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The scope of the Industrial Internet of Things (IIoT) has stretched beyond manufacturing to include energy,
healthcare, transportation, and all that tomorrow’s smart cities will entail. The realm of IIoT includes smart
sensors, actuators, programmable logic controllers, distributed control systems (DCS), embedded devices,
supervisory control, and data acquisition systems—all produced by manufacturers for different purposes
and with different data structures and formats; designed according to different standards and made to follow
different protocols. In this sea of incompatibility, how can we flexibly acquire these heterogeneous data, and
how can we uniformly structure them to suit thousands of different applications? In this article, we survey
the four pillars of information science that enable collaborative data access in an IIoT—standardization, data
acquisition, data fusion, and scalable architecture—to provide an up-to-date audit of current research in
the field. Here, standardization in IIoT relies on standards and technologies to make things communicative;
data acquisition attempts to transparently collect data through plug-and-play architectures, reconfigurable
schemes, or hardware expansion; data fusion refers to the techniques and strategies for overcoming
heterogeneity in data formats and sources; and scalable architecture provides basic techniques to support
heterogeneous requirements. The article also concludes with an overview of the frontier researches and
emerging technologies for supporting or challenging data access from the aspects of 5G, machine learning,
blockchain, and semantic web.

CCS Concepts: • Information systems→ Data management systems; • Computer systems organiza-

tion→ Cloud computing; Data flow architectures;

ACM Reference format:

Danfeng Sun, Junjie Hu, Huifeng Wu, Jia Wu, Jian Yang, Quan Z. Sheng, and Schahram Dustdar. 2023. A
Comprehensive Survey on Collaborative Data-access Enablers in the IIoT. ACM Comput. Surv. 56, 2, Article 50
(September 2023), 37 pages.
https://doi.org/10.1145/3612918

This work was supported in part by a grant from the National Key R&D Program of China (2022YFB3304600), in part by
a grant from the National Natural Science Foundation of China (No. U21A20484), and in part by a grant from the Science
and Technology Program of Zhejiang Province (No. 2022C01016).
Authors’ addresses: D. Sun, J. Hu, and H. Wu (Corresponding author), Key Laboratory of Discrete Industrial Internet of
Things of Zhejiang Province, Hangzhou Dianzi University, No. 1158 Erhao Road, Hangzhou, China; emails: {danfeng.sun,
hujj, whf}@hdu.edu.cn; J. Wu, J. Yang, and Q. Z. Sheng, School of Computing, Macquarie University, Balaclava Road, Sydney,
Australia, 201101; emails: {jia.wu, jian.yang, michael.sheng}@mq.edu.au; S. Dustdar, Distributed Systems Group, TU Wien,
Balaclava Road, Vienna, Austria, 1040; email: dustdar@dsg.tuwien.ac.at.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0360-0300/2023/09-ART50 $15.00
https://doi.org/10.1145/3612918

ACM Computing Surveys, Vol. 56, No. 2, Article 50. Publication date: September 2023.

https://orcid.org/0000-0002-7332-1169
https://orcid.org/0000-0002-2056-903X
https://orcid.org/0000-0002-7189-1205
https://orcid.org/0000-0002-1371-5801
https://orcid.org/0000-0002-4408-1952
https://orcid.org/0000-0002-3326-4147
https://orcid.org/0000-0001-6872-8821
https://doi.org/10.1145/3612918
mailto:permissions@acm.org
https://doi.org/10.1145/3612918
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3612918&domain=pdf&date_stamp=2023-09-15


50:2 D. Sun et al.

1 INTRODUCTION

The Industrial Internet of Things (IIoT) is a significant and powerful driving force behind the
fourth industrial revolution. Through a massive number of heterogeneous sensing devices, each
with the ability to calculate, communicate, and collaborate, IIoT is bringing interconnectivity and
intelligence to industrial systems. For engineers and data scientists, IIoT is an exciting, challenging,
and inescapable aspect of research. Figure 1 illustrates the breadth of sectors IIoT is benefiting,
ranging from smart factories and logistics to smart cities and transportation. Table 1 summarizes
the many surveys that have been undertaken on different aspects of IIoT.

Viewed as the fourth revolution in manufacturing, intelligent manufacturing is at the forefront
of IIoT. Through integration and interoperability, factories are becoming smart. Devices such as
programmable logic controllers (PLC) and embedded controllers are being combined with
sensor networks and cloud-based control systems [267]. This enables data exchanging and knowl-
edge sharing between two systems [146], as well as seamless operations across organizational
boundaries.

IIoT is also making energy production, delivery, and usage more efficient. With the benefit of
smart sensors, network devices, and data analytics, energy companies are able to monitor asset
performance and investigate accidents remotely and safely [11, 58, 61, 148].

In healthcare, IIoT is showing enormous promise as a way for medical professionals to monitor,
aggregate, and act on patients’ medical data in real-time [86, 123]. IIoT is also enabling demand-
based production lines for factory and laboratory processes like drug packing [228]. In logistics
and supply chains, IIoT-enabled technologies mean products and materials can be tracked in real-
time. This tracking data help enterprises to manage their warehouses and transport fleets, as well
as optimize their processes [24, 237].

In terms of transportation, IIoT is improving vehicle-to-vehicle communications and remote
monitoring for smart cars [125], smart trains [65], unmanned aerial vehicles (UAVs) [10], and
so on. In addition to networking, these applications are helping to reduce maintenance costs, fuel
consumption, and accident response times. However, the shining jewel of IIoT is the smart city,
where physical infrastructure, services, and networking all integrate to make almost every element
of a city more intelligent and more efficient [255]. As just a few examples, IIoT is making possible:
structural health monitoring, pipeline network monitoring, camera surveillance networks, urban
traffic monitoring, smart grid monitoring, and streetlight monitoring [54].

Importantly, it is not just academic research into IIoT that is thriving. Many commercial enter-
prises are also building IIoT platforms to capitalize on this new revolution, both horizontal and
vertical. Vertical platforms focus on providing a suite of services to support an entire field from
the ground up. The success of these types of platforms often depends heavily on the host’s com-
petitive advantages and experience in the field. Examples include MindSphere [206] from Siemens,
EcoStructure from Schneider Electric [197], and ABB Ability [5].

Horizontal platforms are a more ambitious endeavor, providing more generalized applications to
suit the requirements across a range of industries. At this stage, these platforms are mainly driven
by huge cloud service providers, such as the AWS IoT [13] by Amazon and Azure IoT [161] by
Microsoft. The drawback of horizontal platforms is that many small and medium-sized enter-
prises (SMEs) are required to do outsourcing work due to their lack of specific industry experience.
GE’s Predix is a typical case of where a horizontal transformed into a vertical platform.

Indeed, the road ahead for IIoT is bright. However, as with all maturing technologies, there are
still challenges to overcome. At present, IIoT is on the precipice of explosive growth. The four main
issues slowing take-off are:

(1) The complexity of industrial plants and equipment. The sheer range of equipment and count-
less combinations between them turns digitizing any factory into a huge project.
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Fig. 1. Three-tier IIoT system architecture: (1) edge tier: monitoring, control; (2) platform tier: data collection

and conversion; (3) enterprise tier: business and application domains (analytics, management).

Table 1. Surveys of IIoT Application Fields

Application Field Reference
Contributions

DescriptionO D F C T K A

Intelligent manufacturing

Zheng et al. [267] � – – � � – � Intelligent manufacturing, or smart factory, is
viewed as the fourth revolution in the
manufacturing industry.

Lu et al. [146] – � – � � – �
Mabkhot et al. [152] � � � � – � �
Cheng et al. [40] � – � – � – �

Energy

Fang et al. [61] � – – – – � �
Energy production, delivery, and use are getting
more efficient with IIoT.

Alahakoon et al. [11] � � – � � � �
Lund et al. [148] – � – � � � �
Erol-Kantarci et al. [58] – � – � – � �

Healthcare

Hossain et al. [86] � – – � – � � Medical processes are becoming safer through
better monitoring, and demand-based
production of drugs is becoming possible.

Wan et al. [228] � – – � � – �
Kim et al. [123] – – – � � – �
Yue et al. [257] � � � � � – –

Logistics and supply chain
Barreto et al. [24] � � � � � � � Materials and products can be tracked and

reported.Witkowski et al. [237] � � – – � � �

Smart cities

Yin et al. [255] � � – – � � –
Joining physical infrastructure and services with
information and communications technology to
make cities more intelligent and efficient.

Petrolo et al. [177] � � – – � � �
Gharaibeh et al. [69] � � � � – � �
Du et al. [54] – � – � � � �
Lau et al. [133] – – – � � – �

Transportation

Fraga-Lamas et al. [65] – – – – – – –

Vehicle-to-vehicle communications and remote
monitoring.

Rathore et al. [185] � � – � � � �
Ding et al. [51] – – – � � � �
Giang et al. [70] – – – – � � �
Yan et al. [250] – � – � � – �
Jan et al. [104] � – � � – � �

O = Origin, D = Definition, F = Fundamentals, C = Challenges, T = Trends, K = Key Technologies, A = Applications.

(2) The heterogeneity of data, data sources, and data collection protocols. Every machine, equip-
ment controller, and sensor manages its data in a different way, and although there are many
conversion tools, exchange frameworks, and international standards for compatibility, the
conventions are far from universal. Getting all the machines and their manufacturers to a
point where implementation is transparently “plug and play” has long been a challenge fac-
ing the industry.
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(3) The collecting data needs to be pre-processed to a required structure before it can be used for
analytics. However, the edge devices cannot know the actual data source mapping to many
dynamic applications, so it is impossible to pre-determine which data preprocessing pro-
gram the edge device should apply. A method of quickly constructing a data pre-processing
logic according to the needs of the scenario at hand is urgently needed, as is a strategy for
deploying diverse and personalized intelligent services for different edge devices.

(4) Traditional computing architectures are straining. A few years ago, the expectation was that
all IoT would move toward cloud-based data centers, and those cloud centers would be suf-
ficiently powerful to handle all IoT needs [187]. However, while many consumer-level IoT
systems can benefit from this scheme, most end-point devices in an IIoT application demand
much lower latency than a central server can provide. In industrial applications, computing
generally needs to happen much closer to the sensor or device producing the data. Edge
computing is an emerging computing architecture that allows for this [33, 203, 238], but
more solutions that integrate cloud computing and edge computing need to be designed and
applied [68]. Compared to cloud-only solutions, hybrid approaches can provide more effi-
cient and flexible computing with lower latency and high resource utilization to support the
fast decision and response times required for industrial applications. In addition, scalability
is critical to IIoT architectures, as the exponential growth of data generated by connected
devices and industry requires scalable resource management and deployment technologies
that can scale horizontally to meet customer needs.

Around these issues, we investigated many past surveys and research articles. We list the high-
quality surveys from 2018 in Table 2 and separated them into several research directions as their
authors claimed, namely, edge computing, identity resolution system, interoperability, network
slicing, security, privacy, blockchain, digital twin, deep learning, 5G, fault diagnosis, and additive
manufacturing. Except for a few earlier review articles [122, 208] using a comprehensive perspec-
tive, other surveys provide quality introductions to their specific directions and throughout the
state-of-the-art literature as well as the existing commercial platforms. We have an insight that the
key to the above-mentioned issues is data. A more precise explanation is to focus on the enablers
for the common stages of the data flow while optimizing the usage of edge-cloud resources and in-
tegrating emerging techniques. We conclude it as collaborative data access (CDA) that focuses
on existing promising research of data awareness, data acquisition, data fusion, data security, and
scalable architecture to alleviate the above issues, respectively. The state-of-the-art research lacks
a comprehensive survey on the collaboration required across the five areas to address the issue of
accessing massive and heterogeneous industrial data. Table 2 compares the difference between the
enabled CDA and other recent surveys.

Hence, our focus is the current research into tools, methods, and technologies that enable CDA
for massive industrial applications, especially large-scale edge networks. Through our investiga-
tion, we also aim to provide research directions for future studies in this field. Based on our in-
vestigation into CDA-related fields, we described the current research status using progressive
statements of problems and corresponding solutions. We also identified unresolved issues, provid-
ing research directions for future studies in this field. We have divided the review into six sections,
each representing a key scientific issue. These are standardization in the IIoT, data acquisition, data
fusion, scalable architecture, and emerging fields, as shown in Figure 2. Before a thing in an IIoT
system can send or receive data, it must be aware of what and where other things in the system
are. The servers and edge devices must also be aware of how to process all the data produced by
the end units. The process of awareness is standardization, which is the first step in enabling CDA.
These issues are detailed in Section 2. Section 3 concerns data acquisition, which includes the meth-
ods used to connect to and communicate with entities in the network. Data fusion refers to the
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Table 2. Comments on High-quality Surveys from the Perspective of IIoT Research Directions

Directions Surveys and their relevance to the collaborative data access Points of concern

Comprehensiveness

Sisinni et al. [208] compared the IoT, IIoT, Industry 4.0, and CPS in detail around
interoperability, security and privacy, highlighting the opportunities and challenges.
While exhibiting some overlap with the CDA, there is no explicit concentration on a
specific topic.

• Energy efficiency
• Real-time performance
• Coexistence
• Interoperability
• Security and privacy

Khan et al. [122] added the discussion of enabling technologies for IIoT compared
with Reference [208], no explicit focus on a specific topic, but pointed out the challenge of
the collaborative IIoT and involved blockchain and data fusion, which have some hints for
the CDA.

• Cloud computing
• Artificial Intelligence
• Blockchain
• Big Data
• Augmented and virtual reality

Edge computing

Qiu et al. [183] discussed concepts, architectures, applications, challenges, and
opportunities of edge computing under the context of the IIoT, which is different from the
CDA, which emphasizes the process of data flow and leverages the cloud and edge
resources.

• Routing
• Task scheduling
• Data storage and analytics
• security
• Standardization

Identity resolution system
Ren et al. [189] provided a comprehensive discussion on the identity resolution system,
which is a part of the CDA first stage but is not centered on Collaboration.

• Systems
• Comparison
• Prospect

Interoperability
Hazra et al. [81] focused on interoperability, with no emphasis on the process of data flow,
however, it provides hints for the CDA.

• Standards
• Protocols
• Models

Network slicing
Wu et al. [242] provided an investigation on network slicing from an application
perspective, which is service-centric rather than data-centric.

• Smart transportation
• Smart energy
• Smart factory

Security

Figueroa et al. [63] detailed security strategies and issues of commonly used protocols and
discussed the usage of the Common Vulnerability Scoring System, which is an important
reference but is not the focus of CDA.

• Information technologies
• Internet of Things
• Operational technologies

Tange et al. [222] comprehensively introduced the security requirements as CIA (i.e.,
Confidentiality, Integrity, Availability), security monitoring, maintainability,
authentication, network security, access control, resilience, models and methodologies,
and data security and sharing; and solutions with fog computing, which provides hints for
securing the CDA but is not the focus of this survey.

• Quantitative analysis
• Comparison between IoT and IIoT
• Research method
• Security requirements
• Fog computing

Privacy Jiang et al. [109] invested the differential privacy in the IIoT, a further topic after the CDA.
• Privacy protection
• Differential privacy
• Deep learning

Blockchain Huo et al. [93] comprehensively discussed the blockchain in IIoT, where data collection
and sharing provide hints for the CDA but no explicit focus on the whole process.

• Devices security
• Data collection and sharing

Digital twin
Minerva et al. [162] comprehensively discussed the features, value, applications, and issues
of the digital twin under the background of IIoT, where CDA can be its important base.

• Augmented and virtual reality
• Multiagent systems
• Virtualization
• Features and value

Deep learning

Khalil et al. [121] presented the deep learning fields of predictive maintenance, real-time
manufacturing, collaborative robotics, assets tracking, smart meters, healthcare
monitoring, human resource, mining, agricultural, telecom, energy, transportation, waste
management, advertisement, and petrochemical, which are not our focus.

• Concepts
• Use cases
• Security
• Challenges

De et al. [47] introduced the deep generative models for industrial applications in IIoT.
Since data must be required for these models, CDA can be the base. Correspondingly, deep
generative models can also empower the CDA.

• Deep generative models
• Anomaly detection
• Trust-boundary protection
• Network traffic prediction
• Platform monitoring

5G
Jiang et al. [111] introduced the 5G for IIoT, which is also important for CDA but is not the
main focus of this survey.

• Environmental characteristics
• Potential frequency bands
• Channel model and parameters

Fault Diagnosis
Chi et al. [43] compared knowledge-based, plain model-based, and data-driven diagnosis
approaches and discussed the future of decentralized knowledge-based fault diagnosis,
where CDA can be one of its cornerstones.

• Ontology
• Deductive/inductive reasoning
• Decentralized implementations

Additive manufacturing
Haghnegahdar et al. [79] discussed the additive manufacturing enabled by IIoT, where
CDA is its important base.

• Cloud computing
• Cloud manufacturing
• IIoT

techniques and strategies for overcoming heterogeneity in data formats and sources [119, 262].
Recent developments in this quarter are reviewed in Section 4. Scalable architecture, discussed in
Section 5, is the scaffolding of CDA and customized applications in a scalable way. In addition to the
pressing issues facing researchers, we have included a survey of emerging technologies in the field
in Section 6. As potential accelerators of CDA, the topics include 5G, machine learning, semantic
web, and blockchain. The article concludes in Section 7 with a brief summary of the topics covered.

2 STANDARDIZATION IN THE IIOT

Today, communication protocols, interfaces, and standards developed by many different equip-
ment manufacturers are the cause of high complexity, and solving these problems is the main goal
of different international initiatives. As just a few examples of these consortiums, in the United
States, the Industrial Internet Consortium (IIC) is committed to achieving universal intercon-
nection methods and intelligent analysis [44]. In China, the “Made in China 2025” plans to make
a manufacturing revolution upon information and communication technology (ICT) [243].
In Germany, the “Industry 4.0” (I4.0) initiatives focus on the future of manufacturing through
industrial ICT [198]. The main standardization result of I4.0 is its reference architecture model,
known as RAMI 4.0 [234].
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Fig. 2. The structure of this article.

To support the goals of different international initiatives, standardization is essential [176]. The
technical specifications defined by the consensus are recognized standards that ensure unifor-
mity and encourage interoperability, simplifying the work of stakeholders. Due to the wide va-
riety of standards in IIoT, this article focuses on standards related to CDA. International Elec-
trotechnical Commission (IEC) is the earliest organization participating in standardization
work. IEC/TC65 is one of their groups, which works on measurement and process automation
and is the core of the I4.0 International Standardization Technical Committee [147]. While Techni-
cal Committee 184 from International Organization for Standardization (ISO) makes efforts
on automation systems and integration [1].

Virtualizing physical assets, as shown in Figure 3, is the basis for data access. This section in-
troduces virtual objects and their common terminology standards. In addition, this article divides
the application fields of IIoT general standards and technical standards into common terminology,
perception layer, transmission layer, and application layer, which are mapped to the traditional
IIoT structure [28].

2.1 Virtual Object

Describing highly heterogeneous physical assets is essential for better access to them, i.e., virtual
representations of industrial assets. Standard data formats for describing virtual objects include
eCl@ss or IEC Common Data Dictionary (CDD), which can be specified by the standard IEC
61360 [259]. A typical example of a virtual interface application for physical assets is the Asset
Management Shell (AAS) in I4.0. The following is an example of how to virtualize objects in I4.0:

Figure 3 shows the form of the AAS, which can be divided into digital factories (DF)
Header and Body, and DF corresponds to the concept of DF framework in IEC 62832 [223]. DF
Header includes properties that identify the physical asset and AAS itself as one uniquely I4.0
component [166]. This properties list is called a manifest, which is a set of defined meta-
information that can be accessed from the outside [220]. DF Body inherits many basic models
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Fig. 3. Standardization in the IIoT.

considering specific domain knowledge, such as communication, configuration, energy efficiency,
engineering, identification, life cycle status, status monitoring, and safety and security [254]. These
models in different fields need to be formulated and maintained independently by corresponding
experts. Each model contains well-structured attributes linked to related data or functions. Such
attributes are regarded as a list in the DF body that complies with a standard data format. DF
body also has a component manager used to manage and access services in each sub-model.

In addition, virtual interfaces generally provide communication interfaces that allow external
components to access data and functions, ensuring continuous access to operational data generated
by the physical asset, such as bearing weights and linear axis speeds [256].

2.2 Common Terminology

The basic requirement for representing an object (industrial asset) in the information world is to
describe the attributes [267], such as “height,” “length,” or “width.” In the IIoT environment, the
attributes of these industrial assets are stored in an ontology and described in general terms. IEC
61360, 61987, and 62683 are the main standards used to describe the attributes of industrial as-
sets. Among them, the IEC61360 issued by IEC SC3D and the ISO 13584 issued by ISO TC184/SC4
jointly developed the PLIB standard, which provides a common method for describing the asset
ontology [95]. The description method defines different types of information about the supplier
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library, such as the resource structure and information model of the asset, the characteristic level
and attribute principle of the asset. These regulations represent assets independently of any par-
ticular vendor-defined identifier. As shown in Figure 3, the shared dictionary defined by PLIB has
been shared as the basis of many asset ontologies, such as measuring instruments, mechanical
fasteners, optics and photonics, electronic and electronic components, factory equipment, and en-
vironmental declarations [50, 117]. Some industry associations in the private sector also maintain
common data dictionaries in a PLIB-compatible form, such as eCl@ss in Europe, JEITA/ECALS in
Japan, and EdF/Renault/PSA trio in France. IEC61360-1 details the structure and use of the asset
ontology, also known as the “reference data dictionary.” IEC61360-2 specifies the dictionary data
in more detail, and IEC61360-6 specifies the quality standards for the dictionary’s content [224].
Note that the data models defined in IEC61360-2 are also published in ISO13584-42.

There are currently many noteworthy studies related to the PLIB standard. Pethig et al. [175]
proposed an information model with an AAS for monitoring the condition of servo motors based
on IEC 61360 attributes. The system was implemented with PLCs. By using IEC 61360-compliant
attributes, the system could automatically identify the type of servo and configure the appropriate
safety thresholds [231]. From an analysis of the potential of ISO 13584, Leukel et al. [136] concluded
that PLIB standards were a good choice for product data management.

2.3 Perception Layer

The perception layer involves the definitions and explanations of data sources (sensors, field de-
vices, etc.) for collecting data and knowledge from our physical world [106]. Moreover, the percep-
tion layer depends on data acquisition and location-sensing technologies such as sensors, quick
response codes, and RFID, namely, automatic identification and data capture (AIDC). AIDC
technology solves the issue of real-time access to information and is widely used in the field of
IIoT. Therefore, there are many standards for AIDC technology. For example, ISO/IEC 19762:2016
defines and explains the terms in automatic identification technology. TransducerML, SensorML,
and TEDS provide definitions for sensors and RFID in the AIDC method and are common technical
standards for sensor data exchange. As shown in Figure 3, ISO and IEC provide a series of stan-
dards to enable factories to build more reliable and smarter sensor networks [208]. These standards
include definitions and requirements for functional layer interfaces and entity-oriented interfaces
of smart sensors, as well as methods for cooperative exchange of messages (such as ISO/IEC 29182,
ISO/IEC 20005, and ISO/IEC 30101) [96, 100, 101].

In addition, RFID, as a method of automatic identification and data collection, can recognize mul-
tiple objects moving at high-speed even in harsh environments without manual intervention [192].
RFID technology has also been used to locate and track humans, even when they are not carrying
an electronic device [190, 252]. ISO/IEC 20248 specifies the digital signatures RFID needs to iden-
tify and authenticate some data, its source, and the proper method of reading them [97]. ISO/IEC
15459 and ISO/IEC 18000 series provide registration procedures and numbering systems for RFID.
In addition, standards such as ISO/IEC 29143 and ISO/IEC 29175 are related to mobile AIDC and
RFID and support real-time data capture at the perception layer [98, 99].

2.4 Transmission Layer

The transmission layer is the messenger connecting layers of perception and application through
communication networks that are divided into wired and wireless communication networks.

IEC 61158 and IEC 61784 series standards in the wired communication network support
fieldbus configuration and configuration files. For example, ISO 15745-3:2003, based on IEC 61158,
describes the communication network configuration file and the equipment configuration file of
the control system based on IEC 61158; ISO 15745-1:2003 specifies the general elements and rules
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used to describe the integration model and application interoperability profile and its component
profile (process profile, information exchange profile, and resource profile) [230]. The technical
standards of wired communication include IP, VPN, Controller Area Network bus (CANBUS),
ControlNet, DeviceNet, ModBus, ProfiBus, WorldFIP, Industrial Ethernet, RS232, RS485, and so
on. Among them, standards such as ProfiNet, EtherCat, and Powerlink are designed for real-time
distributed connections.

IEC 62591 and 62601 standards are used for industrial wireless transmission, which mainly stan-
dardizes wireless communications in process automation. The ISO/IEC 8802 series are telecom-
munications and exchange between information systems, that is, wired or wireless transmission
of local and metropolitan area networks. Technical standards for wireless communication include
spatially limited networks (e.g., WiFi, Zigbee, Bluetooth, 6LoWPAN, HomeRF, Near Field Commu-
nication, and Z-Wave) and 3GPP 2—5th generation mobile communication technology.

2.5 Application Layer

The application layer related to CDA undertakes tasks of calculation, data processing, and mining
to realize adaptive control, lean management, and intelligent decision-making. The standards
in this layer can be classified as data, software framework, and communication configuration
standards.

Data standards describe device information, interface information, and configuration informa-
tion, such as describing which functional blocks exist in the device type, available parameters, the
data types of these parameters, and allowable ranges of these parameters. Data technical standards
include electronic device description language (EDDL), Field Device Tool/Device Type Man-
ager, M2MXML, and so on. The EDDL technical standard attempts to build a uniform engineering
environment that supports various devices produced by any supplier. As an outside-the-square ex-
ample of EDDL’s usefulness, Banerjee et al. [21] used it to describe databases and files, modeling
them as “devices” with their own power to communicate.

Software framework standards describe software component specifications. Technical standards
include Master Data Management (MDM), service-oriented architecture, Open Service Gateway
Initiative, software as a service (SaaS), and so on.

IEC 62453 series are used to standardize the configuration of the communication interfaces be-
tween field devices and control systems, which can configure the communication configuration
files of ControlNet, EtherNet/IP, and DeviceNet. IEC 61804 series are responsible for standardizing
communication characteristics of smart field instruments and device parameters.

2.6 Summary and Lessons

With the development of IIoT, many industry standards have been developed and iterated to im-
prove uniformity and interoperability for CDA. Equipment, suppliers, factories, and production
lines are developed under common and technical standards. This article maps the application ar-
eas of IIoT general standards and technical standards to the four-layer structure of terminology-
perception-transmission-application. The virtual and digital representation of physical assets with
AAS is the basis for data access. Its structure is divided into DF Header and DF Body. Among them,
the DF Body contains attributes linked to various data or functions, and such attributes must
follow the standard data format. The standard data format is described by common terminology
defined by PLIB. The common terminology defined by PLIB has been used in many fields, such
as measuring instruments, mechanical fasteners, optics and photonics, electronic and electronic
components, factory equipment, and environmental declarations. The standards in the perception
layer are related to the construction of data sources (sensors, Radio Frequency Identification
(RFID) systems, etc.), which are also the underlying standards for IIoT data access. The standards
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in the transmission layer are used to standardize communication networks, e.g., WirelessHART
and WIA-PA, which establish a bridge for its upper and lower layers. The application layer standard
is the key to encouraging device interoperability, such as IEC 61804 (EDDL). All the above stan-
dards ensure that CDA is performed in a uniform and standardized manner across different layers.

3 DATA ACQUISITION

IIoT captures data from industrial assets such as machines and industrial equipment in assem-
bly lines. In the real world, these industrial assets will have different types, makes, and models
of equipment [34]. In addition, the production time and operating environment will be different.
Data acquisition refers to obtaining data from the entities (industrial assets) in the network that are
used for interconnection, data exchange, and communication through different interfaces and pro-
tocols. In the IIoT environment, data comes from different types of devices and represents billions
of objects [9]. Newer industrial assets typically have easy-to-obtain mechanisms for data acqui-
sition, while older assets do not. Older industrial assets lack networking and data management
capabilities, so obtaining data from them poses even greater challenges.

To obtain data from these industrial assets, we must first understand the functions of the assets
and determine the correct parameters that need to be measured according to business needs. After
the parameters are determined, the data can be obtained from different types of data sources. Some
common data types and sources are:

— Simulate sensor data, such as pressure, temperature, flow, liquid level, and other data.
— Binary sensor data (on/off) from proximity, level, limit, pressure switch, and so on.
— Sensor data through field protocols such as Modbus and CANBUS. Modbus is a commonly

used serial communications protocol in industrial applications. CANBUS is a standard pro-
tocol that is widely used in the automotive and heavy equipment industry.

— Wireless sensor data from sensors through Bluetooth and wireless HART.
— Data from PLC, SCADA systems.
— Data from equipment controllers such as engine control units and dedicated controllers used

for operating equipment.
— Data from 3rd party cloud platforms through application programming interfaces.
— Data from the web, such as weather and air quality.
— Data from enterprise systems (asset master data, maintenance data, spares data). In an indus-

trial environment, enterprise systems include enterprise resource planning systems, mainte-
nance management systems, spare parts management systems, and so on.

3.1 Data Types in IIoT

The acquired data can be roughly divided into the following types:

— Direct Sensor Data Acquisition: It is about acquiring data from standard sensors such as pres-
sure, temperature, flow, proximity, level, and so on. In particular, sensor data and wireless
sensor data acquired through the field protocols also belong to it. Besides, derived measure-
ments are done if direct measurements are not possible due to physical, technological, or cost
constraints. This is done by measuring a suitable proxy parameter and deriving the target
parameter from this proxy parameter.

— Data from Industrial Control Systems: PLC, DCS, programmable automation controllers,
computerized numerical controllers, motion controllers, and SCADA systems are some of the
most commonly used Industrial Control Systems (ICSs). OPC UA, EthernetIP, Profinet,
Modbus, and serial interfaces are some common interfaces for obtaining data from ICSs.
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Although interfaces such as OPC UA, EthernetIP, and Profinet are used in the newer ver-
sions of ICSs, older legacy systems still use serial interfaces and Modbus.

— Environment data: It is mainly produced by enterprise systems and includes natural and
human environment data. Natural environment data is about the description of the environ-
ment and their combination and processing data, such as machine ID and machine type. Hu-
man environment data involves people in managing production, such as order information.

The following will introduce three methods for solving the above-mentioned data collection
problems: plug-and-play architecture, reconfigurable scheme, and hardware expansion.

3.2 Plug-and-play Architecture

Plug-and-play architecture is an important solution to the problem of direct sensor data acqui-
sition. Especially the problem of wireless sensor data collection. To support plug-and-play ar-
chitecture, the industry has proposed a unified family of standards—the Institute of Electri-
cal and Electronics Engineers (IEEE) 1451 [211]. IEEE 1451 is a set of smart sensor interface
standards for connecting sensors, actuators, microprocessors, and/or instrument systems in a con-
trol or field network through a standard set of communication interfaces [180, 211]. Many re-
searchers have used this system in their designs for applications such as environment monitoring
systems [128, 130, 235], precision agriculture [62, 232], and intelligent vehicles [127, 135].

Q. Chi et al. [42] adopted a complex programmable logic device (CPLD) as the main con-
troller of an IoT environment and proposed a new method for designing reconfigurable smart
sensor interfaces for industrial wireless sensor networks (WSNs). The device combines the lat-
est CPLD programmable technology with IEEE 1451.2 smart sensor specification standards. Bordel
et al. [26] realized a certain degree of multi-source sensor data collection based on the IEEE 1451
standards by designing a configurable multi-sensor acquisition interface. IEEE 1451 has been ap-
plied as a standard interface to an environmental monitoring system [129], a green building [154],
and digital twins [210]. Both Cherian et al. [41] and Guevara et al. [76] used standardized trans-
ducer electronic data sheets (TEDS) specified in terms of IEEE 1451.2 in their applications to do
with data perception. The definition of various transducers through these TEDS is a key element
of the IEEE 1451 standards. TEDS contains the information required to act as an interface between
a measuring instrument, like a sensor, and the control system. Sometimes, they are embedded on
a storage device connected to the sensor, but they can also reside in embedded memory on the
sensor itself, such as on an EEPROM [41].

The Open Geospatial Consortium (OGC) develops the Sensor Web Enablement standards for
building a sensor web to discover and use sensors flexibly [27]. Based on these standards, Bröring
et al. [29] developed a sensor plug-and-play infrastructure to integrate sensors on-the-fly with
minimal human intervention.

Therefore, although some researchers draw on IEEE 1451.4 [140], others have turned to the
OGC [27] and still others have turned to TEDS [41, 42, 76], especially analog transducer users in
this latter case. These plug-and-play standard solutions can help a lot to solve the direct sensor data
acquisition problem. However, the plug-and-play architecture has a limited scope of application.

3.3 Reconfigurable Scheme

The reconfigurable scheme is mainly used to solve the collection problem of data from equipment
and data from ICSs. It also supports sensor data from field protocols. The reconfigurable scheme
utilizes the system characteristics of programmable to realize a universal data acquisition system.
For a universal data acquisition system, in the face of many data items that are very different from
each other and tightly coupled to a specific system, a manually coded protocol parser is difficult
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to reuse. Liu et al. [141] provided a framework for automatic online application protocol field
extraction that can be parsed from context-sensitive application protocols and can also generate
optimizations based on simple extraction specifications. Adesina et al. [7] and Graham et al. [73]
selected a deterministic finite-state automaton as the general protocol analysis engine.

Some single-chip computers are also used in universal acquisition systems due to their pro-
grammability, such as field programmable gate array (FPGA), Raspberry Pi, and PLC. Different
ways of using FPGA hardware to collect data have been explored in many studies [22, 67, 82, 126,
179]. One of the most difficult problems to address has been overcoming the fact that every device
manufacturer designs and uses its own bespoke protocol with no concern for compatibility or com-
munication with out-of-house units. Bao et al.’s [22] solution to this issue is a reconfigurable data
acquisition system for industrial sensors that uses an FPGA as the core controller. Wu et al. [239]
also proposed a dynamic data access system but with embedded PLCs that have flexible hardware
and software structures [240, 241].

The universal data acquisition system makes use of configurability to realize the parsing of
various field protocols. However, programmable devices still have resource and performance
limitations.

3.4 Hardware Expansion

The last of the three approaches is to extend a device’s physical interface with a specific fieldbus.
In fact, most manufacturers offer specialized hardware extension schemes. Schneider’s TM3 Bus
Coupler series serves as an instance of hardware extension, aiming to improve the performance of
the Modicon M221, M241, and M251 logic controllers. Alternatively, the Schneider STBXCA100X
series is a Modicon STB distributed I/O solution, divided into different products according to length.
Siemens provides proprietary modules SIMATIC IoT2000 series to extend their product lines to
the IIoT environments. Omron’s CP1W units can expand I/O units, LCs, and any other devices via
Ethernet [170, 205]. Omron introduces EtherCAT as the machine control network. EtherCAT can
adopt linear, star, and ring topologies, and the possible expansion on each node helps to achieve
the maximum network flexibility of machine design [170]. However, hardware expansion cannot
be used as a general solution for IIoT because of its high price and physical inflexibility.

3.5 Summary and Lessons

As shown in Table 3, the methods of collecting data are mainly divided into plug-and-play architec-
ture, reconfigurable scheme, and hardware expansion. Among them, plug-and-play architecture
is a way to address the issue of direct sensor data acquisition, especially the wireless sensor data
collection problem. Its advantage is that IEEE 1451 standardizes the plug-and-play interfaces for
data acquisition. However, the disadvantage is that it is not applicable to data sources such as ICSs.
Reconfigurable schemes are mainly used to solve the collection problem of data from equipment
and data from ICSs. In particular, it also supports sensor data from field protocols in direct sen-
sor data acquisition. The programmability of some single-board computers or microcontrollers
(e.g., PLC, FPGA, and Raspberry Pi) is used to implement a reconfigurable system, which can be
used as a general data acquisition system. However, programmable devices still have resource and
performance limitations. Hardware extension is a physical extension method proposed by many
manufacturers, which can be applied to collect data from various data sources. However, hardware
expansion has the disadvantages of high price and insufficient flexibility.

4 DATA FUSION

Data fusion refers to the techniques and strategies for overcoming heterogeneity in data formats
and sources. The heterogeneity in data can take two forms: the data format, such as text data,
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Table 3. Data Acquisition
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Kumar et al. [129] Environment monitoring system � � -

IEEE 1451 standardizes the
plug-and-play interfaces for data
acquisition.

Configurable interfaces that
comply with IEEE 1451 only work
with some types of sensors.

Wei et al. [235] Precision agriculture � – –
Lee et al. [135] Intelligent vehicles � – �
Maiti et al. [154] Green building � – –
Chi et al. [42] Water environment monitoring � � –
Song et al. [210] Digital twins � – –
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Garcia et al. [67] IoT environment � – �

Programmable devices, such as
FPGAs and PLCs, are used in
universal access systems because
of their programmability.

Programmable devices have
resource and performance
limitations.

Wu et al. [240] Automatic winding machine � – �
Bao et al. [22] Industrial production control � � �
Portilla et al. [179] Environment monitoring system � � –
Hinkelmann [82] IoT environment � – �
Sundaramurthy [216] IoT environment � � –
Shashikant [201] IoT environment � – �
Ursutiu [225] IoT environment � � –
Wan [228] Drug Packing � – �
Krasteva et al. [126] Industrial IoT environment � � �
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on Schneider [195] Schneider TM3 � � �

Extending physical interfaces.
Hardware expansion is expensive
and not flexible enough.

Siemens [205] SIMATIC IoT2000 � � �
OMRON [170] Omron’s CP1W � � �
Siemens [205] Schneider TCSXCNNXNX100 � � �

S = Direct Sensor Data Acquisition, E = Data from Equipment, I = Data from ICSs.

relational data, image data, and audio and video data [262]; or its structure, namely, structured,
semi-structured, or unstructured data [119]. In industrial environments, and in big data generally,
most data are unstructured. They have vagueness, which means the information suggests little
about what it conveys [262]. To illustrate, the word “wind” on its own is vague. It could be a noun
or a verb; it could relate to air, a path, a piece of string, a stomach pain. Without context or further
information, we cannot know what this word is intended to convey. For our purposes, we define
heterogeneous data as data from different sensor sources, with different collection periods or types
but that relate to each other.

Data fusion technology structures and integrates heterogeneous data from different sources to
improve its comprehensibility, accessibility, and extensibility. This is an active area of research for
both academia and industry, with the main spheres of inquiry being compressed storage, fault pre-
diction, location, and status assessment. Descriptions and some representative examples of these
research themes follow.

Storage compression refers to reducing the size of the data and tries not to lose useful informa-
tion. For example, in pursuit of more efficient storage solutions, Park et al. [174] applied machine
learning to process data into a vector representation of only a single formula. Cheng et al. [39]
proposed a lossy fast lifting wavelet transform to compress distributed sensing data for large-scale
WSNs. This strategy largely reduced the amount of data that needed to be transmitted.

Fault prediction is used to detect faults by specific sensors. Here, Zhou et al. [269] devised a
multi-sensor global feature extraction method for monitoring the condition of various tools in a
milling process based on kernel extreme learning machine and a genetic algorithm, while Zhou
et al. [268] fused a multimodal feature data to extract abnormal frequency features for rotating
machinery diagnosis.

Location studies focus on identifying the precise location of objects. Zhang et al. [261] developed
a localized fingerprint technology based on heterogeneous feature fusion and the time-of-arrival
feature to enhance the precision and robustness of indoor positioning. Alatis et al. [12] proposed a
method of estimating the position and orientation of mobile robots based on the fusion of inertial
sensor data and vision.

Status assessment is to give a comprehensive evaluation from many indicators. In this stream,
Ha et al. [78] proposed an air quality assessment system that merges many indoor air quality
index, such asCO , PM2.5, and SO2. Sun et al. [214] proposed an intelligent data fusion framework
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Table 4. Surveys in Data Fusion Application and Framework

C1 Task/Type Author and one-sentence summary
Advantages

P E S Y L M C
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pp
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Compression

Park et al. [174]: A machine learning-based method to process industrial data into a
representative vector represented only by one formula for reducing storage consumption

– – – � – � –

Bardwaj et al. [23]: A method of compressing data at each local sensor to improve the
accuracy of fusion estimation

– – – � – � –

Cheng et al. [39]: A distributed fast lifting wavelet based on the lossy data compression
algorithm

– – – � – � –

Fault Prediction
Zhou et al. [269]: A multisensor global feature extraction method � – – � – – –
Zhou et al. [268]: A multimodal feature data fusion method for rotating machinery
diagnosis

� – – � – – –

Localization
Zhang et al. [261]: A fingerprint localization technology based on heterogeneous feature
fusion and the time of arrival feature

� – – � – – –

Alatis et al. [12]: Fusion of inertial sensors data and vision � – – – – – –

Status Assessment
Ha et al. [78]: An air quality management system � � – � – – –
Sun et al. [214]: An intelligent data fusion framework � � – – – – –

Fr
am

ew
or

k

Edge-based

Izadi et al. [102]: A fusion approach based on fuzzy logic for wireless sensor networks – � � – – � –
Yang et al. [251]: A temporal data fusion method based on Gaussian processes – � � – � – �
Larras et al. [132]: A sensor-level clique-based neural network that serves as a generic
classifier

– – � – � – –

Qian et al. [181]: Real-time fault diagnosis on edge nodes – – – – � � �

Cloud-based

Mu et al. [202]: An intelligent transportation control system implemented as a
cyber-physical cloud application

– – – � – – –

Hao et al. [244]: An information fusion system based on cloud computing with greater
resilience and a capacity to process data

– – � – – – �
Liu et al. [142]: An architecture for teaching cloud-based robotic systems how to navigate � – – – – – �
Sirisakdiwan et al. [207]: A Spark streaming framework to support multi-heterogeneous
streams being deployed in a single Spark application

– – � � – � –

Stojanovic et al. [212]: A software platform for remote health � – – – – – �

Collaborative

Asif et al. [16]: A five-layered IoHT framework for time-critical data processing – – – � – – �
Wang et al. [233]: A fog-based environmental monitoring framework for fusing
multi-source heterogeneous data locally

� – � – � – �
Arooj et al. [15]: A five-layered collaborative multimodal architecture with data fusion
functions based on context descriptors, tensor decomposition, and semantic approaches

– � – � – � �
Valente et al. [226]: A container-based microservice for fusing multi-sensor data – – – – � – –

C1 = Category, P = Precision, E = Energy, S = Safety, Y = Yield (efficiency), L = Latency, M = Memory (Storage), C =
Computing.

to compute the health status of a bridge according to an index. The framework comprises a hybrid
neural network built on adaptive resonant theory and an adaptive fuzzy inference system.

In real-world scenarios, deploying an efficient data fusion framework not only requires an appro-
priate algorithm but also a systematic framework to support data collection, analyses, and decision
intelligence. Table 4 lists several surveys on data fusion applications and frameworks. In this sec-
tion, we provide examples of contemporary data fusion in terms of three frameworks: edge-based,
cloud-based, and collaborative frameworks. Note that collaborative frameworks focus more on
cooperatively processing data compared with edge-based and cloud-based ones.

4.1 Edge-based Frameworks

Izadi et al. [102] proposed a fusion approach based on fuzzy logic, which is applied in a WSN
attempting to improve the QoS and reduce the energy consumption of the edge WSN. The strategy
is to reduce the amount of data transmitted through fuzzy rules that distribute and collect only true
values. This eliminates redundant data, which consequently reduces energy consumption and in-
creases the lifespan of the WSN. Yang et al. [251] argue that transferring data from a sensor node to
the cloud server without prior processing raises several concerns, including high latency, privacy
leaks, and excessive bandwidth consumption. To address these issues, they devised a method of
fusing temporal data based on a Gaussian process. Essentially, the methods make predictions from
time-series data streams at the edge device so only the temporal features of the stream need to be
transferred between the cloud and edge. Larras et al. [132] suggest shifting the small-scale classi-
fication and feature extraction parts of the processing to the sensors using clique-based neural
networks (CBNNs) as a generic classifier. CBNNs allow the method to be divided into clusters and
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dispatched to different nodes of a WSN, which would help to reduce communications overheads
as well as ensure privacy. Qian et al.’s [181] solution for a system of rotating machines involves
real-time fault diagnosis and dynamic controllers deployed on edge computing nodes. Most of the
data are computed on electronic communications networks (ECNs), where the controllers can
modify the operational parameters if needed. Only important data are sent to the server for further
analysis, which reduces storage and computing requirements on the cloud. The features are
extracted via a fast Fourier transform and fused with a classical backpropagation neural network.

4.2 Cloud-based Frameworks

Due to the constrained resources of edge devices, data fusion methods performed at the edge
tend to be fixed, uncomplex, and non-interactive. Hence, most complex data fusion tasks with
changing demands are either performed by a central server or designed for centralized computing
architectures.

Mu et al. [202] designed an intelligent transportation cyber-physical cloud control system,
where dynamic information from heterogeneous sensors is sent to a central control platform. The
data processing and analysis are fused within an intelligent transportation network, where the pre-
diction results and control schemes are generated simultaneously and sent to the terminal systems
to support unified monitoring, management, decision-making, and control services. Hao et al. [244]
claim that data throughput and computing power in traditional information fusion systems cannot
meet the demands of future competition. By traditional, they are referring to systems based on a
single platform with a small number of sensors. As such, this article puts forward a design and a
highly detailed workflow plan for an information fusion system based on cloud computing with
more resilience and greater capacity for data processing. Liu et al. [142] present an architecture
for teaching cloud-based robotic systems how to navigate. The learning scheme follows lifelong
federated reinforcement learning (LFRL) to support reducing training time without sacrific-
ing accuracy. With LFRL, robots in different environments can fuse and share models to help each
other learn more quickly.

To overcome issues with high latency, many researchers have turned to cluster frameworks,
such as Spark [258] and Hadoop [204]. These packages offer as near to real-time cloud comput-
ing as is currently possible and are, therefore, very popular. Sirisakdiwan et al. [207] claim that,
at present, there are many problems with multi-stream applications, including difficulties with
deployment and monitoring, redundant coding, and inefficient job queueing. To overcome these
issues, they propose a Spark streaming framework that supports the deployment of multiple het-
erogeneous streams in a single Spark application. They use the case of anomaly detection in a net-
work to evaluate the effects of fusing all these streams. Stojanovic et al. [212] developed a software
platform, RemoteHealth, to provide support for the collection, fusion, processing, and analysis of
large-scale data. Their application also involved human activity recognition on a dedicated server
within the RemoteHealth platform, all based on Apache Spark.

4.3 Collaborative Frameworks

Although the Spark framework allows data fusion with real-time streams, many researchers im-
plement these tasks on a distributed system for better performance. For example, Asif et al. [16]
presented a five-layered Internet of Health Things (IoHT) framework, consisting of mist, fog,
and cloud layers. The mist computing layer at the extreme edge of the network performs rapid
rule-based preprocessing of the sensor data with basic tasks, such as data aggregation, fusion, or
filtering, which is key to ensuring time-critical data processing.

Wang et al. [233] claim that real-time monitoring is barely possible with a centralized cloud
solution, because the data collected by a single edge node is insufficient to accurately describe
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the state of an environment. Their solution is a fog-based environmental monitoring framework,
which can fuse multi-source heterogeneous data locally. A cloud data training system is respon-
sible for updating the fusing models in different edge nodes. However, rather than sending an
entire model, the edge nodes only transmit the model parameters as an update, not the raw
data.

Arooj et al. [15] proposed a five-layer collaborative multimodal architecture. In particular, the
third layer is dedicated to knowledge discovery with the collected data. They consider that an
increased number of nodes results in higher communication overhead, so having one central server
process all the data is neither feasible nor efficient. Their data fusion solutions are based on context
descriptors, tensor decomposition, and semantic approaches. Valente et al. [226] implemented a
container-based microservice to fuse multi-sensor data, which is configured as fog architecture
and built from open-source IoT middleware. With this strategy, the scale of the system can adjust
automatically when excessive data is input from the edge nodes.

4.4 Summary and Lessons

Collected data from the IIoT environment is massive and heterogeneous, which is challenging the
data fusion for further processing. In terms of the applications, the fusion can be performed in three
frameworks: edge-based, cloud-based, and collaborative. The edge-based framework is suitable for
applications with a small amount of data but real-time requirements. The cloud-based framework
can process complex and high-computational data fusion but loss the real-time capability. Collab-
orative frameworks leverage both advantages of cloud and edge features to fuse data. As the last
stage of data access, data fusion prepares well-structured data for further applications, and as a
whole process, data acquisition and fusion or even preprocessing such as data cleaning can be done
in one framework in a flexible way. For instance, the data stream cleaning system proposed by Sun
et al. [215] executes the data collection, fusion, and cleaning sequentially and scalably, where the
programs of the above three stages can be updated according to requirements. However, their scal-
able mechanism is not general. This is also the reason we investigate virtualization technology
and provide a discussion in the following section.

5 SCALABLE ARCHITECTURE

Factories add new production lines, and transportation networks add new hubs and vehicles to
their fleets. So, too, IIoT architectures need to be able to scale to cater to this growth. Moreover, ev-
ery new entity in the system is likely to come with its own data processing logic, and this growth in
heterogeneity also needs to be accommodated. In this section, we review progress toward scalable
architectures to support these requirements. Beginning at the dawn of networking with the first
central server, we review the many and varied rules, methods, functions, and implementations of
computer systems up to and including the virtual technology of today.

5.1 Evolution of Computing Architectures

In the past few decades, various types of computing paradigms and architectures have emerged to
suit almost every purpose under the sun.

Supercomputing is the original purpose that originated from the invention of the first com-
puter to the first supercomputer UNIVAC LARC in 1960. However, as impressive as these large
proprietary mainframes with high-performance computing capabilities were, they could still only
perform one task at a time. To perform multiple tasks, multiple systems were needed, each run-
ning in parallel. Hence, the 1970s saw the advent of cluster computing, open massively parallel
processing, and symmetric multiprocessing. In the 1980s, grid computing emerged [80], and this
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concept dominated academia right through until the early 1990s [64]. It was in this decade that
architectures truly began to diverge, especially in terms of data storage. Some frameworks focused
on centralization, others on decentralization, but, over the next decade, we would witness the evo-
lution of commodity clusters, peer-to-peer, web services, virtual clusters, HPC systems, laaS, PaaS,
and SaaS. All these ideas would culminate in 2006 with the popular term “cloud computing” be-
cause of Amazon’s Elastic Compute Cloud product. In its initial conception, cloud computing was
typically implemented as a joint hardware and software platform, designed to let businesses share
resources and make high-priced computing services affordable to SMEs [113].

The next few years would see a tumult of innovation. The Internet of Things was born dur-
ing this time as an interconnected system of edge devices with high data processing require-
ments [167], as were fog computing, edge computing, and edge-cloud collaborations.

Fog computing, which appeared in 2011, uses terminal devices, i.e., fog nodes, to bear most
of a system’s storage and calculation requirements and the internet as the communications
medium [17]. Fog platforms include fog nodes and cloud servers. The fog node has a certain
amount of calculation ability, which provides real-time and quality of service (QoS) services
near the IIoT environment, while the cloud servers support the distributed fog nodes with elastic
and huge computing power [25].

Edge computing surfaced next. Edge computing can be traced back to the 1990s, but it has
been widely used recently due to the dramatic performance improvement of edge hardware. As a
distributed computing paradigm, the edge devices collect the data and perform some or all of the
calculations required before transmitting the results through the network [260]. Because much of
the computing is done at the edge, these systems typically have lower latency, lower transmission
costs, better response times, and better QoS than conventional cloud systems. For this reason,
they are a popular choice for applications with large-scale mobile data [37, 193]. Time-sensitive
applications can also benefit from edge computing, particularly with a highly reliable and available
internet connection [209]. The major shortcoming of edge computing is that the edge devices are
generally resource-constrained, which means their computing power is limited to simple, non-
intensive tasks [203].

The current trend for integrating time-sensitive applications within the resource limitations of
edge devices is an edge-cloud collaboration. These frameworks combine the real-time performance
of edge computing with the powerful functions of cloud computing, giving play to the advantages
of both paradigms.

Currently, research interest in edge-cloud collaboration is high, which is resulting in very rapid
developments in this area. However, in general, edge-cloud computing frameworks comprise the
edge layer, the communications layer, and the cloud layer [35, 45, 52, 159, 182, 208, 219, 229, 248].
Some architectures include an additional fog layer between the edge and the cloud. Gateways
aggregate and transfer data from the physical devices in the edge layer, through the communica-
tions layer, to the cloud layer at the top. The connections between layers can be wired or wireless.
The edge layer might include devices, such as sensors, controllers, and actuators; systems, such
as supervisory control and data acquisition systems (SCADAs), DCS, and manufacturing
execution systems (MES) [59, 159]. Example protocols used for the communication layer in-
clude Internet protocol version 6 over a low-power wireless personal area network (6LoW-
PAN), message queue telemetry transport (MQTT), extensible messaging and presence
protocol (XMPP), advanced message queuing protocol (AMQP), data distribution service
(DDS), constrained application protocol (CoAP), and open platform communications uni-
fied architecture (OPC UA) [59, 196]. Also, emerging technologies such as network virtualiza-
tion, software-defined networking (SDN), and fifth generation mobile networks (5G) are
playing important roles in this layer.
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Table 5. Surveys in Virtualization Technology

C1 Methodologies Advantages Disadvantages Contributions

Fu
ll

J. Hwang et al. [94]: An ARN CPU architecture for virtualizing full systems and
a prototype implementation of a hypervisor, called Xen.

• High reliability
• High performance
• Moderate cost

• Low scalability

• Advantages
• Challenges
• Design principles
• Current mainstream

product
• Application

Nishikiori, Masaaki [169]: A combination of Fujitsu’s high-reliability servers,
middleware, and vSphere 4 VMware virtual infrastructure for optimizing data
center operations.

• High scalability
• High reliability

• High execution time

P
ar

a-
V

ir
tu

al
iz

at
io

n

Jun Zhang et al. [114]: An embedded architecture based on a kernel virtual
machine that combines VxWorks and Linux for real-time virtualization.

• Low interrupt response latency
• Strong isolation

• API support

• Advantages
• Challenges
• Comparison with

full virtualization
• Current mainstream

product
• Application

Bugnion et al. [30]: An x86 architecture for virtualization with VMware
Workstations.

• High compatibility
• Simple user experience
• Low overall overheads

• API support

C
on

ta
in

er
T

ec
h

n
ol

og
y

A. Ahmed et al. [8]: Comprehensive improvements in Docker by an equential
image downloading, a multi-threaded decompression, and I/O pipeline for small
computers, such as Raspberry PIs.

• Low development time
• Good scalability
• Good isolation

• Limited by network
bandwidth, CPU, or disk I/O

• Structure
• Major components
• Advantages
• Challenges
• Current mainstream

product
• Application

J. Tang et al. [221]: It makes the abstraction and management of the execution
environment in the granularity of containers on edge.

• Lightweight
• High feasibility

• Limited in the large-scale
environments

Yzhou Huang et al. [92]: A computing architecture based on Docker and
Kubernetes for machine learning.

• Rich resources
• Stable network

• High resource consumption

Jaiswal et al. [103]: A patient data collection framework based on the container
intelligent medical system

• Good scalability
• Lightweight

• Lack of evaluation of user
constraints

C
on

ta
in

er
O

rc
h

es
tr

at
io

n

Kaur et al. [120]: A competent controller for container management on
edge-cloud nodes that considers Co2 emissions, carbon footprints, and energy
consumption.

• Good green energy utilization
• High performance
• High flexibility

• Ignores network aspects of
QoS, e.g., latency

• Advantages
• Challenges
• Examples of

platforms products
• Current mainstream

product
• Application

Dupont et al. [55]: A platform can perform to distribute functions horizontally
and vertically.

• Good remote diagnosis
• Roaming IoT function

• High resource consumption

Chen et al. [36]: An architecture based on Kubernetes-enabled NFV and
management and orchestration for implementing a scalable IoT/M2M system in
the OpenStack cloud.

• Good scalability
• Good management and

orchestration
• High resource consumption

5.2 Virtualization Technology

Virtualization is the key to achieving dynamic and scalable services. Virtualization technology is
a kind of resource management technology that abstracts the physical resources of a computer
(e.g., networks, memory, CPUs, storage, I/O equipment) in software manner, overcoming the limi-
tation caused by the indivisibility of physical resources. Virtualization technology enables a single
physical computer to be transformed into several logical computers, realizing dynamic scheduling
and multi-scale sharing of physical resources, which in turn improves resource utilization. In its
early form, virtualization simply meant dividing a system’s resources and purposing them to dif-
ferent applications. Today, virtualization can mean anything using software to mimic hardware
to support larger and more complex applications. A list of studies on virtualization is provided in
Table 5.

Virtualization technology mainly includes virtual machines, containers, and container or-
chestration engines. The types fall into two broad categories: full virtualization and para-
virtualization [14]. Full virtualization manages virtual machines through an additional intermedi-
ate software layer between the virtual machine and the hardware called a hypervisor [188]. With
full virtualization, the underlying hardware is fully simulated, which means native applications
and software can usually run transparently and seamlessly. However, because the hypervisor uses
resources, which adds overhead to the system, performance is not as good as if one were using the
actual machine.

Para-virtualization essentially adds some interfaces so users can run software and apps designed
for another system on their own host environment. It gives the appearance of operating in a partic-
ular environment, but the artifice is superficial. However, because para-virtualization modifies the
operating system kernel to use the application programming interface provided by the virtualiza-
tion layer hypervisor instead of nonvirtualizable instructions, it eliminates the need for a virtual
machine monitor (VMM) translation process. Therefore, para-virtualization generally performs
better than full virtualization.
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Fig. 4. Emerging fields with relevance to CDA.

5.2.1 Virtual Machines. The most widely used virtualization technology is the virtual machine.
Virtual machines come in two main flavors: one runs on bare machines, e.g., Xen, VMware vSphere,
and KVM; the other runs on an operating system, e.g., VMware Workstation. Both are essentially
a copy of an application running in parallel on the same server, which is an efficient way of using
hardware resources. It also makes many application services more feasible and/or more robust.
For example, virtual environments are less prone to interruptions of service, and, when services
are interrupted, they tend to recover more quickly. Upgrading from old to new software versions
is easier—one simply installs the new version on a new virtual machine and flips over to the new
machine when the time is right. Also, the isolation inherent to virtual machines means different
applications are less likely to interfere with each other. Further, virtual machines decouple an
application from an actual physical server, which means the server running the service can be
changed dynamically to suit prevailing circumstances. The process of changing servers is called
fast migration [145]. However, perhaps the greatest benefit of virtual machines is that users can
use as many or as few resources as needed to suit their current workload requirements [178].
Scaling programs by adding and deleting resources is part of the application execution process.
Today, there is even virtualization technology for deploying and managing the cloud platforms
themselves. OpenStack is a pre-eminent example [32].

5.2.2 Containers. In addition to virtual machines, containers are another virtualization technol-
ogy that has emerged in recent years [53]. They are like virtual machines but structurally different.
As shown in Figure 4, virtual machines and containers both comprise basic hardware facilities, i.e.,
a physical host machine running an operating system (HostOS), binary files, development
dependent libraries, and an application service layer. But a virtual machine includes a virtual ma-
chine operating system (GuestOS) and operates on top of the VMM/hypervisor, while a container
runs upon the container engine, which in turn runs on the operating system. In other words, a
virtual machine must simulate a complete operating system, while a container is just an instance
share of the native operating system running on the physical machine.

Up to now, many container technologies have emerged, which can be mainly divided into four
categories according to their functions: container runtime (such as CRI-O and Containerd) [60],
container engine (e.g., Rkt, OpenVZ, LXC) [115], application container engine (like Docker) [246],
and container orchestration engine (such as Kubernetes and Apache Mesos) [107].
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(1) The container runtime implements the Container Runtime Interface (CRI) specification,
which is used to manage the deployment and execution of containers.

(2) The container engine provides a lightweight virtual runtime environment at the operating
system (OS) level, using the same kernel mechanism as the OS. This technology allows for
the virtualization of a physical machine into multiple OS instances.

(3) The application container engine is an application encapsulation technology that does not
have its own kernel or virtual hardware. It only encapsulates the application and its depen-
dent environment as an independent object, achieving isolation of application processes. The
application in it runs directly on the host kernel.

(4) The container orchestration engine is used for the automatic deployment, scaling, and load
balancing of container-based applications.

Containers have three main advantages:

(1) They are lightweight. Because the containers themselves do not have a kernel, they con-
sume fewer resources than a virtual machine. Also, this means container startup is usually
a second-level process, which is more suitable for the rapid startup requirements of most
industrial environments. Plus, it means application services can be deployed and migrated
quickly. Salonidis et al. [153] introduced dynamic service migration based on containers in
a mobile edge-cloud framework. Li et al. [150] introduced a rapid migration architecture for
edge services based on containers. Kakakhel et al. [116] defined the different properties of
containers and discussed how to dynamically migrate stateful applications through contain-
ers to extend fog and mobile edge computing services.

(2) They have good scalability. Different types of devices can automatically pull updated ver-
sions of an image file to update a container through a container engine, destroying the old
version of the container to release resources. Darrous et al. [46] proposed two container
image placement algorithms, k-Center-Based Placement (KCBP) and KCBP-Without-
Conflict (KCBP-WC), to reduce the maximum retrieval time of a container image across
edge servers. KCBP and KCBP-WC are optimized based on their K-centers.

(3) They have good isolation. Isolating applications with containers, both physically and in
terms of system resources, is largely a function of Cgroups and namespace technology. This
is a highly cohesive system that can rapidly separate services, which perfectly suits microser-
vices architecture. Ren et al. [139] provide an excellent explanation of the isolation perfor-
mance of containers.

Unlike cloud computing, the edge nodes in edge computing have less CPU power, memory,
storage, and networking capabilities, so any technology installed on an edge device to make
it more scalable must be lightweight. For this reason, container technology is suited to edge
applications and, as such, an abundance of solutions have already been developed. For instance,
Ahmed et al. [8] proposed three different Docker optimization methods to improve the efficiency
of hardware resource use in a fog architecture that involves very small computing nodes, such
as Raspberry Pi. The three optimizations, sequential image downloading, multi-threaded decom-
pression, and input/output pipelining, each combine to reduce a server’s deployment time by
approximately 30%. Huang et al. [91] introduced a technology that combines containers and edge
computing around parked vehicles to improve resource allocation in transport systems. Tang
et al. [221] proposed a container-based edge unloading framework for a self-driving application.
The framework includes an offload decision module, an offload scheduler module, and edge
offload middleware based on lightweight virtualization. Jaiswal et al. [103] provided a collection
framework for patient data in an intelligent medical system based on Raspberry Pi-configured
containers. Mendki et al. [158] applied Docker to the analysis of IoT video at the edge in a study
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on the feasibility of analyzing surveillance video in real-time with a deep learning framework,
again, based on Raspberry Pi. Their performance metric was the cost of containerization. Hsieh
et al. [88] demonstrate various application scenarios in an edge computing platform with the
support of containers, including service deployment for smart cities such as air quality monitoring
and voice and image recognition/classification. They tested deployment speeds, QoS levels, and
the response times of some event-driven mechanisms.

Navarro et al. [19] introduced the idea of using containers to deploy services from a local server
as a micro edge-cloud collaboration. They show how a container approach can help third parties
create and share customized services at the edge of a network to better meet specific local needs
and constraints. They also illustrate that containers in edge-cloud environments are particularly
suited to PaaS systems due to their lightweight size and flexibility. Lee et al. [173] demonstrate
that container and clustering technology can promote the applicability of applications on the dis-
tributed multi-cloud platform collaborating with a series of network nodes.

In fact, today, containers have become so interwoven with distributed computing that many
commercial edge devices are either containerized or container-ready, e.g., Azure IoT Edge [161],
Balena [20], and Amazon’s AWS IoT Greengrass [13].

Azure IoT Edge was announced as an open-source product by Microsoft in 2018. It comprises
certified Edge hardware, modules, a runtime, and a cloud interface. An edge module is an execution
unit, implemented in a Docker-compatible container, that runs business logic at the edge. The
runtime allows for the use of custom and cloud logic on edge devices. It sits on the edge device
and performs management and communication operations. The cloud interface remotely monitors
and manages the edge devices.

Balena consists of BalenaCloud, BalenaOS, and BalenaEngine. BalenaCloud is Balena’s fully
managed cloud service. In addition to a server that can automatically package code into containers,
it includes device and client software. BalenaOS is a simple Linux operating system suitable for
edge devices that comes with the BalenaEngine pre-installed. The whole suite forms a lightweight,
Docker-compatible container engine.

AWS IoT Greengrass enables customers to build edge devices and applications. With this kit,
devices can securely connect to a local network and interactive information without requiring to
communicate with the cloud.

5.2.3 Container Orchestration. Container orchestration allows containers to run as a cluster
in distributed environments. An orchestration engine usually includes a container management
mechanism, a scheduling mechanism, cluster definitions, and a service discovery module. Through
these components, the engine organically combines containers into microservice applications to
fulfill business needs. Containers can even be expanded horizontally across multiple edge nodes.
The mainstream engines currently include Docker Swarm, Mesos, and Kubernetes.

Gao et al. [66] introduced Docker and Docker Swarm into the software definition function of the
original Bluetooth, transforming BT-SDF into an extensible and flexible IoT function redefinition
framework.

Mesos is a general cluster resource scheduling platform that, together with Marathon, provides
all the functionality of a container orchestration engine. Rattihalli et al. [186] presented an Apache-
Mesos container migration system based on a two-stage elastic cluster architecture, showing how
this framework could be used to manage a scientific workload in three different cloud/cluster
environments.

Developed by Google, Kubernetes is an open-source container orchestration engine and sup-
ports both Docker and CoreOS containers. Malawski et al. [171] designed an end-to-end container-
ization solution supporting either Kubernetes or Amazon electrical control system for scientific
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workflows. The solution can execute mixed workflows, over multiple computing infrastructures if
needed, to significantly reduce the burden of infrastructure management.

Kubernetes is associated with some of the more lightweight edge computing platforms, such
as KubeEdge and K3s. KubeEdge is an open-source system developed by Huawei for extending
container orchestration to edge devices [247]. K3s is a lightweight distributed system launched
by Rancher Labs [103]. This product is designed to run Kubernetes in environments with limited
resources. K3s supports the x86_64, ARM64, and ARMv7 architectures, allowing K3s to work more
flexibly across edge infrastructure. The implementation is a lightweight version of Kubernetes
that deletes old, non-essential code, integrates running packaging processes, and uses containers
instead of Docker as the runtime container engine. SQLite can also be included as an optional
data store.

To solve the problem of data confidentiality, Dupont et al. [55] proposed a migration platform
of IoT functions that relies on Kubernetes clusters to perform horizontal roaming and vertical
offloading. In a practical demonstration of a healthcare scenario, Dupont and colleagues showed
how to use the IoT roaming function with medical data. In a second case, they highlighted the
offload capabilities of the platform to optimize the remote diagnosis of mechanical engines.

However, Kaur et al. [120] find that existing Kubernetes solutions lack sufficient robustness to
deal with interference and minimize energy consumption in IIoT settings. Therefore, they pro-
vided a solution to use an additional competent controller that can manage containers on edge
cloud nodes, called KEIDS, which considers a system’s carbon footprint and energy consump-
tion and is robust to interference. KEIDS is based on the integer linear programming method of
multi-objective optimization problems. Chen et al. [36] proposed a scalable IoT/M2M architecture
based on an OpenStack cloud comprising Kubernetes-enabled Network Function Virtualiza-
tion (NFV) plus a management and orchestration engine. Its extended functions are based on
Kubernetes with the addition of container-based network functions. Their experiments show that
their NFV platform with Kubernetes has better scalability than systems without.

The performance of these different orchestration engines has been compared in multiple studies.
Modak et al. [163], for example, compared Docker Swarm and Kubernetes with a cloud-based data
security application. Magedanz et al. [84] evaluated how containers on fog nodes influence the
performance of various applications, comparing Kubernetes, Mesos-Marathon [160], and Docker
Swarm, and how they met the needs of running applications. These researchers also proposed
a container orchestration framework for a fog computing infrastructure. Gromann et al. [75]
proposed a multi-architecture framework composed of multiple Docker images called PyMon—
a Django application that can be used to monitor and collect various data from a host. Before
choosing Docker, they compared the resource use of Kubernetes and Docker Swarm.

6 EMERGING FIELDS AND THEIR CHALLENGES IN CDA

While innovation in many ancillary fields will help to accelerate advancements in IIoT, recently
emerging technologies in some of these fields show particular promise for helping to promote
collaborative data access. Figure 4 provides an overview of these four fields and the potential
benefits they may bring. The four fields are 5G, blockchain, semantic web, and machine learning.

6.1 5G

As the communication technology of the next decade, 5G mobile networks provide a significant
improvement in speed, latency, capacity, reliability, security, and energy consumption compared
to the previous generation of communication technology [38, 111, 184]. 5G defines three key com-
munication scenarios in enhanced Mobile Broadband (eMBB), massive Machine Type Com-
munication (mMTC), and Ultra-Reliable and Low Latency Communication (URLLC) [227].
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Among them, mMTC has huge benefits for CDA, which can provide access connections around
1k–1M devices/km2. It is poised to act as an enabler for the connection of sensors, devices, com-
putational platforms, software applications, and operators. Connectivity implies seamless vertical
and horizontal integration across all layers of the IIoT architecture. Further, the mobility, flexibility,
and cost-effectiveness of 5G can well support CDA, especially in industrial scenarios.

However, the challenges are also in front of CDA to use 5G [4]:

— Gap between 5G and industrial applications. At the current stage, 5G still focuses on eMBB
serving for domains like mobile communication, instead of mMTC. Although use cases have
been released by 3GPP [2, 3], it is still confusing for manufacturing researchers and engineers
to develop 5G applications for CDA.

— Spectrum and operator models. 5G provides the possibility for CDA everywhere through
wireless channels, however, to meet the extreme requirements such as low latency and
high reliability, a specific spectrum is highly preferred. This can be alternatively replaced
by solutions such as regional licenses with well-designed operator models, which is a huge
challenge.

— Lack of industrial components and testbeds. Unlike smartphones, industrial devices are
significantly different from each other, and integration issues with other existing communi-
cation technologies also cannot be ignored. However, the importance of CDA is universality
and easy usage, which conflicts with existing issues.

6.2 Machine Learning

There is hope that edge-cloud collaborations will solve many of tomorrow’s problems with CAD
in the IIoT—especially the resource constraints of the edge and the delays caused by central pro-
cessing in the cloud [9, 168]. But from real-time task scheduling to computational offloading to
security issues to communication delays, the true panacea to all ills are the advances being made
every day in machine learning [200].

For task-scheduling problems, machine learning algorithms combined with a good partition
strategy can use the operating cycles in edge-cloud architectures to achieve low latency, low energy
consumption, and high data throughput [118]. Further, deep learning techniques [143, 151, 213]
excel at scheduling predictions, and a well-design neural network can make them quickly [108].

In terms of security issues, machine learning algorithms at the edge can fully protect the access
to private data stored on end devices. They can also reduce computing overheads and authentica-
tion delays [264].

Communication delays can be overcome with algorithms that reduce the cost of obtaining data
from edge devices, decrease bandwidth requirements, and/or reduce waiting times. For example,
one of many approaches to delivering these outcomes is to select the most valuable data samples
for analysis at the preprocessing stage on the edge node. Cai et al.’s strategy for doing this has
an anomaly detection and sample selection model working on each edge node with a machine
learning classification scheme that was originally trained on the cloud [31].

Computation offloading is usually designed as a task delegation strategy that distributes jobs
to edge devices. Each device is regarded as an agent, and the overall system costs are minimized
through machine learning algorithms [110, 138, 144]. Accordingly, edge platforms have blurred
into a part of the distributed computing environment to some extent. What sets the two environ-
ments apart is the heterogeneity of edge devices and their limited computing and storage resources,
which poses a huge challenge to machine learning at the edge [194]. However, edge-cloud architec-
ture, which combines real-time computing on edge devices and global aggregated computing on
the cloud, promises a balance between computing power and real-time [49]. Since a typical edge
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device does not have enough processing power to train a machine learning model in real-time, the
model can be generated in the cloud for use at the edge [48, 134, 164, 165, 172].

Machine learning has shown its bright future but still meets the following issues:

— Black box. Neural networks as the main techniques of machine learning are like black boxes,
which are almost unexplainable. This issue becomes extremely critical for CDA, since in-
dustrial applications prioritize performance factors such as reliability, robustness, and high
precision. A black box cannot guarantee these.

— Distributed scenarios. Industrial devices are commonly distributed and collaborated, which
are also resource-constrained. This is challenging the mode of edge intelligence. Distributed
learning or federated learning [87, 124] is promising, however, they should be more focused
on embedded devices for CDA.

6.3 Semantic Web

Semantic web technology is an ever-expanding field that has found its way into more industries
over the years. It is a discipline that basically focuses on ways of describing information in a formal
and machine-interpretable way [83]. As a facilitator of semantic interoperability, ontologies pro-
vide definitions and interpretations of concepts associated with metadata in a particular domain.
To name some examples, the Web Ontology Language (OWL) is a computational logic-based
W3C standard language [156], while the Semantic Web Rule Language (SWRL) is designed to
express horn-like rules and logic in both the OWL DL and OWL Lite sub-languages of OWL [85].
SPARQL is a resource description framework query language for semantic web databases. These
are some of the building blocks at the top levels of semantic technology that are providing users
with the necessary structures to link data.

In the near future, IIoT is expected to connect sensors, actuators, devices, gateways, and soft-
ware services in such massive amounts that the communication loads will be unprecedented and
massively challenging. One of the main issues will be handling device heterogeneity [191] and
the different standards and formats for storing and communicating data. Semantic technology
promises to deal with M2M communications and integrations through its ability to describe ob-
jects, share and integrate information, and infer knowledge [72]. Currently, there is a considerable
amount of literature on the combination of the semantic web and IoT [131, 218], which is quickly
becoming known as the Semantic Web of Things (SWoT). A review of this literature follows.

To facilitate semantic interoperability, IIC publishes the Industrial Internet Connectivity
Framework (IICF) [112], which redefines the traditional Open System Interconnection (OSI)
model and implements semantic interoperability on the information layer (the application layer in
OSI). In this layer, distributed data management and heterogeneous data interoperability rely on
designated ontologies to automatically process and accurately interpret the exchanged data.

Mayer et al. [155] introduced a semantic framework for IIoT called Open Semantic Frame-
work (OSF), in which domain-specific knowledge is grouped in ontologies to enable knowledge
integration. The domain-specific ontologies work as a semantic footstone that allows machines to
collaborate with each other without human effort. Aimed at the level of interoperability required
of Industry 4.0, González et al. proposed the Standards Ontology (STO) describing more than
60 I4.0 standards and their relations [74]. This is one of the ontologies that could facilitate the
integration of standards on both conceptual and implementational levels. Zhu et al. [270] proposed
an ontology-based architecture for integrating semantic information from distributed data nodes
into an IIoT system. Similarly, Willner et al. [236] leveraged semantic web technologies to formally
describe interactions and exchange information based on the oneM2M standard [217]. Their
goal is to ensure that all components in an IIoT system have the ability to exchange information.
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Giustozzi et al. [71] developed an ontology of industrial processes to promote knowledge exchange
and re-usability from the perspective of context representation and context reasoning to achieve
context awareness. Kaed et al. put forward a semantic query engine called SQenIoT [56] and a
semantic rule engine named SRE [57] for IIoT gateways, with the aim of retrieving information
about the environment to implement dynamic but flexible rule-based control strategies.

Ontology techniques have been an indispensable part of IIoT, while it still meets challenges in
practice:

— Domain ontology. Ontology is an important role in every stage of CDA. However, industrial
domain knowledge differs much from one to another, so building them is time-consuming.
Other techniques such as machine learning should be involved to simplify this work.

— Sharing of ontology. There are some industrial ontologies in the literature, but merging them
and sharing the knowledge across the ontology is a challenge. This is important for widely
promoting existing ontology to new domains.

6.4 Blockchain

CDA is based on edge-cloud collaboration frameworks, where some thorny issues are rising, in-
cluding privacy, access threats, and authorization hacks such as modifying key metadata [6, 105].
To ensure the security and privacy of IIoT systems, some are looking to blockchain [199]. Its de-
centralized nature, resistance to tampering, and strong consistency and traceability make it an effi-
cient and trustworthy method of providing trust between distributed devices [90, 249]. Blockchain
consolidates information with a timestamp, then passes itself wholesale to other nodes on the net-
work who verify that the information has been added to the chain through an encrypted hash [18].
This same verifiable technology can be used to build a secure and interoperable ecosystem for
edge-cloud collaborative architecture [227]. A universal and decentralized blockchain-enhanced
Pub/Sub communication model can circumvent the vulnerabilities publish/subscribe stream mod-
els have to malicious attacks and single points of failure [89]. Additionally, the edge-cloud collab-
orative architecture combined with blockchain technology can be used to share sensitive patient
data and perform their calculations [137]. Besides, Zhang et al. proposed the “Internet of Things
Blockchain” (IBoT) framework [265]. They introduced data encryption in the framework to avoid
malicious tampering of credential data and smart contracts to protect data exchange. In contrast,
the blockchain-based trusted data management scheme proposed by Ma et al. also incorporates
matrix-based multi-channel data segmentation and isolation [266], while Zhang et al. focus more
on the importance of the security of shared data in the blockchain industrial IoT domain [263].

The studies on combined blockchain/SDN solutions include Luo et al. [149], who proposed a
distributed SDIIoT-enabled blockchain to control different SDNs to synchronize local views be-
tween servers and reach a final consensus on the global view. Medhane [157] proposed a security
framework that combines blockchain technology with an edge-cloud collaboration architecture
and SDNs to face data confidentiality challenges. Guo et al. [77] introduced alliance blockchain
and deep reinforcement learning to solve problems of trust and adaptation with resource alloca-
tion in an edge-cloud collaboration. Xiao et al. [245] use SDN and blockchain for rapid fake news
detection, while Yazdinejad et al. [253] developed a secure and efficient SDN controller architecture
supported by blockchain that is provably superior to the classic blockchain.

Blockchain is a hot topic not only for CDA but also for all applications about security, while
issues are equally serious in industrial domains:

— High resource consumption. Blockchain takes a lot of computational power, storage, and
energy. This is unacceptable for resource-constrained devices in CDA. IoTA is a promising
direction to address this issue, which uses a directed acyclic graph (DAG) structure. Each
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IoTA node does not need to store the entire transaction chain. Moreover, creating and vali-
dating transactions on the network does not necessitate validation with every other trans-
action, leading to a significant reduction in computing and storage requirements. However,
industrial applications need long-term tests.

— Delay. The feature of the blockchain is distribution, meanwhile, it produces delay, and this is
insufficient for real-time scenarios of CDA, such as an access request of a fast-moving robot.

7 CONCLUSION

Over the past few decades, IIoT has proven to be a highly successful technology in a range of
fields. However, as the datasphere approaches the zettabyte scale, the M2M connectivity between
the soon-to-be 15 billion heterogeneous devices is challenging conventional data communications
and processing systems. This survey focuses on data access as the base of IIoT systems, providing
a review of both the existing and emerging technologies enabling collaborative data access. We
reviewed the current research on data access from the perspective of standardization, data acquisi-
tion, and fusion. To support these aspects, we investigated the history of computing architectures
and discussed the techniques for scalable architectures with a focus on edge-cloud collaborations
as the trend for future IIoT systems. We also discussed how emerging technologies such as 5G, ma-
chine learning, blockchain, and semantic web will advance data access going forward. In summary,
the development of IIoT has begun to take shape with numerous achievements in both academic
and commercial fields. However, IIoT still faces the challenge of device access—the existing IIoT
platforms cannot effectively address the issue of accessing massive and heterogeneous data sources
at the edge side. Further research is necessary.
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