
5186 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 5, MAY 2023

A Cooperative Vehicle-Infrastructure System for
Road Hazards Detection With Edge Intelligence

Chen Chen , Senior Member, IEEE, Guorun Yao , Lei Liu , Member, IEEE,
Qingqi Pei , Senior Member, IEEE, Houbing Song , Fellow, IEEE, and Schahram Dustdar , Fellow, IEEE

Abstract— Road hazards (RH) have always been the cause of
many serious traffic accidents. These have posed a threat to
the safety of drivers, passengers, and pedestrians, and have also
resulted in significant losses to people and even to the economies
of countries. Hence, road hazards detection (RHD) could play
an essential role in intelligent transportation systems (ITS). The
cooperative vehicle-infrastructure systems (CVIS) coordinate the
communication between vehicles and roadside infrastructures.
Onboard computing devices (OCD), then, make fast analyses
and decisions based on road conditions. In this study, an RHD
solution based on CVIS is proposed. Firstly, a high-performance
heavy action detection model is selected. Using a meta-learning
paradigm, critical features are generalized from a few-shot RH
data. Secondly, we designed a lightweight RHD model to ensure
its smooth inference on an OCD. Thirdly, we use a knowledge
distillation (KD) framework to progressively distill the features
of the complex model and the privileged information of the data
into the lightweight one. Experimental results demonstrate that
the model can effectively detect RH and obtain an accuracy of
90.2% with an inference time of 14.7ms.

Index Terms— Cooperative vehicle-infrastructure system, edge
intelligence, road hazards detection, meta-learning, knowledge
distillation.

I. INTRODUCTION

STATISTICS [1] show that approximately 1.3 million peo-
ple die each year worldwide caused of road traffic injuries.
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Fig. 1. Statistical data of worldwide traffic accident conditions. The
bubble chart in the bottom left corner shows the yearly change from 2000 to
2020 in the number of accidents, injuries and deaths worldwide. The circular
chart aggregates the data from 1970 to 2020. Some of the statistics are missing,
but overall it reflects the harm caused by traffic accidents.

Another 20 to 50 million people suffer non-fatal harm, and
many of them become disabled as a result. Their dependants
have to cover the high cost of treatment and even take time
off work to look after them. Road traffic accidents cost 3%
of the GDP of most nations, which can wreak havoc on a
country’s economy. Fig. 1 illustrates the statistical data of
worldwide traffic accident conditions [2], [3], [4]. In sum-
mary, there is an urgent need to address the issue of road
safety!

RH are the causative factors of traffic accidents. The RH
mentioned in this study refer to the situations that occur in
front of the vehicle which require the driver to reposition
the vehicle within a very short duration, including vehi-
cle throwing, emergency lane changing, emergency braking,
sudden pedestrian intrusion, sudden animal intrusion, etc.
Fig. 3 illustrates the occurrence and response procedures of
RH. The transmission of information in the circuit shown in
Fig. 3 causes the driver’s response time. Heretofore, traditional
RHD methods mainly used specific instruments, such as air
duct detectors, ring detectors, and ultrasonic/infrared motion
alarms. These methods have many weaknesses, like low detec-
tion accuracy, short lifespan, and vulnerability to environmen-
tal impacts. Crucially, the mounting of the instruments can
also damage the road surface. Furthermore, these instruments
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Fig. 2. Schematic of the traffic scenario. (a) lists the specific applications of V2C, V2V, V2I, and V2P that exist in real traffic scenarios. The cloud
computing center, vehicles, roadside infrastructures, pedestrians, drivers, and roads in the scenario create these application requirements in conjunction. We will
explore solutions to these problems in the interrelationship. (b) shows the three basic components of a traffic scenario: vehicle, road, and human.

can only collect a single type of data which are difficult to
reuse. The high cost and low utilization of the instruments
make them unworthy of use.

With the development of artificial intelligence (AI), many
researchers use deep neural networks (DNN) to solve the
problem of RHD. Reference [5] uses convolutional neural
networks (CNN) to predict the severity of traffic accidents
based on road, vehicle, and pedestrian factors. It requires care-
fully labeled data. Reference [6] uses stacked sparse autoen-
coders (SSAE) to analyze the importance and dependence of
causative factors on road traffic injuries. Reference [7] uses
gated recurrent units (GRU) and CNN to process onboard
video and audio data for collision detection. It requires a syn-
chronization of the data. Reference [8] uses CNN for precise
accident prediction for highway-rail grade crossings (HRGC)
with unbalanced data. Reference [9] uses multiple machine
learning (ML) methods to organize and analyze traffic acci-
dent databases for accident prediction on high-risk roads.
The major challenges of these studies focus on three main
dimensions:

• Data requirements. The emergence of RH is accidental
and not easily reproducible, which makes data collection
laborious and costly. The small volumes of the exist-
ing datasets preclude DNNs from adequately capturing
the data distribution and making the correct feature
selections.

• Resource requirements. DNNs require a large amount of
data I/O and cache during the loading and computation
process, which raises great requirements for computing,

communication and storage resources. Nonetheless,
OCDs generally carry limited resources and can only
handle typical operators.

• Online detection. Most studies have been performed
based on RHD video files without considering online
detection. In real-world situations, RHD needs to be oper-
ated online to assist drivers in reacting more immediately
based on road conditions.

With the advancement of the 5/6th generation wireless
communication systems (5/6G) and the ongoing evolution
of edge intelligence technologies [10], the CVIS can be
used to solve the mentioned problems. The CVIS can real-
ize dynamic real-time information interaction on the links
of vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I),
vehicle-to-pedestrian (V2P), and vehicle-to-everything (V2X)
[11], [12]. Fig. 2 illustrates the schematic of the links in the
traffic scenario. This can facilitate vehicles to offload some
computational tasks to roadside computing devices, thereby
boosting the systems’ effectiveness [13], [14].

Compared to traditional approaches, the CVIS can make
better use of the computing resources at the edge of the
network. At the same time, the image data captured by the
camera contains more information. Researchers can use all
sorts of algorithms to extract features of the data to fulfill
different tasks. This solution does not need to rely on special-
ized instruments and can directly utilize existing sensors and
computing devices on vehicles and roadside infrastructures.
It is convenient and economical, avoiding damage to the
road surface. Also, relying on the short distance between the
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Fig. 3. The occurrence and response procedures of RH. The vehicle
may encounter numerous RHs including those shown on the right side while
traveling on the road. When an RH occurs, the driver will make a judgment
by combining information such as risk, rules, and value. These lead to
decisions and operations that govern the vehicle’s reaction. The integrity of
the procedure incorporates multiple steps and is influenced by a combination
of factors. Therefore, there is a large time delay between the occurrence of
the RH and the driver’s response.

vehicles and the roadside infrastructures, the latency is greatly
reduced.

In this study, we propose an RHD solution based on
CVIS. For the model as a whole, we use a knowledge
distillation framework to implement the delivery of features.
We choose an existing model as the teacher model, which
has a complicated structure but high accuracy. Considering
the deployment on OCD, we design a lightweight model as
the model student model. The student model refers to the
state-of-the-art visual backbone and decouples the training and
the inference process, thereby balancing the performance of
the training and the speed of the inference. We hope that the
teacher model performs feature extraction on RH data before
passing them to the student model. However, RH occurs much
less frequently compared to normal road conditions. Fortu-
nately, the meta-learning paradigm can cope with the problem.
The meta-learning paradigm can construct the few-shot data
into multiple tasks. It uses several tasks to train the teacher
model, which makes the model converge rapidly. This enables
the network to learn crucial features utilizing the implicit
information in the few-shot data. We perform pre-training and
meta-training on the teacher network. The knowledge learned
by the teacher model and the privileged information in the
data are then progressively distilled into the student model.
The tuned student model will undergo reparameterization and
be smoothly deployed in the OCD. Experimental results show
that we trade the “patience” of the teacher model for the
“smartness” of the student model. Our approach can effectively
detect RH and conserve computational resources.

Our contributions are as follows:
• A meta-learning paradigm is used. We use a

meta-learning paradigm to support the training of the
teacher model, consequently coping with the problem of
few-shot RH data.

• A lightweight RHD model is designed. We design a
lightweight RHD model that balances the performance

of training and the speed of inference by decoupling the
process of training and inference.

• A KD framework is adopted. We distill the knowledge
from the teacher model into the student model. Then,
we distilled the privileged information from the data into
the student model in two more steps. The performance
of the student model is progressively improved in the
meantime.

• The model is deployed. We deployed the ultimate model
in OCD. To validate the model’s usability, video streams
were fed into the system.

This paper is organized as follows: Section II describes
the development of edge intelligence, action detection algo-
rithms, meta-learning paradigms, and knowledge distillation
framework. Section III presents the pipeline of our proposed
edge intelligence-based RHD method. Section IV provides
the experimental introduction and data analysis. Section V
provides a conclusion of this study.

II. RELATED WORKS

This section composes four technology areas. First, the
latest research progress and applications of edge intelligence
techniques, the basis of this study, are announced. Second,
the developments of action detection techniques based on
different feature extraction methods, the core task of this study,
are introduced. Third, different meta-learning paradigms are
described. Fourth, multiple knowledge distillation frameworks
are presented.

A. Edge Intelligence

Edge intelligence includes onboard and roadside edge intel-
ligence, which together form CVIS [15]. Some AI models
can be deployed in multiple layers based on the autonomous
driving framework to achieve efficient joint inference between
edge intelligent devices [16]. They can achieve assisted driving
with the help of CVIS [17]. On the one hand, they can directly
achieve effects such as lane change detection [18], and on the
other hand, they can share local sensor data with other vehicles
through the network to achieve cooperative sensing [19], [20].
When resources are limited, resource management games are
performed based on task attributes [21], [22].

At the same time, edge intelligence can provide personal-
ized services for the individual demands of users [23]. The
edge intelligence platform can activate, scale, and orchestrate
different services according to user density [24]. Based on
network slicing technology, isolated virtual content service
slices with different QoS requirements are extracted to provide
customized services [25]. When tasks such as data collection
and content distribution are in demand, multiple cache-enabled
edge intelligence devices in various traffic environments can
be combined to form an edge caching mechanism [26], [27].
For the data in use, the edge intelligence platform will also
provide capabilities such as intrusion detection and privacy
protection based on technologies including blockchain and
federated learning [28], [29].
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B. Action Detection

Action detection is one of the popular research topics
in ML [30]. These algorithms are designed to detect and
classify actions in videos and have been widely used in video
surveillance, live stream, and autonomous driving.

Action detection algorithms can be classified according to
different feature extraction methods. [31], [32] manually
select features, which often lack the generalization ability
and need to be adjusted repeatedly in changing scenarios.
References [33], [34], [35], and [36] use 3D convolution to
simultaneously analyze temporospatial features of the video.
References [37], [38], [39], [40], and [41] use two branches
to separately extract temporal and spatial features. References
[42], [43], and [44] use RNN structures to model the video
streams. Video transformer (ViT) structures have been used to
implement video detection [45], [46], [47] since [48] adopted
transformer structures to enter the vision domain.

Action detection algorithms can be classified according
to different input video format. When the video can be
viewed in its integrity, it is called offline video, and vice
versa, it is called online video. References [49], [50], and [51]
regress the beginning and ending time boundaries of actions
in offline videos for classification. References [52], [53], [54],
and [55] evaluate action beginning times based only on the
historical videos observed from online video streams, and
make predictions about the categories of future actions.

C. Meta-Learning

Compared with the traditional ML paradigm, meta-learning
uses the task as the fundamental unit of study and can make
accurate generalizations of data features for few-shot data [56],
[57], [58], [59].

The metric-based meta-learning paradigm [60], [61], [62],
[63] will first learn a kernel function. Accordingly, the data
is encoded into an intermediate domain where the data in
the same category will be recapitulated. Then the similarity
measure of the data is calculated and the data is classified
consequently.

The model-based meta-learning paradigm [64], [65], [66],
[67] is more focused on finding a model that can update
parameters rapidly within a small amount of training. Often
external storage or neural network is used to help the network
learn efficiently.

The optimization-based meta-learning paradigm [68], [69],
[70], [71] addresses the problem of few-shot data from the
perspective of optimization algorithms. They model the opti-
mizer and learn a model-independent one that converges the
model in a finite number of steps.

D. Knowledge Distillation

The concept of KD was first proposed by [72] for model
compression. It often involves the participation of two models
with different complexity for the same task [73]. In general,
the heavy, cumbersome model is termed the teacher model,
while the simple, lightweight model is termed the student
model. References [74], [75], [76], [77], [78], and [79] makes

Fig. 4. KD framework classification. (a) illustrates the offline KD, which
requires a well-trained teacher model. The student model is instructed to
emulate the logit output of the teacher model, thus achieving knowledge
transference. This strategy typically requires a sophisticated training proce-
dure. Moreover, the capacity gap between the teacher model and the student
model needs to be manipulated. (b) illustrates the online KD. In this case,
both the teacher model and the student model can be untrained. They perform
cooperative learning and guided learning to ultimately achieve an end-to-end
KD. Online KD has high parallelism. However, this approach struggles to cope
with high-volume teacher models. (c) illustrates self-KD, which is a special
case of online KD. It can enable the sharing of knowledge of different depths
in the model.

the student model simulate the logits of the teacher model.
References [80], [81], [82], [83], [84], and [85] focuses on
minimizing the teacher model and the student model’s repre-
sentational relationships of the intermediate layer parameters.

Apart from model compression, KD can also be used to
extract the privileged information. Teacher models trained with
data containing the privileged information can transfer the
implicit information to the student models. References [86],
[87], [88], and [89] uses optical flow as privileged information
to train the teacher model, which helps the student model
avoid the complex computation. References [90] and [91]
trains the teacher model with complete actions while training
the student model with historical actions, hence allowing the
student model to achieve action prediction.

KD can take different training strategies. Offline KD is a
two-stage strategy that trains the teacher model and the student
model successively [72], [75], [77], [78], [79], [80]. Online
KD uses only one stage to train both the teacher model and
the student model simultaneously [74], [76], [91], [92], [93],
[94]. Self-KD uses the same model as a teacher and student
models, and distillation is usually performed between different
layers [95], [96], [97], [98], [99]. Fig. 4 illustrates the further
indication of KD.

III. METHODOLOGY

In this section, we will first provide an overall statement
of the methodology corresponding to the existing problems.
And then we will make a theoretical explanation of the key
technologies involved.

A. Problem Statement

Fig. 5 illustrates the overall architecture of this study.
We use the meta-learning paradigm to cope with the shortage
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Fig. 5. Study’s overall architecture. Three major segments are included: the arrangement of the meta-learning paradigm, the design and reparameterization
of the lightweight model, and the implementation of the knowledge distillation framework.

of RH data, which mainly includes the shortage of classes and
instances, and the presence of implicit classes. The left panel
illustrates the training of the teacher model under the meta-
learning paradigm. In the first phase, a generic dataset is used
for the model pre-training. During this procedure, we expect
the model to give the categories of the input videos. In the
second phase, we split the dedicated dataset into different tasks
based on the N-way K-shot rule. The teacher model is trained
using different tasks based on pre-trained parameters. This
improves the detection capability of the model for few-shot
videos. During this procedure, we expect the model to ascribe
the categories of the input videos for the current task.

Next, we design a lightweight RHD model with fewer
parametric numbers and less computational volume for the
problem of limited OCD resources. The model can economize
resources and enhance the speed of inference, but the precision
of the model tends to drop in this case. To trade off between
speed and precision and to enlarge the privileged knowledge,
we use a progressive KD framework. The middle illustrates
the construction of the student model. The right side illustrates
the production of the video stream. It contains historical video
data and video data with privileged information. We use the
teacher model to conduct offline KD on the student model
so that the student model obtains the capability to detect RH.
The privileged data is then used to conduct online KD on the
student model so that the student model learns the capability
to predict future conditions from the historical data. The online
RHD problem is therefore resolved. Eventually, the model is
reparameterized to further reduce the parameters and to make
it compatible with the typical operators available on OCD.

B. Meta-Learning Paradigm

1) Pre-Training: The first phase of the meta-learning
paradigm is the pre-training of the model using the generic
Kinetics-400 dataset [100]. The generic dataset is introduced
in detail in Section IV-A. We choose X3D [101] as the
baseline. X3D is designed based on ResNet [102] architecture
and extended from 2D image to 3D video feature extraction.
The correlation between deep layer features and shallow layer

features in ResNet can be indicated as:

fl2 = fl1 +

l2−1∑
l=1

H( fl ,Wl), (1)

where
l(·) denotes the layer index of the model, and l2 denotes

the deeper layer while l1 denotes the shallower one,
f(·) denotes the feature map of the model,

W(·) denotes the weight of the model,
H(·) denotes the mapping function of the model.

The residual structure can train the newly added layers into
identical mapping functions, thus making the complex neural
network a nested function containing the optimum function.
X3D simultaneously extracts the spatiotemporal dimension
of the video in order to preserve the complete temporal
frequency. The spatiotemporal features are fused in the pooling
layer, which finally gives the classification probabilities. X3D
uses the cross-entropy (CE) loss function, which can be
indicated as:

LX3D = −
1
S

∑
s

ιs log(ps), (2)

where
S denotes the number of samples involved in the

calculation,
ι(·) denotes the label, ι = 1 if the sample n lies in category c,

otherwise ι = 0,
p(·) denotes the observed probability that the sample n

belongs to category c.
The model parameter selection of X3D follows the coor-

dinate descent algorithm, which is simple but efficient non-
gradient optimization. Subject to certain constraints C(·), the
optimal value of the objective function P(·) is searched in
different dimensions of the variables sequentially. X3D selects
suitable parameters by expanding them in different dimensions
among the model. The selected parameters are as follows:
γτ denotes the multiplier of the sampling frame-rate,
γt denotes the multiplier of the temporal size, and can

be expanded by sampling a longer temporal clip and
increasing the frame-rate,
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Fig. 6. Schematic of task construction for the meta-learning paradigm.
In the N-way K-shot meta-training phase, N different categories are randomly
selected from all categories in the training set, and K samples are selected for
each category to construct different tasks. The highlighted blocks in the figure
illustrate the randomly selected categories. Different colors represent different
categories. The meta-training will overlay different combinations of categories
for training. The meta-testing phase will construct a small number of tasks
using the same rules for model fine-tuning before testing with unlabeled data.

γs denotes the multiplier of spatial resolution,
γd denotes the multiplier of network depth, i.e. the number

of layers per residual block,
γw denotes the multiplier of network width, i.e. the channel

number of layers,
γb denotes the inner channel width of the center filter in each

residual block.
A carefully pre-trained model can be more flexible to

convert between different tasks. X3D can be applied malleably
by determining the appropriate network structure in an iterative
mode when dealing with data of different distributions. The
process of determining the j th γ in the i th iteration can be
calculated as follows:

γ i
j = arg max

γ j

P(γ i
0 , . . . , γ

i
j−1, γ j , γ

i−1
j+1, . . . , γ

i−1
k ), (3)

2) Meta-Training: The second phase of the meta-learning
paradigm is meta-training. We use the RH dataset to enhance
the dedicated capabilities of the model. The procedure of the
meta-training algorithm is shown in Algorithm 1. As men-
tioned in Section II-C, meta-learning is performed based on
tasks that ultimately result in a well-performing model. Hence
an N -way K -shot strategy is used here based on the generic
dataset. In each episode, N classes are randomly sampled from
the dataset, with K items per class as the support set and Q
items as the query set. Fig. 6 illustrates a schematic of task
construction for the meta-learning paradigm. The support set
and the query set indicate the training set and the test set
of the current task, respectively. The weights W are updated
with several iterations. With the convergence of the model,
the model can be fine-tuned by randomly selecting data from
the Road Hazard Stimuli dataset [103] according to the same
strategy mentioned above. Then the final teacher model for
the RHD is found.

C. Lightweight Road Hazards Detection Model

1) Backbone: After referring to recent vision backbones
[104], [105], we noticed that floating point operations (FLOPs)

Algorithm 1 Procedure of Meta-Training
Input: Pre-trained weights W ; Training dataset

V = {(v1, ι1), . . . , (vS, ιS)}, where v(·) and ι(·)
denote the videos and labels in the dataset;
Real-world dataset R = {u1, . . . , u X }.

Output: Labels of samples in real-world dataset ιr .
1 Initialize with weights W ;
2 if not converged then

// Use generic dataset.
// E denotes total episode.

3 for e = 1 to E do
/* N denotes the number of

categories selected at a
time. */

/* S denotes the total number of
samples. */

/* K and Q denote the number of
samples per category in the
support set and query set,
respectively. */

4 Sample N < S classes, K + Q items per class;
5 Divide support set T and query set Q;
6 Use T for training;
7 Use Q for evaluating;
8 Calculate the mean accuracy for current task;
9 Update W ;

10 else
// Use dedicated dataset.

11 Sample N classes, K + Q items per class;
12 Fine-tune W ;

show a weak correlation with the memory resources required
by the model, inference speed, etc. On the one hand, many
models use shared parameters, which can lead to FLOPs
that are distinctly at variance with the number of parameters.
On the other hand, the use of cross-layer connections can
require additional memory resources to store the intermediate
computational results. Furthermore, some tangled activation
functions can have an impact on computational efficiency.
A prevalent solution for tackling lightweight models is to
decouple the architectures at training and inference. Better per-
formance is achieved by using a linearly over-parameterized
model while training. The linear structure in the model is
reparameterized during inference to ensure its smoothness.
Hence we design the reparameterization block. We parti-
tion a whole module into multiple branches while training
but integrate them into a fully equivalent module during
inference.

We designed the lightweight RHD model based on the
MobileOne block [104]. Fig. 7 illustrates its structure.
To reduce the data movement cost, we use a facile feed-
forward structure. The feature information will flow in a
pipeline, greatly reducing the memory acquisition cost, which
frees the model from the speed bottleneck caused by I/O.
By doing so, the number of network layers that the model
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Fig. 7. The block structure of the lightweight model. We refer to the
block in [104] and generalize it to 3D feature extraction. Compared to the
ResNet block [102], this module reduces a bottleneck structure and can merge
cross-layer connections by reparameterization operations.

can accommodate is enlarged. Meanwhile, we use existing
operators and easy but efficient nonlinear activation functions
to ensure the model is compatible with the runtime environ-
ment in OCD. The model can also use the coordinate descent
method to select the appropriate structural hyperparameters as
mentioned in Section III-B.

2) Loss: Our designed loss function contains CE loss and
label smoothing regularization. The label smoothing regular-
ization incorporates the loss of both incorrect classification
and time location. The classification loss for label smoothing
can be indicated as:

ι̂ = (1 − η)ι+ ηϵ, (4)

where
ι̂ denotes the smoothed labels,
η denotes smoothing coefficient,
ϵ denotes a vector with all values 1.

The time location loss of label smoothing can be indicated as:

LT L =
1
γt

∑
t

∣∣log ι̂t − log ι̂t∗
∣∣ , (5)

where
t denotes RH instant predicted by the model,

t∗ denotes the ground truth RH instant marked in the label.
With the loss function LT L , the model is guided to increase

the probability of correct predictions while decreasing the
incorrect ones. Thus it improves the generalization ability of
the model and avoids overfitting or overconfidence. In con-
junction, the total loss of the lightweight model controlled by
the scaling factor λ can be indicated as:

LLW = LX3D + λLT L . (6)

D. Knowledge Distillation Framework

1) Different Models: The first phase of KD is the distillation
from the teacher model to the student model. The meta-learned
X3D model mentioned in Section III-B is regarded as the
teacher model, and the redesigned lightweight RHD model
in Section III-C is regarded as the student model. We choose
the offline KD. In this case, the output of the teacher model
is used as a soft label, and what we want is for the student

model to imitate the output of the teacher model. The ultimate
goal is to minimize the discrepancy between the output of the
student and the teacher. This stage is quite straightforward and
the loss function can be indicated as:

LK D = αLSF + βLH D, (7)

LSF = −

∑
s

φT
s log(ψT

s ), (8)

LH D = −

∑
s

ιs log(ψ1
s ), (9)

where
α denotes the scaling factor of soft target loss LSF ,
β denotes the scaling factor of hard target loss LH D ,
φT denotes the result of the teacher model logits processed

by softmax function at temperature T ,
ψT denotes the result of the student model logits processed

by softmax function at temperature T .
The softmax function at temperature T can be indicated as:

HT
SM (xs) =

exp(xs/T )∑
s exp(xs/T )

. (10)

2) Different Data: The second phase of KD is the distil-
lation from global data to historical data. We input the data
with a global time range and the data with only a historical
time range into the student model after the previous phase
of KD. In contrast to the data with a historical time range,
the data with a global time range carries more privileged
information. It can help the model to anticipate the movements
of the action implicitly. We use online KD to learn privileged
information.

To enhance the globality of the data, we combine the
PREVENTION dataset with the Road Hazard Stimuli dataset.
Fig. 8 illustrates three examples of generated video streams.
Using the former as a carrier, the latter is interjected to
artificially produce a video stream of RH random occurrences.
The occurrence can be regarded as a Poisson process with a
large arrival rate, which can be indicated as:

P(t, n) =
(ρt)n

n!
e−ρt , (11)

where
t denotes the time range of the observed video,
n denotes the number of occurrences in RH during t ,
ρ denotes the occurrence rate of RH.

IV. EXPERIMENTS

This section introduces the datasets, evaluation metrics, and
implementation details applied in the experiments, and also
analyzes the experimental results.

A. Datasets

1) The Kinetics-400 Dataset: Is generic. It is a collec-
tion of clips taken from different YouTube videos. The
clips contain human actions, human-object interactions such
as playing musical instruments, assembling computers, etc.,
and human-human interactions such as hugging, shaking
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Fig. 8. Examples of generated video streams. We produced a series of videos using the PREVENTION dataset as the background and the Road Hazard
Stimuli dataset as the foreground, using different ρs according to the Poisson process. The gray areas represent the timeline, the highlighted blocks represent
the occurrence of RH, and their different colors represent the different RH categories. The video series generated above can simulate the video streams
captured by vehicles driving in the real scenario to some extent. The model can thus be tested under the online video stream.

hands, etc. The dataset contains about 400 human action
categories, at least 400 video clips per category, and about
10 s long per clip. Each sample is labeled with a class name,
YouTube ID, timestamp, etc.

2) The PREVENTION Dataset [106]: Is dedicated. Data
are collected using LiDAR, millimeter-wave radar, and cam-
eras on instrumented vehicle driving under natural condi-
tions. The dataset encapsulates both urban and highway
driving scenarios. To keep the driving style from being too
monotonous, different drivers take turns driving. The total
duration as well as the total distance traveled by the vehicle are
356 minutes and 540 km, respectively. The dataset is labeled
with vehicle trajectories, lane changes, traffic participant
categories, etc.

3) The Road Hazard Stimuli Dataset: Is RHD-dedicated.
It is also a selection of RH or nearly-RH video clips from
YouTube videos, with non-RH clips incorporated. The RH
videos are 253 compared to 250 non-RH videos. The dataset
covers a wide range of road scenarios, weather conditions,
and RH categories. The selected videos are captured from
the perspective of a car recorder, which fits well with
the experimental scenario of this study. The videos are
unified and cropped to a duration of 8 s, and a period
before the occurrence of RH is preserved. The dataset was
annotated with the timestamp of RH and the categories
of RH.

B. Evaluation Metrics

1) Mean Average Precision (mAP) : We first calculate the
Precision and Recall that the model performs on the data based
on its frame-by-frame prediction of the input video, which can
be indicated as:

Precision =
TP

TP + FP
, (12)

Recall =
TP

TP + FN
, (13)

where
TP denotes the true positives among the predicted frames,
FP denotes the false positives among the predicted frames,

FN denotes the false negatives among the predicted frames.
The average precision (AP) can be indicated as the average of
the Precision values associated with different Recall values.
Then, mAP is calculated in terms of the mean AP of each
class.

2) Mean Calibrated Average Precision (mcAP) : To have
a better metric of online video stream RHD, we refer to
the mcAP in [107]. The frequency of online video stream
RH captured by the onboard cameras is much less than the
normal driving condition. We consider RH as the foreground
of action recognition, while normal driving as the background.
Compared with mAP, mcAP can better balance the ratio of
foreground and background in the video stream, which can be
indicated as:

cPrecision =
TP

TP + FP/ω
, (14)

cAP =

∑
I × cPrecision

TP
, (15)

where
ω denotes the ratio of foreground to background in the

online video stream,
I equals 1 when the current frame is a true positive,

otherwise equals 0.
3) Model Parameters : Model parameters are evaluated

in terms of the volume of parameters needed to be trained.
In addition to the number of parameters it contains, the volume
also indicates the variation in memory occupation due to
the utilization of storage of different precision. During the
inference procedure of the model, the parameters will be
loaded into the memory. Thus, the spatial complexity of the
model can be monitored to a certain extent. This allows us to
adapt the model structure.

4) FLOPs: FLOPs can indicate the number of operations
required for inference of the model. Since this study is
about model inference on an OCD with limited computational
capacity, the number of floating point operations can largely
reflect the time complexity of the model.

5) Model Runtime Latency : Model runtime latency con-
tains the actual time consumed throughout the process of
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TABLE I
PLATFORM PARAMETERS

TABLE II
MODEL PARAMETERS

parameter loading, I/O, model inference, etc. We can depend
on this metric to visually evaluate the temporal performance
of the model.

C. Implementation Details

TABLE I demonstrates the parameters of the platform we
used. The procedures of training and parameter tuning of
the model are operated in the desktop system. Since these
processes are accomplished before the model processes the
live video stream, they can be seen as taking place offline.
We chose the Jetson TX2, which is small in size with a
certain amount of computational capacity, as the OCD based
on its pervasiveness. The inference process of the models
is tested on it. This particular procedure can be seen as
taking place online. TABLE II demonstrates the configu-
ration of our parameters for the lightweight model. The
layers

conv· denotes convolutional layers,
mbone3D· denotes 3D mobile one blocks illustrated in

Section III-C,
pool· denotes pooling layers,

fc· denotes fully Connected layers.

D. Ablation Study

TABLE III demonstrates the performance comparison of
different models and the ablation experimental procedure.
We first prove that pre-training is essential in the meta-learning
paradigm. The pre-training phase can help the meta-learning
paradigm to improve the precision by 10.1%. Furthermore,
pre-training is more conducive to the learning of lightweight

Fig. 9. The effectiveness of the model application. [103] shows that there
is a safe response time interval after an accident. Safe driving can only be
ensured if the driver reacts within this interval. However, according to the
statistics in [103], the time consumed by manual braking for many drivers
is up to 605 ms, which exceeds the safe time interval of 500 ms. According
to the analysis of the experimental results, fortunately, with the auxiliary of
the algorithm prediction, the vehicle can alert the driver before the accident
occurs and help the driver to brake quicker within the safe time interval.

models than random parameter initialization. The precision
of the lightweight model after pretraining is improved by
6.9%. Definitely, compared with the teacher model, the student
model has 30.8%, 41.2% and 37.7% reductions in parameters,
FLOPs and latency, respectively. After the model KD, the
performance of the lightweight model improves substantially.
Its precision only lags behind the teacher model by 0.23%.
This reveals that the model KD can effectively distill the
knowledge from the teacher model to the student model.
Because of the lightweight model design in Section III-C, the
model structure was fine-tuned during model KD to fit the
model capacity. Although it causes a slight rebound in model
complexity, it trades off for a significant rise in performance.
However, after the first data KD, the performance of the
model first decreased by 0.45%. After the second data KD,
the model performance rebounded by 1.1%, exceeding the
accuracy before the data KD. This shows that the teacher’s
“patience” can be exchanged for the student’s “smart”. Even-
tually, the reparameterization of the model further improved its
speed of the model. Compared with the latest action detection
models, our model achieves an advanced level of precision and
speed. At the same time, we tuned the online video stream,
which makes our model more dedicated. Fig. 9 illustrates the
effectiveness of the model application.

We compare the final model to be deployed with sev-
eral representative state-of-the-art action detection models to
demonstrate the superiority of our method. The F2G model
utilizes a large number of parameters to guarantee the accuracy
of future frame generation to boost the model’s performance.
Thus, it has a parametric count of 174 M, which puts a huge
requirement on both computational resources and memory
size, which is not in line with the characteristics of OCD
in CVIS scenarios. In contrast, our model can achieve better
precision with 10.2% of the parameters. Compared to the
SF-Ad model, our reparameterized model effectively reduces
the number of FLOPs by 55.9% while improving the pre-
cision by 11.0%. The TSN-SD model performs well in live
video stream action recognition containing the human body.
However, for the RHD task, our model increases precision by
14.6%, reduces the parameters by 64.7%, and reduces latency
by 35.8%. Our model precision increases by 15.6%, parameter
size decreases by 35.0%, and latency decreases by 49.7%
compared to the baseline model X3D.
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TABLE III
MODEL PERFORMANCES

V. CONCLUSION

First, we select a model with a complicated structure but
high accuracy as the teacher model. We use a meta-learning
paradigm for pre-training the teacher model to cope with the
few-shot data of RH. Then, we designed a lightweight model
as the student model. This model decouples the processes
of training and inference, thus balancing the performance of
training and the speed of inference. We adopt a knowledge
distillation framework to progressively distill the knowledge
obtained by the teacher model and the privileged information
in the dataset to the student model. The trained student
model will undergo reparameterization and be deployed in an
OCD. Experimental results show that we trade the “patience”
of the teacher network for the “smartness” of the student
network. Our approach can efficiently detect RH and conserve
computational resources.

We will continue to promote this study. On the one hand,
we will keep up with the technology development trend and
continuously update the vision feature extraction method.
On the other hand, we will explore model parameter com-
pression techniques in depth to maximize the capabilities of
the hardware.
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