 2020.

[23] C. Liu, K. Liu, S. Guo, R. Xie, V. C. S. Lee, and S. H. Son, “Adaptive
offloading for time-critical tasks in heterogeneous Internet of Vehicles,”
IEEE Internet Things J., vol. 7, no. 9, pp. 7999–8011, Sep. 2020.

[24] H. Tang, H. Wu, G. Qu, and R. Li, “Double deep Q-network
based dynamic framing offloading in vehicular edge comput-
ing,” IEEE Trans. Netw. Sci. Eng., early access, May 5, 2022,
doi: 10.1109/TNSE.2022.3172794.

[25] C. Tang, C. Zhu, H. Wu, Q. Li, and J. J. P. C. Rodrigues, “Toward
response time minimization considering energy consumption in caching-
assisted vehicular edge computing,” IEEE Internet Things J., vol. 9,
no. 7, pp. 5051–5064, Apr. 2022.

[26] C. Tang and H. Wu, “Joint optimization of task caching and computa-
tion offloading in vehicular edge computing,” Peer-to-Peer Netw. Appl.,
vol. 15, no. 2, pp. 854–869, 2022.

[27] Y. Liu et al., “Dependency-aware task scheduling in vehicular edge
computing,” IEEE Internet Things J., vol. 7, no. 6, pp. 4961–4971,
Jun. 2020.

[28] Q. Luo, C. Li, T. H. Luan, W. Shi, and W. Wu, “Self-learning based com-
putation offloading for Internet of Vehicles: Model and algorithm,” IEEE
Trans. Wireless Commun., vol. 20, no. 9, pp. 5913–5925, Sep. 2021.

[29] B. Shang, L. Liu, and Z. Tian, “Deep learning-assisted energy-efficient
task offloading in vehicular edge computing systems,” IEEE Trans. Veh.
Technol., vol. 70, no. 9, pp. 9619–9624, Sep. 2021.

[30] Y. Lin, Y. Zhang, J. Li, F. Shu, and C. Li, “Popularity-aware online
task offloading for heterogeneous vehicular edge computing using con-
textual clustering of bandits,” IEEE Internet Things J., vol. 9, no. 7,
pp. 5422–5433, Apr. 2022.

[31] M. Yang, H. Zhu, H. Wang, Y. Koucheryavy, K. Samouylov, and
H. Qian, “An online learning approach to computation offloading
in dynamic fog networks,” IEEE Internet Things J., vol. 8, no. 3,
pp. 1572–1584, Feb. 2021.

[32] C. Tekin and M. Liu, “Online learning of rested and restless bandits,”
IEEE Trans. Inf. Theory, vol. 58, no. 8, pp. 5588–5611, Aug. 2012.

[33] H. Liu, K. Liu, and Q. Zhao, “Learning in a changing world: Restless
multiarmed bandit with unknown dynamics,” IEEE Trans. Inf. Theory,
vol. 59, no. 3, pp. 1902–1916, Mar. 2013.

[34] C. Wang, S. Zhang, Y. Chen, Z. Qian, J. Wu, and M. Xiao, “Joint con-
figuration adaptation and bandwidth allocation for edge-based real-time
video analytics,” in Proc. IEEE INFOCOM Conf. Comput. Commun.,
2020, pp. 257–266.

[35] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A sur-
vey on mobile edge computing: The communication perspective,” IEEE
Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart., 2017.

[36] M. Sheng, Y. Dai, J. Liu, N. Cheng, X. Shen, and Q. Yang, “Delay-aware
computation offloading in NOMA MEC under differentiated uploading
delay,” IEEE Trans. Wireless Commun., vol. 19, no. 4, pp. 2813–2826,
Apr. 2020.

[37] J. Peng, H. Qiu, J. Cai, W. Xu, and J. Wang, “D2D-assisted multi-user
cooperative partial offloading, transmission scheduling and computation
allocating for MEC,” IEEE Trans. Wireless Commun., vol. 20, no. 8,
pp. 4858–4873, Aug. 2021.

[38] N. Eshraghi and B. Liang, “Joint offloading decision and resource
allocation with uncertain task computing requirement,” in Proc. IEEE
INFOCOM Conf. Comput. Commun., 2019, pp. 1414–1422.

[39] T. Li, D. Baumberger, and S. Hahn, “Efficient and scalable multipro-
cessor fair scheduling using distributed weighted round-robin,” ACM
SIGPLAN Notices, vol. 44, no. 4, pp. 65–74, 2009.

[40] Y. Sun, S. Zhou, and Z. Niu, “Distributed task replication for vehic-
ular edge computing: Performance analysis and learning-based algo-
rithm,” IEEE Trans. Wireless Commun., vol. 20, no. 2, pp. 1138–1151,
Feb. 2021.

[41] P. Dai, K. Hu, X. Wu, H. Xing, and Z. Yu, “Asynchronous deep rein-
forcement learning for data-driven task offloading in MEC-empowered
vehicular networks,” in Proc. IEEE INFOCOM Conf. Comput. Commun.,
2021, pp. 1–10.

[42] L. Liu and M. Gruteser, “EdgeSharing: Edge assisted real-time local-
ization and object sharing in urban streets,” in Proc. IEEE INFOCOM
Conf. Comput. Commun., 2021, pp. 1–10.

[43] Y. Li, X. Wang, X. Gan, H. Jin, L. Fu, and X. Wang, “Learning-aided
computation offloading for trusted collaborative mobile edge comput-
ing,” IEEE Trans. Mobile Comput., vol. 19, no. 12, pp. 2833–2849,
Dec. 2020.

[44] W. Kong, X. Li, L. Hou, J. Yuan, Y. Gao, and S. Yu, “A reliable and
efficient task offloading strategy based on multifeedback trust mecha-
nism for IoT edge computing,” IEEE Internet Things J., vol. 9, no. 15,
pp. 13927–13941, Aug. 2022.

[45] H. Chen et al., “Practical membership inference attack against collabo-
rative inference in industrial IoT,” IEEE Trans. Ind. Informat., vol. 18,
no. 1, pp. 477–487, Jan. 2022.

[46] J. Li et al., “Drive2friends: Inferring social relationships from indi-
vidual vehicle mobility data,” IEEE Internet Things J., vol. 7, no. 6,
pp. 5116–5127, Jun. 2020.

[47] J. Cui, L. Wei, H. Zhong, J. Zhang, Y. Xu, and L. Liu, “Edge computing
in VANETs-an efficient and privacy-preserving cooperative downloading
scheme,” IEEE J. Sel. Areas Commun., vol. 38, no. 6, pp. 1191–1204,
Jun. 2020.

[48] X. Han et al., “Reliability-aware joint optimization for cooperative vehic-
ular communication and computing,” IEEE Trans. Intell. Transp. Syst.,
vol. 22, no. 8, pp. 5437–5446, Aug. 2021.

[49] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of
the multiarmed bandit problem,” Mach. Learn., vol. 47, nos. 2–3,
pp. 235–256, 2002.

[50] Y. Sun, S. Zhou, and J. Xu, “EMM: Energy-aware mobility management
for mobile edge computing in ultra dense networks,” IEEE J. Sel. Areas
Commun., vol. 35, no. 11, pp. 2637–2646, Nov. 2017.

[51] Z. Xiao et al., “TrajData: On vehicle trajectory collection with commod-
ity plug-and-play OBU devices,” IEEE Internet Things J., vol. 7, no. 9,
pp. 9066–9079, Sep. 2020.

[52] A. Anjum, T. Abdullah, M. F. Tariq, Y. Baltaci, and N. Antonopoulos,
“Video stream analysis in clouds: An object detection and classification
framework for high performance video analytics,” IEEE Trans. Cloud
Comput., vol. 7, no. 4, pp. 1152–1167, Oct.–Dec. 2019.

[53] Z. Su, Y. Hui, and T. H. Luan, “Distributed task allocation to enable
collaborative autonomous driving with network softwarization,” IEEE J.
Sel. Areas Commun., vol. 36, no. 10, pp. 2175–2189, Oct. 2018.

Xingxia Dai received the B.S. degree in com-
munication engineering from Xiangtan University,
Xiangtan, China, in 2018. She is currently pursuing
the Ph.D. degree in computer science and technol-
ogy with Hunan University, Changsha, China.

Her current research interests include Internet of
Vehicles and mobile-edge computing.

Zhu Xiao (Senior Member, IEEE) received the
M.S. and Ph.D. degrees in communication and
information system from Xidian University, Xi’an,
China, in 2007 and 2009, respectively.

He was a Research Fellow with the Department
of Computer Science and Technology, University of
Bedfordshire, Luton, U.K., from 2010 to 2012. He
is currently an Associate Professor with the College
of Computer Science and Electronic Engineering,
Hunan University, Changsha, China. His research
interests include mobile communications, wireless

localization, Internet of Vehicles, and trajectory data mining.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 18,2023 at 06:50:56 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TNSE.2022.3172794


7258 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 8, 15 APRIL 2023

Hongbo Jiang (Senior Member, IEEE) received the
Ph.D. degree from Case Western Reserve University,
Cleveland, OH, USA, in 2008.

He is currently a Full Professor with the College
of Computer Science and Electronic Engineering,
Hunan University, Changsha, China. He was a
Professor with Huazhong University of Science and
Technology, Wuhan, China. His research concerns
computer networking, especially algorithms and pro-
tocols for wireless and mobile networks.

Prof. Jiang was the Editor of the IEEE/ACM
TRANSACTIONS ON NETWORKING, the Associate Editor for the IEEE
TRANSACTIONS ON MOBILE COMPUTING, and the Associate Technical
Editor for the IEEE Communications Magazine. He is an Elected Member
of the Academia Europaea, Fellow IET, BCS, and AAIA.

Hongyang Chen (Senior Member, IEEE) received
the B.S. and M.S. degrees from Southwest Jiaotong
University, Chengdu, China, in 2003 and 2006,
respectively, and the Ph.D. degree from The
University of Tokyo, Tokyo, Japan, in 2011.

From 2011 to 2020, he was a Researcher with
Fujitsu Ltd., Tokyo. He is currently a Senior
Research Expert with Zhejiang Lab, Hangzhou,
China. He is an Adjunct Professor with Hangzhou
Institute for Advanced Study, The University of
Chinese Academy of Sciences, Hangzhou, and

Zhejiang University, Hangzhou. He has authored or coauthored 100+ refereed
journal and conference papers in the IEEE TRANSACTIONS ON KNOWLEDGE

AND DATA ENGINEERING, IEEE TRANSACTIONS ON MOBILE COMPUTING,
IEEE TRANSACTIONS ON SIGNAL PROCESSING, IEEE JOURNAL ON

SELECTED AREAS IN COMMUNICATIONS, IEEE TRANSACTIONS ON

INFORMATION FORENSICS AND SECURITY, IEEE TRANSACTIONS ON

COMMUNICATIONS, CIKM, and has been granted 20+ PCT patents. His
research interests include data-driven intelligent systems, graph machine learn-
ing, big data mining, and intelligent computing.

Dr. Chen was the Editor of the IEEE Journals and the symposium chair
or a special session organizer for some flagship conferences. He was a lead-
ing Guest Editor of the IEEE JOURNAL ON SELECTED TOPICS OF SIGNAL

PROCESSING on tensor decomposition. He is currently an Associate Editor
of the IEEE INTERNET OF THINGS JOURNAL. He has been selected as the
Distinguished Lecturer of the IEEE Communication Society from 2021 to
2022.

Geyong Min (Member, IEEE) received the
B.Sc. degree in computer science from Huazhong
University of Science and Technology, Wuhan,
China, in 1995, and the Ph.D. degree in computing
science from the University of Glasgow, Glasgow,
U.K., in 2003.

He is a Professor of High Performance Computing
and Networking with the Department of Computer
Science, College of Engineering, Mathematics and
Physical Sciences, University of Exeter, Exeter, U.K.
His research interests include future Internet, com-

puter networks, wireless communications, multimedia systems, information
security, high-performance computing, ubiquitous computing, modeling, and
performance engineering.

Schahram Dustdar (Fellow, IEEE) received the
Ph.D. degree in business informatics from the
University of Linz, Linz, Austria, in 1992.

He is currently a Full Professor of Computer
Science (Informatics) with a focus on Internet tech-
nologies heading the Distributed Systems Group, TU
Wien, Wein, Austria.

Prof. Dustdar was a recipient of the ACM
Distinguished Scientist Award in 2009 and the IBM
Faculty Award in 2012. He has been a member
of the IEEE Conference Activities Committee since

2016, the Section Committee of Informatics of the Academia Europaea since
2015, and the Academia Europaea: The Academy of Europe, Informatics
Section since 2013. He has been the Chairman of the Informatics Section
of the Academia Europaea since December 2016. He is an Associate Editor
of the IEEE TRANSACTIONS ON SERVICES COMPUTING, ACM Transactions
on the Web, and ACM Transactions on Internet Technology. He is on the
Editorial Board of IEEE.

Jiannong Cao (Fellow, IEEE) received the M.Sc.
and Ph.D. degrees in computer science from
Washington State University, Pullman, WA, USA,
in 1986 and 1990, respectively.

He is currently a Chair Professor with the
Department of Computing, The Hong Kong
Polytechnic University (PolyU), Hong Kong. He is
also the Dean of the Graduate School, the Director
of the Research Institute of Artificial Intelligent
of Things and the Internet and Mobile Computing
Laboratory, and the Vice Director of the University’s

Research Facility in Big Data Analytics, PolyU. He has coauthored five
books, coedited nine books, and published over 500 papers in major inter-
national journals and conference proceedings. His research interests include
distributed systems and blockchain, wireless sensing and networking, big data
and machine learning, and mobile cloud and edge computing.

Dr. Cao is a member of the Academia Europaea and an ACM Distinguished
Member.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 18,2023 at 06:50:56 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


