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Abstract—Energy consumption for large amounts of delay-
sensitive applications brings serious challenges with the contin-
uous development and diversity of Industrial Internet of Things
(IIoT) applications in fog networks. In addition, conventional
cloud technology cannot adhere to the delay requirement of
sensitive IIoT applications due to long-distance data travel.
To address this bottleneck, we design a novel energy–delay
optimization framework called transmission scheduling and com-
putation offloading (TSCO), while maintaining energy and delay
constraints in the fog environment. To achieve this objective,
we first present a heuristic-based transmission scheduling strat-
egy to transfer IIoT-generated tasks based on their importance.
Moreover, we also introduce a graph-based task-offloading strat-
egy using constrained-restricted mixed linear programming to
handle high traffic in rush-hour scenarios. Extensive simulation
results illustrate that the proposed TSCO approach significantly
optimizes energy consumption and delay up to 12%–17% dur-
ing computation and communication over the traditional baseline
algorithms.

Index Terms—Energy efficiency, fog computing, Industrial
Internet of Things (IIoT), mixed linear programming, task
offloading.

I. INTRODUCTION

INDUSTRIAL Internet of Things (IIoT) has contributed
toward the rapid growth in various industrial application

domains, such as the green infrastructure, smart grid, smart
city, smart transport networks, amongst others [1]. With these
diverse applications, IIoT devices are also generating a mas-
sive amount of sensitive data, requiring immediate processing
near edge devices, resulting in a shortage of lower storage
and faster data processing among the IIoT devices. In such
circumstances, transferring a portion of excessive data to a
resource-rich remote computing device, also called compu-
tation offloading, is a suitable solution to handle sensitive
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Fig. 1. Hierarchical IIoT–fog–cloud architecture.

IIoT applications [2]. In general, resource-constrained IIoT
applications offload data to a specific cloud server for pro-
cessing and data analysis [3]. However, several challenges
are admitted due to the physical distance between the IIoT
devices and the cloud servers. To overcome the shortcoming,
CISCO (New York, 2012 [4]) introduced the fog-computing
paradigm as an auxiliary tier to conventional cloud-computing
technology to process delay sensitive, i.e., emergency IIoT
applications in nearby edge devices [5]. Essentially, fog
devices are used to deploy at the edge of the networks to
optimize the overall latency and increase the reliability of
the industrial network [6]. Thus, to gratify Quality-of-Service
(QoS) objectives and to process emergency applications, a
hierarchical fog–cloud environment is more beneficial for IIoT
applications, where cloud servers can handle resource-hungry
applications and fog devices can process other delay-sensitive
applications simultaneously [7].

A. Motivation

To demonstrate the motivation for our work, let us examine
an example shown in Fig. 1. Let an industrial fog network
consist of #1 fog device, #1 cloud server, and A number of
IIoT devices, where each IIoT device generates five tasks
from different sensors. Consider the uplink and downlink
energy consumption between fog device and IIoT devices is
a constant unit 1. For this example, complete uploading and
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downloading energy consumption is considered the number of
hopes between IIoT devices and computing devices. For quick
comprehension, we admit equal numbers of computation-
intensive and delay-sensitive tasks, and the processing energy
required to execute these tasks is 1 and 2 units, respectively.
Finally, we assume Fog devices can assign at most 2 units of
computation resource to each IIoT device to perform the tasks,
and the remaining tasks are uploaded to the cloud server.

In this example, we consider one IIoT device executes one
task and offloads the remaining four tasks for remote execu-
tion. The energy dissipation for each IIoT device can now be
calculated as (1+ 2+ 2+ 1+ 1) = 7. Given 2 available free
units in fog devices, the task-allocator assigns delay-sensitive
tasks to the fog device and computation-intensive tasks to the
cloud server with energy consumption rate (1 + 1) = 2 and
(2+ 2) = 4 units, respectively. Then, the total energy con-
sumption to execute a delay-sensitive task to a fog device
is (1 + 1 + 1) = 3 and computation-intensive task is
(1+1+2+1+1) = 6. Thus, the total energy consumption to
process all 5 tasks for an IIoT device is (1+6+6+3+3) = 19.
If there are A numbers of IIoT devices, then the expected
total energy consumption by the network is (A × 19). If
we use a random task-offloading strategy and execute one
computation-intensive task to the fog device, executing that
task requires (1+ 2+ 2) = 4 units of energy, which is mini-
mum. Still, overall energy consumption to execute all the tasks
will be (1+ 4+ 6+ 5+ 5) = 21. For large IIoT devices, total
energy consumption will become (A×21), which is 11% more
than the proposed solution. If the number of tasks in each
IIoT device increases, the total energy consumption rate will
increase by up to 30%–40%.

From this illustration, we can analyze that even a bet-
ter strategy of fog association, transmission scheduling, and
computation offloading not only minimizes the energy con-
sumption rate but also increases the QoS for delay-critical IIoT
applications.

B. Related Works

Over the last few years, numerous research efforts have
been made to address issues related to computation offloading
in the multitire fog–cloud architecture for handling various
delay-restricted IIoT applications [8]. In this viewpoint, an
apparent answer is to offload resource-hungry tasks to the
cloud server or higher resource-oriented computing devices.
For example, in [9], Hazra et al. have proposed an energy-
optimized computation offloading strategy in stochastic fog
networks. A code-oriented multiuser computation offloading
approach has been designed by Ding et al. [10] for optimiz-
ing the execution overhead in mobile-edge computing (MEC)
networks. Similarly, in [11], Mukherjee et al. have also intro-
duced a deadline-aware computation offloading system for
industrial fog networks. These works separately consider the
delay and energy consumption rate for fog networks. However,
they do not highlight the actual tradeoff between energy and
latency. To address this issue, Sarkar et al. [3] have proposed
a priority-based task scheduling and resource-based computa-
tion offloading strategy for delay-restricted IIoT applications.
Sheng et al. [12] have also presented an energy-efficient

TABLE I
COMPARATIVE STUDY WITH THE EXISTING ALGORITHMS

partial computation offloading method in the collaboration of
fog–cloud networks.

Offloading application data from IIoT devices to a remote
computing server can certainly decrease execution time and
overcome energy usage in the industrial environment [13].
However, remote execution is not always a viable option
because remote server processing necessitates additional data
transmission delay, which might lengthen the overall execu-
tion duration and drain the battery of the IIoT devices [14].
To address device selection challenges and catch advantage
of the offloading mechanism, Yadav et al. [15] have outlined
a latency-driven task placement strategy for IoT applica-
tions. A graph-based computation offloading strategy has been
introduced by Sarkar et al. [3] for optimizing the compu-
tation overhead over the federated fog networks. Similarly,
Hazra et al. [16] and Li et al. [17] have introduced sev-
eral optimization techniques and offloading mechanisms to
minimize the energy–delay for the execution of IIoT appli-
cations. A summary of the existing contributions is presented
in Table I.

Most of the current strategies focus on optimal scheduling
and computation offloading approaches separately for reach-
ing various QoS objectives, including minimizing delay and
energy consumption [1], [18]. Nonetheless, the earlier studies
do not consider the importance of transmission scheduling and
the device-matching strategy in the industrial fog networks,
even though the optimal device-matching strategy helps to
offload tasks in suitable computing devices and utilize fog
resources more efficiently [19]. On the other hand, transmis-
sion scheduling helps control priority-driven data transmission
over fog networks. Therefore, all these challenges encour-
age to design of cooperative transmission scheduling and
computation offloading (TSCO) strategies for industrial appli-
cations, where emergency tasks can be prioritized depending
on network conditions. Hence, there are two significant chal-
lenges for offloading computation data through a hierarchical
fog network. First, how to determine an efficient transmis-
sion scheduling strategy for delay-sensitive IIoT applications
so that the system can find an efficient scheduling order
pair for all IIoT-generated tasks. Second, how to define an
optimal task-device-matching strategy in the fog networks so
that IIoT-generated tasks are adequately offloaded to suitable
devices.

C. Contributions

Considering these challenges in mind, we propose an
efficient TSCO scheme for minimizing the overall delay
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and energy consumption rate of industrial fog networks.
Specifically, the notable contributions of this article are listed
as follows.

1) This article aims at designing a “green” IIoT system
called TSCO for handling various emergency tasks in
the fog environment. First, we define a transmission
scheduling policy for all IIoT-generated tasks based on
their input data size and transmission rate of industrial
devices. This strategy also considers the current network
dynamics to reduce the transmission overhead through
the network.

2) To maximize the utilization of fog/cloud resources,
we also introduce a device adaptation strategy called
the device-matching order (DMO). Our proposed graph-
based decision-making system is also handy in making
near-optimal offloading decisions among the comput-
ing devices. A theoretical analysis is also performed
to determine the energy–delay tradeoff of the proposed
model.

3) Extensive simulation and performance analysis demon-
strate that our proposed TSCO strategy is suitable to
overcome the average waiting time, processing time,
and energy consumption rate over the existing baseline
algorithms.

The remainder of this article is structured as follows. Section II
discusses the mathematical modeling of fog networks. The
energy-aware computation offloading strategy is exhibited in
Section III. The numerical analysis of our proposed TSCO
approach is explained in Section IV. Finally, conclusions and
future research objectives are considered in Section V.

II. COMPUTATION OFFLOADING MODEL

Considering an industrial fog–cloud network with a
finite number of M fog devices, denoted as M =
{1, 2, . . . , M} ∀m ∈ M and each m contains multiple pro-
cessing instances. In this network, let A denote the set of IIoT
devices, represented as A = {1, 2, . . . , A} ∀a ∈ A and N
be the set of cloud servers, denoted as N = {1, 2, . . . , N}
∀n ∈ N . Each IIoT device can generate K, K = {1, 2, . . . , K}
∀k ∈ K number of time-dependent tasks with input and out-
put data size Kin

k and Kout
k (in bits), respectively. The tasks

can process locally or offload to the nearby fog device/cloud
server for further processing through G numbers of gate-
way devices, represented as G = {1, 2, . . . , G} ∀g ∈ G.
Here, we consider a binary offloading situation, where IIoT
devices deploy entire tasks to the available computing devices
Sl ∀l ∈ (M ∪N ) based on multiple QoS parameters. Denote
X ∈ R

K×(A∪M∪N ) as a task allocation matrix, where the
(k, l)th entry is defined by

X (k, l) =
{

1, if kth task is assigned to lth device
0, otherwise.

We consider a task k ∀k ∈ K contains three attributes
while generating, i.e., Kin

k = 〈KCPU
k , Kfreq

k , Kexe
k 〉, where

KCPU
k denotes the CPU requirement, and Kfreq

k represents the
variable-length task generating frequency, whereas Kexe

k rep-
resents the execution deadline of task k ∀k ∈ K. Furthermore,

TABLE II
FREQUENTLY USED NOTATIONS

we consider that gateway devices G request services to
multiple fog devices M, consequently each fog device m
∀m ∈ M also receives multiple requests from IIoT devices
A at time t ∀t ∈ T , where T = {1, 2, . . . , T}. The important
notations are referred to Table II.

A. Local Execution

First, IIoT devices A check the availability of the CPU
frequency on their own. If the CPU frequency of the ath IIoT
device �CPU

a satisfy the tasks CPU requirement KCPU
k , i.e.,

�CPU
a > KCPU

k , then IIoT devices execute tasks locally. Let
ϕ be the processing density for the kth task. Thus, the task
processing time T

process
ka on the local IIoT device a ∈ A can

be expressed as follows:

T
process
ka = X (k, a)× ϕ.Kin

k

�CPU
a

. (1)

Similarly, the energy consumption E
process
ka to process a task

k ∈ K in the IIoT device a ∈ A is given as follows:

E
process
ka = T

process
ka ×P process

a (2)

where P
process
a defines the predefined energy consumption

rate for IIoT devices A deployed in the industrial networks.

B. Fog Execution

Recent advancements in storage technology allow IIoT
devices to process a small portion of tasks locally. However,
due to the limited CPU frequency of IIoT devices, tasks are
forwarded to suitable computing devices that should satisfy
minimum latency and available resource requirements. Denote
H a and P

up
a as the channel power gain and transmission

power of the ath IIoT device. By considering the Shannon
capacity formula [23], the uploading data transmission rate
R

up
am is defined as R

up
am = B

up
am log2(1 + [P up

a H a/ξ
2
m]),

where B
up
am signifies the allocated transmission bandwidth

between the ath IIoT device and the mth fog device. Thus,
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the data transmission time T
up
am and transmission energy usage

E
up
am to a fog device m ∈M can be represented as follows:

T
up
am =

X (k, m)× ϕ.Kin
k

R
up
am

(3)

E
up
am = T

up
am ×P up

a . (4)

Once tasks are received, fog devices M immediately start their
execution process. Thus, the total processing delay T

process
am ,

i.e., time taken to process the kth task in the mth fog device
is given as follows:

T
process
am = X (k, m)× ϕ.Kin

k

�CPU
m

(5)

where �CPU
m represents the computational capacity of the

mth fog device. From (5), we can derive the overall energy
consumption rate on the fog device m ∈M as follows:

E
process
am = X (k, m)× ϕ.Kin

k

�CPU
m

× E
CPU
m . (6)

Similarly, let R down
ma = B down

ma log2(1 + [P down
m H m/ξ2

a ])
be the down transmission rate to the IIoT device, where
B down

ma denotes the available transmission bandwidth utiliza-
tion between the mth fog device to the ath end device. Then,
the downloading time T

down
ma and energy usage E

down
ma to fetch

the results at the IIoT device m ∈ M can be expressed as
follows:

T
down
ma = X (m, k)× Kout

k

R down
ma

(7)

E
down
ma = T

down
ma ×P down

m (8)

where Kout
k = ϒ ×Kin

k and ϒ is the scaling coefficient. Thus,
the total delay and energy consumed by the task k ∈ K while
processing in a fog device m ∈ M is defined as T

total
am =

T
up
am + T

process
am + T

down
ma and E

total
am = E

up
am + E

process
am + E

down
ma .

C. Cloud Execution

Let H a and P
up
a be the channel power gain and transmis-

sion power of the ath IIoT device. Then, the uploading data
transmission rate R

up
an to a cloud server n ∈ N is defined as

R
up
an = B

up
an log2(1+ [P up

a H a/ξ
2
n ]), where B

up
an defines the

transmission bandwidth between the ath IIoT device and the
nth cloud server. Thus, the transmission delay T

up
an and energy

consumption E
up
an on a cloud server n ∈ N can be defined as

follows:

T
up
an =

X (k, n)× ϕ.Kin
k

R
up
an

(9)

E
up
an = T

up
an ×P up

a . (10)

Consequently, the total time and energy are taken to process
the kth task in the nth cloud server is expressed as follows:

T
process
an = X (k, n)× ϕ.Kin

k

�CPU
n

(11)

E
process
an = X (k, n)× ϕ.Kin

k

�CPU
n

× E
CPU
n (12)

Fig. 2. Illustration of task-offloading decision.

where E
CPU
n be the energy consumption rate at the cloud

server. The achievable downloading rate R down
na to the IIoT

device a ∈ A can be expressed as R down
na = B out

na log2(1 +
[P down

n H n/ξ
2
a ]). Similarly, the downloading time T

down
na and

energy consumption E
down
na of task k ∈ K can be expressed as

follows:

T
down
na = X (n, k)× Kout

k

R down
na

(13)

E
down
na = T

down
na ×P down

n . (14)

Thus, the overall delay and energy usage on a cloud server
n ∈ N is defined as T

total
an = T

up
an + T

process
an + T

down
na and

E
total
an = E

up
an+E

process
an +E

down
na . From the above formulations,

we can derive the overall delay and energy consumption to
process a task k ∈ K on IIoT devices A and other computing
devices Sl ∀l ∈ (M ∪N ) can be expressed as follows:

T
total
kl =

{
T

process
al , if l ∈ A

T
up
al + T

process
al + T

down
la , if l ∈ Sl

(15)

E
total
kl =

{
E

process
al , if l ∈ A

E
up
al + E

process
al + E

down
la , if l ∈ Sl.

(16)

D. Problem Formulation

The primary objective following this problem formulation
is to find a near-optimal scheduling order minimizing the
proposed objective function while considering energy as the
primary concern, as illustrated in Fig. 2. The objective func-
tion has two perspectives, i.e., minimize energy consumption
rate and reduce overall processing time. The above goals and
correlated constraints are theoretically formulated as follows:

minimize lim
t→∞

∑
t∈T

α · Etotal
kl (t)+ β · Ttotal

kl (t) (17a)

subject to 0 ≤ E
total
kl (t) ≤ Emax

l (17b)

0 ≤ T
max
kl (t) ≤ T max

l (17c)

0 ≤ �CPU
k (t) ≤ �max

l (17d)∑
k∈|K|

∑
l∈|Sl|

X (k, l) ≤ |Sl| (17e)

∑
k∈|K|

X (k, l) = 1 (17f)

X (k, l) ∈ {0, 1} (17g)

T
up
kl ≥ 0 and T

down
lk ≥ 0 (17h)
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where α + β = 1. Constraint (17b) states the overall
energy consumption of the kth task is less than the maxi-
mum energy consumption Emax

l of the lth computing device.
Constraint (17c) restricts the total processing delay to a maxi-
mum tolerable delay T max

l on the lth device. Constraint (17d)
clarifies that the maximum processing frequency of task k ∈ K
is less than the maximum tolerable frequency �max

l on device
l ∀l ∈ (A ∪M ∪N ). Constraint (17e) defined that each task
should be allocated at-most one computing device l ∈ Sl at
time t. Constraint (17f) restricts the task-offloading value to
maximum 1 and constraint (17g) imposes the binary offload-
ing constraint. Finally, constraint (17h) signifies a non zero
data transmission time among the computing devices.

III. ENERGY EFFICIENT OFFLOADING STRATEGY

In this section, we aim to collectively optimize the distribu-
tion of communication and computation resources in virtual
computing devices (both fog devices and cloud servers) to
achieve the least possible delay and energy consumption over
the fog networks. To confirm this, we divide our computa-
tion offloading strategy into two phases. In the first phase, a
network-dependent transmission scheduling scheme is intro-
duced. Then, to offload the scheduled tasks, a mixed-integer
programming scheme is adopted to allocate tasks on suitable
computing devices, discussed as follows.

A. Index-Based Transmission Scheduling

Recognizing the index of each IIoT device a ∈ A and
accordingly allow them for transmission is the preprocess-
ing step of our proposed transmission scheduling technique
(IBTS). Without loss of generality, we consider that the
system follows a static-index-based ranking policy. Initially,
IIoT devices A store all the generated tasks K in a local queue.
Let λk be the dynamic task arrival rate at any IIoT device a
∀a ∈ A. Denote 1/βa = T

up
al as the average upstream trans-

mission time and λk/βa = (X (k, l)× λk)/βa as the traffic
intensity of the ath IIoT device defined in [24]. Furthermore,
let Kin

k (t) be the amount of task buffered in the ath IIoT device
at a time instance t. Thus, we have a delay-dependent priority
indexing C index

a (t) for each task k ∀k ∈ K at the initial stages
of time t, which can be expressed as follows:

A = arg max
a∈A

C index
a (t)

= arg max
a∈A

(
Kin

k (t)

X (k, a)× λk

)
βa. (18)

Definition: A task k generated through IIoT device a ∈ A
is called delay sensitive task KD

k , if the device priority index
C index

a is less than or equal to D , i.e., C index
a ≤ D . Otherwise,

the task is classified as resource-intensive task KR
k .

1) Illustration Example: Considering two IIoT devices
IIoT#1 and IIoT#2 are actively generating data with trans-
mission time 1/β1 = 0.2 s and 1/β2 = 0.4 s, respectively.
Assuming that task-offloading rate of IIoT#1 = 3 tasks/s and
IIoT#2 = 2 tasks/s, respectively, with equal probability. If at
time t, the number of tasks stored in a local queue of IIoT gate-
way is Kin

1 (t) = 5 and Kin
2 (t) = 3. Then, according to (18), we

have the following priority index of IIoT#1 and IIoT#2 with
indexing threshold D = 0.5 as follows:

C index
1 (t) = (5/3)× 0.2 = 0.33 (19)

C index
2 (t) = (3/2)× 0.4 = 0.60. (20)

Since C index
1 (t) ≤ 0.5 and C index

2 (t) > 0.5, IIoT#1 will be
considered as delay sensitive and IIoT#2 will be considered as
resource intensive starting from time t. In the following sec-
tions, we prove that this index-based transmission scheduling
strategy asymptotically diminishes the overall execution delay
of IIoT applications.

B. Device-Matching Order

This section introduces our proposed (DMO) policy for dis-
tributing all the scheduled tasks among suitable fog devices or
cloud servers. Initially, we construct a (k× l) task assignment
matrix Ek×l, where the row indicates the tasks and column
indicates the resources. Each entry in matrix E is denoted using
the ekl value, a nonnegative heuristic information for task k
(k ≤ K) to assign the resource l (l ≤ Sl, where Sl =M∪N ).
Each entry ekl in matrix Ek×l is computed using the following:

min
k∈K

α · Etotal
kl (t)+ β · Ttotal

kl (t). (21)

Now, we can generate task allocation matrix X ∗ using
assignment matrix E, where each entry of X ∗ is either 0 or 1.
The goal of the DMO algorithm is shown in (22a)

minimize max
k∈K

Sl∑
l=1

X (k, l) · ekl (22a)

subjectto X (k, l) ∈ {0, 1} ∀l ∈ Sl (22b)
Sl∑

l=1

X (k, l) = 1 ∀k = {1, 2, . . . , K}. (22c)

It is important to note that the DMO strategy tradeoff energy
and delay for obtaining suitable computing devices from the
device pool. The DMO policy performs the following steps in
order to achieve the goal in (22a).

Step 1: Order the ekl values in nondecreasing order, i.e.,
ekl(1) ≤ ekl(2) ≤ ekl(3) ≤ · · · ≤ ekl(Sl).

Step 2: Find the minimum ekl rank as an element (r) in the
kth row and lth column E in increasing order until
each column and row contains at least one element.

Step 3: Replace the entries ekl of E according to

ekl =
{

0, if ekl ≤ r
ekl, Otherwise.

(23)

Step 4: Consider a column (l) which had less number of
zeros, and assign all the tasks (k) whose associ-
ated values are 0 to the particular resource (either
fog/cloud).

Step 5: Repeat step 4 until all the tasks are offloaded.
We illustrate the proposed DMO strategy through an exam-

ple in Fig. 3 for better understanding. This example considers
seven tasks generated by IIoT devices, three fog nodes, and
two cloud resources. We assume each fog/cloud had multiple
computing instances to process multiple tasks at a time. The
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 3. Illustration of the DMO strategy through an example. (a) Initial value
of matrix E, extracted using (21). (b) Ranks of each entry of the matrix E.
(c) Fill the ranks in ascending order until each column and row contains at
least an element. (d) Replace the ranks with zeros and reaming entries with the
values similar to matrix E. (e) Consider column C2 because of least number
of zeros. (f) Consider column F2. (g) Consider column F1. (h) Consider
column F3. (i) Consider column C1. (j) Replace the assignment with ones
and remaining with zeros.

rounded values get from (21) are considered as a matrix E as
shown in Fig. 3(a). Now, we identify the ranks of each entry
of the matrix E as shown in Fig. 3(b). Once the rank of each
entry is identified, we fill one by one entry of the rank in non-
decreasing order until each row and column can fill with at
least an entry. It is deprecated in Fig. 3(c) and this condition
satisfied once the rank 12 is filled. From Fig. 3(d), we can
observe that the elements which are less than or equal to the
value associated with rank 12, i.e., 45, are replaced with 0.
Now we start assigning each task to a resource according to
the zeros in the matrix by giving high priority to the least
number of zeros in a column. So, column C2 contains the
least number of 0, so the zero-associated task T3 is assigned
to C2 and strike off the row (strike-off means it will not be
considered during further assignments) as shown in Fig. 3(e).
From Fig. 3(f), we note that the columns C1 and F2 contain
the least number of zeros. Here, we can consider any one, but

Algorithm 1: TSCO Algorithm

1 INPUT: Kin
k , λk, r, βa, X (k, a), Ekl, D

2 OUTPUT: Task offloading decision
1: Initialize Kin

k , λk, r, Ekl and D
2: Calculate C index

a (t) using Eq.(18)
3: for a = 1 to A do
4: Identify KD

k and KR
k using threshold D

5: Offload KR
k to cloud server n ∈ N

6: for l = 1 to Sl do
7: Sort(ekl) // ekl(1) ≤ ekl(2) ≤ ekl(3) ≤ · · · ≤ ekl(Sl)

8: Identify arg min{ekl}
9: Apply Eq. (23) to update ekl, k ∈ K and l ∈ Sl

10: while min{count_Zeros(l)}&k = null do
11: Assign task k ∈ K to resource l ∈ Sl

12: free(k, l) in each step
13: end while
14: A← A\{a} and Sl ← Sl\{l}
15: Offload tasks to suitable computing devices
16: end for
17: end for

giving the high priority to Fog nodes. So, the zero associated
in the column F2, i.e., tasks T4 and T5 are assigned to it.
Similarly, tasks T1 and T7 are assigned to F1 as shown in
Fig. 3(g), T2 is assigned to C1 as shown in Fig. 3(h), and T6
is assigned to C1 as shown in Fig. 3(i). Furthermore, the task
allocation matrix X ∗ is generated from the above offloading
decisions as shown in Fig. 3(j). Detailed steps of the TSCO
strategy are shown in Algorithm 1.

2) Handling of Task-Offloading Failure Scenario: Task fail-
ure is a critical issue in handling sensitive IIoT applications
where each data contain some sensing or actuating information
and need to be processed in the stipulated period. To address
such circumstances, our proposed TSCO strategy first ranks
IIoT devices based on the importance level of their data. Then,
the DMO strategy is introduced to saturate k number of indus-
trial tasks to Sl number of computing devices. Specifically,
the DMO strategy transforms the task assignment problem into
a graph-based problem, making the network simple to under-
stand and offloading the task to suitable computing devices.
On the other hand, unsuccessful tasks will wait for the subse-
quent iterations, allowing the network to track failure scenarios
to some extent.

Theorem 1: Given a set of tasks K and active computing
devices Sl ∀l ∈ {M ∪N }, the upper bound of task offloaded
using the DMO strategy is min{	(|K|),	(|Sl|)}.

Proof: The performance bound for a set of |K| scheduled
nonpreemptive tasks on |Sl| ∀l = {M ∪ N }, active comput-
ing devices, where |.| denotes the cardinality of a set, can
be determined by considering the three cases of the upper
bound.

1) When |K| < |Sl|, the maximum number of tasks are
upper bounded by 	(|K|), where 1 ≤ |K| ≤ |Sl| and
only |K| tasks can be offloaded by the DMO strategy.
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Fig. 4. Illustration of the proposed computation offloading strategy.

2) When |K| = |Sl|, the DMO strategy holds true and
the number of scheduled tasks are upper bounded by
	(|K|).

3) When |K| > |Sl|, then the performance of the DMO strat-
egy is upper bounded by 	(|Sl|), i.e., atmost |Sl| tasks
can be offloaded by the DMO strategy.

Thus, the total performance bound for the proposed DMO
strategy is upper bounded by min{	(|K|),	(|Sl|)} and the
remaining (|Sl| − |K|) tasks will wait for next timestamp. A
visual representation of our proposed computation offloading
strategy is depicted in Fig. 4.

Theorem 2: The runtime complexity of the proposed TSCO
strategy is 	(S3

l ).
Proof: The complexity of the collaborative computation

offloading strategy is divided into two stages. First, the IBTS
mechanism classify the task priority for the set of industrial
tasks K with the ranking of IIoT devices in 1×	(K) = 	(K)

time. In the second stage, the DMO mechanism makes offload-
ing decisions. Initially, the time requires to complete the
sorting and ranking will take O(S2

l ) and 	(Sl), respectively.
Then, the DMO policy takes constant time to identify the r from
the sorted list in step 2. Next, to identify and replace the ≤ r
values to 0 on matrix E takes 	(Sl) time. Once the matrix is
prepared, identifying the offloading task to devices (i.e., step 4)
requires O(S3

l ) time. So, the complexity of the proposed DMO
strategy is O(S2

l )+2×	(Sl)+	(1)+O(S3
l ) ≈ O(S3

l ). Thus,
the asymptotic complexity of our proposed TSCO strategy
becomes 	(K)+	(S3

l ) ≈ 	(S3
l ).

Theorem 3: For a given industrial fog network with a
speedup factor U and time critical parameters 


delay
kl and



energy
kl , the computation offloading decisions must follow the

conditions 
m > max(

delay
kl ,


energy
kl ) and (


delay
kl /


energy
kl ) <

1, where 

delay
kl and 


energy
kl denote the coefficients of delay

time and energy time utilities.
Proof: Specifically, offloading time is the sum of commu-

nication and computation time on remote processing devices,
and it should be less than the execution time on IIoT
devices to improve performance as shown in Fig. 5. Thus,
in order to save execution time, it is preferable to offload
computation data to the fog devices or cloud server, when
local execution meets condition T

process
ka > T

process
al + T

up
al .

Similarly, when a computation data fits the energy criteria
P

process
a T

process
ka > HiT

process
al +P

up
l T

up
al , it is worth offload-

ing to consider remote processing than running tasks locally,
where l ∈ Sl. Therefore, offloading can save energy when

Fig. 5. Traffic attributes of fog networks.

the energy spent on remote communication and processing
is less than the energy consumed by the IIoT device. Let
T

process
ka = UT

process
al , 1 < U < U max, where U denotes the

speedup factor for remote processing devices. Now, we can
rewrite the above two conditions as follows:

T
process
ka > T

process
ka /U + T

up
al (24)

P process
a T

process
ka > HiT

process
ka /U +P

up
l T

up
al (25)

where l ∈ Sl. The inequalities in (24) and (25) impose large
U for the server, small data size and large transmission band-
width. According to [25], we can derive (24) and (25) with
two time critical values 


delay
kl and 


energy
kl as follows:



delay
kl = 


delay
kl

U
+ T

up
al ⇒ 


delay
kl = T

up
al

1− 1/U
(26)

P process
a 


energy
kl > Hi


energy
kl /U +P

up
l T

up
al

⇒ 

energy
kl =P

up
l T

up
al /P

process
a −Hi/U . (27)

It comes from the fact that (26) and (27) strongly requites
1 − (1/U ) > 0 and U > (Hi/P

process
a ). Especially, when

Hi =P
up
l , inequality in (25) reduced to

T
process
ka >

Hi

P
process
a

(
T

process
ka

U
+ T

up
al

)
. (28)

Therefore, in order to minimize execution delay while extend-
ing battery life, T

process
ka must fulfill the following criteria


m > max(

delay
kl ,


energy
kl ), which satisfy the original require-

ment. Besides to associate 

delay
kl and 


energy
kl , let



delay
kl



energy
kl

= T
up
al

1− 1
U

.
P

process
a − Hi

U

P
up
l T

up
al

< 1

which further qualifies the second requirement and this com-
pletes the proof of Theorem 3.

Theorem 4: The proposed TSCO computation offloading
problem is NP-hard.

Proof: The proposed TSCO algorithm decides the
assignment of IIoT tasks to appropriate computing devices
(edge/fog/cloud). To proceed this, the TSCO algorithm needs
to minimize (17a). So, the proposed computation offloading
algorithm is considered a generalized assignment problem
of the optimization problem for minimizing the overall
performance overhead of the system. It is known that the gen-
eralized assignment and optimization problems are NP-hard.
Hence, our proposed TSCO strategy is also NP-hard and is a
particular case of assignment problem.
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IV. NUMERICAL ANALYSIS

In this section, we investigate and compare the efficiency
of our proposed computation offloading strategy with two
standard baseline algorithms, such as random computation
offloading (RCO) and priority-based computation offloading
(PBCO) in terms of: 1) processing delay; 2) energy con-
sumption; and 3) throughput. Moreover, we consider three
recent works, such as DPTO [26], DDPT [3], and EECO [9]
for illustrating the performance improvement of our proposed
strategy. A concise outline of the existing baseline algorithms
is explained below.

1) RCO Strategy: The RCO strategy randomly schedules the
tasks and offloads them to nearby computing devices
without considering the importance of task scheduling.

2) PBCO Strategy: In the PBCO strategy, tasks are sched-
uled according to device priority. However, offload the
tasks without considering the computational capability
of the remote processing devices.

3) DDPT Strategy: The DDPT strategy prioritizes the tasks
based on queue allocation strategy and offloads the tasks,
utilizing a graph matching theorem with the objective of
optimizing computation delay.

4) EECO Strategy: The EECO strategy mainly priori-
tizes the tasks and schedules them using a stochastic
optimization technique. Finally, a constraint-restricted
offloading method is for optimizing energy–delay over
the network.

5) DPTO Strategy: In the DPTO strategy, tasks are classi-
fied according to a heuristic process. Then, a multilevel
feedback queue is used to schedule the tasks. Finally, a
heuristic technique for making task-offloading decisions.

Essentially, these algorithms operate as a reference to deter-
mine the performance enhancement of our TSCO strategy in
the IoT–fog–cloud networks.

A. Simulation Setup

The complete simulation is done on Intel Core i7-2600 CPU
@3.40 GHz × 8 with 8-GB RAM using Ubuntu operating
system. We consider 100 IIoT sensors that generate real-time
tasks with Kin

k = [5, 20] MB in the fog networks. We consider
λk = [10, 20] task/s, Kfreq

k = [10, 20] s and B = 40 MBps.
Furthermore, we set ϕ = 1900 [cycles/byte], M = 10, N = 2,
A = 20, and X (k, l) = {0, 1} [27]. To capture the dynamicity
and make the environment more functional, we assign the CPU
threshold �max

l , energy threshold Emax
l , and delay threshold

T max
l within the maximum limit. We consider �CPU

a << �CPU
m

and �CPU
m << �CPU

n throughout the experiment. The ini-
tial task distribution following conditions �CPU

a > KCPU
k

and �CPU
a ≤ KCPU

k are presented in Fig. 6. Other simula-
tion parameters are obtained from [3] and [9], respectively.
Table III lists numerous standard parameters used in the
simulation.

B. Processing Delay

This metric represents the total amount of time T
total
kl taken

for executing a task k ∈ K on various computing devices
Sl, including IIoT devices A, fog devices M, and cloud

TABLE III
PARAMETERS USED IN EXPERIMENTAL ANALYSIS

(a) (b)

Fig. 6. Initial task execution strategy in various computing devices: (a) IoT
devices �CPU

a > KCPU
k and (b) virtual computing devices �CPU

a ≤ KCPU
k .

(a) (b)

Fig. 7. Analysis of processing delay
(
T

total
kl

)
: (a) on various executing devices

and (b) comparison with the existing algorithms.

servers N . However, performing a task k in the fog device
m ∈ M or cloud server n ∈ N includes additional delay
for data transmission T

up and result fetching T
down to the

system. From T
up
am = X (k, m)× ϕ.Kin

k /R
up
am and T

down
ma =

X (m, k)×Kout
k /R down

ma , it can be easily observed that trans-
mission delay for a task k ∈ K mostly depends on several
network parameters, such as available transmission bandwidth
B , channel power gain H a, transmission power P up, etc.
However, processing delay T

process mostly depends on input
data size Kin

k and computational frequency �CPU of the com-
puting device. From T

process
am = X (k, m).ϕ.Kin

k /�CPU
m we can

observe that as the input size Kin
k increases, processing delay

also increases. However, processing delay can be optimized by
increasing the CPU frequency �CPU of the computing devices,
as the processing delay inversely proportional to the process-
ing CPU frequency of the computing device m ∈ M, i.e.,
T

process
am ∝ 1/�CPU

m . Fig. 7(a) illustrates the analysis of normal-
ized processing delay on various computing devices, whereas
Fig. 7(b) depicts the comparative study of processing delay
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(a) (b)

Fig. 8. Analysis of energy consumption
(
E

total
kl

)
: (a) on various executing

devices and (b) comparison with the existing algorithms.

with existing algorithms. It is obvious to say that the proposed
TSCO strategy achieves better performance than RCO, PBCO,
DDPT, DDPT, and EECO algorithms.

C. Energy Consumption

Energy utilization for a task k ∈ K can be regarded as
the amount of energy used E

total
kl to process a task, which

includes transmission energy E
up
a , processing energy E

process
a ,

and downloading energy E
down
a . For easy implementation, we

omit the energy consumption rate for waiting tasks in the exe-
cution queue on computing devices Sl. Equation (16) indicates
that energy consumption rate E

process on IIoT devices directly
proportional to the processing capability 1/�CPU of computing
devices, i.e., Eprocess ∝ 1/�CPU. Moreover, total energy con-
sumption rate E

total
kl also increases with the increase in input

data size Kin
k and decreases with the CPU frequency �CPU.

However, we can regulate the energy consumption by increas-
ing the transmission bandwidth B and CPU frequency �CPU

of the computing devices. Fig. 8(a) demonstrates the review of
approximate processing energy consumption on various com-
puting devices with E

CPU
l = 1.2 unit, and Fig. 8(b) represents

the comparative analysis of energy consumption with exist-
ing algorithms, which is better than 22%, 21%, 18%, and
19% compared with RCO, PBCO, DDPT, DDPT, and EECO
algorithms. The reason is that the proposed TSCO strategy
offloads resource-hungry tasks to the cloud server, thus better
utilization of energy consumption for fog devices.

D. Throughput

This parameter represents another level of performance eval-
uation for satisfying energy Emax

l and delays T max
l constraints,

i.e., how many numbers of tasks K complete their execution
within the given threshold bound. Our proposed computation
offloading technique offload delay and energy bound tasks to
the nearby fog devices M based on their priority index and
offload rest of the resource-hungry and low-priority index tasks
to the centralized cloud data center N for execution. Fig. 9(a)
and (b) represents the number of various priorities of tasks that
completes execution. It is noteworthy to see from Fig. 9(a)
that IIoT executable tasks complete its execution within the
given bound, but in some cases, other tasks fail to satisfy
execution deadline due to limited capacity in fog devices.
The performance analysis of throughput is also exhibited in

(a) (b)

Fig. 9. Performance analysis of throughput: (a) on various executing devices
and (b) comparison with the existing algorithms.

Fig. 9(b). It is clear to analyze from Fig. 9(b) that the proposed
TSCO strategy achieves a reasonable performance for execut-
ing the maximum number of tasks than other existing RCO,
PBCO, DDPT, DDPT, and EECO algorithms while satisfying
several constraints.

V. CONCLUSION

In this article, we introduced a hierarchical computation
offloading technique called TSCO, by collaborating and uti-
lizing both fog and cloud resources simultaneously. First, we
defined our objective function as the joint optimization of
weighted energy-latency consumption, while satisfying sev-
eral QoS constraints. To solve this optimization problem, we
developed an index-based transmission scheduling strategy to
reduce the computation overhead from the IIoT devices. Then,
our proposed mixed-linear-programming-based computation
offloading method offloads the tasks based on the importance
and makes a near-optimal decision to select suitable computing
devices. Extensive simulation results exhibited the effective-
ness of the proposed TSCO strategy over standard algorithms
in terms of average waiting time 20%–26% and average energy
consumption rate 12%–17%, respectively. In the future, we
will enhance our proposed computation offloading strategy for
optimizing various user-oriented Quality of Experience using
deep reinforcement learning in the distributed environment.
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