
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX/XX 2023 1

A Comprehensive Deep Learning Library
Benchmark and Optimal Library Selection

Qiyang Zhang, Xiangying Che, Yijie Chen, Xiao Ma, Member, IEEE,, Mengwei Xu, Member, IEEE,
Schahram Dustdar, Fellow, IEEE , Xuanzhe Liu, Member, IEEE, and Shangguang Wang, Senior

Member, IEEE

Abstract—Deploying deep learning (DL) on mobile devices has been a notable trend in recent years. To support fast inference of
on-device DL, DL libraries play a critical role as algorithms and hardware do. Unfortunately, no prior work ever dives deep into the
ecosystem of modern DL libraries and provides quantitative results on their performance. In this paper, we first build a comprehensive
benchmark that includes 6 representative DL libraries and 15 diversified DL models. Then we perform extensive experiments on 10
mobile devices, and the results reveal the current landscape of mobile DL libraries. For example, we find that the best-performing DL
library is severely fragmented across different models and hardware, and the gap between DL libraries can be rather huge. In fact, the
impacts of DL libraries can overwhelm the optimizations from algorithms or hardware, e.g., model quantization and GPU/DSP-based
heterogeneous computing. Motivated by the fragmented performance of DL libraries across models and hardware, we propose an
effective DL Library selection framework to obtain the optimal library on a new dataset that has been created. We evaluate the DL
Library selection algorithm, and the results show that the framework at it can improve the prediction accuracy by about 10% than
benchmark approaches on average.

Index Terms—Benchmark, Deep Learning, Mobile Devices, Library Selection.

✦

1 INTRODUCTION

Deep learning (DL) has become an indispensable func-
tional module for today’s smartphones, widely adopted
in applications like input method, AR/VR, voice assistant,
etc [1], [2]. A noteworthy trend is that more and more DL
inference tasks are now shifting from cloud datacenters to
smartphones, making a case for low user-perceived delay
and data privacy preservation with the support of on-device
DL. For example, it is reported that the DL-embedded apps
on Google Play market have increased by 60% from Feb.
2020 to Apr. 2021, and those apps contribute to billions of
downloads and user reviews [3], [4].

Running inference (or prediction) task in a fast way is
the intuitively basic demand to on-device DL, as many of
them are deployed for continuous user interactions. It is also
fundamentally challenging because DL models are known
to be very complex and cumbersome [5]–[7]. Consequently,
optimizing the inference performance has been the theme
of both academia [1], [3], [8] and industry [9], [10] in recent
years.

The inference performance of on-device DL is affected by
many factors. Existing literature that aims to quantitatively
understand the performance mostly focuses on hardware
and models, leaving the software (DL execution engines or
DL libraries) underexplored. These libraries share the same
goal: executing the inference task solely on smartphones.
Yet, software also plays a critical role in speeding up the on-
device DL inference, e.g., up to 62,806× gap between vanilla
and fine-tuned implementation [11]. Furthermore, due to
the severely fragmented ecosystem of smartphones [12],
there exists a mass of heterogeneous DL library alternatives

xxxx-xxxx/0x/$xx.00 2023 IEEE Published by the IEEE Computer Society

for app developers [3], [4], making it difficult and labor-
intensive to compare their suitability into specific models.

To gain in-depth understandings of the performance
of modern DL libraries, we first build a comprehensive
benchmark for on-device DL inference, namely MDLBench.
The benchmark includes 6 popular, representative DL li-
braries on mobile devices, i.e., TFLite, PyTorchMobile,
ncnn, MNN, Mace, and SNPE [13]–[18]. It contains 6 DL
models compatible with all above DL libraries, 8 models
compatible with at least 3 above DL libraries, and 1 model
compatible with 2 DL libraries, spanning from image classi-
fication, object detection, to NLP. Compared to existing AI
benchmarks, our benchmark triumphs at the aspect of rich
support for various DL libraries and models. In addition
to the completeness, we also instrument the DL libraries to
obtain underlying performance details such as per-operator
latency, CPU usage, etc. Those details allow us to peek into
the intrinsic features of those DL libraries and therefore
provide more insightful implications to developers.

Based on our benchmark, we perform extensive exper-
iments to demystify the performance of DL libraries on
various models (15 in total) and hardware (10 smartphones
that are equipped with CPU/GPU/DSP). Through the ex-
periments, we make the following interesting and useful
observations as follows:

(1) The performance of the 6 DL libraries benchmarked
is severely fragmented across different models and hard-
ware (§3.1). There is no One-Size-Fits-All DL library that
performs best on all scenarios (model⊗device), yet each DL
library has at least one best-performing scenario. Even for
the same model, there are different DL libraries that perform
the best on different devices.

(2) The impacts of DL software may overwhelm the

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3301973

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 09,2023 at 06:37:03 UTC from IEEE Xplore. Restrictions apply.

2 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX/XX 2023

model/algorithm designs and hardware capacity (§3.2 &
3.3). Designing a more lightweight model structure, model
quantization (FP32 to INT8), and using mobile GPUs/DSPs
with high parallelism are common ways to speed up on-
device inference.

(3) Cold-start inference of DL libs is significantly
slower than warm inference (§3.4). On average, the first
inference for each session is about 10.8× and 25.7× slower
than the following ones on CPU and GPU, respectively.
Diving deeper, we find that the memory preparation stage
contributes to the most of the overhead, which includes
expanding the loaded weights to proper memory locations
and reserving memory for intermediate feature maps.

(4) During the evolution of DL libraries, performance
bugs are introduced for many times (§3.5). By benchmark-
ing the weekly version of TFLite and ncnn since early
2018, we find that the overall performance of DL libraries is
improving yet becomes relatively stable since 2020.

Among the above observations, the severely fragmented
inference performance of libraries across different models
and hardware is a critical but unexplored issue. In practical
applications, developers usually use one library to run dif-
ferent models [4]. When the models do not fit the libraries
accurately, the inference performance will be significantly
degraded and even user experience will be compromised.
For example, as one of the most commonly used models,
vgg16 in Tab. 3 shows a 54.3× inference time gap between
the best and the worst libraries. Moreover, one app usually
integrates more than one library (as one app is usually
developed by different engineers, who introduce different
libraries), leaving the space for improving the inference
performance by selecting the most proper library for each
model of an app. No prior work has dived deep into the
inference-time oriented library selection issue for models.
In this paper, we seek to address this issue, aiming at
optimizing the inference time of models.

Selecting the most optimal libraries for different models
faces a key challenge. To obtain the optimal library for
models, the inference time of different libraries should be
obtained. Yet measuring the inference time on real-world
apps is costly, or even infeasible due to the high inference
time overhead, especially for the worst-performing library.
To deal with this challenge, we propose a prediction-based
library selection framework to select the most proper library
for each model with low time overhead. The library se-
lection framework can train a prediction model to select
the optimal library directly based on the characteristics
of each model, instead of selecting based on the infer-
ence performance after substantial measurements. However,
the prediction-based library selection framework requires a
dataset recording the inference performance of running the
same models on different libraries. However, there is no off-
the-shelf dataset that can be used directly. Even MDLBench
only provides fewer same models on the libraries. To ad-
dress this concern, we create a dataset that contains 1127
state-of-the-art models with 13 operator types and config-
urations. These models can run on 5 popular DL libraries,
i.e., TFLite, ncnn, MNN, Mace, and PyTorchMobile [13],
[15]–[18]. For fairness, this dataset also ensures that the
same models can be generated from different libraries. We
perform extensive experiments based on the dataset by

Model converter suite

Model Zoo

Model consistency
checker

Start benchmark

Push library

Push models

Run and wait for
notification

Clean and set
environment

Load library

Load model and
warm up

Run inference by N
times

Write logs

Notify
Collect logs

Generate reports

adb

Pytorch
Mobile

ncnn

next

Automatically
obfuscating models

MDLBench

Library
selection model

Library Selection Framework

Model validity
checker

Model fune-tuning

Model Zoo

Measurement
report

Feature
representation

Catboost-based
model

Benchmark

Key
feature

DL app Optional
library

PSO tuning

Model
converter

Feature
selection

Fig. 1. The overall architecture of our work includes two tiers: the first tier
shows the workflow of MDLBench and the second tier shows the library
selection framework.

MDLBench automatically and obtain the inference time of
models offline, which are the basis of the library selection
model in this framework.

Our main contributions are as follows.
• We design and implement MDLBench, a fully auto-

matic, comprehensive benchmark for DL libraries. The
full benchmark suite and measurement results used in
this work are available 1.

• We conduct extensive experiments with MDLBench on
diverse hardware devices and models. For the first time,
the results reveal a complete landscape of the current
DL library ecosystem. We also summarize the insightful
observations and practical implications.

• We propose a prediction based library selection frame-
work for models to derive the most proper library
with low time overhead. To enable the prediction based
library selection framework, a new dataset that contains
1,127 models with 13 operator types and configurations
has been created.

• We implement and evaluate the proposed framework
for models, and demonstrate that it can improve the
prediction accuracy by about 10% than benchmark ap-
proaches on average.

2 BENCHMARK & METHODOLOGY

MDLBench is a benchmark aimed to understand the impacts
of DL libraries on the on-device DL performance. It has the
following advantages over existing AI benchmarks.
• Rich support Tab. 1 summarizes the DL libraries (6
in total), models (15 in total), and hardware processor

1. https://github.com/UbiquitousLearning/

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3301973

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 09,2023 at 06:37:03 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX/XX 2023 3

(CPU/GPU/DSP) MDLBench currently supports. Being able
to test many DL libraries under various contexts is critical
to obtain a complete landscape of the DL library ecosystem,
because the performance optimization is quite ad-hoc to
models and hardware. Among the large amount of DL
libraries available for developers, we select 6 most represen-
tative ones from a “market” perspective. We follow the prior
works [4] to detect the DL libraries used in 16,000 Android
apps we crawled in Mar. 2021 from Google Play. Among
the 676 DL apps identified, we find the most popular DL
libraries are TFLite (70.5%), TensorFlow (7.8%), ncnn (7.2%),
caffe (4.4%), MNN (4.1%), PyTorchMobile (3.8%), Mace
(1.2%). We filter TensorFlow and caffe, as their support for
smartphones are deprecated a few years ago and has been
merged into the corresponding lightweight implementation,
i.e., TFLite and PyTorchMobile. We further include SNPE
into MDLBench, as it’s a vendor-specific (Qualcomm) DL
library while all above are not. The models we use come
from two sources. One is the model zoo of TensorFlow
and PyTorch [19], [20]. The other is by using the built-in
converters of each DL library to convert models to different
formats [15]–[18]. MDLBench also incorporates a module
to automatically check the equivalence of the same model
generated for different DL libraries.

Workflow The first tier of Fig. 1 shows the overall work-
flow of MDLBench. For each testing, the desktop-side bench-
mark iterates over each DL library. It first pushes the library
and corresponding models generated as aforementioned to
the devices through adb [36]. Next, the device cleans the
system environment by killing other apps in background
and sets the system configurations (CPU frequency, thread
number, etc). Following prior work [37], [38], we always use
4 big cores to run the DL libraries as it’s often the best-
performing setting. The device then loads the library and
model into memory to warm up, and executes the inference
by N times (50 by default). The testing results will be written
to device storage and retrieved to desktop.

Devices Tab. 2 shows the devices used in our measure-
ment. It includes 10 different device models with various
SoCs (Snapdragon series, Kirin, Helio) and GPUs (Adreno
series and Mali series), where the currently selected smart-
phones are still representative to reflect the hardware het-
erogeneity.

Based on MDLBench and the diverse mobile devices, we
perform extensive experiments and analyze the results. The
theme of this measurement is to quantitatively understand
the performance discrepancy of different DL libraries, and
how the inter-play with the impacts from algorithm and
hardware.

3 PERFORMANCE ANALYSIS AND IMPLICATIONS

This section presents our analysis of DL libraries for smart-
phone. The theme of this measurement is to quantitatively
understand the performance discrepancy of different DL
libs, and how the inter-play with the impacts from algorithm
and hardware. Besides, we also explore two rarely touched
topics in mobile community: what is the performance of the
first inference (cold start) of different DL models, and how
does the performance of DL libs evolve across time. Finally,

we show implications to different roles in the mobile DL
ecosystem.

3.1 Performance Fragmentation

Fig. 2 summarizes the best-performing DL library (by color),
i.e., the DL library with the smallest inference time when
running different models on heterogeneous devices. We
observe that the performance of DL libraries across models
and hardware devices is severely fragmented.

(1) There is no one-size-fit-all DL library for optimal
performance across models and hardware.

Each DL library has at least one best-performing sce-
nario, except that PyTorchMobile does not support GPU
acceleration. Even for the same model, its corresponding
best-performing DL library may change across different
hardware. For instance, the best-performing DL libraries of
inceptionV3 are SNPE, ncnn, and Mace on GP5, OP9, and
RN9, respectively.

Such high performance fragmentation mainly attributes
to two facts. First, mobile hardware ecosystem is highly
fragmented in consideration of their Big.Little Core archi-
tecture, cache size, GPU capacity, etc. Second, the model
structure is also heterogeneous. Implementing depth-wise
convolution operator [39] is totally different from tradi-
tional convolution operators as they have different cache
access patterns. Overall, the fragmentation of models and
hardware forces the software-level DL inference optimiza-
tion especially model- and hardware-specific. To obtain the
optimal performance, DL library developers need to hand-
craft each operator at very low-level programming interface,
heavily relying on assembly language and NEON instruc-
tions. While being able to fully exploit the capacity of spe-
cific hardware, such implementation cannot be generalized
well to different hardware platforms. For example, ncnn
has 44 different types of implementation for convolution
operation, each fitting to different execution contexts like
kernel size, hardware architecture, etc. Due to the high
manual programming efforts, there is no oracle DL library
optimized for each scenario.

(2) The performance gap of DL libraries can be large.
The ”gap” is defined as the ratio of inference time of two

DL libraries (the longer one divided by the shorter one). The
numbers in parentheses are average values. Surprisingly,
though those DL libraries are all specifically designed and
optimized for mobile devices, the performance gap can be
quite severe. For instance, for the same model vgg16, the
gap between different libraries and smartphones is as high
as 54.3×, and even the smallest gap between the best and
the second best is 1.5×. On average, the gap between the
best-performing to the worst one is 7.4×, and to the 2nd-
best one is 1.9×.

(3) GPU backend choices further exaggerate the frag-
mentation. Even on the same GPU, there are different
backend choices implemented by DL libraries. For exam-
ple, MNN implements three backends: Vulkan, OpenGL and
OpenCL [40]–[42]. Interestingly, as shown in Fig. 2(b), differ-
ent GPU backend choices also fit different models and de-
vices. This is somehow surprising because Vulkan in MNN is
mainly used for cross-platform compatibility (e.g., desktop),
while OpenGL/OpenCL are mobile-specific programming

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3301973

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 09,2023 at 06:37:03 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX/XX 2023

TABLE 1
The supported DL libraries and models of MDLBench. “C/G/D”: mobile CPU/GPU/DSP. The subscripted 32 and 8 represent different model

precision, i.e., float32 and int8, respectively. “C”, “SS”, “OD”, and “TC” represent “image classification”, “semantic segmentation”, “object
detection”, and “text classification”, respectively.

Models Tasks TFLite ncnn mnn MACE PyTorchMobile SNPE
mobilenetV1 [21] C C32,8-G32,8-D8 C32,8-G32,8 C32,8-G32,8 C32,8-G32 C32,8 C32,8-G32,8-D8

mobilenetV2 [22] C C32,8-G32,8-D8 C32,8-G32,8 C32,8-G32,8 C32,8-G32 C32,8 C32,8-G32,8-D8

inceptionV3 [23] C C32,8-G32,8-D8 C32,8-G32,8 C32,8-G32,8 C32-G32 C32,8 C32,8-G32,8-D8

inceptionV4 [24] C C32,8-G32,8-D8 C32,8-G32,8 C32-G32 C32-G32 C32,8 C32,8-G32,8-D8

vgg16 [25] C C32,8-G32,8-D8 C32,8-G32,8 C32,8-G32,8 C32-G32 C32,8 C32,8-G32,8-D8

squeezenet [26] C C32,8-G32,8-D8 C32,8-G32,8 C32-G32 C32-G32 C32,8 C32,8-G32,8-D8

nasnet mobile [27] C C32-G32 - C32-G32 C32-G32 C32 -
densenet [28] C C32-G32 - C32-G32 - C32 C32-G32

mnasnet [29] C C32-G32 C32-G32 C32-G32 C32-G32 C32 C32-G32

resnetv2 50 [30] C C32-G32 C32-G32 C32-G32 C32-G32 C32 C32-G32

deeplabv3 [31] SS C32-G32 - C32-G32 C32-G32 - -
ssd mobilenetV1 [32] OD C32-G32 C32-G32 C32-G32 C32-G32 C32 -
yolo-fastest [33] OD C32-G32 C32-G32 C32-G32 - - -
yolo3 [34] OD C32-G32 C32-G32 C32-G32 - - -
albert tiny [35] TC C32-G32 - C32-G32 - - -

TABLE 2
The tested devices and their specifications.

Devices abbr. SoC GPU RAM

Google Pixel5 GP5 Snapdragon
765G

Adreno
620 8GB

Huawei Enjoy 8 HE8 Snapdragon
430

Adreno
505 4GB

MeiZu 16T MZ16 Snapdragon
855

Adreno
640 6GB

HuaWei Mate30 HM Kirin
990

Mali-G76
MP16 8GB

XiaoMi11 Pro MI11 Snapdragon
888

Adreno
660 8GB

XiaoMi9 MI9 Snapdragon
855

Adreno
640 6GB

MeiZu 16T MZ16 Snapdragon
855

Adreno
640 6GB

OnePlus 9R OP9 Snapdragon
870

Adreno
650 8GB

RedMi9 R9 Helio
G80

Mali-G52
C2 4GB

Redmi Note9 Pro RN9 Snapdragon
720G

Adreno
618 6GB

Samsung S21 S21 Snapdragon
888

Adreno
660 8GB

interfaces highly optimized for mobile devices [41]. Such
phenomenon attributes to both the underlying design of
backends and how DL developers implement the DL op-
erators atop the backends.

(4) With software heterogeneity, the model structure
is not the sole factor that determines their relative per-
formance. We deem that model complexity does affect the
inference time, e.g., the computation complexity represented
by floating-point operations (FLOPs) and the number of
models parameters. In fact, the complexity can also be
affected by the structural heterogeneity, since heterogene-
ity makes on-device optimization more difficult. For ex-
ample, although mobilenetV2 and mnasnet have similar
FLOPs (300 million vs. 315 million) and parameters (3.4
million vs. 3.9 million), their performances vary a lot across
DL libraries. As shown in Fig. 3, squeezenet runs faster
than mobilenetV2 with SNPE, PyTorchMobile, while mo-
bilenetV2 runs faster with other DL libraries. The reason
of such behavior can be these libraries adapt to a wide
variety of operators and the operators are implemented in

Pytorch-M MNN TFLite ncnn SNPE Mace

GP5 HE8 HM MI11 MI9 MZ16 OP9 R9 RN9 S21

yolo-fastest

yolo3

albert_tiny

vgg16_INT8

mobilenetV1_INT8

mobilenetV2_INT8

inceptionV3_INT8

inceptionV4_INT8

squeezenet_INT8

densenet

ssd_mobilenetV1

deeplabV3

inceptionV4

vgg16

squeezenet

mnasnet

resnetV2_50

MODEL

mobilenetV1

mobilenetV2

inceptionV3

nasnet_mobile

(a) CPU.

V/G/C TFLite ncnn SNPE Mace

GP5 HE8 HM MI11 MI9 MZ16 OP9 R9 RN9 S21

C C C

C C C C C

C C C V V

C C C V V

C C C C

C C V C

G V G C G C V G

V G G C G C C G V G

0 0 V G G G G

G

V V C V V

 MNN

vgg16

squeezenet

mnasnet

MODEL

mobilenetV1

mobilenetV2

inceptionV3

inceptionV4

squeezenet_INT8

vgg16_INT8

resnetV2_50

nasnet_mobile

densenet

ssd_mobilenetV1

deeplabV3

yolo-fastest

yolo3

albert_tiny

mobilenetV1_INT8

mobilenetV2_INT8

inceptionV3_INT8

inceptionV4_INT8

(b) GPU. The characters in MNN indicate
different GPU backends: V/G/C indi-
cate Vulkan/OpenGL/OpenCL.

Fig. 2. The best-performing DL library (smallest inference time) with
different models and devices.

TFLite ncnn SNPE Mace PyTorchMobile MNN
0

20

40

60

80

In
fe

re
nc

e
tim

e
(m

s)

11.1
5.3

53.2

32.0 31.1

82.0

9.7 5.2

58.4

19.2

34.5

6.9

mnasnet
mobilenetV2

Fig. 3. The average inference time of mobilenetV2 and mnasnet with
different libraries on MI11.

different ways. The same operator even has different latency
because the same operator has fewer implementations on

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3301973

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 09,2023 at 06:37:03 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX/XX 2023 5

TABLE 3
The performance gaps of different DL libraries.

models
Best vs. Worst Best vs. 2nd Best

CPU GPU CPU GPU

mobilenetV1 4.0-15.4
(8.7)

1.7-14.1
(5.6)

1.1-1.9
(1.5)

1.0-4.0
(1.9)

mobilenetV2 5.6-18.8
(11.2)

2.9-15.9
(6.2)

1.1-2.0
(1.5)

1.0-2.9
(1.6)

inceptionV3 2.6-5.6
(3.8)

3.0-13.4
(7.1)

1.1-2.4
(1.7)

1.0-4.0
(2.1)

inceptionV4 2.0-5.4
(3.2)

2.4-11.0
(5.8)

1.1-2.0
(1.5)

1.0-3.6
(2.0)

vgg16 7.1-54.3
(16.2)

4.4-7.0
(5.5)

1.3-4.2
(2.4)

1.1-2.2
(1.5)

squeezenet 4.6-19.9
(9.1)

1.9-12.6
(5.9)

1.0-5.9
(2.5)

1.1-2.5
(1.6)

average 8.7 6.0 1.9 1.8

one library. For instance, convolution operators employ
different algorithms depending on the hyperparameters,
such as Winograd for 3×3 and direct convolution for 5×5
convolution [43].
†Summary The best-performing DL library is highly frag-

mented across models and hardware. Such fragmentation may
even overwhelm the model designs and hardware capacity im-
provement. To pursue optimal performance in a mobile DL app,
the developers need to incorporate different DL libraries and
dynamically load one based on the current model and hardware
platform. Such a methodology is rarely seen in practice as it incurs
significant overhead to both software complexity and developing
efforts. A more lightweight system is desired to bring together the
best performance of different DL libraries.

3.2 Impacts of Quantization

Quantization has become a common practice to deploy
DL models on mobile devices. There are different lev-
els of quantization, e.g., FP16, INT16, INT8, etc. Among
them, INT8-based quantization is known to achieve the best
trade off among model accuracy and on-device speedup.
Therefore, we mainly study INT8-based performance on
CPU/GPU/DSP.

Benefit brought by INT8 quantization is under expec-
tation. Fig. 4 summarizes the best inference performance
across DL libraries on different model representations and
hardware. It shows that quantization indeed brings infer-
ence speedup in most scenarios. However, the speedup
(0.8×–3.0×) is much less than the theoretical expectation
(4× due to the NEON support in Android [42]). In certain
cases, the INT8-based inference is even slower than FP32,
e.g., with squeezenet and vgg16 on M11 CPU. Furthermore,
whether quantization can accelerate model inference also
relies on the underlying hardware, i.e., the SoCs and the
processor.

We dive into the source code of those DL libraries and
identify the following reasons. (1) Modern mobile SoCs also
have good support for FP processing. (2) FP32-based tensor
operations are better tunned than INT8, according to our
observations to the commit history of those DL libraries.
(3) Overhead of converting between INT8 and FP32 can
incur nontrivial overhead. For example, re-quantization is

essential in the final softmax layer of most classification
models.
†Summary Not every model can be accelerated through INT8

quantization, and the situation may vary across different hardware
devices and processors. There exists great potential at software
level to accelerate the inference of quantized models.

3.3 Impacts of Hardware
We then investigate whether and to what extent can more
powerful CPUs or heterogeneous processors (GPU/DSP) on
smartphones can accelerate DL inference. The results are
shown in Fig. 4.

Newer generations of mobile SoCs can mostly accel-
erate the inference, yet not in every case. As the most
representative SoC series of mobile devices, new generation
of Qualcomm Snapdragon comes out every one or two
years. As shown in Fig. 5, from the Snapdragon 430 to
888, the overall performance of the three libraries (TFLite,
MNN, SNPE) shows a similar trend of improving. However,
there are cases when newer SoC runs slower than the old
ones, e.g., Snapdragon 870 vs. 855 on TFLite, even though
870 is equipped with stronger CPU and faster memory
access speed. This is mainly because Snapdragon 855 is a
more popular SoC for which the DL libraries are highly
optimized.

GPUs can not always accelerate DL inference. For most
cases of FP32-based models, GPU can indeed bring inference
speedup by 1.4×–1.9× compared to CPU. However, in
certain cases like mobilenetV1 and vgg16 on MI11, GPU
even runs slower than CPU (up to 2.3×). On INT8-based
models, GPU can hardly bring any benefit.

There are following primary reasons. Firstly, mobile
GPUs are mainly designed for rendering instead of general-
purpose computing. Their computing power is highly con-
strained due to the battery life consideration [44]. Secondly,
the DL libraries are not as well optimized for GPUs as
CPUs. During experiments, we observe that the arithmetic
processing units inside GPU cores are often underutilized.
Thirdly, mobile GPUs often do not have native support for
INT8 data format, therefore the actual inference falls back to
FP32. Fourth, there lack GPU support for some operators
(e.g., SQUEEZE on TFLite), and those operators will fall
back to run on CPUs, which incurs nontrivial overhead for
data copy among CPU and GPU2.
†Summary Our findings motivate DL library developers to

focus on GPU-side optimization [37], including supporting more
types of operators and single-op performance. It also motivates
DL researchers to design the models suitable for GPU computing,
that is, the operators in the models with a large number of parallel
features as much as possible, and reduce high memory access
operators that are not good for parallel operations.

DSP can significantly accelerate INT8 model in most
cases. Fig. 4 also shows that running on mobile DSP can
reduce the inference time of INT8 model by 2.0×–12.9×.
This is mainly because Qualcomm DSP has been equipped
with AI capabilities such as HTA and HTP [45], which are
integrated with Hexagon vector extension (HVX) accelera-
tion. Meanwhile, the Winograd algorithm is used to accel-

2. Though mobile CPU and GPU share the same memory unit, their
memory spaces are separated by OS and cannot be accessed mutually.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3301973

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 09,2023 at 06:37:03 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX/XX 2023

0

5

10

15

tim
e

(m
s)

T

S

T T

T

C32 G32 C8 G8 D8

0

3

6

9
M2

S
T T

T

0
25
50
75

100
M2

S

T T

T
0

100

200

M2

S

T T

T
0

5

10

15 N
M2C

N
N

S

0

50

100

150

200

P

M1

P

S

T

mobilenetV1
0
2
4
6
8

10

 In

fe
re

nc
e

N

M2C

N T

S

mobilenetV2
0

3

6

9

N
M2C

T T

S

inceptionV3
0

20
40
60
80 M2

M2C
T

T

S

inceptionV4
0

50

100

150
N

M2C

T T

S

squeezenet
0

5

10

N

M2C

N

S

S

vgg16
0

25

50

75

100

P

M2C

P

M2V

T

Fig. 4. The optimal inference speed among all deep learning libraries for RN9 and MI11. ”T”, ”N”, ”S”, ”P”, ”M1”, and ”M2” are short for TFLite,
ncnn, SNPE, PyTorchMobile, Mace, and MNN respectively as the best-performing DL libraries. ”V”, ”C”, ”G” indicate different GPU backends.
“C/G/D”: mobile CPU/GPU/DSP. The subscripted 32 and 8 represent different model precision, i.e., float32 and int8, respectively. The height of the
bar represents the inference time of best-performing library. Note that, for DSP, we leave out the performance of vgg16 with SNPE since the model
does not work with DSP on MI11.

430 855 870 888
TFLite

20
40
60
80

100

In
fe

re
nc

e
tim

e
(m

s)

855 870 888
10
20

430 855 870 888
ncnn

20
40
60
80

100

mobilenetV1 mobilenetV2

855 870 888
10
20

430 855 870 888
SNPE

100

200

300

400

855 870 888
100
150

430 855 870 888
TFLite

10
20
30
40
50

In
fe

re
nc

e
tim

e
(m

s)

855 870 888
5

10

430 855 870 888
ncnn

20
40
60
80

mobilenetV2_INT8 mobilenetV1_INT8

855 870 888
10
20

430 855 870 888
SNPE

100

200

300

855 870 888
100

Fig. 5. The performance across different SoCs.

erate the convolution calculation on DSP. In fact, the energy
saving of DSP is even more significant than inference speed
(not shown in the Figure) according to our measurements.

However, there are a few cases that DSP performs worse
than CPU (mobilenetV1/V2 on MI11). This is mainly be-
cause MI11 uses Snapdragon 888 SoC, which is a relatively
new chip that the DL libraries are not currently well tuned
for.
†Summary In most cases, more powerful CPUs and accelera-

tors (GPU and especially DSP) can speed up the model inference.
However, there are cases that DL libraries perform even worse on
those hardware. In other words, the current DL libraries can not
fully exploit the capacity of each hardware. Our findings motivate
DL library developers to focus on optimization on heterogeneous
processors, including supporting more types of operators and
single-op performance. It also motivates DL researchers to design
the models suitable for GPU computing and reduce high memory
access operators that are not good for parallel operations.

3.4 Cold-start Inference
The above results are all based on “warm” execution, i.e.,
the continuous inference after the first 5 rounds of infer-
ence. However, “cold-start” inference, i.e., the first inference
beginning from model loading, is also important because
for many apps the inference only happens once. In addition,

cold-start inference is also important when apps expectedly
crash and need to recover the DL functionality as fast as
possible.

Cold-start inference is significantly slower than warm
inference. Fig. 6 shows how much times (×) slower cold-
start inference is on CPU and GPU averaged across all
models on two mobile devices. Overall, cold-start inference
is much slower than warm inference, i.e., 1.3×–37.7× on
CPU and 1.4×–45.0× on GPU.

Memory preparation contributes to the largest over-
head in cold-start inference. To investigate the reasons of
slow cold start, we dive into the source code of ncnn and
identify the workflow of the cold-start inference. It consists
of three major steps: loading model from disk, memory
preparation, and running inference. The memory prepara-
tion main refers to expanding the loaded weights to proper
memory locations and reserving memory for intermediate
feature maps to speed up the later inference. For exam-
ple, both img2col [46] and Winograd [47] implementation
of convolution operation require to transform the original
convolution kernel matrix to a different shape.

CPU GPU
(a) MZ16

0
10
20
30
40
50

co
ld

-s
ta

rt/
w

ar
m

 (x
)

37.7

1.46.0

47.5

6.6
13.49.2

31.5

MACE TFLite MNN ncnn

CPU GPU
(b) OP9

0
10
20
30
40
50

15.5

1.81.3

45.0

2.2

21.2

7.7

44.0

Fig. 6. The ratio of cold-start inference to warm inference. Numbers are
averaged across all DL models.

Fig. 7 quantitatively shows the breakdown of cold-start
inference of ncnn on 5 models and 2 devices. As observed,
memory preparation is the one that accounts for the largest
proportion of cold-start inference of all models, i.e., 67% on
CPU and 91% on GPU on average. In fact, we observe that
memory preparation is implemented in a single thread in
ncnn and other DL libs, therefore cannot benefit from the
multi-core system of mobile SoCs. Additionally, memory

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3301973

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 09,2023 at 06:37:03 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX/XX 2023 7

mobilenetV1
mobilenetV2

resnetv2_50
inceptionV3

squeezenet

(a) CPU

0%
20%
40%
60%
80%

100%

B
re

ak
do

w
n

loading model memory preparation inference

mobilenetV1
mobilenetV2

resnetv2_50
inceptionV3

squeezenet

(b) GPU

0%
20%
40%
60%
80%

100%

Fig. 7. The breakdown of cold-start inference time.

preparation for GPU inference even takes more time than on
CPU because of the complicated model, i.e., the code needs
to be compiled to shader before executing on GPU [48].
†Summary Optimization of cold-start inference is a rarely

explored topic, but can be important in many apps that only
need to execute model once each time. Potential solutions in-
clude speeding up memory preparation using multiple threads
and generating pipeline to run model loading (I/O-intensive),
memory preparation (memory-intensive), and inference (compute-
intensive) simultaneously.

3.5 Longitudinal Analysis

02
55
07
510
012
515
017
520
0

In
fe

re
nc

e
tim

e
(m

s)

mobilenetV2_C32 squeezenet_C32 mobilenetV2_G32 squeezenet_G32

2018-07-22
2018-11-26

2019-02-25
2019-06-03

2019-09-30
2020-01-27

2020-04-27
2020-07-20

2020-10-05
2020-12-21

2021-03-08
2021-05-24

Date

0
10
20
30
40
50
60
70

In
fe

re
nc

e
tim

e
(m

s)

mobilenetV2_C8 squeezenet_C8 mobilenetV2_G8 squeezenet_G8

Fig. 8. The inference performance evolvement across time of TFLite
tested on HM device.

We then longitudinally analyze how the performance of
DL libraries evolves across time. We select 2 DL libraries
that have the longest open source history and test their
performance on the commits at the beginning of every
week from Mar./Jul. 2018 to Jul. 2021 (80,637 commits in
total) respectively. For simplicity, we only show test models
(mobilenetV1/V2 and squeezenet) on CPU and GPU.

Overall, the performance of DL libraries are contin-
uously improving in early years, but becomes relatively
stable since 2020. As shown in Fig. 8, the performance of
TFLite and ncnn are improving: taking mobilenetV2 (FP32
format) as an example, its inference time on CPU/GPU
has reduced from 203.6ms/203.8ms to 21.9ms/7.2ms with
TFLite, and 30.3ms/72.7ms to 19.5ms/19.7ms with ncnn,
respectively. Similar observation is also made on squeezenet
and the INT8 models. The performance improvement is
mostly a cliff-like change in a few commits, rather than
a regular and slow change. However, since 2020, the per-
formance of DL libraries is relatively stable and there are
very few nontrivial improvements. It indicates that the DL
library community is shifting their focus from performance

optimization to other aspects, e.g., supporting more types of
operators.

We also observe that a commit may only improve the
performance of certain models. For example, the 20275fe
commit on TFLite in Jun. 6, 2019 reduces the inference time
of mobilenetV2 by 13.6×, but hardly affects the inference
time of squeezenet. The reason of such “partial improve-
ment” is the same as the fragmentation of DL libraries as
mentioned in §3.1.
†Summary The current open-source ecosystems of DL li-

braries sometimes introduce performance bugs, possibly due to
a comprehensive benchmarking tool available for developers to
test their commits. Indeed, due to the performance heterogeneity
of DL libraries on different models and hardware, it is almost
impossible to fully eliminate performance bugs. We propose two
possible solutions. One is to set up an environment with diverse
device models periodically (e.g., per day) running a comprehensive
benchmark like MDLBench to timely detect performance bugs.
Another one is to build a static analysis tool that can identify
commits with potential bugs based on history.

3.6 Implication

From the above analysis, our findings paint a promising
picture of DL library, motivating future research and devel-
opment. In this section, we discuss actionable implications
to different roles in the mobile DL ecosystem as follows:

• For DL app/model developers (1) It is extremely chal-
lenging in selecting a proper DL library due to the
severe fragmentation. To pursue optimal performance
under each scenario, they have to embed different
DL libraries into the apps and load one dynamically
based on the model and hardware settings. (2) A more
lightweight model (fewer FLOPs) does not always run
fast. The impacts from software at deployment needs to
be considered during the model designing.

• For DL library engineers and researchers (1) It is time
to review the pros and cons of different DL libraries and
work out a solution that can integrate their wisdom in a
unified manner. Otherwise, the fragmentation may con-
tinuously exist for a long term as fixing it can take huge
amount of engineering efforts. Tools that can automati-
cally identify such bugs timely, either through dynamic
or static analysis, are urgently needed. (2) The cold-
start inference time is a rarely touched topic, but can be
important in apps that only need to execute models for
one time per session. Potential optimizations include
using multi-thread to speed up memory preparation
and operator-level pipeline of different initialization
stages. (3) Performance bugs bring negative impacts to
the open-source ecosystem of DL libraries but are dif-
ficult to be fully eliminated due to the aforementioned
fragmentation.

4 DEEP LEARNING LIBRARY SELECTION FRAME-
WORK

Developers always use these libraries designed and opti-
mized for smartphones to build their DL apps. A suitable
library for models of apps is specially selected for the small-
est inference time, based on the observation that one app

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3301973

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 09,2023 at 06:37:03 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX/XX 2023

TABLE 4
The proportion of operators covered in the dataset.

Operator Example
Percentage

in the dataset

Conv
Conv2D

DepthwiseConv2D
50.4%

Pooling MaxPool AvgPool 42.3%

Activation
Softmax Relu

Prelu
100%

Linear Mul BiasAdd 100%

Other
Add Sub

Reshape Dropout
99.5%

may incorporate multiple libraries [4]. However, selecting
the optimal library for models is a very challenging task,
as measuring the inference time of running models on the
integrated libraries is extremely costly. So we are motivated
to propose an efficient library selection framework to predict
an optimal library for models.

The second tier of Fig. 1 shows the library selection
framework in detail. We first create a large-scope dataset
including existing common multiple models, as MDLBench
only provides a small number of models due to the un-
supported operators in model conversion between libraries.
Based on the collected model zoo, we utilize MDLBench to
obtain the inference reports of running multiple models on
different libraries. We consider the library with the smallest
inference time reported by each model as the optimal library.
We collect inference reports to make a new library selection-
oriented dataset, which is used as the foundation for li-
brary selection. We propose a library selection framework
by training a CatBoost-based selection model and further
improving its performance by tuning the parameters.

4.1 Dataset Creation
We first create a representative large-scale dataset, as there
is no off-the-shelf large dataset that we can use directly.
To this end, we design and implement a random model
generator and consider the common models used in apps.
Specifically, we randomly transform model structure and
output by automatically obfuscating models to generate
Tensorflow [49] and Pytorch [50] format considering the
common models (i.e., mobilenet [21], vgg [25], and MLP
[10]) and their variants. As shown in Tab. 4, we also consider
the models consisting of any primitive operator type and the
various edge connections between operators. In total, our
dataset contains 1,127 models with 13 types of operators. We
also ensure the richness and validity of our dataset. Fig. 9
shows the probability density distribution of parameters
and FLOPs in the dataset. The FLOPs range from 900k
to 11G and the parameters range from 400k to 30M. The
results are consistent with the fact that more than 65% of
the models in the industry fall into this above range [4].
In other words, the models in the dataset can be applied

Fig. 9. The density distribution of the number of parameters and FLOPs
in the models (i.e., the probability density distribution randomly gener-
ated for each model).

in real-world apps. The same model types in different DL
libraries are also generated from the Model converter suite to
ensure the equivalence of models from the dataset.

These models can run on 5 popular DL libraries, i.e.,
TFLite, ncnn, MNN, Mace, and PyTorchMobile [13], [15]–
[18]. Compared to the benchmark, SNPE is not included
due to the incompatibility. Although the workflow in the
benchmark incorporates Model converter suite, an increase in
the number of test models heightens the risk of conversion
failure [51]. Additionally, SNPE’s closed-source nature com-
plicates its utilization. Its primary support for Snapdragon
platforms further limits cross-platform deployment [18]. In
order to maintain the reliability and validity of our exper-
iments, we opted for libraries that are compatible with as
many models as possible.

4.2 Improved Library Selection framework

As shown in the second tier of Fig. 1, we extract inference
reports running models in the dataset on the libraries as
the foundation of library selection. Note that feature extrac-
tion is low-cost, easy to identify, and low in information
distortion. We assemble these key features, as outlined
in Tab. 5, into unique vectors, including memory usage,
computational demands, and model structure, leveraging a
suitable feature representation method [52]. Memory usage
includes the model parameters and generated intermediate
results, such as feature maps. We employ FLOPs as the stan-
dard to measure computational complexity. Model structure
encompasses the type and quantity of vital operators, such
as Conv2D, DepConv, Mul, and BiasAdd.

Here we employ the Boosting-based algorithms for the
library selection task, since the algorithms assign discrete
variables to finite clusters and encode them in Oneshot.
Compared with similar algorithms such as XGBoost [53],
CatBoost automatically merges discrete features into inter-
nal ones and applies them to training models. CatBoost
also overcomes the overfitting caused by the gradient bias
of traditional Boosting training. Furthermore, the collected
reports maybe have a severe imbalance due to the opti-
mization differences among libraries. To address the issue,
we consider a comprehensive loss including two aspects:
misselection-based cross-entropy and performance error be-
tween prediction and ground truth.

Cross-entropy is always used in prediction for
multi-classification tasks. Motivated by its advantages,
misselection-based cross-entropy for library selection tasks

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3301973

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 09,2023 at 06:37:03 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX/XX 2023 9

TABLE 5
The representation of key features influencing inference performance.

Item Features Explanation

Parameter Number and

Distribution

Number /

Number of

Vital OPs

Conv2D/DepConv/

Mul/BiasAdd

Computational

Complexity

Number FLOPs In Tatal

Number of

Each OP
/

Model Structure

OP Composition Binary

Number of

Each OP
/

Type CNN/RNN/MLP

is summarized in Eq.(1).

L(yi, f(xi)) =
1

d

d∑
j=1

wj ∗ yj log2pi,j , (1)

where xi represents a unique feature vector. yi represents
the actual optimal library of input xi. d represents the
number of libraries. pi,j = efj(xi)∑d

i=1 efj(xi)
∈ (0, 1) represents

the probability that the selection result of input xi is the j li-
brary, where f(xi) is the optimal output obtained by xi. Due
to the large difference in the optimization on different DL
libraries, there exists an unbalanced number in each library
of the dataset. Therefore, we introduce the misselection cost
as a penalty. For fairness, DL libraries with smaller number
data ensure slightly larger weights by tuning different cost
weights to DL libraries. With the misselection cost, where
w = [w0, w1, ...wj] is the weight of the misselection cost.

Performance error Lxi,yi
is used to evaluate the perfor-

mance between the prediction and ground truth, which is
defined in Eq.(2):

Lxi,yi
=

txi,yi

txi,best
+ λ0, (2)

where λ0 is the error penalty factor. txi,yi
is the predicted

optimal inference time. txi,best is the actual optimal infer-
ence time.

To address the issue of setting parameters caused by
manual design and grid parameter search, we introduce
Particle Swarm Optimization (PSO) to improve the per-
formance of CatBoost algorithm. Obviously, selecting the
suitable hyperparameters is a very challenging task since
CatBoost has more than 20 hyperparameters such as the
estimators, the learning rate, etc [54]. We exploit PSO to op-
timize the library selection algorithm, as CatBoost assumes
that each selection has the same weight. It is difficult to set
the weights of CatBoost in the case of unbalanced selection,
so we dynamically obtain the global optimal selection to
make balance the performance as possible. As shown in
Tab. 3, due to the large performance error between the
libraries, the sensitivity of misselection is related to the

Algorithm 1: PSO-W-CatBoost
input : population size of particle swarm N ;

algorithm iteration number I ; all parameters
of the models

output: the optimized selected library
1 Initialize the N particles;
2 Initialize pbest(t) and gbest(t) of all particles;
3 Train catBoost and compute F (t) according to Eq.(3);
4 while t < τ do
5 foreach particle of total N particles do
6 update velocity of each particle according to

Eq.(4);
7 update the position of each particle according

to Eq.(5);
8 Recompute F(t+1);
9 while F(t+1) < F(t) do

10 F(t)=F(t+1)

11 update pbest(t+1);
12 update gbest(t+1);
13 t←t+1;

14 Train again CatBoost model with Wbest obtained by
PSO;

15 Return the optimized selected library;

performance error. For instance, if the misselection infer-
ence time is lower than the average one, misselection may
seriously weaken user experience. We accept the results
when the actual selection performance is close to the best.
Therefore, we employ performance loss as the evaluation of
library selection task.

The fitness function reflects the loss of individual ex-
tremum to the library selection tasks. The larger the fitness
is, the smaller the loss is; vice versa. The testing accuracy can
directly reflect the performance of the selection algorithm.
Simultaneously, the performance loss is used to evaluate
the misselection. Therefore, fitness function F (t) includes
the inverse of the performance loss and the testing accuracy
at time t, as shown in Eq.(3).

F (t) = λ1
M∑M

i=1 Lxi,yi

+ λ2Racc, (3)

where λ1 and λ2 are weights, Racc =
∑M

i=1 I(yi=f(xi)
)

M is
testing accuracy, I(yi = f(xi)) equals to 1 only when the
chosen library is the best. M is the testing number.

Here we regard key parameters (e.g., the depth of de-
cision tree d, learning rate lr, the penalty factor e, etc) as
the particles of PSO. In the iteration and weight tuning, the
position and velocity of each particle should be calculated
and adjusted according to the individual extremum and
global optimal solution. In each update, the magnitude and
direction of the velocity are updated according to the gap
between the local and the global position, and the local
position is also updated according to the direction change
of the velocity. The velocity and position updates are shown
in Eq.(4) and Eq.(5), where t represents the time t, pbest and
gbest represent the local optimal and global optimal position
respectively, a1 and a2 represent random factors, w1, w2 and
w3 represent the current velocity, local updating factor and

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3301973

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 09,2023 at 06:37:03 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX/XX 2023

global updating factor optimization coefficient respectively.
pi(t) is the position of particle i at time t.

vi+1(t+ 1) = wivi(t) + w2a1(pbesti(t)− pi(t))+

w3a2(gbest− pi(t)),
(4)

pi+1(t+ 1) = pi(t) + vi+1(t+ 1). (5)

The pseudocode of the improved PSO-W-CatBoost-
based algorithm is shown in algorithm 1. The input of
the algorithm is based on the model feature representation
vector extracted by feature engineering, and the output is
the optimized selected library. All parameters are initialized,
and the optimal combination of parameters and weights is
learned until t<τ . The algorithm establishes the CatBoost
predictor based on the above training.

5 EVALUATION

In our experiment, we train high-accuracy library selection
models to obtain the optimal library on the built dataset,
in which the ratio of the training set to the test set is 7:3.
The complex unstructured model is converted to a unique
feature vector through feature construction and extraction.
We choose GP5 as the tested device from Tab. 2 to carry
out experiments. In the following, we further introduce
benchmark algorithms, evaluation metrics and discuss the
experimental results.

5.1 Benchmark algorithms

To evaluate the performance of the PSO-W-CatBoost algo-
rithm, three algorithms used in similar tasks are introduced
as benchmarks, which are listed as follows.

• Hierarchical Support Vector Machine [53] (labeled as
SVM) obtains the library selection by training the SVM
classifier based on the nodes in the decision tree.

• Extreme Gradient Boosting [54] (labeled as XGBoost)
minimizes the fitness function to obtain the library se-
lection based on the generation and pruning of decision
trees.

• Recurrent Graph Convolutional Network [55] (labeled
as RGCN) obtains the library selection by the encod-
ing/decoding of feature vector and graph relationship.
RGCN also converts high-dimensional graph relation-
ships into feature vectors and obtains the graph feature
from the feature vectors.

5.2 Metrics

We use the following metrics commonly used in classifi-
cation tasks to evaluate library selection tasks, as the two
tasks have similar targets. For the selection task, the Macro
method [56] is used to evaluate various accuracy of algo-
rithms. The overall accuracy is represented by the average
accuracy of each selection.

• accuracy reflects the proportion of correctly selected
libraries in all libraries. It’s the simplest and most
intuitive metric for the library selection task.

• precision directly reflects the proportion of the cor-
rectly selected libraries in selected libraries.

• recall reflects the proportion of the selected libraries in
ground truth libraries.

• Fscore is a comprehensive metric considering
Precision and Recall simultaneously. It is a harmonic
average of precision and recall.

SVM

XGBoost

PSO-CatB
oost
RGCN

PSO-W
-CatB

oost

(a)

0

10

20

30

40

50

60

70

80

90

Ac
cu

rac
y(

%
)

77.21

88.00 88.37 88.52 89.77

SVM

XGBoost

PSO-CatB
oost

RGCN

PSO-W
-CatB

oost

(b)

0

10

20

30

40

50

60

70

80

Pr
ec

isi
on

(%
)

65.13
69.55 70.88

58.20

84.01

SVM

XGBoost

PSO-CatB
oost

RGCN

PSO-W
-CatB

oost

(c)

0

10

20

30

40

50

60

70

Re
ca

ll
ra

te
(%

)

54.79

67.74
70.24

67.13
70.98

SVM

XGBoost

PSO-CatB
oost

RGCN

PSO-W
-CatB

oost

(d)

0

10

20

30

40

50

60

70

F-
sc

or
e(

%
)

56.44

67.88
70.05

60.10

73.55

Fig. 10. Comparison of Prediction Accuracy of Different Algorithms.

5.3 Experimental Results

To obtain a high-accuracy library selection and evalu-
ate the performance of the library selection framework,
Fig. 10 shows the detailed selection results on the accuracy,
precision, recall, and Fscore. To sum up, the proposed
framework can improve the prediction accuracy by about
10% than benchmark approaches on average. From the per-
spective of service providers, although the algorithm does
not improve much compared to other benchmarks, high-
accuracy service provision not only provides users with
high-quality services but also generates great benefits. As
shown in Fig. 10, the performance of SVM and XGboost
is not as good as that of the PSO − W − CatBoost al-
gorithm. It is difficult for SVM to find a suitable kernel
function because conventional SVM can only solve the bi-
nary classification problem. XGboost is better at dealing
with low-dimensional feature data and cannot deal with
high-dimensional data. Besides, we also deem that a similar
observation is also found on other smartphones.

As shown in Fig. 10(a), the PSO − W − CatBoost
algorithm has the highest accuracy. The performance of
PSO − W − CatBoost is better than that of PSO −
CatBoost, among which accuracy is improved by about
1.4%. That’s because PSO − W − CatBoost focuses on
weight tuning. For example, the size N of PSO is set to 20,
and the optimal of PSO −W − CatBoost is wbest = {d =

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3301973

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 09,2023 at 06:37:03 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX/XX 2023 11

8, lr = 0.38, e = [0.12, 0.15, 0.60, 0.27, 0.63]}. It is worth
noting that the accuracy of RGCN is not lowered much
than that of PSO−CatBoost. However, it is lower than that
of PSO − CatBoost and PSO −W − CatBoost in terms
of precision, as shown in Fig. 10(b). It is also consistent
with the Fscore in fig. 10(d) as Fscore is a harmonic average
of precision and recall. In addition, the distribution of the
dataset is also not uniform. We checked and observed that
there are smaller samples in some libraries such as Mace. It
can be concluded that the RGCN algorithm is dependent
on the library with a large number of models.

5.4 Analysis of Convergence
To verify the effectiveness of the weighted cost, we make
a comparison with CatBoost. It is worth noting that,
CatBoost abandons the tuning of classification cost com-
pared with PSO − W − CatBoost. Fig. 11 shows the
performance error loss change of PSO−W−CatBoost and
CatBoost with the training iteration, where the red line rep-
resents the convergence number for PSO−W −CatBoost
while the green represents CatBoost. The result explicitly
shows that PSO −W − CatBoost converges faster with a
smaller iteration number than CatBoost.

0 200 400 600 800 1000
Iteration number

0.0

0.5

1.0

1.5

Pe
rf

or
m

an
ce

 e
rr

or
 lo

ss

PSO-CatBooost
PSO-W-CatBoost

Fig. 11. The performance error loss change of PSO − W − CatBoost
and CatBoost.

6 RELATED WORKS

Mobile DL In recent years, there is a notable trend to
move DL inference into local devices instead of offloading to
remote servers [1], [8], [57], [58]. A fundamental challenge
of this trend is the constrained resources of smartphones.
Therefore, performance optimization has been a primary
research direction for both academia and industry [49], [50],
[59]. There have been some optimization research efforts ad-
dressed to reduce the overhead of DL on smartphones, e.g.,
offloading, model quantization and sparsity [60]–[62]. These
solutions usually either count on preprocessing or perform
under lab simulations on the data collected preciously from
smartphones. Thus, our work brings DL to smartphones in
the real world and provides a unified approach to easily
compare performance among different libraries. This work
is motivated by many years of efforts at this lane.
AI benchmarks There exist a few AI benchmarks for diver-
sified scenarios, e.g., datacenter servers or edges, inference
or training, etc [63]. This work explicitly targeted at infer-
ence on mobile devices. Besides, the ecosystem of on-device
DL libraries is much more fragmented than servers due to
the high fragmentation of mobile hardware. Furthermore, a
number of studies focus on DL libraries analysis. Amin et
al. [64] compared only the TFLite and PyTorchMobile

in the terms of robustness and adversarial attacks. Conse-
quently, the results are limited in small-scale project from a
specific perspective. Luo et al. [65] proposed the benchmark
suite for evaluating the abilities of mobile devices across
different libraries. MLPerf [66] proposed high-level rules for
more flexible benchmark of the libraries. Tang et al. [67]
studied the behavior characteristics of neural networks to
bridge networks design and real-world performance. There
is still limited understanding about the performance of DL
libraries across heterogeneous smartphones. Compared to
similar benchmarks focusing on DL libraries, MDLBench has
richer support for various DL libraries and models.
Empirical study of mobile DL One line of studies mainly
focus on DL apps/systems/models. Xu et al. [4] demystified
how smartphone apps exploit DL models by deeply analyz-
ing Android apps. Wang et al. [68] made efforts towards
the evolution of mobile app ecosystem. Andrey et al. [69]
targeted at devices and focused on running models with
hardware acceleration of smartphones. Although the studies
have analyzed on device DL, they lack a comprehensive
understanding and benchmarking on diverse libraries.
Library selection is a key but unexplored topic. There
have been related works in different algorithms in service
selection. For instance, Pascal et al. [70] discussed selection
based on contextual scenarios, such as algorithm config-
uration and scheduling. It also provides an overview of
the relevant selection algorithms for discrete and contin-
uous problems. Sebastian et al. [71] proposed a common
approach to model evaluation and selection. Basar et al. [72]
focused on real-time machine vision applications running
on resource-constrained embedded systems and proposed
an adaptive model selection framework to reduce the impact
of system contention. It is worth noting that these works do
not focus on the performances of DL libraries across models
and hardware. As a result, an orthogonal way to guarantee
better service is to select the optimal library. Our work goes
deep into the modern DL library ecosystem, providing the
most suitable DL libraries for models in apps, thus greatly
improving the utilization efficiency of DL libraries.

7 CONCLUSION AND FUTURE WORK

In this work, we built the first comprehensive benchmark
for DL libraries and conducted extensive measurements to
quantitatively understand their performance. The results
help reveal a complete landscape of the DL libraries ecosys-
tem. Atop the observations, we summarize strong impli-
cations that can be useful to developers and researchers.
Based on these findings, we propose the DL library selection
algorithm to guarantee better service.

In the future, we will focus on the following three po-
tential directions along this line: (1) We will try to maintain
the platform based on the proposed benchmark suite to test
and analyze the measurement results; (2) We will further
open the measurement results to make it work properly for
service provision.

ACKNOWLEDGMENT

A preliminary version of this paper appears as a conference
paper in proceedings of the 31st Annual International World
Wide Web Conference (WWW) 2022 [63].

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3301973

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 09,2023 at 06:37:03 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX/XX 2023

REFERENCES

[1] M. Xu, F. Qian, Q. Mei, K. Huang, and X. Liu, “Deeptype: On-
device deep learning for input personalization service with mini-
mal privacy concern,” IMWUT, vol. 2, no. 4, pp. 1–26, 2018.

[2] S. Manoharan and P. Natu, “Development of a framework for a
collaborative and personalised voice assistant,” Electronic Govern-
ment, an International Journal, vol. 17, no. 1, pp. 96–104, 2021.

[3] M. Almeida, S. Laskaridis, A. Mehrotra, L. Dudziak, I. Leontiadis,
and N. D. Lane, “Smart at what cost? characterising mobile deep
neural networks in the wild,” arXiv preprint arXiv:2109.13963, 2021.

[4] M. Xu, J. Liu, Y. Liu, F. X. Lin, Y. Liu, and X. Liu, “A first look
at deep learning apps on smartphones,” in The World Wide Web
Conference, pp. 2125–2136, 2019.

[5] M. Almeida, S. Laskaridis, I. Leontiadis, S. I. Venieris, and N. D.
Lane, “Embench: Quantifying performance variations of deep
neural networks across modern commodity devices,” in The 3rd
international workshop on deep learning for mobile systems and applica-
tions, pp. 1–6, 2019.

[6] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 4700–
4708, 2017.

[7] V. Pratap, Q. Xu, J. Kahn, G. Avidov, T. Likhomanenko, A. Han-
nun, V. Liptchinsky, G. Synnaeve, and R. Collobert, “Scaling
up online speech recognition using convnets,” arXiv preprint
arXiv:2001.09727, 2020.

[8] M. Xu, M. Zhu, Y. Liu, F. X. Lin, and X. Liu, “Deepcache: Principled
cache for mobile deep vision,” in Proceedings of the 24th Annual In-
ternational Conference on Mobile Computing and Networking, pp. 129–
144, 2018.

[9] “Deep learning market - growth, trends, forecasts (2020-
2025).” https://www.mordorintelligence.com/industry-reports/
deep-learning, 2020.

[10] “Artificial intelligence market analysis report.” https:
//www.grandviewresearch.com/industry-analysis/
artificial-intelligence-ai-market, 2021.

[11] C. E. Leiserson, N. C. Thompson, J. S. Emer, B. C. Kuszmaul, B. W.
Lampson, D. Sanchez, and T. B. Schardl, “There’s plenty of room
at the top: What will drive computer performance after moore’s
law?,” Science, vol. 368, no. 6495, 2020.

[12] L. Wei, Y. Liu, S. Cheung, H. Huang, X. Lu, and X. Liu, “Un-
derstanding and detecting fragmentation-induced compatibility
issues for android apps,” IEEE Trans. Software Eng., vol. 46, no. 11,
pp. 1176–1199, 2020.

[13] “Performance measurement | TensorFlow Lite.” https://www.
tensorflow.org/lite/performance/measurement.

[14] “Pytorch mobile..” https://pytorch.org/mobile/home/, 2019.
[15] “Tencent ncnn deep learning framework..” https://github.com/

Tencent/ncnn, 2018.
[16] “Alibaba mnn deep learning framework..” https://github.com/

alibaba/MNN, 2019.
[17] “Xiaomi mace deep learning framework..” https://github.com/

XiaoMi/mace, 2017.
[18] “Snapdragon snpe deep learning framework..” https://developer.

qualcomm.com/sites/default/files/docs/snpe/overview.html,
2017.

[19] “Tensorflow model zoo.” https://github.com/tensorflow/
models, 2020.

[20] “Pytorch model zoo.” https://pytorch.org/serve/model zoo.
html, 2020.

[21] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,”
arXiv preprint arXiv:1704.04861, 2017.

[22] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recogni-
tion, pp. 4510–4520, 2018.

[23] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 2818–2826, 2016.

[24] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-
v4, inception-resnet and the impact of residual connections on
learning,” in Thirty-first AAAI conference on artificial intelligence,
2017.

[25] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[26] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.
Dally, and K. Keutzer, “Squeezenet: Alexnet-level accuracy with
50x fewer parameters and¡ 0.5 mb model size,” arXiv preprint
arXiv:1602.07360, 2016.

[27] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transfer-
able architectures for scalable image recognition,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
pp. 8697–8710, 2018.

[28] F. Iandola, M. Moskewicz, S. Karayev, R. Girshick, T. Darrell, and
K. Keutzer, “Densenet: Implementing efficient convnet descriptor
pyramids,” arXiv preprint arXiv:1404.1869, 2014.

[29] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search
for mobile,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2820–2828, 2019.

[30] S. Singh and S. Krishnan, “Filter response normalization layer:
Eliminating batch dependence in the training of deep neural
networks,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11237–11246, 2020.

[31] S. C. Yurtkulu, Y. H. Şahin, and G. Unal, “Semantic segmentation
with extended deeplabv3 architecture,” in 2019 27th Signal Pro-
cessing and Communications Applications Conference (SIU), pp. 1–4,
IEEE, 2019.

[32] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu,
and A. C. Berg, “Ssd: Single shot multibox detector,” in European
conference on computer vision, pp. 21–37, Springer, 2016.

[33] Y. Yin, H. Li, and W. Fu, “Faster-yolo: An accurate and faster object
detection method,” Digital Signal Processing, vol. 102, p. 102756,
2020.

[34] J. Redmon and A. Farhadi, “Yolov3: An incremental improve-
ment,” arXiv preprint arXiv:1804.02767, 2018.

[35] L. Xu, X. Zhang, and Q. Dong, “Cluecorpus2020: A large-scale
chinese corpus for pre-training language model,” arXiv preprint
arXiv:2003.01355, 2020.

[36] D. Kim, “A study of user data integrity during acquisition of
android devices,” 2013.

[37] M. Wang, S. Ding, T. Cao, Y. Liu, and F. Xu, “Asymo: scalable
and efficient deep-learning inference on asymmetric mobile cpus,”
in Proceedings of the 27th Annual International Conference on Mobile
Computing and Networking, pp. 215–228, 2021.

[38] D. Cai, Q. Wang, Y. Liu, Y. Liu, S. Wang, and M. Xu, “Towards
ubiquitous learning: A first measurement of on-device training
performance,” in Proceedings of the 5th International Workshop on
Embedded and Mobile Deep Learning, pp. 31–36, 2021.

[39] Y. Guo, Y. Li, L. Wang, and T. Rosing, “Depthwise convolution is
all you need for learning multiple visual domains,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8368–
8375, 2019.

[40] G. Sellers and J. Kessenich, Vulkan programming guide: The official
guide to learning vulkan. Addison-Wesley Professional, 2016.

[41] F. Mues, “Optimization of opengl streaming in distributed embed-
ded systems,” 2020.

[42] G. Jo, W. J. Jeon, W. Jung, G. Taft, and J. Lee, “Opencl framework
for arm processors with neon support,” in Proceedings of the 2014
Workshop on Programming models for SIMD/Vector processing, pp. 33–
40, 2014.

[43] F. Jia, D. Zhang, T. Cao, S. Jiang, Y. Liu, J. Ren, and Y. Zhang,
“Codl: efficient cpu-gpu co-execution for deep learning inference
on mobile devices,” in Proceedings of the 20th Annual International
Conference on Mobile Systems, Applications and Services, pp. 209–221,
2022.

[44] S. Chetoui and S. Reda, “Workload-and user-aware battery life-
time management for mobile socs,” in 2021 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pp. 1679–1684, IEEE,
2021.

[45] “Qualcomm hexagon..” https://en.wikipedia.org/wiki/
Qualcomm Hexagon, 2021.

[46] Y. Li, W. Wang, H. Bai, R. Gong, X. Dong, and F. Yu, “Efficient
bitwidth search for practical mixed precision neural network,”
arXiv preprint arXiv:2003.07577, 2020.

[47] R. Wu, F. Zhang, Z. Zheng, X. Du, and X. Shen, “Exploring
deep reuse in winograd cnn inference,” in Proceedings of the 26th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pp. 483–484, 2021.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3301973

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 09,2023 at 06:37:03 UTC from IEEE Xplore. Restrictions apply.

https://www.mordorintelligence.com/industry-reports/deep-learning
https://www.mordorintelligence.com/industry-reports/deep-learning
https://www.grandviewresearch.com/industry-analysis/artificial-intelligence-ai-market
https://www.grandviewresearch.com/industry-analysis/artificial-intelligence-ai-market
https://www.grandviewresearch.com/industry-analysis/artificial-intelligence-ai-market
https://www.tensorflow.org/lite/performance/measurement
https://www.tensorflow.org/lite/performance/measurement
https://pytorch.org/mobile/home/
https://github.com/Tencent/ncnn
https://github.com/Tencent/ncnn
https://github.com/alibaba/MNN
https://github.com/alibaba/MNN
https://github.com/XiaoMi/mace
https://github.com/XiaoMi/mace
https://developer.qualcomm.com/sites/default/files/docs/snpe/overview.html
https://developer.qualcomm.com/sites/default/files/docs/snpe/overview.html
https://github.com/tensorflow/models
https://github.com/tensorflow/models
https://pytorch.org/serve/model_zoo.html
https://pytorch.org/serve/model_zoo.html
https://en.wikipedia.org/wiki/Qualcomm_Hexagon
https://en.wikipedia.org/wiki/Qualcomm_Hexagon

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX/XX 2023 13

[48] R. Tornai and P. Fürjes-Benke, “Compute shader in image process-
ing development,” 2021.

[49] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et al., “Tensorflow: A system for
large-scale machine learning,” in OSDI), pp. 265–283, 2016.

[50] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., “Pytorch: An
imperative style, high-performance deep learning library,” arXiv
preprint arXiv:1912.01703, 2019.

[51] F. Plesinger, P. Nejedly, Z. Koscova, M. Rohr, I. Viscor, R. Smisek,
A. Ivora, P. Leinveber, K. Curila, and C. Hoog Antink, “Deep-
player: An open-source signalplant plugin for deep learning infer-
ence,” Software: Practice and Experience, vol. 53, no. 2, pp. 455–464,
2023.

[52] S. Boeschoten, C. Catal, B. Tekinerdogan, A. Lommen, and
M. Blokland, “The automation of the development of classifi-
cation models and improvement of model quality using feature
engineering techniques,” Expert Systems with Applications, vol. 213,
p. 118912, 2023.

[53] S. Huang, N. Cai, P. P. Pacheco, S. Narrandes, Y. Wang, and W. Xu,
“Applications of support vector machine (svm) learning in cancer
genomics,” Cancer genomics & proteomics, vol. 15, no. 1, pp. 41–51,
2018.

[54] T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho,
K. Chen, et al., “Xgboost: extreme gradient boosting,” R package
version 0.4-2, vol. 1, no. 4, pp. 1–4, 2015.

[55] F. Manessi, A. Rozza, and M. Manzo, “Dynamic graph convolu-
tional networks,” Pattern Recognition, vol. 97, p. 107000, 2020.

[56] H. Vandecasteele and G. Samaey, “Efficiency and parameter se-
lection of a micro-macro markov chain monte carlo method for
molecular dynamics,” arXiv preprint arXiv:2209.13056, 2022.

[57] I. Leontiadis, S. Laskaridis, S. I. Venieris, and N. D. Lane, “It’s
always personal: Using early exits for efficient on-device cnn
personalisation,” in Proceedings of the 22nd International Workshop
on Mobile Computing Systems and Applications, pp. 15–21, 2021.

[58] S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, and N. D.
Lane, “Spinn: synergistic progressive inference of neural networks
over device and cloud,” in Proceedings of the 26th Annual Inter-
national Conference on Mobile Computing and Networking, pp. 1–15,
2020.

[59] H. Yeo, C. J. Chong, Y. Jung, J. Ye, and D. Han, “Nemo: enabling
neural-enhanced video streaming on commodity mobile devices,”
in Proceedings of the 26th Annual International Conference on Mobile
Computing and Networking, pp. 1–14, 2020.

[60] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” ACM SIGARCH Computer Architecture
News, vol. 45, no. 1, pp. 615–629, 2017.

[61] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard,
H. Adam, and D. Kalenichenko, “Quantization and training of
neural networks for efficient integer-arithmetic-only inference,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 2704–2713, 2018.

[62] S. Liu, Y. Lin, Z. Zhou, K. Nan, H. Liu, and J. Du, “On-demand
deep model compression for mobile devices: A usage-driven
model selection framework,” in Proceedings of the 16th Annual
International Conference on Mobile Systems, Applications, and Services,
pp. 389–400, 2018.

[63] Q. Zhang, X. Li, X. Che, X. Ma, A. Zhou, M. Xu, S. Wang,
Y. Ma, and X. Liu, “A comprehensive benchmark of deep learn-
ing libraries on mobile devices,” in Proceedings of the ACM Web
Conference 2022, pp. 3298–3307, 2022.

[64] A. E. Abyane and H. Hemmati, “Robustness analysis of
deep learning frameworks on mobile platforms,” arXiv preprint
arXiv:2109.09869, 2021.

[65] C. Luo, X. He, J. Zhan, L. Wang, W. Gao, and J. Dai, “Compari-
son and benchmarking of ai models and frameworks on mobile
devices,” arXiv preprint arXiv:2005.05085, 2020.

[66] P. Mattson, C. Cheng, C. Coleman, G. Diamos, P. Micikevicius,
D. Patterson, H. Tang, G.-Y. Wei, P. Bailis, V. Bittorf, et al., “Mlperf
training benchmark,” arXiv preprint arXiv:1910.01500, 2019.

[67] X. Tang, S. Han, L. L. Zhang, T. Cao, and Y. Liu, “To bridge neural
network design and real-world performance: A behaviour study
for neural networks,” Proceedings of Machine Learning and Systems,
vol. 3, 2021.

[68] H. Wang, H. Li, and Y. Guo, “Understanding the evolution of
mobile app ecosystems: A longitudinal measurement study of

google play,” in The World Wide Web Conference, pp. 1988–1999,
2019.

[69] A. Ignatov, R. Timofte, W. Chou, K. Wang, M. Wu, T. Hartley, and
L. Van Gool, “Ai benchmark: Running deep neural networks on
android smartphones,” in Proceedings of the European Conference on
Computer Vision (ECCV) Workshops, pp. 0–0, 2018.

[70] P. Kerschke, H. H. Hoos, F. Neumann, and H. Trautmann, “Auto-
mated algorithm selection: Survey and perspectives,” Evolutionary
computation, vol. 27, no. 1, pp. 3–45, 2019.

[71] S. Raschka, “Model evaluation, model selection, and algorithm
selection in machine learning,” arXiv preprint arXiv:1811.12808,
2018.

[72] B. Kutukcu, S. Baidya, A. Raghunathan, and S. Dey, “Contention-
aware adaptive model selection for machine vision in embedded
systems,” in 2021 IEEE 3rd International Conference on Artificial
Intelligence Circuits and Systems (AICAS), pp. 1–4, IEEE, 2021.

Qiyang Zhang is a Ph.D. candidate in computer
science at the State Key Laboratory of Network-
ing and Switching Technology, Beijing University
of Posts and Telecommunications. He is also
a visiting student in Distributed Systems Group
at TU Wien from December 2022 to Decem-
ber 2023. His research interests include Mobile
Edge Computing, Edge Intelligence.

Xiangying Che received a master’s degree in
Software engineering from the State Key Labo-
ratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunica-
tions. Her research interests include Cloud Com-
puting and Mobile Edge Computing.

Yijie Chen received a bachelor’s degree in
Software engineering from Henan University in
2022. Currently, she is a postgraduate student in
computer science at the State Key Laboratory
of Networking and Switching Technology, Bei-
jing University of Posts and Telecommunications.
Her research interests include Cloud Computing
and Mobile Edge Computing.

Xiao Ma received her Ph.D. degree in Depart-
ment of Computer Science and Technology from
Tsinghua University, Beijing, China, in 2018. She
is currently a lecturer at the State Key Laboratory
of Networking and Switching Technology, BUPT.
From October 2016 to April 2017, she visited
the Department of Electrical and Computer En-
gineering, University of Waterloo, Canada. Her
research interests include mobile cloud comput-
ing and mobile edge computing.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3301973

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 09,2023 at 06:37:03 UTC from IEEE Xplore. Restrictions apply.

14 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX/XX 2023

Mengwei Xu received the bachelor’s and Ph.D.
degrees from Peking University, Beijing, China.
He is an Assistant Professor with the Computer
Science Department, Beijing University of Posts
and Telecommunications, Beijing. His research
interests cover the broad areas of mobile com-
puting, edge computing, and operating systems.

Schahram Dustdar is Full Professor of Com-
puter Science heading the Research Division of
Distributed Systems at the TU Wien, Austria. He
is the co-editor-in-chief of the ACM Transactions
on Internet of Things and the editor-in-chief of
the Computing (Springer). He is also an asso-
ciate editor of the IEEE Transactions on Ser-
vices Computing, IEEE Transactions on Cloud
Computing, ACM Transactions on the Web, and
ACM Transactions on Internet Technology. He
serves on the editorial board of the IEEE Internet

Computing and IEEE Computer Magazine.

Xuanzhe Liu is an Associate Professor (with
tenure) in the School of Computer Science
at Peking University. His research interests
mainly fall in service-based software engineering
and systems. Most of his recent efforts have
been published at prestigious conferences in-
cluding WWW, ICSE, FSE, SIGCOMM, NSDI,
MobiCom, MobiSys, SIGMETRICS, and IMC,
and in journals including ACM TOSEM/TOIS/-
TOIT/TWEB and IEEE TSE/TMC/TSC. He is a
senior member of the IEEE and the ACM, and

a distinguished member of the CCF. He serves as the corresponding
author of this paper.

Shangguang Wang is a professor at the School
of Computer Science, Beijing University of Posts
and Telecommunications, China. His research
interests include service computing, mobile
edge computing, cloud computing, and satellite
computing. He is currently serving as chair of
IEEE Technical Community on Services Com-
puting(TCSVC), and vice chair of IEEE Techni-
cal Community on Cloud Computing. He also
served as general chairs or program chairs of
10+ IEEE conferences, advisor/associate editors

of several journals such as Journal of Cloud Computing, Journal of Soft-
ware: Practice and Experience, International Journal of Web and Grid
Services, China Communications, and so on. He is a senior member of
the IEEE, and Fellow of the IET.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3301973

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 09,2023 at 06:37:03 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Benchmark & Methodology
	Performance Analysis and implications
	Performance Fragmentation
	Impacts of Quantization
	Impacts of Hardware
	Cold-start Inference
	Longitudinal Analysis
	Implication

	Deep Learning Library Selection Framework
	Dataset Creation
	Improved Library Selection framework

	Evaluation
	Benchmark algorithms
	Metrics
	Experimental Results
	Analysis of Convergence

	Related Works
	Conclusion and future work
	References
	Biographies
	Qiyang Zhang
	Xiangying Che
	Yijie Chen
	Xiao Ma
	Mengwei Xu
	Schahram Dustdar
	Xuanzhe Liu
	Shangguang Wang

