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Abstract: Computing paradigms have evolved significantly in recent decades, moving from large
room-sized resources (processors and memory) to incredibly small computing nodes. Recently,
the power of computing has attracted almost all current application fields. Currently, distributed
computing continuum systems (DCCSs) are unleashing the era of a computing paradigm that unifies
various computing resources, including cloud, fog/edge computing, the Internet of Things (IoT),
and mobile devices into a seamless and integrated continuum. Its seamless infrastructure efficiently
manages diverse processing loads and ensures a consistent user experience. Furthermore, it provides
a holistic solution to meet modern computing needs. In this context, this paper presents a deeper
understanding of DCCSs’ potential in today’s computing environment. First, we discuss the evolution
of computing paradigms up to DCCS. The general architectures, components, and various computing
devices are discussed, and the benefits and limitations of each computing paradigm are analyzed.
After that, our discussion continues into various computing devices that constitute part of DCCS to
achieve computational goals in current and futuristic applications. In addition, we delve into the
key features and benefits of DCCS from the perspective of current computing needs. Furthermore,
we provide a comprehensive overview of emerging applications (with a case study analysis) that
desperately need DCCS architectures to perform their tasks. Finally, we describe the open challenges
and possible developments that need to be made to DCCS to unleash its widespread potential for the
majority of applications.

Keywords: distributed computing continuum systems; Internet of Things; edge computing; edge
intelligence; artificial intelligence; machine learning

1. Introduction

Several decades ago, computing began to rapidly solve complex calculations but was
prone to errors; however, now it embodies the transformative power of technology [1]. In
the beginning, computers occupied large rooms (huge in size) and had limited processing
power, but now, they are portable and perform high-speed processing with extensive
memory capacities. Developments in hardware, software (through the evolution of pro-
gramming languages), and the Internet have helped modern computation encompassing
large computations in a parallel and distributed manner [2,3]. In this regard, mainframe-
based computing was the first Internet-based distributed computing architecture developed
in the early 1960s. Furthermore, the computing paradigm extended to grid computing,
cluster computing, cloud computing, and fog/edge computing [4–7]. The accessibility
and ubiquity of computing have transformed almost every field, including education,
healthcare, industries, entertainment, and space research [8].

Distributed Computing Continuum Systems (DCCSs) is a revolutionary transforma-
tion in the computing realm, which is ushering in an era where boundaries between dis-
parate computing environments dissolve, and a seamless continuum emerges [9]. DCCSs
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are based on the idea of a continuum of computing resources, where each resource has
different capabilities and characteristics. As cloud computing, edge computing, mobile
devices, and other computing devices become a unified ecosystem, there are numerous
opportunities and challenges [10,11]. This creates a cohesive ecosystem in which resources
are dynamically allocated across different tiers in accordance with the specific needs of the
task at hand.

DCCSs are more efficient compared with the traditional computing paradigm in
several ways. For example, the cloud can be used for heavy computation tasks, the edge
for real-time processing, and the fog for local data aggregation [12]. These can be utilized
seamlessly while shifting resources as necessary depending on application needs. With
this adaptability, resources are more appropriately utilized, and the overall performance
is improved. The adaptability of the system not only limits efficient resource usage but
also improves the performance in terms of different metrics such as optimized processing
power, latency, energy efficiency, and overall system cost. Currently, the majority of
applications need high computational power such as machine learning (ML) [13] and
artificial intelligence (AI); DCCSs can efficiently perform them using available resources.

Since DCCSs are a growing technology, its features motivate using these technologies
in multiple applications. The aim of this paper was to give an overview of DCCSs and
compare their efficiency with traditional computing paradigms. First, we discuss the
development of various distributed computing paradigms from 1960 to the present day.
We discuss each computing paradigm, its working model, components, benefits, and
limitations. Then, we analyze DCCSs and their architecture and how it differs from
traditional computing paradigms. We analyze the advantages and limitations of DCCSs in
various aspects. We identify several applications that desperately need DCCSs and explain
them through an illustrative example of DCCS usage over traditional computing models.
DCCSs are a growing technology that requires further research to make it more efficient,
dynamic, and adaptable. In the interest of simplification, the primary contributions of this
paper are summarized as follows:

• Initially, we analyze the evolution of the computing paradigm from the 1960s to
current computing trends. We discuss computing paradigm benefits and limitations.

• Next, the potential for DCCSs using various computing devices is discussed, along
with their advantages and limitations. In addition, DCCSs’ overall benefits and
limitations are analyzed.

• Furthermore, we provide various applications and real-time example scenarios wherein
computing paradigms are highly needed. We highlight how these use cases benefit
from DCCSs.

• Finally, we discuss several open research challenges and possible solutions for future
enhancements to DCCSs to make these more efficient.

The remaining sections of this paper are organized as follows. The acronyms used
in this paper are listed after Section 6. The year-wise evolution of distributed computing
continuum systems is discussed in Section 2. The potential and challenges of DCCSs are
discussed in Section 3. In Section 4, various real-time applications that benefit from DCCSs
are discussed. A wide range of open challenges and further possible research scopes are
discussed in Section 5. Finally, we conclude our paper in Section 6.

2. Evolution of Distributed Computing Continuum

This section explains the evolution of the computing paradigm from mainframe-based
computing to DCCSs, which are summarized in Figure 1. The rise of networking and the
Internet in the late 1960s brought the opportunity for computer systems to work together
and simultaneously.
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Figure 1. Evolution of distributed computing continuum systems.

2.1. Mainframe-Based Computing

Mainframe computers are high-performance computing platforms, performing real-
time computations using huge amounts of storage (private databases) and processors
(transactional servers). In addition, these use various applications to perform various tasks,
such as processing banking data and providing high resilience, agility, and security [14]. A
general mainframe-based computing model is replicated using Figure 2.

Data Storage

Bus/Network

Input
Query

Personal computers
used to query through
terminal and display

results

Applications

Infrastructure

Figure 2. Architecture of mainframe-based computation.
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Mainframe computing is designed with a huge amount of resources, so it performs the
computations centrally and rapidly. On the other side, the mainframe computing model
has several limitations. These are designed for specific tasks and may not be as flexible as
other computing models. Thus, they are not suitable for adapting or customizing when
the requirements of the business change. They are expensive in terms of hardware and
software, and require a specialized person to operate and maintain due to their complexity.
Mainframes are large and require dedicated space and infrastructure, so they are not
feasible for small organizations. Due to the vendor lock-in model, it is very hard to switch
from the current platform to others [15].

2.2. Grid Computing

Grid computing involves connecting multiple computers through a network to ac-
complish common computationally intensive tasks that cannot be performed on a single
machine. A network of computers works together as one virtual supercomputer to perform
these tasks. In this way, users and applications can seamlessly access IT capabilities by
creating a single-system image [16,17]. Figure 3 explains the general working model for
grid computing, where the major components are users, grid nodes, and a central server. A
user represents a computer or application that requests resources from the grid for further
computations. Grid networks are managed by a central control node, typically a server
or set of servers. A central node maintains and controls the resources and computational
assignments of the network pool. A grid node contributes resources to a network pool
(such as memory, processors, and storage). The nodes in this network actively participate
in the execution of computations in the distributed grid [18].

Grid Users Tasks

Gateway

Grid Node

Figure 3. General working model for grid computing.

The grid computing model is highly efficient for large computations in a short amount
of time. Multiple organizations can collaborate to exchange computation resources with
this model. However, there are several limitations associated with grid computing. Since
a central server controls the entire grid network, the failure of the central server causes a
hotspot with the network pool. However, failing a grid node does not cause more damage
because another grid node fulfills the requirements. This model is also not appropriate for
small tasks. In order to exchange data between grid nodes, this model also needs a high
bandwidth. This model does not support adaptability and interoperability.

2.3. Cluster Computing

Cluster computing is similar to grid computing in that multiple computers (called
nodes) are grouped together to complete a large task at once. In addition, it provides
additional benefits, such as scalability, high availability, and load balancing. A general
cluster computing model is deprecated using Figure 4. The components of this model
include computing nodes (cluster nodes), management nodes, the connecting bus, and
shared redundant storage [19]. Computing nodes are individual computers connected to
the network and performing computations. Each node in this network uses its operating
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system. In a cluster, management nodes monitor the hardware and software as well as
reconfigure them as needed. Communications between cluster nodes are made easier with
private networks. Switches maintain a connection between cluster nodes [20].

Node nNode 1 Node 2

Switch

Front end node Public network

Figure 4. High-level architecture of cluster computing.

In cluster computing, complex computational tasks are divided into smaller subtasks
distributed among multiple interconnected computing nodes. These nodes perform their
assigned subtasks simultaneously, communicating through a network switch and sharing
data and intermediate results as required. Once all nodes have completed their tasks, the
results are aggregated and delivered to the front-end node [21].

Cluster computing enables parallel processing, partitioning complex tasks into smaller
subtasks that can be worked on simultaneously at different cluster nodes, drastically
minimizing computation time. Cluster systems are highly scalable, allowing additional
nodes to be added as computing demands increase and vice versa. Despite a node failure,
fault tolerance mechanisms ensure uninterrupted operation by assigning the computational
subtask to an available node in the cluster. Data-intensive tasks are handled more efficiently
with clusters because they can share data and communicate efficiently. However, cluster
computing is highly scalable and can perform computationally intensive tasks, but it also
comes with limitations. Some computations may not lend themselves to easy parallelization
due to dependencies, making it difficult to efficiently divide tasks into parallelizable
subtasks. Additionally, synchronizing the results in a particular order is also challenging.
Setting up and maintaining a cluster, including the hardware, network, and software
configurations, can be challenging. Adding numerous nodes will be more difficult due to
communication and coordination overhead. In addition to ensuring load balance across
nodes, fault tolerance and reliability can also be complex issues to address.

2.4. Cloud Computing

In recent decades, cloud computing has emerged as a significant technological ad-
vancement. It is widely recognized as a crucial computing environment for facilitating the
growth, implementation, and operation of IoT platforms. In this context, businesses can
transfer their control, computing capabilities, and accumulated data to a platform with
nearly limitless resources [22]. Today, cloud computing continues to stand out as a widely
accepted solution for deploying resource-intensive computational tasks, particularly for
processing vast volumes of data generated from IoT devices spread across various geo-
graphical locations (i.e., including sensors, smartphones, laptops, and vehicles). The cloud
computing paradigm offers extensive resources, enabling the deployment of diverse plat-
forms, virtual machines, multiple databases, and various applications. With its scalability
and flexibility, the cloud empowers users to harness a vast pool of computing power and
storage, allowing them to create and manage these computing environments tailored to
their specific needs (see Figure 5).
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Figure 5. High-level architecture cloud computing.

Nonetheless, the cloud computing paradigm encounters several challenges in ef-
fectively addressing the rigorous demands of emerging IoT applications. For instance,
continuously transmitting sensory data to the cloud leads to higher latency than expected in
IoT system responses. From one perspective, transferring vast and intensive data volumes
to a centralized cloud through wide-area networks (WANs) gives rise to latency issues.
On the other side, privacy aspects, connectivity concerns, or planned system maintenance
(specifically, on the cloud side) can lead to service unavailability, presenting a potential
hurdle for essential IoT systems throughout their operational duration.

2.5. Fog and Edge Computing

Fog computing, a concept pioneered by Cisco [23,24], aims to enhance cloud capa-
bilities by bringing them closer to edge networks. Various interpretations are currently
available in the literature, but the most relevant ones are outlined in [25–27]. Fog comput-
ing is defined as geographically distributed computing devices that connect numerous
heterogeneous devices at the network’s edge; however, it does not solely rely on seamless
integration with cloud services. In essence, fog is a vital link between the network’s edge
and the cloud. The fog devices in proximity enable the facilitation of the implementation
of emerging IoT applications with low latency and stringent requirements [28,29]. As
introduced in [30], edge computing represents a novel paradigm that aims to provide
storage and computational capabilities in proximity to end-users and the IoT domain. The
term “edge” encompasses all computational and networking resources along the trajectory
between the primary data source and the ultimate data repository (including fog nodes
and cloud data centers) [31,32].

As can be observed, the edge and fog paradigms offer nearly indistinguishable at-
tributes. Both concepts anticipate enhancing computational capabilities close to end-
users and within the IoT domain. However, the primary contrast between these two
paradigms lies in administrative distinctions and responsibilities [33]. Additionally, fog
nodes (e.g., those stationed in base stations) might extend their services across more ex-
pansive geographical regions. For example, intelligent transportation systems could gain
advantages by linking and analyzing vehicle data within the fog infrastructure. Never-
theless, both paradigms furnish low-latency services due to end-devices’ proximity to the
data source, facilitating production and consumption. Furthermore, edge and fog devices
typically have limited computational resources, storage capacity, and power compared to
centralized cloud servers. This limitation can impact various application types that can be
efficiently run at the edge, and resource-intensive tasks might still need to be offloaded to a
more powerful cloud infrastructure.
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2.6. Serverless Computing

Serverless computing is a cloud-native development model that allows developers to
build and run applications without managing servers [34,35]. It is an approach to software
design that abstracts away the underlying infrastructure, allowing developers to focus
on writing code and deploying applications [36]. Serverless computing works as follows.
Developers write their code and package it in containers or functions, deploying them
to a serverless platform provided by a cloud vendor [37,38]. Since these functions are
event-driven, the serverless platform automatically scales up the necessary resources to
execute the function when an event occurs (such as a request or query being received). The
cloud provider dynamically assigns the necessary computing resources and storage to run
the task. All routine infrastructure management tasks, including provisioning, scaling, and
maintaining the server infrastructure, can be managed by the cloud provider by default [39].
A high-level serverless computing model is described in Figure 6.

Client

Mobile client

API
Gteway

Public
database

Authentication
services

Private
database

Function 1

Function 2

Function k

Figure 6. A high-level working model for serverless computing.

In Figure 6, the primary components of serverless computing can be seen as the end-
user, content delivery network (CDN), API gateway, serverless functions, and database
sources. The end-user interacts with the application through APIs. CDNs are global
networks of distributed servers that cache and deliver content to end-users. The API
gateway manages and routes end-user requests to specific serverless functions and acts
as middleware between users and serverless functions. This function is a piece of code
that runs in response to an event or request generated by an end-user. It is executed on a
serverless platform and automatically scales up or down based on resource demand. A
data source (private or public database) provides data to serverless functions [39].

Serverless computing offers several benefits over cloud and edge computing, such as
low cost, scalability, and no need to maintain infrastructure [40]. It is more cost-effective
than traditional clouds as developers do not need high computational power or space. For
small organizations, the serverless computing paradigm is the most appropriate solution.
Since all infrastructure maintenance is taken care of by cloud vendors, infrastructure
maintenance is not a burden in serverless computing. Scalability is the primary advantage
of cloud computing since it can automatically scale up or down based on the requirements of
the customer [41]. Furthermore, serverless computing has multiple limitations. Serverless
computing can lead to vendor lock-in, as developers may become dependent on a specific
cloud provider’s serverless platform and APIs. It can be difficult to optimize performance
or troubleshoot problems in this environment because very little control is available over
the underlying infrastructure and execution environment. While it is cost-effective for
small organizations, it has become more expensive than traditional cloud computing for
applications with high traffic and larger workloads. Serverless functions can experience
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cold start latency, which is the time it takes to start up serverless functions and execute the
first request, sometimes causing high latency.

2.7. Distributed Computing Continuum Systems

DCCSs are systems built of a large variety of heterogeneous networked computing
devices, which are used to process data generated by devices such as sensors, mobile
devices, and IoT devices. Through its integration of cloud, edge, and IoT resources, it
enables efficient, real-time, and dynamic computations to meet the needs of today’s diverse
applications [42,43]. It performs computations by distributing the workload across mul-
tiple devices in the system. Each device performs a portion of the computation, and the
results are combined to produce the final output. This allows for faster processing times
and increased scalability. With DCCSs, computations are accomplished efficiently while
adapting to changing demands and optimizing resource utilization outside traditional
boundaries [9]. This resource allocation is based on factors like resource proximity, compu-
tational capability, and prioritizing time-sensitive tasks. Depending on the task, real-time
responses may be offloaded to edge devices, while complex analytics may be conducted
in the cloud by default. This dynamic distribution of tasks enhances system performance
and processing efficiency whilst reducing latency. The general architecture of DCCS is
illustrated through Figure 7.

 

Fog Devices Mobile Edge  
Computing 

IoT Smart Things 

Edge Devices 
Edge Devices 

Internet 

Learning & Knowledge 

Figure 7. General architecture for distributed computing continuum systems.

Cloud Computing vs. DCCSs: In cloud computing, users access virtualized servers, stor-
age, and applications hosted by a cloud provider over the Internet [44]. In DCCSs, a wide
array of resources are incorporated, including edge devices, IoT sensors, mobile devices,
and even cloud servers. However, computations are distributed from localized processing
to centralized cloud analytics as needed. In contrast, DCCSs dynamically assign tasks to
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the most appropriate resource based on factors such as proximity, processing capability,
and data sensitivity, minimizing latency and maximizing resource utilization. Cloud infras-
tructure involves provisioning resources according to predetermined configurations and
subscription plans. User capacity can be adjusted based on their needs until vendor lock-in
occurs with scalable cloud computing. Moreover, DCCS functionality can evolve naturally
based on resources and demand, enabling flexibility and effective resource utilization. It is
possible to process data on edge devices instead of cloud servers when a task requires an
immediate response or sensitive data that are too latency-sensitive to be processed centrally.
Edge Computing vs. DCCS: Using edge computing, data are processed near its source,
reducing latency and conserving bandwidth. Low-power devices, such as sensors and
gateways, are usually treated as edge servers [45]. In contrast, DCCSs integrate not only
edge devices but also cloud servers and various computing resources, which allow it to
dynamically allocate tasks across available devices, optimizing resource utilization, en-
hancing responsiveness, and enabling real-time processing. In contrast to edge computing,
DCCSs are capable of adaptive and efficient computation beyond the capabilities of indi-
vidual devices by harnessing the power of an extensive array of resources. DCCSs support
fault tolerance, whereas edge computing does not. A device failure does not interrupt
computation, and the task is moved to another edge server or cloud server in DCCSs.
Serverless Computing vs. DCCS: In serverless computing, resources are automatically
scaled based on demand, and users are billed just as they use them. Using DCCSs, tasks are
routinely distributed according to proximity, capacity, and urgency. In contrast to serverless
computing, DCCSs primarily focus on resource efficiency, integrating a wide range of
devices, and enabling real-time processing across the continuum (edge-to-cloud).

3. Potential of Distributed Computing Continuum

DCCSs fundamentally differ from traditional computing models because they seam-
lessly integrate diverse computing resources. Integrating powerful cloud servers with agile
edge devices and ubiquitous mobile endpoints is part of this process. By leveraging the
strengths of each component, a holistic ecosystem is created to meet the diverse needs
of modern computing. In this context, classes of computing devices used in DCCSs are
initially explained. DCCSs offer a path towards a future where computing seamlessly
adapts to application needs. This section answers how DCCSs can deliver new levels of
efficiency and responsiveness by exploring the core benefits [46] and challenges [42].

3.1. Classes of Computing Devices Used in DCCSs

There are classes of computing devices working together in DCCSs to enable seamless
data generation, processing, analysis, and communication across the system. In our paper,
we categorize these devices into five groups: embedded computers, IoT, mobile devices,
desktop computers, and servers.

3.1.1. Embedded Computers

Embedded computing systems are electronic or mechanical devices equipped with
computing hardware (such as processors—either a microprocessor or microcontroller,
power supplies, sensors, actuators, communication mechanisms, and memory) and soft-
ware components to perform a specific task [47–49]. In recent years, several devices have
been equipped with embedded computers, such as diagnostic and patient monitoring tools
in healthcare, automated teller machines (ATMs), engineering calculators, digital cameras,
household appliances (digital door locks, automatic washing machines, or microwaves)
autonomous vehicles, and many more. Since smart and remote applications have become
increasingly popular, all these devices are connected to the Internet and operate remotely.
An embedded computer can be classified according to its application or device: small-scale
(using 8-bit microcontrollers), medium-scale (using 16-bit or 32-bit microcontrollers, or
multiple small-scale embedded computers), or sophisticated-scale (with complex hardware
and software). With this hardware and software, they can make decisions autonomously
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and operate accordingly. Recently, these devices were connected over the Internet, and
their data are transmitted and analyzed in the cloud to monitor and predict the devices’
condition and efficiency. Gateways and routers used in networking are also embedded
computing devices. Gateways translate a message from one protocol to another, which
is programmed into its chip. It acts as middleware between physical and network layers.
Routers can maintain routing tables and transmit the data packets from one network in-
terface to another. Depending on their configurations, these two devices can also perform
additional preprogrammed tasks.

These days, wearable devices are commonly used as embedded devices that users wear
and seamlessly integrate into their daily routines. These devices range from smartwatches
and fitness trackers to augmented reality glasses. They are equipped with sensors, proces-
sors, and connectivity features that enable them to capture data and interact with users and
other devices [50]. Wearables often monitor health metrics, track physical activity, deliver
notifications, and provide quick access to information. They act as intermediaries between
users and the broader network of devices due to their portability and constant presence.
An illustrative example of wearable devices and their benefits is depicted in Figure 8. The
benefits of these devices are wide, and include convenience, monitoring fitness and health,
mood swing monitoring, communication with the environment, people or other devices
remotely, real-time analytics and monitoring, and safety [51–53]. In 2020, the wearable
technology market was valued at USD 59 billion, and by 2024, it should be valued at USD
156 billion, with an annual growth rate of 24.6% according to the GlobalData (Available on-
line: https://www.medicaldevice-network.com/comment/wearable-technology-iot, last
accessed 3 September 2023). However, most of these devices have very limited computing
capacity, and their analytics depend on other computing devices in the continuum.

GPS
Tracker

Smart
Shoe

Smart
Watch

Smart
Shocks

Smart
Lock
finder

Smart T-
shirt/Jacket

Smart
Glasses

Smart
Finger

Smart
Ring

Smart
Bracelet

Smart 
Belt

Convenience

Observation
of Mood
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Improved
Fitness and

Health
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Real-time
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Figure 8. Wearable embedded computing devices for the human body and some of their benefits.

https://www.medicaldevice-network.com/comment/wearable-technology-iot
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3.1.2. Internet of Things

IoT devices are also a category of embedded computing devices that differ in terms of
connectivity, communications, and functionalities. As discussed in the previous subsection,
embedded computing systems are standalone systems designed for specific tasks, typically
operating in isolation from other systems. While some systems can be part of an IoT
network, not all embedded systems are inherently connected to the Internet. However, IoT
is an interconnected set of physical devices that communicate and exchange data over a
communication medium [54]. Often, these devices collect data from their environment [55],
transmit these over the Internet, and interact with other devices [56]. A variety of com-
munication protocols are frequently used to transmit data and receive commands from
remote locations, including Wi-Fi, cellular networks, Bluetooth, Zigbee, or LoRa [57,58]. In
general, embedded computing systems are designed with a specific purpose in mind and
have limited reconfigurability and remote update capabilities. As IoT devices become more
versatile, they can often be configured or remotely updated to accommodate changes to
their requirements or capabilities. IoT can be used for multiple purposes instead of using
them for specific tasks. Some IoT devices have their own operating systems (Raspberry Pi),
which can act in the same way as personal desktop computers.

It is estimated that 14.3 billion IoT devices will be active around the world by the
end of 2022. In 2032, this market will have grown to 34.4 billion, a trebling courtesy of
an annual compound growth rate of 10% (Available online: https://www.spiceworks.
com/tech/iot/guest-article/iot-key-trends-over-next-decade/, last accessed 3 September
2023). The IoT healthcare market is expected to be worth more than a trillion dollars
by 2032, with 86% of healthcare organizations already utilizing IoT services (Available
online: https://www.linkedin.com/pulse/iot-landscape-next-decade-internet-things-rp-
international/, last accessed 3 September 2023). Transport systems are not exceptional
due to growing autonomous vehicle research. Several other industries are expected to
adopt IoT in the coming days, such as building automation and security, consumer Internet
and media devices, inventory management and marketing, asset tracking and monitoring,
agriculture [59], and smart grids [60,61]. Through 4G and 5G, the IoT market is growing
steadily, and when 6G is adopted, it might increase even faster [62–64]. In 2032, the amount
of data from these ever-growing devices may reach 150 Zettabytes, and edge devices
may not be able to handle it. So, computing continuum systems are a solution to use all
computing devices in a continuum to quickly complete tasks and make decisions [65].

3.1.3. Mobile Devices

The evolution of mobile devices has been remarkable over the past two decades, from
basic cell phones to powerful smartphones and tablets. Following the advent of voice
and text communication, smartphones, including Apple’s iPhone and Google’s Android,
introduced touchscreens, app ecosystems, and enhanced capabilities. Tablets filled the gap
between smartphones and laptops. Fitness trackers and smartwatches became popular
for monitoring health and receiving notifications on mobile devices. Mobile devices have
become indispensable tools for communication, entertainment, and productivity as a result
of the transition from 2G to 5G networks, the proliferation of apps, and the convergence of
technologies such as augmented reality (AR) and virtual reality (VR) [66,67]. Processors
in smartphones are sometimes categorized as desktop computers due to their hardware
similarities. However, they’re distinct due to their capacity to execute externally developed
software. For storage purposes, Flash memory is used instead of disks due to its energy
and size requirements. A device’s energy efficiency is influenced by battery power and
heat dissipation. In such cases, memory size is crucial since it accounts for a significant
portion of the system cost [68].

Mobile devices serve as capable edge computing devices by performing tasks like
data preprocessing, local analytics, and content caching, resulting in reduced latency and
improved system efficiency [69,70]. In addition to augmented reality, video streaming, and
IoT sensor data analysis, these devices leverage their computational resources to process

https://www.spiceworks.com/tech/iot/guest-article/iot-key-trends-over-next-decade/
https://www.spiceworks.com/tech/iot/guest-article/iot-key-trends-over-next-decade/
https://www.linkedin.com/pulse/iot-landscape-next-decade-internet-things-rp-international/
https://www.linkedin.com/pulse/iot-landscape-next-decade-internet-things-rp-international/
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data in real-time [71]. The offloading of computation to smartphones at the edge can reduce
network congestion, resulting in quicker responses and better user experiences [72]. By 2028,
the smartphone market size is forecast to reach 1.78 billion units, at a CAGR of 4.10%, from
1.45 billion units in 2023 (available online: https://www.mordorintelligence.com/industry-
reports/smartphones-market, last accessed 3 September 2023). In this way, smartphones
facilitate seamless integration between edge, fog, and cloud computing within DCCSs by
operating as mobile edge devices. They will participate in real-time data processing with
low latency and optimized bandwidth.

Recently developed large language models (LLMs) are becoming popular due to
their benefits, such as efficiency, customization, understanding different languages, and
automating tasks. But LLMs require large computing resources; hence, all the data move
to the cloud for computation [73–76]. Currently developed hybrid AI architectures can
recommend different offload options based on factors like model complexity and query size
to distribute processing among the cloud and other computing devices [77,78]. However,
current demands such as cost, energy, reliability, performance, latency, privacy, and security
require local computations such as the edge or smartphones. Since over 10 billion searches
are conducted every day, with mobiles accounting for over 63% of searches (available
online: https://www.statista.com/statistics/297137/mobile-share-of-us-organic-search-
engine-visits/, last accessed 3 September 2023), the adoption of generative AI will lead to a
substantial increase in computing capacity, especially from queries made on mobile devices.
This study shows the demand for on-device AI computations [79,80]. It has been announced
that Qualcomm is developing a mobile chipset for smartphones called ’Snapdragon 8
Gen 2’ that will run AI on-device (available online: https://www.cnet.com/tech/mobile/
generative-ai-is-coming-to-phones-next-year-thanks-to-qualcomm-chips/, last accessed
3 September 2023). This further enhances smartphones’ performance and helps process
personal data within the computing continuum.

3.1.4. Desktop Computers

These are the primary computing devices for daily tasks, professional work, and
gaming. Desktop and laptop computers have played an increasingly important role in
recent decades. These devices have a high level of computational power, energy, and
memory compared with smartphones or tablets [81,82]. In addition to content creation,
scientific computation, and software development, GPUs can also run AI/ML applications.
Laptops are also indispensable for remote work, education, and collaboration. While these
devices provide secure local data storage, their adaptability keeps them relevant in an
ever-changing technological landscape. Currently, available cloud storage options can
provide storage based on the needs of the user. Over 68 million desktops are expected to be
shipped worldwide in 2023, down from over 76 million in 2022. It is estimated that desktop
shipments will reach 69 million in 2027. Compared to 207 million units in 2022, notebook
shipments are projected to reach more than 214 million units in 2027. A notebook is a
type of laptop that is smaller and lighter than a laptop, so they are gaining more attention
than desktop or laptop computers (available online: https://www.statista.com/statistics/
272595/global-shipments-forecast-for-tablets-laptops-and-desktop-pcs/, last accessed 3
September 2023).

Desktop computers and laptops are key components of grid and cluster computing,
where multiple devices work together to tackle complex tasks. They serve as individual
computation nodes, contributing their processing power and capabilities to the overall
computing capacity of the system. Additionally, this feature can be used for large workloads
at the edge of the computing continuum. Furthermore, these devices manage and store data,
host middleware for communication and coordination, and provide monitoring and control
interfaces. Due to their role as edge devices, they reduce latency by processing data locally
with load balancing and security measures. Desktop and laptop computers are essential
to DCCS operations, often forming hybrid architectures, making them indispensable to
complex computing environments.

https://www.mordorintelligence.com/industry-reports/smartphones-market
https://www.mordorintelligence.com/industry-reports/smartphones-market
https://www.statista.com/statistics/297137/mobile-share-of-us-organic-search-engine-visits/
https://www.statista.com/statistics/297137/mobile-share-of-us-organic-search-engine-visits/
https://www.cnet.com/tech/mobile/generative-ai-is-coming-to-phones-next-year-thanks-to-qualcomm-chips/
https://www.cnet.com/tech/mobile/generative-ai-is-coming-to-phones-next-year-thanks-to-qualcomm-chips/
https://www.statista.com/statistics/272595/global-shipments-forecast-for-tablets-laptops-and-desktop-pcs/
https://www.statista.com/statistics/272595/global-shipments-forecast-for-tablets-laptops-and-desktop-pcs/
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3.1.5. Servers and Supercomputers

A server is a computer or software system that operates on a network, processing
incoming requests and providing specific services and resources to clients. In turn, it
processes client requests according to its function (e.g., web, email, file, or database server),
efficiently manages resources such as CPU and memory, and communicates responses
back to clients. A supercomputer is a high-performance, parallel processing machine that
is highly powerful and specialized. It is ideal for scientific research, engineering simu-
lations, and complex computations. With immense processing speed and customized
hardware, supercomputers can solve large-scale problems quickly [83–85]. Cloud com-
puters combine both of these characteristics. Moreover, they provide security features
to protect data and systems, store data on storage devices, log activities for monitoring
and troubleshooting, and can scale up or down as needed. Due to their computing and
memory capabilities, they can perform complex computations and store huge volumes of
data. There are certain limitations, including dynamic resource allocation, struggling to
efficiently handle sudden surges in demand, latency, and energy. In 2022, the global super-
computer market was valued at USD 8.8 billion. By 2032, it is expected to reach a market
value of USD 24.87 billion and grow at a CAGR of 11% (available online: https://www.
statista.com/statistics/568431/hpc-server-revenue-worldwide/, last accessed 3 September
2023). With their computational power, speed, and capabilities, they will play a pivotal role
in DCCSs.

3.2. Benefits

DCCSs’ architectural agility provides several benefits, including bandwidth opti-
mization, scalability, low latency, efficient resource usage and load balancing, resilience,
flexibility, and reliability. Since the list is small, depending on the application and nature,
DCCSs can offer a wide range of benefits. We provide an example for a better understanding
of each benefit.

Optimize bandwidth: In DCCSs, computation tasks are intelligently distributed between
edge devices and centralized cloud resources. This distribution minimizes the need to
continuously transfer high-bandwidth data, since only essential data (when local device
resources are insufficient) or insights are transmitted to the cloud. DCCSs prioritize lo-
cal processing at the edge, reducing bandwidth demands and enhancing response times
compared with cloud computing, which often sends data back and forth between devices.
Additionally, it reduces the need for extensive data transfers by utilizing localized caching
and processing. DCCSs are particularly well suited to scenarios with limited or unreli-
able connectivity due to its dynamic approach that conserves bandwidth and accelerates
decision making.
Scalability: DCCSs demonstrate scalability by dynamically distributing computation tasks
across diverse resources. Consider a scenario for a better understanding of the scalability
feature in DCCSs. Suppose a smart city uses DCCSs for traffic management. The system
may use edge devices and local servers to process real-time traffic data during regular
traffic hours. Suppose the system detects an increase in traffic (such as during morning
or evening hours) or unexpected traffic surges. In that case, additional resources can
be integrated (such as the cloud) to handle the increased load without compromising
performance. Scalability is especially advantageous when workloads fluctuate or demand
spikes suddenly, since DCCSs effectively utilize available resources without overwhelming
any one component. Due to this architectural agility, DCCS can easily accommodate the
growing computational needs of modern applications and services.
Low latency: DCCS achieves low latency because it processes tasks close to the data source,
rather than sending data long distances as cloud environments do. On the contrary, cloud-
based models require sending data to a remote cloud server for processing, introducing
network latency that can significantly delay the response. For instance, in smart city
applications where traffic management plays a pivotal role in ensuring efficient real-time
responses, low latency is extremely important. Consider the scenario of an accident

https://www.statista.com/statistics/568431/hpc-server-revenue-worldwide/
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that causes traffic congestion on a busy road. Sensors deployed across the roadway can
detect/predict this congestion and immediately notify nearby edge servers. With their
processing capabilities, these edge servers can analyze information instantly and make
decisions in a timely manner. For instance, the decision-making system can adjust traffic
signals in real-time, reroute traffic from a congested route, or instantly dispatch emergency
services. DCCSs’ localized processing effectively minimizes latency by allowing immediate
analysis on local computing devices (such as edge servers), so that appropriate action is
taken quickly.
Optimized resource utilization and load balancing: DCCSs ensure optimal resource uti-
lization through efficient and dynamic resource allocation across the continuum. For
example, consider a manufacturing facility that uses DCCSs to control quality in real time
during production. A variety of sensors or cameras are integrated into the production line
in order to capture product parameters, which need to be further analyzed. Depending on
resource availability or computation intensiveness, DCCSs can dynamically allocate these
data to edge nodes or the cloud. Basic data preprocessing and initial analysis can be carried
out at the edge, where complex analyses (such as image or video analytics or AI/ML tasks)
can be transferred to the cloud. Additionally, DCCSs can federate tasks among edge servers
depending on computational needs and resource availability, which minimizes bandwidth
usage and latency even further.
Resilience, flexibility, and reliability: By distributing tasks across a diverse set of re-
sources, DCCSs guarantees resilience, flexibility, and reliability. Distributing tasks across
resources makes it possible to keep the system running even if one part of it is compro-
mised. Consider the case of a disaster (such as a hurricane) that requires an emergency
management system for a smart city. A network of sensors is deployed throughout the city
to read weather conditions, water levels, and structural integrity. Data from these sensors
are transmitted to local servers or the nearest edge server for initial analysis, which helps
identify potential hazards. Unfortunately, if these servers fail to respond due to power
outages, damages due to disaster, or connection issues, the DCCS can immediately transfer
to another working edge server. The data can be sent to the cloud if there are no active
edge servers or local servers in the city. The emergency management system becomes
more resilient, flexible, and reliable, allowing disasters to be handled effectively even under
adverse conditions when DCCSs are used.

3.3. Challenges

DCCSs offer many benefits and have the potential to transform modern comput-
ing, but they are not without challenges. In this section, we provide key limitations
worth considering.

Interoperability: DCCSs are multi-proprietary. This means that the infrastructure re-
sources and their associated middle-ware layers belong to different organizations. One
can imagine an application running some services in-house, some services with high com-
putational needs in the Cloud, some latency-sensitive services in fog nodes next to the
networking stations, and finally, some other services at the edge to enhance responsiveness
and reduce overall bandwidth requirements. Interestingly, each set of nodes might be
owned by a different organization. Hence, each has different semantics. Therefore, the
application (based on all these services) needs to tackle the usage of very different devices,
which, on top, have different owners with, perhaps, different priorities when designing
their systems.
Complexity of Governance: Currently, Internet-based systems are governed through the
application logic and only residually at the infrastructure level by cloud orchestrators,
which can basically run more copies of an existing job or schedule new jobs. Also, these are
typically centralized entities, which clearly do not fit with the requirements for DCCSs.
Another interesting aspect of current Internet-based systems is their usage of service-level
objectives (SLOs) to set the minimal performance indicators for these systems. Unfortu-
nately, current SLOs are only low-level metrics (such as CPU usage) or time-related metrics
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(such as end-to-end response time). Using SLOs for DCCSs seems appropriate. However,
we identify two key aspects that need to be improved:

1. They would need to be able to cover all aspects/components of the system so that
the governance strategies are aligned regardless of what is being controlled.

2. Their granularity is adequate to perform surgical interventions. Simply put, if the
SLO is on end-to-end response time and it is violated, discovering which is the
specific service/device/component/aspect that is producing the delay can be an
overwhelming task, which cannot comply with time-constraint requirements.

Data synchronization: In the DCCSs, data are constantly generated, updated, moved,
and accessed across a wide range of distributed devices, and it is necessary to ensure
consistency (through proper synchronization mechanisms [86]) across the continuum.
Maintaining data integrity, coherence, and consistency becomes increasingly difficult as
data are processed and modified at different locations and speeds. Sometimes, end-to-end
delays, network issues, and varying computational speeds (due to resource availability or
constraints) can lead to inconsistencies or conflicts between data versions. Furthermore,
data synchronization across hybrid setups involving diverse computational resources
(cloud, edge, constrained IoT, or sensor nodes) presents additional challenges due to
varying processing capabilities and connectivity limitations [87]. In DCCSs, sophisticated
synchronization mechanisms are required to ensure that all components can access up-to-
date and accurate data.
Sustainability and energy efficiency: In terms of sustainability, there are two key aspects
to consider:

1. The vast amount of computing devices and connections;
2. Their energy sources.

Regarding the first consideration, the computational infrastructure will keep increasing in
the coming years. However, it is important that we understand the need to reuse existing
infrastructure to limit the need to add new resources. Unfortunately, this challenges
previous topics such as governance, interoperability, and others, as dedicated resources
are always easier to incorporate into the system than older ones with, perhaps, a different
initial purpose. The second sustainability consideration relates to the energy sources that
are used in computing systems. It is clear that AI-based systems require high amounts of
energy. Hence, being able to harvest this energy from renewable sources is of great interest.
Unfortunately, solutions that can do that also require control over the energy grid, which is
usually not the case.
Energy efficiency relates to sustainability with the idea of using the minimum energy
required for any job. This translates to choosing the right algorithm/service/device/
platform for each case, which requires solving very complex multi-variate optimiza-
tion problems.
Additionally, energy efficiency is key for energy-constrained devices, such as all those
devices that are not permanently linked to the energy infrastructure. These require that
their usage is compatible with their energy-loading/unloading cycles so that they are
always available when needed.
Privacy and security: In DCCSs, privacy and security are inherent problems because of
their complex structure built on resources, edge devices, cloud platforms, and data trans-
missions. A majority of privacy and security issues arise from sharing data, communicating
over networks, and sharing resources across a continuum. Maintaining consistent security
measures becomes more difficult due to dynamic scaling and resource sharing. To ensure
the privacy and security of data, resources, and communication across the continuum,
encryption, access controls, monitoring, and compliance are required.

4. Applications

DCCSs are capable of seamlessly integrating a wide variety of computing resources,
allowing them to perform applications across various domains. In this section, we discuss
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a few applications (industry automation, transportation systems [88], smart cities [89,90],
and healthcare [91]) with a use case example to show the difference between current
technologies with a computing continuum. As a result of adopting DCCS features, these
applications can benefit from better resource utilization, faster decision making, and several
other benefits, depending on the application requirements.

4.1. Industry Automation

Industrial applications encompass a wide range of sectors and industries where tech-
nologies are utilized to enhance processes and operations. There are several applications
that fall under industrial applications, such as manufacturing automation, smart grids,
food and beverage packaging and quality assurance checks, environmental monitoring,
and process control (for example, oil refining or pharmaceuticals). Most of these applica-
tions are automated through machine technology, improving efficiency, productivity, and
safety. When machines malfunction, their efficiency is reduced, safety hazards are present,
and maintenance costs are increased. In order to minimize machine failure and increase
efficiency and productivity, preventive measures, such as regular maintenance, real-time
monitoring, and predictive maintenance, should be implemented. In this context, IoT is
widely used in industrial applications to collect data from machines and then send it to
the cloud/edge for further analysis. DCCSs are further advanced in industrial applica-
tions and provide efficient and continuous monitoring through real-time analysis (limited
interactions with central servers).

Use case: Separating the quality and defective parts in a manufacturing industry.
In manufacturing industries such as mobile assembly, food packing, or robot manufac-

turing, identifying quality parts before assembling or packing is a very time-consuming
and tedious task. There is a huge chance for manual errors to lead to overall quality control
tasks becoming hectic. Thus, most manufacturing industries turn to automation and per-
form defect parts separation using machinery. A basic quality and effective part separation
system in manufacturing automation industries is discussed in Figure 9. We consider a
rotating conveyor belt that moves unsorted parts (both quality and defective). In order to
monitor all the objects moving on the belt, a camera was installed to capture images/videos
and send them to the nearest computing device. It performs the analysis and sends the
trained model to the robot that is armed. In accordance with the provided training model,
the robot can determine whether or not the object it receives is a quality part or a defective
part and can place it accordingly. The accuracy of the training model determines the overall
performance and quality of the separated parts. Accuracy and the timely generation of
robot training models determine the overall performance of end-product quality.

DCCSs are capable of analyzing images or videos captured by cameras on conveyor
belts in real time. It distributes the processing load among edge devices and cloud resources
according to resource availability, which always produces faster. Through real-time analysis,
parts can be classified immediately, reducing the decision-making time and enhancing
separation speed. DCCSs facilitate seamless coordination and communication among
connected devices. With DCCSs, models are continuously refined, resulting in improved
accuracy in identifying quality and defective parts. The distributed nature of DCCSs
also contributes to fault tolerance. In the case of a failure in one computing system,
processing can be seamlessly shifted to alternative resources, minimizing downtime and
disruptions in the manufacturing process. In spite of upgrading the entire automation
system, DCCSs can easily adapt and produce results according to upgraded requirements.
In this context, DCCSs deliver scalability without compromising performance to adapt to
changing production requirements.
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Figure 9. Representation of separating high-quality and defective parts in a manufacturing industry
automation.

4.2. Transportation Systems

Transportation systems are organized networks and infrastructure that facilitate the
movement of people or goods (through various modes of transportation such as roads,
railways, airways, or waterways) between different locations [92–94]. DCCSs play a trans-
formative role in modern transportation systems by integrating real-time data processing
with the computation continuum. It processes data gathered through sensors equipped in
vehicles and infrastructure to enhance traffic flow, reduce congestion, and ensure safe navi-
gation [95,96]. Additionally, they support emergency response, infrastructure maintenance,
and efficient mobility services.

Use case: Ensure safety alert when car drivers use their phones while driving.
A set of cameras were installed on the roadside to monitor traffic and vehicle conditions

(for example, number plate, speed, following the rules or not) [97]. By the instant analysis
(through AI inference) of these recordings, it can detect driver activity. Cameras would
need to capture driver activity, radars would measure car speed, ground sensors would
count cars, and a light system would allow recording in the dark. Additionally, the sensors
must be connected to small processing units (such as IoT/edge processors) to compute
data, and the cameras will be near AI inference boards. In addition to a large server on
which to process video data captured by cameras, the application will have a large storage
and processing capacity (i.e., cloud). Once the results are analyzed and any abnormal
events are observed, they will be immediately reported to the driver and traffic inspectors.
The detailed discussion of this problem and possible solution in DCCSs through SLOs is
discussed by Dustdar et al. in [9].

Through the seamless integration of edge computing, cloud resources, and real-time
analytics, DCCSs significantly enhance the efficiency of the above-described use case.
DCCSs allows for the instant analysis of camera recordings, the detection of driver activity
via AI inference, and processing of diverse sensor data at the source (e.g., the edge) with
improved accuracy. It minimizes latency in detecting unsafe behaviors, instantly alerts
drivers, and notifies traffic inspectors. DCCSs also achieve low latency due to their parallel
processing capabilities. Furthermore, DCCS can adjust sensitivity levels dynamically based
on lighting conditions and traffic flow, enabling the system to adapt to changing conditions.
With DCCSs, we can accurately distribute data-intensive tasks and process and analyze
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them in an efficient and timely manner. Ultimately, DCCSs increase road safety by rapidly
and accurately detecting safety violations.

4.3. Mobile Robots

Robots are autonomous machines equipped with sensors, actuators, and navigation
systems to interact with environments. These robots have a broad range of applications
across various industries, such as automated guided vehicles (AGVs), unmanned ground
vehicles (UGVs), aerial drones, autonomous underwater vehicles (AUVs), search-and-
rescue robots (SARs) and wearable mobile robots (WMRs). Mobile robots continue to evolve,
benefiting from advances in artificial intelligence, machine learning, and connectivity.
Hence, they will also be part of DCCSs once several research challenges are solved [98].
Their applications range from industrial automation to healthcare, agriculture, and beyond,
and they enhance efficiency and reduce costs [99,100]. As a result of their ability to adapt
to changing environments and obstacles through the use of sensors and sophisticated
navigation algorithms, they become indispensable in the applications mentioned above.

Use case: search and rescue in large-scale disasters using mobile robots.
Climate changes in recent years have increased natural disasters and death rates.

The first 72 h following a natural disaster or human disaster are crucial for locating and
rescuing those affected [101]. It is unfortunate that these disasters do not just occur on
land or underground [102], on water or underwater surfaces, or even in the air. In an
emergency, rescue teams and first responders still suffer from situational awareness. But,
in some cases, it is difficult to reach the rescue team in a timely manner, or sometimes it
is not possible for a human to reach those locations. Identifying victims in such hostile
environments is sometimes difficult for the rescue team [103]. This is despite researchers
and industry investigating advanced technological solutions for SAR operations. In disaster-
stricken areas, mobile robotic units, such as drones and underwater systems, serve as
vital frontline assets [104]. As discussed earlier, these robots are equipped with sensors,
cameras, and autonomous navigation capabilities, enabling them to detect victims and
hazards in their surroundings. With edge AI, navigation and obstacle avoidance are
enhanced due to rapid, informed decisions. Additionally, they provide reassurance to
victims and relay critical information to the command center through vital communication
links. By combining these technologies, natural disaster rescue operations are more efficient,
safe, and effective, reducing fatalities and mitigating their effects [105]. With DCCSs,
disaster response and rescue operations are enhanced by dynamically allocating computing
resources, reducing latency, filtering and prioritizing data, ensuring redundancy and fault
tolerance, maximizing communication, enabling scalable edge AI, conserving energy for
mobile robots, and adapting in real time. Integrated data from IoT sensors and mobile
robots streamlines decision making, ensures reliability, and leads to more efficient rescue
efforts, saving lives, and mitigates natural disaster impacts.

4.4. Smart Cities

A smart city uses a network of sensors and devices to collect real-time information
about transportation, energy consumption, waste management, and public services [106].
Data from these sources can be analyzed and used for decision making as a means of
increasing convenience, improving public services, and improving the quality of life for
citizens [107–111]. Since DCCSs have inherent scalability, it can dynamically scale up or
down in response to changes in the smart city ecosystem. DCCSs intelligently distribute
processing tasks over this continuum to efficiently capture, analyze, and act on real-time
data generated by IoT devices through interactions with urban infrastructure and citizens.
The adaptive nature of DCCS also solves the unseen challenges of smart city applications.

Use case: Waste bin management in smart cities to reduce unnecessary collection trips
during waste disposal.

In metropolitan cities across the world, municipal solid waste management has become
a critical issue due to urbanization, growth, and lifestyle changes [112,113]. This issue
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affects many aspects of life beyond developing nations, including health, the environment,
recycling efforts, and multiple industries. It is possible to solve this problem using currently
available technologies by adopting smart waste management strategies. Using this strategy,
stakeholders will be notified of the type and quantity of waste generated and how smart
waste collection will be implemented [114,115]. In this context, a cloud-based smart waste
management mechanism was implemented by Aazam et al. in [116]. A sensor-equipped
waste bin was integrated into the system, which sends information to the cloud about
the level of waste in a bin. Hence, all waste bin information reaches the cloud, enabling
stakeholders to access real-time waste status data and facilitating informed decision making,
such as an optimized waste collection route. In addition to improving the fuel and time
efficiency, intelligent route planning contributes to a more sustainable waste management
system. There are several approaches available in the literature that use IoT and deep
learning to improve smart waste management [117,118]. However, in the currently growing
population and cities, more efficient and faster solutions are needed, and DCCSs can fill
this gap.

The expansion of the city’s proximity and population simultaneously increases the
number of waste bins. This further generates more sensory data in greater proximity to
the city. Since the cloud is located far away, the transmission delay and computational
latency increase the delay in decision making. DCCSs integrate diverse technologies and
resources to enable real-time data processing, analysis, and decision making, providing
a great advantage for faster decision making. In addition to ensuring ongoing effective-
ness, DCCSs’ scalability guarantees their resilience in the face of urban growth without
interrupting the current system. Since AI/ML achieves greater use in many applications in
the current scenarios, their advantages are also grasped through DCCSs to predict before
damage happens.

4.5. Healthcare

Healthcare encompasses a variety of medical services, technologies, and systems
designed to prevent, diagnose, treat, and manage diseases and health conditions. Several
medical devices have evolved in recent years, from wearable sensors to high-end machines
(placed in hospitals and healthcare centers) used to collect patient data and process it
via smartphones (edge devices) or in the cloud [119,120]. Healthcare industries require
accurate and quick analytical results from computing devices. It is sometimes necessary to
analyze intensive tasks such as medical images (X-rays or CT scans) or genomic sequencing,
but the result is expected to be available within a short period of time [121]. Sometimes,
it is necessary to use AI or ML to predict the patient’s condition, which needs more
computational resources. In addition to optimizing healthcare efficiency, accessibility, and
outcomes, DCCSs ensure seamless data flows from point-of-care devices to the edge-to-
cloud continuum for further analytics.

Use case: monitoring intensive care unit (ICU) patient remotely.
Most hospitals in the world have limited caretakers, and it is very challenging to

continuously monitor each patient [122–124]. In some cases, the negligence of the caretaker
of ICU patients might risk their lives. Thus, a remote and automatic alert system might be
useful to continuously monitor patients and record their health status for further analy-
sis [125]. A number of wearable sensors and medical IoT devices gather real-time patient
data, such as vital signs and health metrics (depending on the patient’s diagnosis), and
send these to a central server (private cloud) for processing [126]. In cloud-based compu-
tations, advanced algorithms and/or machine learning are used to analyze and compare
the collected data with the normalized health metrics. It is also possible to visualize these
metrics for quick assessment [127]. This approach allows healthcare professionals to moni-
tor patients’ conditions remotely, detect deviations, and make well-informed healthcare
decisions. Some advanced analytics and pre-trained decision-making systems can also
recommend prescriptions according to their assessment. As a result of this system, patients
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receive better care by facilitating continuous monitoring and early intervention based on
real-time insights.

As DCCSs allow computation across the continuum, optimized processing, and re-
source allocation between point-of-care devices and edge-to-cloud, DCCSs can handle large
computations in a limited time. The scalability of DCCSs allows the system to support an
increasing number of patients and data streams without affecting performance and existing
patients. Using DCCSs, healthcare providers and patients can communicate in real-time,
and critical changes in health can be detected and notified immediately. Furthermore,
DCCSs can provide proactive patient management by identifying potential trends and risk
factors based on the analysis of historical patient data (i.e., predictive analysis).

5. Scope for Further Research

Exploring DCCSs opens new possibilities, inspiring further investigation into its wide
range of dimensions. This section aims to uncover new insights into DCCSs and provide
possible opportunities for further research on the challenges discussed in previous sections.

5.1. Learning Models for DCCS

The rapid evolution of learning models has led to advancements across diverse fields
and enabled innovative applications in a wide range of areas. In addition, DCCSs generate
a large amount of data from its devices, which need to be further processed due to a
variety of factors. In this aspect, learning models are more appropriate for real-time data
analysis and decision making. There are several algorithms in the literature [128–130],
and novel approaches are rapidly evolving. For example, deep learning models are being
advanced as generative adversarial networks (GANs) that drive breakthroughs in many
fields [131]. An ensemble learning model is developed by combining two or more learning
algorithms to achieve a benefit in an application [132]. Furthermore, several experimental
learning models acquire knowledge by interacting with environments, like human learning.
However, these algorithms need a structured and huge amount of data and resources to
achieve greater efficiency. Models can learn from small datasets or transfer knowledge
between tasks using transfer and few-shot learning strategies. This strategy is more efficient
when the computing is limited to edge devices.

DCCS challenges and features are distinct in terms of heterogeneity in devices, com-
plexity of data generation, and communications. Thus, developing new learning strategies
will help DCCSs maximize its potential while reducing its inherent challenges. When
developing these algorithms, it is necessary to consider various constraints, including
energy efficiency, resource and data limitations, available data sizes, real-time decision
making with local and global maxima, cost-effective, easy to adapt, and scalable. It is
also necessary to estimate the real-time (or run time) accuracy of these newly designed
learning algorithms. Adopting incremental learning features can improve the performance
of learned models with limited data availability as well as learned models from historical
data [133,134]. Domain generalization in DCCSs will allow models to provide accurate
predictions or decisions across various devices, locations, and conditions, which will en-
hance its efficiency and effectiveness [135]. Utilizing these models will enable DCCSs to
maximize its potential while meeting the challenges posed by a dynamic environment and
increased user experience.

5.2. Need for Intelligent Protocols

Currently, most data protocols used in the cloud, edge/fog computing, IoT, or DCCSs
use deterministic protocols where the rules are predefined. These rules pose several chal-
lenges, including in terms of scalability, reliability, and interoperability, and are highly
complex to adapt to the dynamic conditions of systems. With the increasing number of
computing devices in DCCSs, data communication through data protocols is an emerging
research area. In addition, advances in machine learning and AI are ever-growing, and
integrating DCCSs and AI opens up an exciting land for research and development, i.e., in-
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telligent data protocols. This field not only extends the existing data protocols (MQTT,
AMQP, DDS, or CoAP) with intelligence but simultaneously opens the scope for developing
new protocols by adding several features such as adaptability, scalability, dynamic decision
making according to real-time system conditions and/or energy efficiency [136]. Adding
intelligence to data protocols not only makes them smart but also mitigates several chal-
lenges, including static message expiry or priority, message filtering, and congestion issues.
Furthermore, intelligent protocols are built according to the available resources, such as
the queue size, the current status of the receivers, and the amount of energy available.
However, it is necessary to take into account the complexity of AI/ML used in constrained
devices because of the data requirements to train and resources needed to store and com-
pute training models [137]. This challenge further opens research focus on developing
lightweight learning models that can run on tiny or constrained devices with limited data
availability, resulting in high real-time accuracy [138].

5.3. Use of Causality

Generally, causation refers to the relationship between a cause and effect, where a
cause results in an effect [139]. In DCCSs, it plays a crucial role in understanding how
actions, events, and decisions influence outcomes. This allows us to understand the
behavior of a system, predict the behavior of the system, filter observations, and ensure
consistency. Through this understanding and a priori analysis, it is easy to minimize
uncertainty effects. Using causality in DCCSs offers several benefits, such as maintaining
system integrity, identifying the order of execution during parallel computation across
multiple computing devices, i.e., intuitive ordering, predicting the availability of resources
for future usages so that latency will be avoided, and fault or failure predictions. For
example, Chen et al. in [140] used causality to model fault propagation paths and infer the
root causes (real culprits responsible for performance issues) of performance problems
in distributed systems. In the literature, there are several algorithms for identifying the
most appropriate causal relationship with limited analysis, such as graph knowledge
representation (GKR) through representation learning [11].

5.4. Continuous Diagnostics and Mitigation

In a zero-trust architecture (ZTA), continuous diagnostics and mitigation (CDM)
continually assesses the security posture of the network (available online: https://csrc.
nist.gov/glossary/term/continuous_diagnostics_and_mitigation, accessed on 3 September
2023). It helps detect anomalous behavior or unauthorized access attempts, enabling
organizations to respond promptly. Moreover, enabling such a CDM mechanism in DCCSs
will enhance the governance of computing entities. Through an efficient CDM program,
it is easy to minimize downtime and ensure sustainability. Due to the vast amount of
features and challenges, CDM programs can also be embedded with multiple features
such as autonomous configuration management, monitoring the up and downtime of each
device, continuous health monitoring of devices, and its effect on environmental factors.
The CDM program also serves to check the feasibility of a newly added device in the
system. The design of the CDM program opens a wider research scope due to challenges
associated with device data. These challenges include high nonlinearity, sparsity, difficulty
in breaking structures, and complexity in extracting explanatory factors across systems’
data [42]. The causal analysis discussed in the previous section helps to monitor and
predict device conditions in an efficient manner [141]. With the integration of zero-touch
provisioning into the CDM program, DCCS can manage configurations more efficiently
and remotely [142].

5.5. Data Fragmentation and Clustered Edge Intelligence

Data fragmentation refers to the splitting of a large amount of data into a specific
number of small partitions. Fragmented portions can be efficiently transmitted through
limited bandwidth and quickly computed, separately, and in parallel [143]. DCCS data
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might be generated at various locations of the continuum and could be difficult to analyze
within one edge device. In such cases, data fragmentation optimizes the use of resources
(memory, CPU, and bandwidth), reduces the processing times (due to processing a chunk
of data), enhances scalability, and supports parallel processing. Since data fragments are
processed across a continuum, fault tolerance is also supported. This means a device failure
does not affect the entire processing and makes it easy to distribute the load from one
failed device to another. Additionally, data fragmentation presents limitations in DCCSs,
such as data dependencies, communication overhead, and load imbalance. Since DCCSs
are connected to a wider area and with a large number of computing nodes, scaling the
fragments for computation becomes a challenging task [144]. As an alternative to overcome
these challenges, clustered edge intelligence (CEI) groups edge devices into clusters wisely
based on fragmentation and resource needs [145]. Furthermore, CEI should be based on
performance metrics such as latency, bandwidth, CPU, and/or memory availability. Since
the CEI is still incompletely evolved, there is huge scope for further research.

5.6. Energy-Efficiency and Sustainability

In DCCSs, each device uses power to enable data collection, storage, communication,
and processing. The limited energy capacity of these devices is constrained by factors
such as battery life or power availability in remote locations [2]. In addition, increasing
the number of sensor devices, IoT, edge or cloud, and associated devices contributes to
greenhouse gas emissions. A BBC study says the amount of emissions we produce through
electronic gadgets, the Internet, and their supporting systems is similar to that produced by
the airline industry worldwide (Available online: https://www.bbc.com/future/article/20
200305-why-your-internet-habits-are-not-as-clean-as-you-think, accessed on 3 September
2023). IoT/edge devices are the same. In order to decarbonize the atmosphere, we need
energy-efficient methods that prioritize resource conservation and environmental gover-
nance. Hence, energy efficiency for DCCS is one of the primary challenges in the current
energy and planetary conditions, making it necessary to efficiently manage energy to
guarantee sustainable and uninterrupted operation while minimizing the carbon footprint.

5.7. Controlling Data Gravity and Data Friction

Data gravity describes the tendency of data to attract additional data. This is based
on the idea that the more data and applications are stored at a particular location, the
more attractive it becomes for other data to be stored there. Data friction is resistance that
impedes data transfer. Due to the dynamic allocation performed by DCCS, there is a high
probability of data gravity and friction occurring on specific devices in the network. Data
gravity and friction pose challenges to efficient resource utilization and performance in the
computing continuum [146]. These challenges can be controlled through intelligent data
placement, replication, caching, and efficient data movement strategies, but more research
is needed to confirm this.

6. Conclusions

The computing paradigm has evolved over decades from a computer with room-sized
resources to tiny computing devices, enabling seamless interaction between devices and
humans. This evolution trajectory continues to accelerate, promising unprecedented ca-
pabilities that will reshape industries, science, and society at large. This paper provides
an overview of the evolution of computing paradigms from the 1960s to the present day
in an effort to illustrate the change. We ranged from large-scale mainframe computers to
current distributed computing continuum systems (DCCSs). We analyzed the architec-
tures, components, benefits and limitations of each computing model. We discussed the
major advantages of DCCSs suitable for current application scenarios and computational
demands. We examined appropriate use cases with respect to traditional technologies and
the advantages that come with DCCSs. We provided an illustrative example use case for
each application to understand DCCS use and its advantages. As DCCSs are a growing
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field of research, a wide range of open research challenges and opportunities are available
for further research. We discussed possible open research challenges and suggest suitable
directions for further research.
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