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Abstract: Digital twins and the Internet of Things (IoT) have gained significant research attention in
recent years due to their potential advantages in various domains, and vehicular ad hoc networks
(VANETs) are one such application. VANETs can provide a wide range of services for passengers and
drivers, including safety, convenience, and information. The dynamic nature of these environments
poses several challenges, including intermittent connectivity, quality of service (QoS), and heteroge-
neous applications. Combining intelligent technologies and software-defined networking (SDN) with
VANETs (termed intelligent software-defined vehicular networks (iSDVNs)) meets these challenges.
In this context, several types of research have been published, and we summarize their benefits and
limitations. We also aim to survey stochastic modeling and performance analysis for iSDVNs and
the uses of machine-learning algorithms through digital twin networks (DTNs), which are also part
of iSDVNs. We first present a taxonomy of SDVN architectures based on their modes of operation.
Next, we survey and classify the state-of-the-art iSDVN routing protocols, stochastic computations,
and resource allocations. The evolution of SDN causes its complexity to increase, posing a significant
challenge to efficient network management. Digital twins offer a promising solution to address these
challenges. This paper explores the relationship between digital twins and SDN and also proposes a
novel approach to improve network management in SDN environments by increasing digital twin
capabilities. We analyze the pitfalls of these state-of-the-art iSDVN protocols and compare them
using tables. Finally, we summarize several challenges faced by current iSDVNs and possible future
directions to make iSDVNs autonomous.

Keywords: Internet of Things; vehicular ad hoc networks; software-defined networks; intelligent
digital twin networks; stochastic modeling and performance evaluation

1. Introduction

A vehicular communication system broadcasts information about vehicles so that traf-
fic chaos, congestion, and accidents are avoided. However, congestion is a more significant
problem. Vehicle applications demand stringent QoS and unprecedented network capacity
in internet technology. Vehicle applications have limited task-offloading schemes and
flexibility issues [1]. The Base Station (BS) and Road-Side Units (RSUs) cooperate in task-
offloading problems while dynamically adapting to current network environments. This
enhances QoS in VANETs [2]. Link connectivity changes frequently based on vehicle-to-
vehicle (V2V) and vehicle-to-infrastructure (V2I) distances due to high mobility in a VANET
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system [3]. The packet is forwarded through vehicles using internet services modeled in
a queueing network for data dissemination [4]. Heterogeneous vehicular networks and
software-defined networking (SDN) are used to reduce traffic congestion [5] and improve
network performance in VANETs [6,7]. The main objective of VANET and SDN connectivity
is to separate the control plane and data plane [8]. The purpose of SDN in wireless and ad
hoc domains is to centralize network services, control, and flexibility, which has gained
attention over the last few decades, as shown in Figure 1.

This survey discusses how SDN technologies can be a promising solution to the
challenges in vehicular networks while providing access to emergency services and high-
bandwidth applications with low latency. Mobility management is a critical component
of vehicular networks, with location management protocols, processes, and handoff man-
agement schemes being the key areas of concern [9]. The survey presents comprehensive
mobility management in SDN-enabled vehicular networks, including models, challenges,
and solutions. Mobility management solutions can be classified according to the vehicular
network model used, such as SDN-based, HetNet-based, fog-based, and hybrid solu-
tions [10]. The survey provides insights for young researchers in the field of intelligent
VANETs to understand the implications and directions for futuristic wireless networks.
The survey also discusses how traffic prediction in VANETs can be improved by using a
stochastic vehicular mobility model that accounts for realistic variations in inter-vehicle
communication over consecutive time steps [11,12].

A VANET is a wirelessly connected mobile vehicle network in the transportation
sector. The frequent failures in VANETs make it difficult to disseminate information. High
mobility and isolated nodes result in topology changes, which represent a major challenge
in VANETs. The SDVN paradigm is the SDN concept incorporated into VANETs, which
overcomes the previous challenges of SDVNs. It consists of a logically centralized control
plane that analyzes the data in the vehicular network and makes network decisions, thus
enhancing the programmability and flexibility of the vehicular network [13].

Traditionally, networking has been infrastructure-based, with the control plane spread
throughout many routers. SDN logically isolates the fundamental network control mecha-
nism from switches and routers to provide network control centralization [14]. With SDN,
the controller gathers information about the status of the network, allowing the controller
to design safe paths that are in line with the network’s requirements and provide a better
level of network awareness than with conventional hardware-driven networking. In SDN,
there are three planes: the infrastructure plane, the control plane, and the application
plane. The main advantages of SDVNs over conventional networks are flexibility and
programmability. Using a single protocol, physical devices can communicate with each
other via SDN, which allows control to be centralized. SDN has allowed us to perform
and provide tasks such as traffic optimization, network virtualization and automation,
and cloud-based service coordination. Due to the fact that the SDN controller is often
the point of failure, dependability is one of the significant drawbacks of SDN. Moreover,
SDN has difficulties integrating with traditional networks, which cannot utilize OpenFlow;
the centralized controller cannot independently manage all traffic, and there are only a few
protocols for communication between the controller and applications [13].

The SDVN is a variant of the software-defined wireless network (SDWN) among
wireless networks. The SDVN architecture makes vehicular networks adaptable and
versatile by integrating SDN into VANETs [11]. The network perception provided by
SDN controllers enables numerous benefits, including adaptive node transmission power
reservation, improved routing, and flexible radio interface placement. Due to the collection
of network statistics, the SDVN improves networking functions, such as routing and
load balancing, and enables global optimization in VANETs. It also promotes network
innovation by enabling VANET technologies to be evaluated and implemented at a lower
cost. As a result of the extensive mobility of the network nodes, as well as the changeable
topology of the network, the SDVN encounters some difficulties, including security gaps
and complex network operations, such as routing and transmission management [13].
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The rapid advancement of V2V and V2I communication technologies has made intel-
ligent software-defined vehicular networks (iSDVNs) increasingly important. Intelligent
Transportation Systems (ITSs), such as traffic management, collision avoidance, and au-
tonomous driving, cannot function properly without efficient and reliable vehicle-to-vehicle
and vehicle-to-infrastructure communications, and vice versa [15]. A mathematical ap-
proach to analyzing and predicting the behavior of systems with random variables, stochas-
tic modeling, has emerged as a promising tool for designing and assessing intelligent
SDVNs [14]. This survey aims to present the state-of-the-art stochastic modeling techniques
and their applications in iSDVNs as some implications and possible research in the near fu-
ture. This survey also highlights the significant challenges of VANETs, including limitations
on data dissemination, connectivity, load buffering, network congestion, and multi-hop
routing, and how queueing networks, intelligent SDVNs, and software-defined heteroge-
neous vehicular networks (SDHVNs) can be used to address these challenges.

A fundamental change in network management has been made with SDN, which
offers flexibility, programmability, and centralized control. However, it is challenging for
network administrators to understand and efficiently manage the network state because
SDN architectures are dynamic and distributed. On the other hand, digital twin technology
has shown great promise in a number of domains, enabling the virtual representation of
physical entities, systems, or processes. We aim to enhance network management by pro-
viding actionable insights and real-time intelligence by integrating digital twin technology
and SDN. Digital twins are virtual representations of network infrastructure, applications,
and services interconnected through SDN. The virtual model comprises network compo-
nents like switches, routers, controllers, and individual packets and flows. The digital
twin is created by collecting and integrating real-time data from the physical network to
create a comprehensive and current view of the entire SDN ecosystem. By analyzing histor-
ical trends, administrators can gain insight into the current state of the network, predict
potential issues, and determine key performance bottlenecks, as illustrated in Figure 1.

RSURSU

Single-hop Communication

RSURSU

Multi-hop Communication

RSURSU

VANET using SDN Framework

Control
Plane

Control
Plane

Data
Plane

Data
Plane

V2V

V2I

V2V

V2I

Base Station
Base Station

Base Station

SDN Controller

V2V

I2I I2I I2I

V2I

Figure 1. The SDVN architecture [16].

1.1. Motivation for This Survey

SDN has become an increasingly popular approach to network architecture, enabling
additional flexibility and programmability in network management [17]. In the context
of VANETs, SDN has the potential to improve network performance and efficiency by
providing a centralized controller to manage network traffic and resources. However, while
there have been many surveys on SDN and VANET separately, there is currently a lack
of comprehensive surveys on the intersection of these two fields [18]. This survey aims
to fill that gap by providing state-of-the-art literature on SDN for VANETs. Specifically,
in this survey, we examine the various use cases and architectures of SDN in VANETs and
the challenges and opportunities presented by this intersection. Here, we also analyze
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the existing survey papers in this area and identify the gaps and limitations in the current
research. To differentiate this survey from existing surveys, we focus specifically on the
intersection of SDN and VANETs, rather than simply offering a general overview of SDN
or VANETs [19]. Additionally, we provide a more comprehensive and up-to-date analysis
of the existing literature in this field and identify potential future research directions.
Ultimately, this survey provides a valuable resource for researchers and practitioners
working with SDN and VANETs [20].

This survey discusses the challenges of traffic accidents and highway congestion and
the need to optimize resource allocation techniques to improve the QoS in VANETs [21].
Information technology and ITSs can be used to improve traffic efficiency in VANETs [22].
Mobility-prediction-based routing protocols and multi-hop communication can provide
network stability and reliability for the high dynamic flow of vehicles in VANETs. Network
connectivity [23] is controlled by RSUs and BSs for traffic safety and efficiency [24,25].
The survey also emphasizes the importance of the accurate stochastic modeling of multi-
hop routing and cooperative data dissemination to enhance transportation and increase
QoS [26–28]. Finally, the survey suggests using multi-hop cooperative data dissemina-
tion methods to improve system performance and resource utilization in VANETs [29].
The performance of SDN scenarios in VANET systems depends on optimal traffic load
balancing. In the VANET system, an analysis of enhanced reliability of service (eRELSERV)-
SDVN is needed based on queueing theory. Vehicular networks are ad hoc and, therefore,
challenging to manage due to the random connection of end-to-end network devices.
Integrating SDN with a VANET brings programmability and flexibility to the vehicular
network, improving its performance [30].

The SDN controller can manage packet flow-table performance through the OpenFlow
protocol, which helps handle heavy traffic flow in VANET communications and potentially
prevent link breaks. A queueing analysis is also valuable for estimating SDN and managing
high arrival and service demands. This can enable upcoming V2V and V2I services and
simplify vehicular network optimization and mobility management. The SDHVN system
uses queueing theory to provide optimal packet scheduling for efficient resource utilization
among V2V and V2I communications in VANETs [31]. It improves the QoS of packet
scheduling and enhances network utility while reducing traffic casualties. The intelligent
digital twin (IDT) is a promising technique for simulating intelligent networking models.
It can be used to observe and understand current and historical data to enhance routing
efficiency, maintenance, traffic flow, and security in the physical network [32].

This survey acknowledges current research in software-defined vehicular networks
(SDVNs) and identifies challenges and limitations in implementing SDN. The survey
does not introduce new concepts or solutions but provides a comprehensive overview of
existing techniques. It analyzes their strengths and weaknesses and identifies research
opportunities. This survey synthesizes existing knowledge and presents it in an organized
manner, making it a valuable resource for researchers and practitioners. In addition to
providing a baseline understanding of the state of the art, it highlights gaps in the literature
and suggests future directions. Studies and surveys need not introduce entirely new
concepts or solutions to be valuable. Surveys consolidate existing knowledge, identify
trends, and guide future research. SDVNs as a field will be advanced by building upon and
refining existing approaches. So, in this survey, we are not introducing groundbreaking
new research, but we do analyze and synthesize the existing research.

1.2. Organization

This survey is organized as follows. First, we introduce SDN and VANETs, including
their characteristics and the motivation for their intersection. Next, we provide a discussion
about the survey method within which we provide both inclusion and exclusion criteria,
along with the objectives of the proposed survey. In the next section, we provide the
background of SDVNs. After this, we integrate the iSDVN into the VANET system model.
Further, we provide a detailed discussion about the performance evaluation of iSDVNs.
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In the next section, we present open issues. Finally, we present our conclusions and
recommendations for future research directions. We summarize all the abbreviations used
in this paper in Abbreviations.

2. Survey Method

In order to conduct performance benchmarking research on SDVNs, it is important to
have a clear understanding of the criteria used to select relevant surveys. Here are some
possible inclusion and exclusion criteria for this type of research:

2.1. Inclusion Criteria

The inclusion criteria were as follows:

• Surveys must be related to SDVNs and network performance benchmarking.
• Surveys must have been published in peer-reviewed academic journals or

conference proceedings.
• Surveys must have been published within a certain time frame (e.g., last five years) to

ensure that the research is current.
• Surveys must have used empirical research methods (e.g., experiments, simulations,

case studies) to collect and analyze data.

2.2. Exclusion Criteria

The following were excluded from this survey:

• Surveys that are not related to SDVNs or network performance benchmarking;
• Surveys that are not published in peer-reviewed academic journals or conference

proceedings;
• Surveys that are published outside the time frame specified;
• Surveys that did not use empirical research methods.

Scientific databases specialize in different subject areas and types of publications. We
selected databases with comprehensive coverage based on the research domain or topic
of interest. Databases can be categorized according to the fields that they cover or their
data types. Choosing surveys that meet these criteria was based on a systematic search of
the literature using different databases (e.g., PubMed, Web of Science, IEEE Xplore, ACM
Digital Library, ScienceDirect, Scopus, Google Scholar, and others, depending on the field
of study and the research objectives, were considered) with appropriate search terms and
filters. Additionally, citation tracking and reference list searches can be used to identify
additional relevant surveys. After identifying potential surveys, a screening process can be
used to determine which surveys meet the inclusion and exclusion criteria. The possible
overall sample data collection is shown in Figure 2.

As part of next-generation networking technologies, such as 5G, the Internet of Things,
fog/edge computing [33,34], wireless/mobile networks, Network Function Virtualization
(NFV), sensor networks, IDT, and VANET, SDN has also gained importance in recent
years [35]. As compared with existing surveys, the key contributions of this survey are
summarized as follows: 1. This survey covers the latest advances in architectures, essential
techniques, and solutions for software-defined vehicular networks. 2. We present current
implications, future scope or opportunities to explore, and simulation tools that can be
discussed or applied in future research. Several dimensions are used to compare and
contrast our work with existing surveys on VANETs, IDT, and the controller placement
problem (CPP) in SDN. We analyze each survey from a variety of perspectives, including
modeling choices, objectives, techniques, and evaluation metrics. We also discuss how
SDN might be used in a variety of upcoming networking paradigms. The scope of this
survey and future research directions are shown in Table 1, Figure 3 summarizes the focus
of our survey, and Figure 4 shows the taxonomy of the organization of iSDVN.
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Table 1. Comparison of recent and related surveys on SDVN-related architecture.
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2.3. Objectives

The main objective of this survey is to present stochastic models for providing intelli-
gent multi-hop cooperative data dissemination in software-defined vehicular communi-
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cation systems for better network performance. Increasing traffic safety and improving
the quality of service would be possible with an intelligent SDN system. In addition,
the multi-hop vehicular connectivity enables the forwarding mechanisms to operate with
minimal topology knowledge and dynamically respond to network topology changes.
In this survey, we focus on the following objectives:

• The first objective of our study is to investigate and improve QoS strategies in SD-
VNs. As highway traffic density increases and vehicles become increasingly mobile,
queueing models for vehicular traffic have to be developed in order to predict vehicles’
mobility based on their traveling time, behavior, and speed on the highway and to
avoid collisions using routing protocols and scheduling in iSDVNs.

• Afterward, we intend to assess how data traffic forwarding improves efficient resource
allocation, minimizes delay and packet loss, and optimizes flow control in vehicular
networks using a stochastic approach.

• Next, we present a model to enhance iSDVN service reliability by considering how
intermittent connectivity affects V2V and V2I network connectivity control and man-
agement. A multi-hop cooperative data dissemination protocol is proposed in order
to reduce packet loss, improve connectivity, utilize network resources more effectively,
and increase reliability.

• Afterward, we propose a model of heterogeneous vehicular networks via SDN and
multi-hop cooperative data dissemination schemes to highlight the improvements
that can be made via SDN in heterogeneous vehicular networks.

• Finally, the network traffic and resource utilization can be accurately modeled using
a digital twin (DT). Administrators can use simulations and “what-if” scenarios to
optimize network efficiency and make resource allocation, bandwidth provisioning,
and routing decisions.

The objective of the survey is to provide an overview of stochastic modeling techniques
used for intelligent SDVNs. The study aims to demonstrate how stochastic modeling can be
used to address various challenges in SDVNs, such as resource allocation, routing, and QoS
provisioning. The survey also aims to highlight the benefits and limitations of different
stochastic modeling techniques and provide insights into future research directions in
this area.

3. Background: iSDVN System

An intelligent SDVN is a type of network architecture that uses software to manage and
configure network components such as switches, routers, and other networking hardware.
An SDVN is designed to be more flexible and adaptable than traditional networks, making
it easier to manage and modify when the network needs to change [77]. The SDVN
architecture consists of a centralized controller that manages the network’s data plane and
control plane. The controller interacts with network switches and other devices through
APIs and protocols such as OpenFlow to configure and control network traffic. One of
the key benefits of an SDVN is that it enables network administrators to separate the
control plane from the data plane, which can improve network performance and reduce
congestion [78]. Additionally, an SDVN provides a more programmable and automated
network environment, making it easier to manage network resources and respond to
changes in network traffic [31]. Given these benefits, performance benchmarking research
is an important area of study for SDVNs. By comparing the performance of different SDVN
architectures, researchers can identify best practices and areas for improvement, ultimately
leading to more effective and efficient network designs [19].

3.1. Single-Hop and Multi-Hop Network Connectivity in SDVNs

Single-hop connectivity refers to direct connectivity from source to destination nodes
without intermediate nodes. Here, packets are transmitted directly to the destination node
with minimum delay, as there are no intermediate nodes between the source node and the
destination node, as shown in Figure 1. The apparent benefit of single-hop connectivity
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in a VANET is that there will be direct vehicle-to-vehicle communication, ensuring low
latency [88]. But, the limitation of single-hop connectivity is the limited transmission range.
When the source node and destination node are far apart, with the limited transmission
range of single-hop networks, data traffic must be routed to the destination over a number
of hops through intermediate nodes to reach its destination node.

A multi-hop network with intelligent message broadcasting can reduce the burden
on the communication channel, as shown in Figure 1. Also, multi-hop routing could
significantly improve network capacity and throughput in wireless networks. In VANETs,
most of the safety-related information is broadcasted to all nodes in the network, thereby
increasing the traffic congestion in the network [89]. However, researchers have proposed
multi-hop routing protocols to resolve the problem of congestion in VANETs.

3.2. Mobility

In SDVNs, moving vehicles communicate through distributed, self-organizing net-
works. Even high-speed vehicles can be connected to an SDVN. Due to the high-speed
motion of vehicles, SDVNs are inefficient or unusable. Changing direction and speed on
the road creates an increasingly dynamic environment for network topology [47]. Hence,
the network protocol and vehicular mobility must have a strong interaction due to these cir-
cumstances. In SDVNs, data traffic may impact mobility as well due to the dynamic change
in the network topology. Wireless communications and mobility have a bidirectional rela-
tionship [90]. Integrating communication protocols and modeling mobility into vehicular
networks has taken a lot of effort from researchers. The majority of SDVN protocols are
designed to optimize data traffic as well as mobility.

3.3. Routing

The four types of routing can be described as follows: unicast routing, multicast rout-
ing, broadcast routing, and geocast routing [10,91]. One-to-one communication describes
SDVN unicast routing, which routes packets between a source and a destination node.
SDVNs use multicast routing to send packets from one source to a group of nodes, also
known as grouping or one-to-many routing [92]. Multicasting is widely used in defense and
military applications. In this routing type, packets are broadcast across the network from a
source node to multiple target nodes connected to the network. It is a popular method of
ensuring human safety during disasters. Packets can be geocast to a set of nodes within
a particular geographical region or geocast area using geocast routing. Geocast group
members are identified by location in a geographic area, while membership in a multicast
group can occur anywhere in an ad hoc network [93]. To reduce latency between nodes
in an SDVN, researchers have developed several routing protocols, which are categorized
as follows:

1. Position-based routing protocol—Using the Global Positioning System (GPS) and the
destination IP address, the source node routes a packet using the destination’s geo-
graphical location and IP address.

2. Topology-based routing protocol—In this protocol, packets are forwarded from the source
to the destination node based on network connectivity information. Proactive routing
methods, reactive routing methods, and hybrid routing methods are three types of
proactive routing.

(a) Proactive routing: For this protocol, the shortest-path algorithm determines the
path and stores it in the routing table. During periodic updates, this table is
shared with neighbors.

(b) Reactive routing: Route discovery begins when a node discovers that it needs to
communicate with another node. This is called “on-demand routing.” This
protocol has the advantage of reducing network traffic.

(c) Hybrid routing: In this protocol, networks are classified as local or global,
and proactive and reactive routing methods are combined to reduce routing
overhead and delay for local and global networks.
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3. Broadcast-based routing protocol—In the broadcast domain, broadcast routing sends
packets to every node in the vehicular network.

4. Cluster-based routing protocol—For communication purposes, clusters are created in
a network based on parameters such as velocity and direction. The cluster head
manages inter-cluster and intra-cluster communication. The cluster head creates a
virtual network infrastructure to enable scalability when performing intra-cluster
communication using a direct path.

5. Geocast-based routing protocol—A mobicast message is used to communicate between
vehicles in a region termed the zone of relevance.

3.4. Routing in a Multi-Access Environment with Learning Approaches

Routing is an important aspect of SDN and VANETs, as it determines how packets
are routed from their source to their destination. VANETs may utilize heterogeneous
wireless technologies in multi-access environments, including DSRC, IEEE 802.11p, cellular
networks, and wireless LANs [94].

SDN and VANET routing usually uses learning approaches to improve efficiency and
adaptability based on varying conditions and dynamic network conditions. Routing in
SDN and VANETs commonly uses the following learning techniques:

1. Reinforcement Learning—In reinforcement learning (RL), agents learn by interacting
with the environment to make decisions. According to the observed performance
of different routes over time, RL can be used in SDN and VANETs to adapt routing
decisions. As a result, the network can learn which routes are more reliable, have
lower latency, or have a higher throughput.

2. Deep Learning—By using deep-learning techniques, such as neural networks, we can
identify patterns and correlations in SDN and VANET data that traditional routing
algorithms would not detect. The trained models can support better routing decisions,
especially in dynamic and complex SDN and VANET scenarios.

3. Context-Aware Routing—The concept of context-aware routing involves making rout-
ing decisions based on various contextual factors, such as vehicle speed, traffic density,
and link quality. Routing metrics can be dynamically adjusted using machine-learning
algorithms based on the current context, improving route selection.

4. Federated Learning—The privacy and security of SDN and VANETs are crucial con-
siderations. A federated learning system enables vehicles to train a model without
sharing raw data with a centralized entity [95]. This approach can enhance routing
decisions while protecting individual vehicle privacy.

5. Online Learning—In SDN and VANETs, routing algorithms have to be capable of
quickly adapting to changing conditions due to their dynamic nature. Since online
learning can be applied to VANETs, where the network topology can change rapidly,
online learning techniques are suitable for continuously updating routing decisions.

Using these learning approaches, multi-access VANETs can significantly improve
routing efficiency, reliability, and adaptability. Learning-based routing algorithms pose a
number of challenges, including computational overhead, scalability, and security concerns.
Real-world testing and validation are also crucial for these approaches to be effective and
robust in dynamic vehicular scenarios.

3.5. Data Traffic Forwarding

The amount of data flowing through a network at any given moment is known as
data traffic. Network traffic measurement is based on the amount of data available in
the network. Communication between RSUs is a key component of SDVNs. By sending
data traffic via moving vehicles, remote RSUs communicate with the central RSU without
using the backbone network [96]. All buffered data traffic is passed from a source RSU to a
destination RSU when a vehicle is selected to assist. The source RSU can violate the delay
bound while the destination RSU transfers data. Data traffic that violates bound delays
is expected to make up a relatively small percentage of all data traffic [97]. Consider a
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scenario where a lot of data traffic is delayed. To deliver buffered data traffic to the source
RSU, another system (for example, cellular communications) is required.

3.6. Data Dissemination

Vehicles may gather and disseminate data to big data repositories, such as current
location, speed, and road density [98,99]. As a result, adjacent vehicles collect data on
road and surrounding conditions and reduce their speed to avoid future accidents [100].
One-hop and multi-hop communications can be used to disseminate data [29]. High latency
in high-traffic areas can impact the performance of data distribution networks [101]. An
SDVN has its inherent features, making it difficult to establish a secure and effective data
dissemination scheme [85]. Random mobility, rapid topology changes, link partitions,
or network fragmentation also occurs in the vehicular environment at nodes. Vehicles in
random mobility patterns are considered for data dissemination in SDVNs. This would
significantly affect data delivery, quickly contributing to severe packet failures. In addition,
scalability will be increased by forwarding data packets between two-way nodes using
multiple hops for the wireless radio spectrum of RSU [102]. Through SDN, VANETs can
disseminate data effectively and efficiently [103].

3.7. Cooperative Communication

SDVNs are aimed at bringing safety and smoothness to the transport system. They
can support transportation management and cooperative safety by allowing V2V and V2I
connectivity [104]. Vehicles can regularly broadcast safety-related details, e.g., location,
speed, heading, and neighbors, through the shortest routes from the source node to the des-
tination node, so-called cooperative communication. Cooperative communication achieves
cooperative safety, providing the required means to establish cooperative awareness in the
situation [105]. The sharing of real-time data requires connectivity and cooperation between
routes. In SDVN communication, we face challenges like frequent link failures and high-
mobility issues. Using cooperative communication within the vehicular network, these
challenges are reduced, and reliability is improved. Hence, nodes are allowed to cooperate
with each other [48]. Next, we focus on various technologies in the field of SDVNs.

3.8. Resource Optimization

Digital twins are being used to optimize resources through various applications that
utilize digital twins’ (DTs) capabilities to improve efficiency, productivity, and decision
making. In addition to enabling the real-time monitoring, analysis, and simulation of
their physical counterparts, digital twins allow the real-time analysis and monitoring of
non-digital objects. Digital twins provide numerous benefits when applied to resource
optimization by providing valuable insights and predictive capabilities. Modeling network
traffic and resource utilization is made more accessible with DTs. Administrators can simu-
late and run “what if” scenarios to optimize resource allocation, provisioning, and routing
decisions for improved network efficiency.

4. Integrating into VANET System Model for iSDVN

As a result of this survey on iSDVNs, the following challenges have been identified.
SDN provides a way to integrate large-scale wireless networks, such as vehicular net-

works and ITSs, among others [106]. The data plane and the control plane are separated in
SDN. A decoupled forwarding plane provides efficiency, and flexibility makes forwarding
devices available at forwarding plane nodes. The control plane provides flow rules and
management information about packet forwarding to the data plane [11]. For SDN control
plane and data plane communication, OpenFlow is the most commonly used protocol,
as shown in Figure 5. In a VANET, planes can communicate with other vehicles, RSUs,
and BSs via the OpenFlow protocol. An SDN controller can also facilitate communications
between BSs and RSUs [41,60].
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Figure 5. The general architecture for iSDVN.

VANETs’ network topologies change constantly due to their mobility, thus making
it difficult for the control plane to maintain vehicle location, thereby increasing the over-
head for SDN management. The overhead issue can be overcome by integrating SDN
with VANET technologies. Figure 5 shows an illustration of an SDVN. It improves the
network performance and QoS [44]. In VANETs, SDN is utilized to calibrate packet- and
network-level parameters [42]. The SDVN provides network resources for V2V communi-
cation through a logically centralized controller [37]. The SDN control plane also supports
wireless data dissemination, further increasing the transmission range. In a dynamic net-
work topology, maintaining network connectivity is extremely challenging. For network
connectivity problems, an SDVN may provide the solution [107]. SDVN controllers face
another challenge in queue management, especially during packet failure conditions [68].
As a result of excess packets flowing in the queue, the waiting time increases, impacting
the overall performance of the SDVN. In an iSDVN, we can use queueing models to reduce
controller response times in queues, improving its performance.

4.1. Systems under Test

In this section, the systems under test in iSDVN performance benchmarking are
examined by considering two components, infrastructure and infrastructure-less, which are
discussed in the following subsections. Many performance benchmarks are evaluated on
the EstiNet OpenFlow network simulator and emulator and OMNeT discrete event simulator.
Control Plane:In SDN, network intelligence is logically centralized in software-based con-
trollers (i.e., control plane). Server decisions determine how the network nodes will forward
data packets. In the centralized implementation, vehicles do not need to maintain any
control information [37,38]. The control plane maintains switches and routers that deal
with connectivity and data forwarding. In transmission, this applies to both single-hop
and multi-hop scenarios. The iSDVN architecture provides network protocol management
through a logical central controller. Registration should be permitted for each device, in-
cluding the OBU, and for vehicles as well. Controller status reports, including the position
and volume of data, are provided periodically. Based on the information collected, it is
determined how to reconfigure network protocols and their control parameters and how
to distribute and exchange network resources. By doing so, the network can maximize
its performance.
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Data Plane: During RSU communications, data traffic is forwarded to vehicles through the
data plane. A data plane and overlay network are established to eliminate heterogeneity in
the vehicular scenario. SDN provides a network management tool by abstracting vehicles,
RSUs, and BSs as switches. Depending on its mobility, an SDN switch can be divided
into mobile and stationary data planes. RSUs are regarded as mobile data planes, and BSs
are referred to as stationary data planes. Different policies are applied to data plane
management [37]. To transmit data effectively, an iSDVN uses V2V and vehicle-to-RSU
communication links [108]. Multi-hop V2V transmissions to distant destinations that are
not covered by RSUs can be carried out using connections.
Network Function Virtualization: An important aspect of Network Function Virtualization
(NFV) is segmenting network node functions into functional blocks [109]. Software now
implements the technology independently from hardware, and it is not limited by hardware
architecture any longer [50]. These capabilities are usually found in hardware, such as
network access, services, and applications. By utilizing standard servers instead of custom
devices, NFV provides network functionality. The NFV-enabled SDVN improves service
provisioning, flexibility, service delivery, and reliability. An SDVN can be effectively used
to deploy advanced applications, such as NFV.
Software-Defined Heterogeneous Vehicular Networks: Due to heavy data traffic [41,110], it is
difficult to have load balancing among vehicles and RSUs in SDN. Therefore, integrating
SDN and HetVNET (called a software-defined heterogeneous vehicular network (SDHVN))
balances the load and provides cooperative data dissemination between vehicles and
RSUs [67]. A centralized service architecture enhances the distribution of data in SDHVN
environments, as shown in Figure 6. The SDHVN makes transport networks coordinated
and safer [111]. Moreover, it plays a significant role in managing network services and
providing reliable communication [47]. Vehicle users benefit from the SDHVN’s wide
coverage and high throughput through the use of cellular networks. A Virtual Network
Function (VNF) allows flexible resource scheduling in an SDHVN.

Base Station

SDN Controller

Control Plane

Data Plane

OpenFlow Switch

RSU
RSU

RSU RSU
I2I Communication

V2IV2I
V2I

I2I Communication

Base Station

Control Plane
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Control Plane
Switch

I2I Communication I2I Communication

V2I

V2V V2V

Server

Priority
Queue

Packet 
Scheduling

Internet

Figure 6. The general architecture for iSDHVN [112].

Packet Scheduling: Packet scheduling ensures that packets are transmitted efficiently and
fairly across the network while meeting different applications’ quality-of-service (QoS)
requirements. Packet scheduling becomes more challenging in certain scenarios, such as
networks with high traffic loads, heterogeneous traffic, or real-time applications requir-
ing low latency and high reliability [113]. In these scenarios, packet scheduling must be
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designed to prioritize traffic based on the QoS requirements of different applications and
to handle congestion and network fluctuations to maintain the desired level of service.
Another challenge with packet scheduling is the limited resources available to the sched-
uler, such as buffer space, processing power, and memory. As the number of packets and
applications increases, the scheduler must use the available resources efficiently to avoid
delays and congestion [114].

The type of scheduler used can also affect the performance of packet scheduling. Differ-
ent scheduling algorithms have different trade-offs between fairness, throughput, and delay,
and the choice of the scheduler can significantly impact network performance [56]. Packet
scheduling is a general task in any network, but its challenge varies depending on the
specific context. The challenge with packet scheduling is to ensure that packets are trans-
mitted efficiently and fairly across the network while meeting the QoS requirements of
different applications. Due to the high-speed movement of vehicles on highways, network
connectivity changes frequently, and it is a challenging task for multi-hop data dissemina-
tion in VANETs [115]. Thus, packets cannot reach the destination within the period [116].
Hence, the packet flow is disturbed, resulting in high latency and routing overhead. Thus,
a packet-scheduling strategy through queueing models provides the solution, where each
packet transmission is scheduled to maximize the packet delivery ratio, avoid time slot
allocation issues, improve packet delivery, and decrease latency. Packet scheduling also
improves the QoS in the VANET with the help of SDN [117].

Network Utility Maximization (NUM): NUM is used to monitor the efficient usage of network
resources in wireless networks [118]. In vehicular networks, it can be used to monitor
different parameters, which include traffic distribution, route selection, packet delivery,
latency, and so on. NUM can be formulated as a node-based optimization problem for
improving various performance metrics in the network [119]. The fairness of networks
at runtime can be achieved by finding the optimal values in the queueing theory, which
dynamically tends to achieve fairness [120]. This will further lead to longer network
connectivity in VANETs.

4.2. Software-Defined Internet of Vehicles

SDIoV technology has been identified in association with different issues in this
survey. The Software-Defined Internet of Vehicles (SDIoVs) is an emerging architecture
that integrates SDN and the Internet of Vehicles (IoV) to enable ITSs [121,122]. SDIoV uses
SDN to provide centralized control of the IoV, which enables efficient communication,
management, and coordination of vehicular networks [123]. The SDN controller in an
SDIoV system can dynamically manage network resources and traffic, allowing vehicles
to efficiently communicate with each other and with the infrastructure [124,125]. This
allows for the real-time coordination of traffic and intelligent routing decisions, which
can improve traffic flow and reduce congestion. SDIoV also provides a platform for
deploying a wide range of ITSs, such as collision avoidance, automated parking, and smart
traffic lights [126]. By enabling more efficient communication and data sharing among
vehicles and infrastructure, SDIoV can improve the efficiency, safety, and sustainability of
transportation systems [61].

The use of SDN in IoV environments also addresses some of the challenges associ-
ated with traditional IoV networks, such as high mobility and network scalability [127].
By centralizing network control and management, SDIoV can reduce the complexity of net-
work management and also enable the more efficient use of network resources. However,
the implementation of SDIoV also presents some challenges, such as the need for reliable
wireless communication and security mechanisms to protect against cyber-attacks [53].
Additionally, the deployment of SDIoV requires a significant investment in infrastructure,
including sensors, communication devices, and other network components. SDIoV is an
emerging architecture that integrates SDN and IoV to enable an ITS [69]. SDIoV uses SDN
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to provide the centralized control of vehicular networks, enabling efficient communication,
management, and traffic coordination. SDIoV can improve transportation systems’ safety,
efficiency, and sustainability but also presents some challenges, such as the need for reliable
wireless communication and security mechanisms.

4.3. Intelligent Digital Twin with SDVN

The taxonomy of conventional and recent advances in IDTSDVN applications refers
to the taxonomy of these applications based on their characteristics and features. In terms
of taxonomy, conventional IDTSDVN applications are typically focused in traditional areas
such as healthcare, manufacturing, and transportation. Recent advances in IDTSDVN
have expanded to areas such as smart cities, fog/edge computing [128], and IoT [129].
These applications can be further classified based on factors such as their goals, functions,
and technologies used.

In terms of organization, a survey on IDTSDVN applications typically begins with
an introduction that provides an overview of the topic and its importance. The survey
then presents background information on IDTSDVN, including its definition, architecture,
and components. The main body of the survey is then organized into sections or chapters
that cover specific IDTSDVN applications and their characteristics, features, and imple-
mentation. The survey may also discuss the challenges and future directions of IDTSDVN
applications. Finally, the survey concludes with a summary of the main findings and a
discussion of the implications of the research for the field of IDTSDVN. As illustrated
in Figure 7, IDT-SDVN consists of two key components: the real-world SDVN and its
intelligent digital virtual counterpart [62]. The physical SDVN is a network that operates in
the real world. Whenever a controller is configured as a mobile edge computing (MEC)
server, routing requests are computed and vehicles are scheduled [70]. As for the controller,
it represents and validates the immediately learned functional model as a virtual network
(or networks). The revised routing schemes are examined in virtual networks, and the
best-performing scheme is chosen to be installed in the physical network [72].
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Figure 7. Architecture for intelligent digital twin SDVN [62,70,72,73].
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In the case of the Policy-Based IDT-SDVN (shown in Figure 8), the controller peri-
odically communicates the routing policy to each vehicle. Except for the computation
of flow tables, the routing policy refers to all sorts of rule-related information. When-
ever routing metrics are updated, routing protocols are switched, or other intelligence
rules are implemented, and these rules can be locally agreed upon. In addition, routing
policies can be adjusted regularly, based on findings for virtual networks from existing
works [73]. In the Routing-Based IDT-SDVN, the routing table is mainly determined in the
controller. Intelligent algorithms also promise to compute routes with the least amount of
overhead on the network [62]. It is possible to construct the flow table predictably using
temporal routing and the Markov model, for instance. Additionally, IDT can use other
algorithms, such as reinforcement learning, to improve routing schemes based on vehicle
availability in dynamic networks where routing methods are based on the vehicle’s location
information [65].

1. Edge Layer: In the context of intelligent digital twin networks, the edge layer refers
to the layer of computing devices and sensors that are located close to the physical
systems being monitored and controlled. These edge devices are capable of collecting
and processing data from sensors. They can also run local analytics and decision-
making algorithms and communicate with other edge devices or higher-level cloud-
based systems [130].
One of the key advantages of using edge computing in intelligent digital twin net-
works is the ability to process data closer to their source, reducing latency and enabling
real-time decision making. This is particularly important in applications such as indus-
trial automation, visualizing high-quality 3D contents [131], or autonomous vehicles,
where even small delays in processing and decision making can have significant
consequences. Additionally, edge computing can help to reduce data communica-
tions with cloud-based systems, which can help to reduce network congestion and
lower costs. By performing the local processing and filtering of data, edge devices
can send only the most important information to higher-level systems for further
analysis and decision making [132]. Overall, the edge layer is important in enabling
the efficient and effective operation of intelligent digital twin networks, particularly
in applications where real-time decision making is critical, as shown in Figure 8.

2. Communications: Reliability refers to the ability of the network to deliver data without
loss or errors. High reliability is critical for applications that require constant and
accurate data delivery, such as real-time control systems or medical applications [133].
Latency is the time delay between the transmission of data and their arrival at the
destination. Video conferencing or online gaming, which require real-time responses,
depend on low latency. During a given period, a network’s capacity is how much
data it can transmit. High capacity is critical for applications that require large data
transfers, such as video streaming or file sharing. Connectivity refers to the ability
of a network to connect devices and enable communication between them. Good
connectivity enables communication between devices and provides a seamless user
experience. These metrics are often considered to estimate communication networks’
QoS and design new networks that meet the requirements of specific applications.

3. Internet of Things: A network can be segmented into multiple virtual networks by
using network slicing, each with its own characteristics and set of resources [134].
This allows for the creation of customized network environments to meet specific
application requirements, such as low latency or high bandwidth. Network optimiza-
tion is the process of improving the performance of a network by maximizing its
efficiency and minimizing its latency, congestion, and packet loss. This can be ac-
complished through various techniques, including traffic engineering, load balancing,
and resource allocation. Routing is the process of selecting the best path for data to
travel across a network from a source to a destination. This involves determining the
most efficient route based on factors such as distance, traffic congestion, and network
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topology [135]. Various routing protocols, such as OSPF (Open Shortest Path First)
and BGP (Border Gateway Protocol), are used to accomplish this.
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Figure 8. The taxonomy of conventional and recent advances in IDTSDVN applications and the
organization of this survey.

Digital twin SDVN is an emerging concept that combines digital twin and SDN
technologies to extend the performance of the vehicular network [136]. In this way, network
management can be more efficient. Digital twin SDVN refers to the creation of a virtual
representation of a vehicular network, known as a digital twin, and its integration with
the physical network. Digital twins provide a real-time view of the physical network,
collecting and analyzing data to provide insights into traffic patterns, network performance,
and other metrics [137]. This information is then used to optimize network operations and
improve the overall user experience. SDN technology manages the digital twin and the
underlying physical network, providing centralized control and programmability. This
enables the network operator to allocate resources dynamically, reroute traffic, and adjust
network configurations as needed to optimize network performance and meet changing
user demands. Digital twin SDVN can be used to support a wide range of vehicular
applications, including connected vehicles, ITS, and autonomous driving. By providing
real-time insight into network performance and enabling dynamic network management,
it can help to improve safety, reduce congestion, and enhance the overall efficiency of
vehicular networks.

5. Performance Evaluation of iSDVN

Considering that vehicles are so crucial in the IoT, VNs have been extensively re-
searched for their ability to facilitate efficient connectivity between vehicles and infras-
tructures for a variety of applications. The Internet of Vehicles (IoV) is a component of
the IoT [66,71]. Unlike other sorts of mobile devices and networks, automobiles move dy-
namically within road networks. In the last two decades, VANETs have been investigated
as a way to connect cars in large regions with multi-hop communication. Nevertheless,
VANETs will eventually contribute to next-generation VNs due to their multi-hop and
self-organizing capabilities, enabling the network to extend its coverage [94]. Consequently,
VNs are referred to as VANETs throughout this survey.

As a solution to the above, the iSDVN has emerged as a promising architecture in
recent years for ITSs, as shown in Figure 5, with the current study demonstrating that it
can reduce latency and packet drops while taking into account software-defined network
characteristics such as decoupling networking and data forwarding. The controller will
give far more powerful processing capability than individual vehicles in such a network
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architecture. In this context, the intelligent digital twin based on the SDVN reduces the
cost of networking equipment, allowing clever schemes for smart vehicles and IoV to be
realized [62].

5.1. Challenges of Multi-Service Provisioning of QoS for iSDVN and iSDHVN

Multi-service provisioning refers to the ability of a network to support the delivery
of multiple types of services, such as voice, video, and data, over a single infrastructure.
With the increasing demand for new services, the ability to deliver multiple services
efficiently and cost-effectively has become essential for network operators. Typically, it
is achieved through the use of QoS mechanisms that ensure that different types of traffic
are prioritized in accordance with their requirements. QoS mechanisms can help ensure
that the network resources are used effectively, and the delivery of critical services is
not compromised.

In addition to QoS mechanisms, network operators can also use Service Level Agree-
ments (SLAs) to guarantee service quality for specific applications or customers. SLAs can
include specific requirements such as bandwidth, latency, and packet loss rates and can
help ensure that critical services are delivered with the desired level of performance. Multi-
service provisioning can be challenging for network operators, as different services may
have different requirements for bandwidth, latency, and other metrics. This requires careful
planning and management to ensure that the network is optimized for the delivery of
multiple services. It is typically achieved through the use of QoS mechanisms and SLAs,
which prioritize different types of traffic based on their requirements and guarantee ser-
vice quality for specific applications or customers. Effective multi-service provisioning
requires careful planning and management to optimize the network for the delivery of
multiple services.

The aim of this work was to improve the reliability of service provisioning in iSDVNs.
We examined how SDN has evolved into new wired and wireless networking applications
and end-user services. Multiple wireless network technologies are integrated into SDN
to support and improve QoS. The iSDVN enables link reliability in V2V environments,
especially in an SDVN controlled by a centralized server. To improve vehicular safety,
queueing-based models are most appropriate for evaluating SDN controllers and switches.
The utilization of resources, traffic flow, and queue management are optimized. As data
traffic flows or services are provisioned, network management becomes feasible. The logi-
cally centralized management of an SDVN allows V2V communications to be conducted
efficiently. In the control plane, high-priority messages can be sent through wired or
wireless channels allocated to specific controllers and switches.

A queueing-based model is found to be more effective for evaluating controllers and
switches. The iSDVN system has been designed to balance high traffic loads and data
services. A packet flow’s service time is based on an exponential distribution in iSDVNs.
In the queueing-based model, a path selection approach is used, queues are modeled
with the controller, and traffic flow is controlled by switches. VNC (virtual network
customization) can be increased with SDN. For using multi-service provisioning in an
SDVN, we propose the multi-hop cooperative data dissemination approach to enhance
data link reliability and stability and select the best route for packets from the source to
the destination. Data traffic load balancing in vehicular networks is a significant problem
that SDN heterogeneous vehicular networks can handle [138]. To minimize network
management latency and maximize network utility, the iSDHVN controller controls events
over the cellular network. Throughput and resource utilization are optimized with the
proposed enhanced service reliability model, which also reduces resource consumption
and minimizes response time.
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5.2. Techniques Analyzed in iSDVN

This section describes the challenges identified since the survey started in wireless
networks, VANETs, HetVNETs, iSDVNs, and iSDHVNs. In Section 2, we examine data
dissemination, data forwarding, latency, and load-balancing issues associated with SDVN
networks, as well as network connectivity, network congestion, routing, scheduling, and
mobility. Hence, examining the hierarchical environment in VANETs, SDVNs, and iSD-
HVNs and the merits and demerits associated with them is necessary. Statistically analyzing
the networks’ performance indicators and explaining why stochastic models are used to
solve workload problems in SDVNs is also presented by Zhao et al. [78]. In order to assess
the performance of SDVNs and iSDVN systems, various parameters need to be considered,
such as random traffic flow and data dissemination schemes, cooperative scheduling, and
load-balancing algorithms for queueing networks [19,31]. As a result of a small collection
of resources in routing and scheduling algorithms, traffic flow mobility and server resource
usage are generally reduced. As a result of SDN, organizations can access a heterogeneous
collection of services, scale, ensure reliability, stay consistent, be flexible, and programmable.
The network performance in iSDVN and iSDHVN has been analyzed and modeled using
stochastic models.

5.3. Integration of SDN with Other Technologies

The integration of SDN with other emerging technologies is an important trend in the
development of vehicular networks. The integration of SDN with other technologies can
enable new services, enhance network performance, and improve the overall efficiency of
vehicular networks. One technology that can be integrated with SDN is edge computing.
Essentially, edge computing is meant to bring computation and data storage closer to the
data generation edge of a network. By integrating edge computing with SDN, it is possible
to reduce the latency and improve the response time of vehicular applications. For example,
the combination of edge computing and SDN can enable intelligent decision making by
analyzing data in real time at the edge of the network.

Another technology that can be integrated with SDN is artificial intelligence (AI). AI
can be used to enhance the intelligence of vehicular networks by analyzing and learning
from data collected by the network. By integrating AI with SDN, it is possible to develop
more efficient and intelligent routing algorithms and to optimize network resources for
better performance. The integration of 5G with SDN is also a promising trend. Offering
high-speed connectivity and low latency, 5G is the next generation of wireless commu-
nication technology. By integrating 5G with SDN, it is possible to provide reliable and
efficient communication for vehicular networks. SDN can be used to optimize the use of
5G resources and to enable more efficient traffic management and routing.

Finally, integrating Blockchain technology with SDN can provide additional security
and privacy for vehicular networks. Blockchain can be used to create a tamper-proof ledger
of all the transactions that occur in the network, which can help prevent malicious attacks
and ensure users’ privacy [139]. Integrating SDN with other emerging technologies, such
as edge computing, AI, 5G, and Blockchain, can enhance vehicular networks’ intelligence,
performance, and security. This integration is an important trend that is driving the devel-
opment of next-generation vehicular networks.

SDN in VANETs: Stochastic network optimization and SDVNs are presented in this section
to improve packet forwarding. The source and destination nodes of VANETs operate on
a queueing model. VANETs are quickly becoming SDN networks with the help of new
technologies. The IEEE 802.11p/1609 vehicular communication protocol provides efficient
data transmission to VANETs [140]. The integration of this technology allows us to monitor
vehicles, which improves traffic management and makes transportation more efficient. Var-
ious studies have been conducted on VANETs in terms of their efficiency in disseminating
data. As SDN changes, the VANET topology can be adjusted. A VANET’s control plane
is decoupled from its assimilation and network management support. As part of these
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services, network infrastructure virtualization is proposed in [41]. In [42], an architecture
for a hierarchical SDVN is proposed. As a result of packet loss and poor connectivity,
a communication protocol was developed to address it through the controller [63]. In [37],
the authors abstracted heterogeneous wireless devices such as vehicles and RSUs to achieve
rapid network innovation. The benefit of logically centralized control planes is that they
provide better configuration capabilities by improving the quality of service.

The location of vehicles, traffic flows, and the cooperative data scheduling of vehicles
have been studied [3]. V2I communication is enabled by RSUs picking up data from source
and destination vehicles. SDN-enabled vehicular networks are managed and resource-
utilized efficiently by their controllers. Wireless communication technologies are often
integrated with SDN paradigms to support vehicular communications [49]. The SDVN
routing protocol takes performance metrics into account, resulting in stable routes and
the shortest communication delays [8,58]. Consequently, packet delivery is improved,
and packet flow setup delay is reduced. Data from the RSU cloud can be disseminated
across the network using the SDN controller. By determining the shortest path and most
stable route between communication nodes, this model minimizes the optimal delay in
the network.

SDN switches are analyzed based on several key factors, including the packet arrival
rate, service rate, and waiting time [40]. Next-generation networks have a faster data trans-
mission rate than 4G networks [46]. Network packet loss is caused by dynamic topologies
due to their short lifetime links. Dynamically optimized VNC data transfer and service
performance were implemented to meet vehicle specifications. Due to the highly dynamic
mobility of vehicles, reconfiguration delays can be higher in vehicular networks. To ensure
a short recovery time and reasonable packet delivery rates, an SDN controller simulation is
utilized to evaluate this architecture. SDN controller performance was modeled and pre-
dicted using a wireless network virtualization model in [39,43]. To maximize reliability and
minimize delay, this model was analyzed. Accordingly, the proposed model maximized
reliability in SDN-based vehicular networks based on arrival and service rates compared to
the analysis in [141].

When communicating packets, OpenFlow switches to reduce maximum load balanc-
ing. Data-plane and control-plane traffic flows can also be implemented using queueing
theory. The queueing model minimizes latency problems caused by the dense flow of pack-
ets. Using OpenFlow controllers and switches also optimizes data traffic forwarding [142].
Controllers and switches deliver the data plane of SD-VANET systems. The authors
of [39,46,59,143] have not considered the control of event decisions. Using the multi-server
queue technique, SDVN maximizes reliability, minimizes controller response time, and en-
hances packet flow rules. Compared to existing work, the proposed work shows SDVN’s
reliability and service level agreement, which are shown in Table 2.

Table 2. Performance metrics considered in SDVN by most of the researchers.

Work Conducted Reliability Utilization Delay Multi-hop SDVN Mobility Throughput Flow Rule Digital Twin

He et al. [37] 7 3 7 3 3 3 7 7 7

Ravi et al. [3] 3 7 3 3 3 3 7 7 7

ravi et al. [11] 7 7 3 3 3 3 7 7 7

Sood et al. [40] 7 3 3 7 7 7 7 3 7

Liyanage et al. [46] 7 7 3 3 3 3 7 7 7

ravi et al. [96] 7 7 3 7 7 7 7 3 7

Xiong et al. [39] 7 7 3 7 7 7 7 7 7

Thiruvasagam et al. [141] 3 7 3 3 7 7 7 7 7

Halabian et al. [142] 7 7 3 7 7 7 7 7 7

Misra et al. [59] 7 7 3 3 3 3 7 7 7
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SDN in Heterogeneous Vehicular Ad Hoc Networks: The purpose of this section is to present
an approach to multi-hop cooperative data dissemination in SDHVNs that improves the
forwarding of data traffic, the utility of the network, and the reliability of the network.
Through the data plane, the SDHVN transmits and receives packets. One of the new emerg-
ing technologies in VANETs is SDN, enabling vehicle monitoring. The SDN architecture in
VANETs is attracting more research attention. The authors of [37] propose an SDN-based
approach for heterogeneous vehicular communications to enable rapid network innovation.
Our research has focused on optimizing VANET latency and delay control. It has been
proposed to use time constraints to schedule heterogeneous vehicular networks using
SDN. LTE-integrated V2V and V2I communications are enabled by IEEE 802.11p/1609.
A hybrid V2I/V2V packet-scheduling algorithm enhances cooperative data dissemination
in an SDVN [144].

In the control plane, a 5G-enabled SDVN, packet-scheduling algorithms, and SDN
architecture were applied for data forwarding to the data plane. Although the authors
examined general issues associated with heterogeneous vehicular systems, they do not
have a specific solution. Routing and scheduling requirements for data communication in
VANETs take into account a variety of network resources. SDN controllers control packet
schedulers for heterogeneous vehicular networks [38]. As described in [54], the authors
proposed an integrated hierarchical architecture for the IoV, which can enhance the reli-
ability and scalability of data services. Data trafficking and network management have
become more flexible, which makes future ITSs possible. The SDVN framework facili-
tates data dissemination in an efficient and effective manner. The controller in VANETs
controls high mobility and multi-hop paths to achieve high reliability and throughput.
A dynamic vehicular connection management approach was developed by the authors
to guarantee the quality of service in an SDIoV. The authors of [58] investigated various
factors related to link stability to optimize routes for packet delivery. The SDN controllers
improve packet delivery and decrease latency by managing traffic flow cooperation and
network availability.

To maximize network utility, SDVN and dynamic stochastic network optimization are
studied. Furthermore, the sharing of information at the mobile edge of a SD 5G VANET
is emphasized, as well as the improvement of latency and reliability. The utilization of
resources and the quality of service that VANETs provide must be balanced. Due to
the different QoS requirements for multi-class services, the SDHVN prioritizes different
functions and ensures fairness. Vehicle networks place a high priority on safety-related
services. An innovative packet-scheduling approach is proposed for resource management
in VANETs [145]. SDHVN’s data dissemination utility is enhanced by it, as well as the
multi-class QoS performance. According to He et al. [37], VANET data dissemination
poses the largest problem. This scheme enhanced QoS over the available existing models
in studies performed by Gong et al. [45], Dai et al. [51], and Chal et al. [57]. Due to the
fact that most SDHVNs are cooperative, a novel multi-hop cooperative data dissemination
system with packet scheduling can be envisioned for SDHVNs.

SDN in Internet of Vehicles: This section integrates the SDN concept with IoV, demonstrating
its excellent benefits [146]. The control plane controls data forwarding and flow-table
matching. An SDN controller can, however, make better routing decisions based on a
global view of the network topology. Table 3 presents a comparison of related work on
SDN-based IoV [147]. Centralized/distributed SDN architectures were compared for most
work-related tasks. With SD-IoV, latency control is reduced by using the higher mobility
of vehicles in SD-VANET systems and the additional link/disconnection that occurs in
SD-VANET systems [44].
Digital Twin Integrated with SDN: Digital twin technology integrated with SDN can enhance
network management in several ways.
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Data ingestion in the digital twin allows for the real-time monitoring and visualization
of network elements, flows, and traffic patterns. To make informed decisions, administra-
tors can visualize and analyze the current state of the network. The digital twin can predict
potential network issues or performance bottlenecks based on historical data and network
behavior patterns. As a result, administrators can take proactive measures before problems
worsen. With the digital twin, administrators can optimize resource allocation, traffic engi-
neering, and load balancing in real time, thus enhancing the efficiency of their networks.
When network faults occur, the digital twin can act as a sandbox for conducting virtual
experiments to identify the root cause and test potential solutions before implementing
them in real time.

Intelligent Digital Twin for SDVN: The research on intelligent DTs for SDVNs can be novel
and cutting-edge. SDVN technology combined with DT technology offers opportunities for
innovation and advancement in vehicular networks. The following aspects can contribute
to the novelty of such work: In order to develop an intelligent digital twin, artificial
intelligence (AI) techniques are integrated with the SDVN. As a result of this fusion,
the digital twin can learn from real-time network data, make predictions, and adjust its
configurations and policies automatically as conditions change. It is a novel approach to
managing vehicular networks that can revolutionize the field by combining AI and SDVN.
Using AI-driven optimization techniques, DTs can efficiently allocate resources to support
various vehicular services, such as infotainment, traffic management, and vehicle-to-vehicle
communication. This capability allows SDVN applications to be met with a novel and
intelligent approach. The intelligent digital twin uses machine-learning algorithms to
detect anomalies and identify abnormal network behavior. A novel contribution to SDVN
research is the ability to enhance network security and resilience through this capability.
In addition to vehicle sensors, communication devices, and infrastructure, the intelligent
digital twin can gather data from many sources. Research on SDVNs focuses on integrating
and analyzing heterogeneous data for intelligent decision making.

Table 3. Performance metrics of E2E delay bound analysis in iSD-IoVs.

Work Conducted Architecture Contribution Method Delay Bounds Digital Twin

Deng et al. [44] Centralized SD-IoV Optimization 7 7

Bilen et al. [148] Centralized SDUDN Queueing model 3 3

Sood et al. [40] Centralized CPU Utilization Queueing Model 3 7

ravi et al. [96] Centralized Packet Scheduling Queueing Model 3 7

Mahmood et al. [149] Centralized SDN-based VANETs QoS Resources 7 7

ravi et al. [3] Centralized Data Scheduling Queueing Model 3 7

Liyanage et al. [46] Hierarchical SDVN CPP 3 7

kumar et al. [150] Heterogeneous SD5GNet Queueing Model 3 7

Ye et al. [151] Heterogeneous VNF-5G core networks Queueing Model 3 7

6. Open Issues

Several approaches are described in the literature; however, there are still many gaps
and challenges in SDVNs. One approach that has shown promise in addressing these
challenges is the use of intelligent digital-twin-based SDVNs. The intelligent digital-twin-
based SDVN is a promising approach to addressing the challenges and gaps in SDVNs,
as shown in Figure 9. Software-defined networking (SDN) and digital twin technology
can be integrated to enhance network management, optimization, and decision making.
In order to fully realize the potential of SDN through the use of digital twin technology,
some open issues and challenges have to be addressed. The following paragraphs describe
some open issues.
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Figure 9. The scope of intelligent digital-twin-based SDVN [73].

6.1. Controller Placement Problem

The controller placement problem is crucial in minimizing delay in SDN-based
VANETs. By installing local controllers in ideal locations and distributing the workload,
individual controllers can handle the traffic efficiently. Using queueing models, delays over
wired and wireless links can be assessed and minimized while controllers are located. In or-
der to describe the finite queue of each vehicle OBU and RSU, the packet arrival rates follow
a Poisson distribution with a mean packet arrival rate. The controller placement problem
in an SDVN is complicated by various factors, and the trade-off between the controller
number and latency is one of them. If too few controllers are used, the delay experienced
by OBUs located far away from the controllers may increase, which is undesirable in
delay-sensitive VANET applications. At the same time, deploying too many controllers
may increase the overhead and result in increased latency due to the communication delay
among the controllers.

6.2. Resource Allocations

Each vehicle is equipped with computing resources, such as computing power, storage,
and so on [152]. The SDVN with inter-vehicular communication is an emerging technology
for effective safety and entertainment information distribution. However, due to fast mobil-
ity and variable vehicle density, highly dynamic VANET topology might produce unstable
wireless connections, resulting in more significant packet loss and increased transmission
latency, posing problems in ensuring the QoS [153]. DV2I and V2V communications can
both be enabled by Dedicated Short-Range Communications (DSRC).

There have been a slew of new services fueled by mobile devices and the exponen-
tial growth of mobile internet traffic, including computation-intensive, content-centric,
and delay-sensitive services [154]. To maximize VANET speed, it is vital to allocate net-
working, caching, and computing resources. Spectrum/bandwidth, power, and time slots
are some of the radio resources that can be managed in vehicular communication [155].
As a result, the allocation and management of resources are challenging to resolve and
differ significantly from one another.

6.3. Mobility Control

The increasing mobility of vehicles in the context of SDVNs presents significant chal-
lenges for network stability and management. As vehicles move at high speeds and change
their locations frequently, the wireless channels used by an SDVN become unstable, lead-
ing to data transmission errors and delays. This can result in difficulties in acquiring
real-time data from the vehicles and networks using the controller, leading to delays in
the controller’s command distribution. To address this challenge, various solutions have
been proposed, such as the use of predictive algorithms and mobility-aware routing proto-
cols. However, these solutions are still in their infancy and cannot be fully implemented
in SDVNs.
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One potential solution to the high-mobility challenge is the incorporation of vehicle
movement behavior in network stability prediction. By predicting the movement of vehicles
in a given network environment, it may be possible to anticipate wireless channel instability
and take proactive measures to prevent data transmission errors and delays. However,
incorporating vehicle movement behavior into network stability prediction is a complex
and challenging task. It requires the use of sophisticated algorithms that can accurately
model and predict the movement of vehicles in a given network environment. Additionally,
it requires the integration of data from multiple sources, such as vehicle sensors, network
infrastructure, and historical data, to create an accurate predictive model. Despite the
challenges, efforts are being made to develop predictive algorithms that can accurately
model and predict the movement of vehicles in high-mobility environments. These efforts
hold promise for enabling the more effective control and management of SDVNs in high-
mobility scenarios, improving their overall performance and reliability.

6.4. End-to-End Delay

In SDVNs, the number of controllers utilized can have a significant impact on the
end-to-end delay experienced by OBUs (On-Board Units) in the network. If only a few
controllers are used, OBUs that are far away from the controlling RSUs (Road-Side Units)
may experience significant route setup delays. This is because the controllers need to
communicate with the RSUs and other controllers to establish routes, which can lead to
long delays for OBUs that are farther away from the controllers. Delay-sensitive VANET
applications require a minimal end-to-end delay to function correctly, so it is crucial to
minimize the delay experienced by OBUs during the deployment of controllers. It is
important to note, however, that latency is a trade-off between the number of controllers
and the number of processors. OBUs can be improved by increasing the number of
controllers, but the overhead and complexity of the network may also increase.

To address this trade-off, network designers need to carefully consider the number
and placement of controllers in the network. They must balance the need for minimal
end-to-end delay with the need to reduce the overhead and complexity of the network.
One approach is to use distributed control, where the control plane is distributed across
multiple controllers, each responsible for a specific area of the network. This approach can
help minimize the delay experienced by OBUs while reducing the overhead and complexity
of the network. In summary, the number and placement of controllers in SDVNs can have
a significant impact on the end-to-end delay experienced by OBUs. In designing SDVNs, it
is important to consider the trade-off between a number of controllers and latency, as well
as the need to reduce overhead and complexity while maintaining minimal end-to-end
delay. Distributed control can be an effective approach for minimizing delay while reducing
network overhead and complexity.

6.5. Quality of Service (QoS)

While early versions of SDN and OpenFlow may not have explicitly supported differ-
entiated QoS, recent developments have been made to incorporate QoS mechanisms into
SDN networks. For example, the OpenFlow 1.3 specification includes support for QoS and
traffic classification, allowing for the creation of virtual networks with different QoS require-
ments. Additionally, SDN controllers can implement QoS policies and traffic-engineering
strategies to ensure that different types of traffic are handled appropriately. In order to
enable end-to-end QoS signaling across distributed SDN domains, session control protocols
can be used as a northbound interface. Using this approach, multiple applications can be
managed in real time with flexible and differentiated QoS provisioning. The configura-
tion of many QoS mechanisms currently requires human intervention, impairing network
flexibility. In order to provide QoS support for SDN-enabled applications without using
OpenFlow, approaches such as the OpenQoS framework have been developed, assisting
network administrators in defining the QoS strategy that flows should adhere to and how
the controller can allocate resources and differentiate services.
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Ad hoc networks lack centralized management, which can lead to issues with con-
gestion and prioritization of messages. This can be especially problematic in vehicular
networks, where the large number of vehicles on the road and their constantly changing
positions can result in a significant amount of network traffic [156]. However, there are
solutions being developed to address these issues, such as using intelligent routing algo-
rithms and prioritizing certain types of messages, such as emergency messages, to ensure
timely and reliable delivery.

6.6. Stochastic Learning

Stochastic learning algorithms are a class of optimization algorithms that utilize
random variables to optimize objective functions or identify the fixed points of functions
that are only accessible through noisy observations. These algorithms are commonly used in
reinforcement learning to improve the performance of networks, such as in the case of IDT
SDVN. It is one of the most popular stochastic learning algorithms used in reinforcement
learning. Using this method, agents learn the optimal Markov decision process policy to
follow. The optimal policy can be determined by the fixed point of an expectation function,
which is the optimal state–action value function. However, in the context of the SDVN,
the optimal state–action value function is not directly accessible due to the complex and
dynamic nature of the network environment. The network state may change rapidly due
to various factors, such as traffic patterns, network topology, and network failures. This
makes it challenging to accurately estimate the state–action value function for each state
and action in the network.

To address this challenge, researchers have proposed several extensions of the Q-
learning algorithm, such as the Deep Q-Network (DQN) algorithm, which uses deep neural
networks to estimate the state–action value function [157]. The DQN algorithm has been
shown to be effective in learning the optimal policy for complex and dynamic network
environments, such as in the case of SDVNs. In summary, stochastic learning algorithms,
such as the Q-learning algorithm, can be used to optimize network performance in IDT
SDVN. However, the dynamic and noisy nature of the network environment requires
modifications to these algorithms to make them effective in practice. Extensions of these
algorithms, such as the DQN algorithm, have been proposed and shown to be effective in
addressing the challenges of dynamic and noisy network environments.

6.7. Intelligent Networking

It is possible to improve routing metrics, protocol switching, adaptive routing, and load
balancing using learning algorithms. As the controller learns from the collected data,
he or she can construct networks according to the learned data. Recursive updating of
networking schemes can be achieved by learning the physical world and the entire network,
on the other hand.

Optimizing network resources involves maximizing their use. Intelligent networking
intelligently shares and allocates frequency blocks among network traffic based on device
signaling or control information [158]. Researchers have developed network scheduling
models and used optimization for a wide range of scenarios. The typical strategy derives
policy from a specific scenario. However, the practical network may encounter various
complex environments that are vastly different from the scenarios discussed. Typically,
the network’s statistical properties are unknown, making optimization difficult. Distributed
device randomness is a major issue for network scheduling. In this case, the network’s
communication and computation resources should be shared. Resources include communi-
cations and computations. Edges can communicate and offload data or computations to
other edges or the cloud. In low-rate cases, they may reduce the processor frequency to
save energy.
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6.8. Queue Learning

In network-based systems, queueing theory is a well-established evaluation tool. This
mathematical framework enables the evaluation of software-defined solutions and critical
actors. By applying fundamental principles and analytical frameworks based on queueing
theory, it can be applied to analyze network functionality. Queueing theory predicts
the network’s performance by analyzing the workloads associated with different traffic
models. In recent years, researchers have paid attention to the application of queueing
theory in SDN networks. This is because queueing theory provides a comprehensive
and accurate model that can be used to address performance issues in SDN networks.
By applying queueing theory in SDN networks, it is possible to improve network efficiency,
reduce delays, and optimize resource utilization. This theory has been applied to extensive
mathematical modeling, enabling researchers to evaluate different aspects of network
performance, such as throughput, delay, and packet loss.

Furthermore, queueing theory can be used to evaluate different network topologies
and configurations. It can be used to model the behavior of different SDN components,
including switches, controllers, and applications, and analyze their impact on network
performance. In summary, queueing theory is a valuable tool for evaluating the perfor-
mance of SDN networks. Its comprehensive and accurate model can be used to optimize
network efficiency, reduce delays, and improve resource utilization. By using queueing
theory, researchers can evaluate different aspects of network performance and analyze the
impact of different network topologies and configurations on network behavior [159].

6.9. Machine Learning

The mobility of vehicles, the dynamic spacing between vehicles, and the variable
density of vehicles make it difficult to create and maintain end-to-end connections in
a VANET. By predicting the moving patterns of vehicles, VANET performance can be
improved for continuous service availability, and routing planning can be improved [160].
A SDN controller that uses artificial intelligence helps the VANET routing scheme predict
mobility. The SDN controller utilizes advanced artificial neural networks to predict mobility
accurately. Based on mobility prediction, the RSUs or the BS can estimate each vehicle’s
success probability and average delay when the network topology changes frequently.
According to the estimation, vehicle arrival follows a Poisson process in a stochastic traffic
model. Network systems need to be organized, managed, maintained, and optimized with
more intelligence. Machine-learning techniques [55,161], however, are difficult to apply
and deploy in traditional networks due to their inherently distributed nature. In SDN, we
have the opportunity to provide network intelligence. An SDVN’s capabilities (logically
centralized control, global network view, software-based traffic analysis, and dynamic
updating of forwarding rules) make machine-learning techniques more convenient to
apply [162].

6.10. Zero-Touch Provisioning

Zero-Touch Provisioning (ZTP) in SDN (software-defined networking) is a process that
automates the configuration of network devices, such as switches and routers, without re-
quiring any manual intervention from network engineers. ZTP enables a more adaptive
and agile network infrastructure, allowing network devices to configure themselves au-
tomatically based on the real-time changes in the network environment [3,64,163]. One
of the primary advantages of ZTP in SDN is the reduction in human intervention, which
can lead to faster decision making and fewer errors. With ZTP, network devices can be
pre-configured with the necessary software and policies to function in a particular network
environment [164]. Once connected to the network, these devices can automatically identify
and adapt to changes in the network topology, traffic patterns, and other variables. This
automated provisioning process can significantly reduce the time and effort required for
network configuration, as well as eliminate the potential for human error that may occur
during manual configuration. Additionally, ZTP can help ensure consistency across net-
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work devices, leading to better network performance and greater reliability. Overall, the use
of ZTP in SDN provides several benefits, including increased agility, faster deployment,
and reduced operational costs. By automating the configuration of network devices, ZTP
allows network engineers to focus on more strategic tasks and frees up time and resources
that would otherwise be spent on manual network configuration [87]. It also helps us when
we have multiple vehicles. The manual configuration of multiple vehicles is hectic when
humans are involved. So, automating configuration will add benefits to SDN to make it
adaptable to the environment.

By addressing these open issues, digital twin technology will be integrated with SDN,
allowing for more intelligent, adaptive, and efficient network management and control.
In order to address these challenges and unlock the full potential of SDN, researchers and
practitioners must collaborate to develop innovative solutions and best practices.

7. Conclusions

The survey on stochastic modeling in intelligent SDVNs has provided valuable insights
into various aspects of software-defined vehicular networks. The findings highlight the
challenges and opportunities in resource allocation, routing, scheduling, data dissemination,
and performance analysis in VANETs and SDVNs. The survey emphasizes the impact of
high mobility and dynamic network topology on resource allocation and response time
in VANETs. It identifies the need for proper coordination and scheduling mechanisms
to optimize data traffic flows and service provisioning in cooperative communication
scenarios. A comparative study of VANETs and SDVNs highlights the importance of
collision avoidance, data forwarding, connectivity, mobility, load balancing, and network
utilization. It provides a comprehensive overview of existing techniques and solutions
in SDN-oriented vehicular networks. However, the survey acknowledges the current
limitations and challenges in implementing SDN in vehicular networks. The need for
off-the-shelf SDN controllers and switches tailored to vehicular environments is a barrier
to SDVN adoption. The survey calls for further research and innovation to address these
challenges and develop mature solutions and protocols for SDVNs. In this survey, we
point out the promising potential of incorporating digital twin technology into software-
defined networking to enhance network management. SDVN infrastructures can be made
more efficient and resilient because the digital twin delivers real-time insights, predictive
analysis, and resource optimization. For SDVNs to fully take advantage of the benefits of
digital twins, further research and experimentation will be necessary. In conclusion, this
survey is a valuable resource for understanding the current state of stochastic modeling
in intelligent SDVNs. It provides a foundation for future research and development in
intelligent SDVNs. It also highlights the need for practical solutions and protocols tailored
to vehicular networks’ unique requirements.
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Abbreviations
The following abbreviations are used in this manuscript:

AODV Ad Hoc On-Demand Distance Vector
BS Base Station
CC Cooperative Communications
CDF Cumulative Distribution Function
CPP Controller placement problem
DSRC Dedicated Short-Range Communication
E2ED End-to-end delay
eNodeB Evolved Node B
eRELSERV Enhanced reliability and service
HetVNET Heterogeneous vehicular network
IDT Intelligent digital twins
IoT Internet of Things
IoV Internet of Vehicles
IVC Inter-vehicular communication
ITS Intelligent Transportation System
LTE Long-Term Evolution
MANET Mobile ad hoc network
MDP Markov decision process
MEC Mobile edge computing
MHCDD Multi-hop cooperative data dissemination
NFV Network Function Virtualization
OBU On-Board Unit
OSPF Open Shortest Path First
P2P Peer-to-Peer Networks
PDR Packet delivery ratio
QoS Quality of service
RSU Road-Side Unit
RS-WLANs Road-Side Wireless Local Area Networks
RU Resource utilization
SCH Service Channel
SDHVN Software-defined heterogeneous vehicular network
SD-IoV Software-Defined Internet of Vehicles
SDN Software-defined networking
SD-VANET Software-Defined Vehicular Ad Hoc Network
SDVN Software-defined vehicular network
SLA Service Level Agreement
SM Stochastic modeling
SNC Stochastic Network Calculus
V2I Vehicle to Infrastructure
V2V Vehicle to Vehicle
V2X Vehicle to Everything
VANET Vehicular ad hoc network
VAODV Vehicular Ad Hoc On-Demand Distance Vector
VNF Virtual Network Functioning

References
1. Chen, G.; Zhou, Y.; Xu, X.; Zeng, Q.; Zhang, Y.D. A multi-aerial base station assisted joint computation offloading algorithm

based on D3QN in edge VANETs. Ad Hoc Netw. 2023, 142, 103098.
2. Al-Badarneh, J.; Jararweh, Y.; Al-Ayyoub, M.; Fontes, R.; Al-Smadi, M.; Rothenberg, C. Cooperative mobile edge computing

system for VANET-based software-defined content delivery. Comput. Electr. Eng. 2018, 71, 388–397.
3. Ravi, B.; Kumar, M.; Hu, Y.C.; Hassan, S.; Kumar, B. Stochastic modeling and performance analysis in balancing load and traffic

for vehicular ad hoc networks: A review. Int. J. Netw. Manag. 2023, e2224. [CrossRef]
4. Dai, X.; Xiao, Z.; Jiang, H.; Chen, H.; Min, G.; Dustdar, S.; Cao, J. A Learning-based Approach for Vehicle-to-Vehicle Computation

Offloading. IEEE Internet Things J. 2022, 10, 7244–7258 .

http://doi.org/10.1002/nem.2224


Computers 2023, 12, 162 29 of 34

5. Donta, P.K.; Srirama, S.N.; Amgoth, T.; Annavarapu, C.S.R. iCoCoA: Intelligent congestion control algorithm for CoAP using
deep reinforcement learning. J. Ambient Intell. Humaniz. Comput. 2023, 14, 2951–2966. [CrossRef]

6. Li, J.; Shi, W.; Wu, H.; Zhang, S.; Shen, X. Cost-Aware Dynamic SFC Mapping and Scheduling in SDN/NFV-Enabled Space–Air–
Ground-Integrated Networks for Internet of Vehicles. IEEE Internet Things J. 2021, 9, 5824–5838.

7. Wen, Z.; Garg, S.; Aujla, G.S.; Alwasel, K.; Puthal, D.; Dustdar, S.; Zomaya, A.Y.; Ranjan, R. Running industrial workflow
applications in a software-defined multicloud environment using green energy aware scheduling algorithm. IEEE Trans. Ind.
Inform. 2020, 17, 5645–5656.

8. Jiang, W. Software defined satellite networks: A survey. Digit. Commun. Netw. 2023, in press. [CrossRef]
9. Elhattab, M.; Khabbaz, M.; Al-Dahabreh, N.; Atallah, R.; Assi, C. Leveraging Real-World Data Sets for QoE Enhancement in

Public Electric Vehicles Charging Networks. IEEE Trans. Netw. Serv. Manag. 2023, early access. [CrossRef]
10. Donta, P.K.; Srirama, S.N.; Amgoth, T.; Annavarapu, C.S.R. Survey on recent advances in IoT application layer protocols and

machine learning scope for research directions. Digit. Commun. Netw. 2022, 8, 727–744. .: 10.1016/j.dcan.2021.10.004. [CrossRef]
11. Ravi, B.; Gautam, A.; Thangaraj, J. Stochastic performance modeling and analysis of multi service provisioning with software

defined vehicular networks. AEU-Int. J. Electron. Commun. 2020, 124, 153327.
12. Ravi, B.; Thangaraj, J. End-to-end delay bound analysis of VANETs based on stochastic method via queueing theory model. In

Proceedings of the 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET),
Chennai, India, 22–24 March 2017; pp. 1920–1923.

13. Wijesekara, P.A.D.S.N.; Gunawardena, S. A Machine Learning-Aided Network Contention-Aware Link Lifetime-and Delay-Based
Hybrid Routing Framework for Software-Defined Vehicular Networks. Telecom 2023, 4, 393–458.

14. Mekki, T.; Jabri, I.; Rachedi, A.; Chaari, L. Software-defined networking in vehicular networks: A survey. Trans. Emerg.
Telecommun. Technol. 2022, 33, e4265.

15. Monfared, S.K.; Shokrollahi, S. DARVAN: A fully decentralized anonymous and reliable routing for VANets. Comput. Netw. 2023,
223, 109561.

16. Islam, M.M.; Khan, M.T.R.; Saad, M.M.; Kim, D. Software-defined vehicular network (SDVN): A survey on architecture and
routing. J. Syst. Archit. 2021, 114, 101961.

17. Siddiqui, S.; Hameed, S.; Shah, S.A.; Ahmad, I.; Aneiba, A.; Draheim, D.; Dustdar, S. Towards Software-Defined Networking-based
IoT Frameworks: A Systematic Literature Review, Taxonomy, Open Challenges and Prospects. IEEE Access 2022, 10, 70850–70901.

18. Tahir, H.; Mahmood, K.; Ayub, M.F.; Saleem, M.A.; Ferzund, J.; Kumar, N. Lightweight and Secure Multi-Factor Authentication
Scheme in VANETs. IEEE Trans. Veh. Technol. 2023, early access.

19. Liu, Y.; Huo, L.; Wu, J.; Bashir, A.K. Swarm Learning-Based Dynamic Optimal Management for Traffic Congestion in 6G-Driven
Intelligent Transportation System. IEEE Trans. Intell. Transp. Syst. 2023, 24, 7831–7846. [CrossRef]

20. Ameur, A.I.; Lakas, A.; Yagoubi, M.B.; Oubbati, O.S. Peer-to-peer overlay techniques for vehicular ad hoc networks: Survey and
challenges. Veh. Commun. 2022, 34, 100455.

21. Imghoure, A.; Omary, F.; El-Yahyaoui, A. Schnorr-based Conditional Privacy-Preserving Authentication Scheme with Multisigna-
ture and Batch Verification in VANET. Internet Things 2023, 23, 100850.

22. Su, Y.; Huang, L.; Liwang, M. Joint Power Control and Time Allocation for UAV-Assisted IoV Networks over Licensed and
Unlicensed Spectrum. IEEE Internet Things J. 2023, early access.

23. Banoth, S.P.R.; Donta, P.K.; Amgoth, T. Target-aware distributed coverage and connectivity algorithm for wireless sensor networks.
Wirel. Netw. 2023, 29, 1815–1830.

24. Alharthi, A.; Ni, Q.; Jiang, R.; Khan, M.A. A Computational Model for Reputation and Ensemble-Based Learning Model for
Prediction of Trustworthiness in Vehicular Ad Hoc Network. IEEE Internet Things J. 2023, early access. [CrossRef]

25. Mao, M.; Yi, P.; Zhang, J.; Wang, L.; Gu, Y.; Zhang, G. Roadside units plane optimization scheme in software-defined vehicular
networks. Trans. Emerg. Telecommun. Technol. 2022, 33, e4499.

26. MalekiTabar, M.; Rahmani, A.M. A delay-constrained node-disjoint multipath routing in software-defined vehicular networks.
Peer-Netw. Appl. 2022, 15, 1452–1472.

27. Sudheera, K.L.K.; Ma, M.; Chong, P.H.J. Real-time cooperative data routing and scheduling in software defined vehicular
networks. Comput. Commun. 2022, 181, 203–214.

28. Ravi, B.; Thangaraj, J.; Petale, S. Stochastic network optimization of data dissemination for multi-hop routing in VANETs. In
Proceedings of the 2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET),
Chennai, India, 22–24 March 2018; pp. 1–4.

29. Shahwani, H.; Shah, S.A.; Ashraf, M.; Akram, M.; Jeong, J.P.; Shin, J. A comprehensive survey on data dissemination in Vehicular
Ad Hoc Networks. Veh. Commun. 2022, 34, 100420.

30. Chaudhary, P.; Gupta, B.B.; Chang, X.; Nedjah, N.; Chui, K.T. Enhancing big data security through integrating XSS scanner into
fog nodes for SMEs gain. Technol. Forecast. Soc. Chang. 2021, 168, 120754.

31. Nahar, A.; Das, D. MetaLearn: Optimizing routing heuristics with a hybrid meta-learning approach in vehicular ad-hoc networks.
Ad Hoc Netw. 2023, 138, 102996.

32. Yao, Y.; Shu, F.; Li, Z.; Cheng, X.; Wu, L. Secure Transmission Scheme Based on Joint Radar and Communication in Mobile
Vehicular Networks. IEEE Trans. Intell. Transp. Syst. 2023, early access. [CrossRef]

http://dx.doi.org/10.1007/s12652-023-04534-8
http://dx.doi.org/10.1016/j.dcan.2023.01.016
http://dx.doi.org/10.1109/TNSM.2023.3293460.
http://dx.doi.org/10.1016/j.dcan.2021.10.004
http://dx.doi.org/10.1109/TITS.2023.3234444
http://dx.doi.org/10.1109/JIOT.2023.3279950.
http://dx.doi.org/10.1109/TITS.2023.3271452.


Computers 2023, 12, 162 30 of 34

33. Dustdar, S.; Murturi, I. Towards IoT processes on the edge. In Next-Gen Digital Services. A Retrospective and Roadmap for Service
Computing of the Future: Essays Dedicated to Michael Papazoglou on the Occasion of His 65th Birthday and His Retirement; Springer:
Berlin/Heidelberg, Germany, 2021; pp. 167–178.

34. Dustdar, S.; Murturi, I. Towards distributed edge-based systems. In Proceedings of the 2020 IEEE Second International Conference
on Cognitive Machine Intelligence (CogMI), Atlanta, GA, USA, 28–31 October 2020; pp. 1–9.

35. Zhu, F.; Yi, X.; Abuadbba, A.; Khalil, I.; Huang, X.; Xu, F. A Security-Enhanced Certificateless Conditional Privacy-Preserving
Authentication Scheme for Vehicular Ad Hoc Networks. IEEE Trans. Intell. Transp. Syst. 2023, early access. [CrossRef]

36. Atallah, R.; Khabbaz, M.; Assi, C. Multihop V2I communications: A feasibility study, modeling, and performance analysis. IEEE
Trans. Veh. Technol. 2016, 66, 2801–2810.

37. He, Z.; Cao, J.; Liu, X. SDVN: Enabling rapid network innovation for heterogeneous vehicular communication. IEEE Netw. 2016,
30, 10–15.

38. He, Z.; Zhang, D.; Liang, J. Cost-efficient sensory data transmission in heterogeneous software-defined vehicular networks. IEEE
Sensors J. 2016, 16, 7342–7354. [CrossRef]

39. Xiong, B.; Yang, K.; Zhao, J.; Li, W.; Li, K. Performance evaluation of OpenFlow-based software-defined networks based on
queueing model. Comput. Netw. 2016, 102, 172–185.

40. Sood, K.; Yu, S.; Xiang, Y. Performance analysis of software-defined network switch using M/Geo/1 model. IEEE Commun. Lett.
2016, 20, 2522–2525.

41. Yaqoob, I.; Ahmad, I.; Ahmed, E.; Gani, A.; Imran, M.; Guizani, N. Overcoming the key challenges to establishing vehicular
communication: Is SDN the answer? IEEE Commun. Mag. 2017, 55, 128–134. [CrossRef]

42. Correia, S.; Boukerche, A.; Meneguette, R.I. An architecture for hierarchical software-defined vehicular networks. IEEE Commun.
Mag. 2017, 55, 80–86. [CrossRef]

43. Zhang, N.; Yang, P.; Zhang, S.; Chen, D.; Zhuang, W.; Liang, B.; Shen, X.S. Software defined networking enabled wireless network
virtualization: Challenges and solutions. IEEE Netw. 2017, 31, 42–49. [CrossRef]

44. Deng, D.J.; Lien, S.Y.; Lin, C.C.; Hung, S.C.; Chen, W.B. Latency control in software-defined mobile-edge vehicular networking.
IEEE Commun. Mag. 2017, 55, 87–93. [CrossRef]

45. Gong, W.; Li, G.; Li, B. System utility based resource allocation for D2D multi-cast communication in software-defined cellular
networks. AEU-Int. J. Electron. Commun. 2018, 96, 138–143. [CrossRef]

46. Liyanage, K.S.K.; Ma, M.; Chong, P.H.J. Controller placement optimization in hierarchical distributed software defined vehicular
networks. Comput. Netw. 2018, 135, 226–239. [CrossRef]

47. Zekri, A.; Jia, W. Heterogeneous vehicular communications: A comprehensive study. Ad Hoc Netw. 2018, 75, 52–79. [CrossRef]
48. Ahmed, E.; Gha, H. Cooperative vehicular networking: A survey. IEEE Trans. Intell. Transp. Syst. 2018, 19, 996–1014. [CrossRef]
49. Peng, H.; Liang, L.; Shen, X.; Li, G.Y. Vehicular communications: A network layer perspective. IEEE Trans. Veh. Technol. 2018,

68, 1064–1078. [CrossRef]
50. Wang, K.; Yin, H.; Quan, W.; Min, G. Enabling collaborative edge computing for software defined vehicular networks. IEEE Netw.

2018, 32, 112–117. [CrossRef]
51. Dai, P.; Liu, K.; Wu, X.; Yu, Z.; Xing, H.; Lee, V.C.S. Cooperative Temporal Data Dissemination in SDN-Based Heterogeneous

Vehicular Networks. IEEE Internet Things J. 2018, 6, 72–83. [CrossRef]
52. Luo, G.; Zhou, H.; Cheng, N.; Yuan, Q.; Li, J.; Yang, F.; Shen, X. Software-defined cooperative data sharing in edge computing

assisted 5G-VANET. IEEE Trans. Mob. Comp. 2019, 20, 1212–1229. [CrossRef]
53. Mahmood, A.; Zhang, W.E.; Sheng, Q.Z. Software-defined heterogeneous vehicular networking: The architectural design and

open challenges. Future Internet 2019, 11, 70. [CrossRef]
54. Liu, K.; Xu, X.; Chen, M.; Liu, B.; Wu, L.; Lee, V.C. A hierarchical architecture for the future internet of vehicles. IEEE Commun.

Mag. 2019, 57, 41–47. [CrossRef]
55. Kumar, D.P.; Amgoth, T.; Annavarapu, C.S.R. Machine learning algorithms for wireless sensor networks: A survey. Inf. Fusion

2019, 49, 1–25. [CrossRef]
56. Din, S.; Paul, A.; Rehman, A. 5G-enabled Hierarchical architecture for software-defined intelligent transportation system. Comput.

Netw. 2019, 150, 81–89. [CrossRef]
57. Chahal, M.; Harit, S. Network selection and data dissemination in heterogeneous software-defined vehicular network. Comput.

Netw. 2019, 161, 32–44. [CrossRef]
58. Sudheera, K.L.K.; Ma, M.; Chong, P.H.J. Link stability based optimized routing framework for software defined vehicular

networks. IEEE Trans. Veh. Technol. 2019, 68, 2934–2945. [CrossRef]
59. Misra, S.; Bera, S. Soft-VAN: Mobility-aware task offloading in software-defined vehicular network. IEEE Trans. Veh. Technol.

2019, 69, 2071–2078. [CrossRef]
60. Liu, K.; Xiao, K.; Dai, P.; Lee, V.C.; Guo, S.; Cao, J. Fog computing empowered data dissemination in software defined

heterogeneous vanets. IEEE Trans. Mob. Comput. 2020, 20, 3181–3193. [CrossRef]
61. Hou, X.; Ren, Z.; Wang, J.; Cheng, W.; Ren, Y.; Chen, K.C.; Zhang, H. Reliable computation offloading for edge-computing-enabled

software-defined IoV. IEEE Internet Things J. 2020, 7, 7097–7111. [CrossRef]
62. Zhao, L.; Han, G.; Li, Z.; Shu, L. Intelligent digital twin-based software-defined vehicular networks. IEEE Net. 2020, 34, 178–184.

[CrossRef]

http://dx.doi.org/10.1109/TITS.2023.3275077.
http://dx.doi.org/10.1109/JSEN.2016.2562699
http://dx.doi.org/10.1109/MCOM.2017.1601183
http://dx.doi.org/10.1109/MCOM.2017.1601105
http://dx.doi.org/10.1109/MNET.2017.1600248
http://dx.doi.org/10.1109/MCOM.2017.1601165
http://dx.doi.org/10.1016/j.aeue.2018.08.030
http://dx.doi.org/10.1016/j.comnet.2018.02.022
http://dx.doi.org/10.1016/j.adhoc.2018.03.010
http://dx.doi.org/10.1109/TITS.2018.2795381
http://dx.doi.org/10.1109/TVT.2018.2833427
http://dx.doi.org/10.1109/MNET.2018.1700364
http://dx.doi.org/10.1109/JIOT.2018.2872432
http://dx.doi.org/10.1109/TMC.2019.2953163
http://dx.doi.org/10.3390/fi11030070
http://dx.doi.org/10.1109/MCOM.2019.1800772
http://dx.doi.org/10.1016/j.inffus.2018.09.013
http://dx.doi.org/10.1016/j.comnet.2018.11.035
http://dx.doi.org/10.1016/j.comnet.2019.06.008
http://dx.doi.org/10.1109/TVT.2019.2895274
http://dx.doi.org/10.1109/TVT.2019.2958740
http://dx.doi.org/10.1109/TMC.2020.2997460
http://dx.doi.org/10.1109/JIOT.2020.2982292
http://dx.doi.org/10.1109/MNET.011.1900587


Computers 2023, 12, 162 31 of 34

63. Aljeri, N.; Boukerche, A. Mobility management in 5G-enabled vehicular networks: Models, protocols, and classification. ACM
Comput. Surv. (CSUR) 2020, 53, 1–35. [CrossRef]

64. Bonati, L.; D’Oro, S.; Bertizzolo, L.; Demirors, E.; Guan, Z.; Basagni, S.; Melodia, T. CellOS: Zero-touch softwarized open cellular
networks. Comput. Netw. 2020, 180, 107380. [CrossRef]

65. Dai, Y.; Zhang, K.; Maharjan, S.; Zhang, Y. Deep Reinforcement Learning for Stochastic Computation Offloading in Digital Twin
Networks. IEEE Trans. Ind. Inform. 2020, 17, 4968–4977. [CrossRef]

66. Sodhro, A.H.; Rodrigues, J.J.; Pirbhulal, S.; Zahid, N.; de Macedo, A.R.L.; de Albuquerque, V.H.C. Link optimization in software
defined IoV driven autonomous transportation system. IEEE Trans. Intell. Transp. Syst. 2020, 22, 3511–3520. [CrossRef]

67. Hui, Y.; Su, Z.; Luan, T.H. Collaborative content delivery in software-defined heterogeneous vehicular networks. IEEE/ACM
Trans. Netw. 2020, 28, 575–587. [CrossRef]

68. Maity, I.; Dhiman, R.; Misra, S. MobiPlace: Mobility-Aware Controller Placement in Software-Defined Vehicular Networks. IEEE
Trans. Veh. Technol. 2021, 70, 957–966. [CrossRef]

69. Ghimire, B.; Rawat, D.B.; Liu, C.; Li, J. Sharding-Enabled Blockchain for Software-Defined Internet of Unmanned Vehicles in the
Battlefield. IEEE Netw. 2021, 35, 101–107. [CrossRef]

70. Zhang, K.; Cao, J.; Zhang, Y. Adaptive Digital Twin and Multi-agent Deep Reinforcement Learning for Vehicular Edge Computing
and Networks. IEEE Trans. Ind. Inform. 2021, 18, 1405–1413. [CrossRef]

71. Manogaran, G.; Saravanan, V.; Hsu, C.H. Information-centric content management framework for software defined internet of
vehicles towards application specific services. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4541–4549. [CrossRef]

72. Nguyen, H.X.; Trestian, R.; To, D.; Tatipamula, M. Digital twin for 5G and beyond. IEEE Commun. Mag. 2021, 59, 10–15.
[CrossRef]

73. Wu, Y.; Zhang, K.; Zhang, Y. Digital Twin Networks: A Survey. IEEE Internet Things J. 2021, 8, 13789–13804. [CrossRef]
74. Deng, Y.; Jiang, H.; Cai, P.; Wu, T.; Zhou, P.; Li, B.; Lu, H.; Wu, J.; Chen, X.; Wang, K. Resource Provisioning for Mitigating Edge

DDoS Attacks in MEC-Enabled SDVN. IEEE Internet Things J. 2022, 9, 24264–24280. [CrossRef]
75. Zhang, X.; Zhong, H.; Cui, J.; Gu, C.; Bolodurina, I.; Liu, L. AC-SDVN: An Access Control Protocol for Video Multicast in Software

Defined Vehicular Networks. IEEE Trans. Mob. Comput. 2022, early access.
76. Darabkh, K.A.; Alkhader, B.Z.; Ala’F, K.; Jubair, F.; Abdel-Majeed, M. ICDRP-F-SDVN: An innovative cluster-based dual-phase

routing protocol using fog computing and software-defined vehicular network. Veh. Commun. 2022, 34, 100453. [CrossRef]
77. Tang, F.; Wen, C.; Luo, L.; Zhao, M.; Kato, N. Blockchain-Based Trusted Traffic Offloading in Space-Air-Ground Integrated

Networks (SAGIN): A Federated Reinforcement Learning Approach. IEEE J. Sel. Areas Commun. 2022, 40, 3501–3516. [CrossRef]
78. Zhao, L.; Bi, Z.; Hawbani, A.; Yu, K.; Zhang, Y.; Guizani, M. ELITE: An intelligent digital twin-based hierarchical routing scheme

for softwarized vehicular networks. IEEE Trans. Mob. Comput. 2022, 22, 5231–5247. [CrossRef]
79. Kumar, M.; Raw, R.S. A Novel Routing Protocol for Hierarchical Software Defined Vehicular Adhoc Network. In Proceedings of

the 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 23–25
March 2022; pp. 771–775.

80. Wahid, I.; Tanvir, S.; Hameed, A.; Ahmad, M. Software-Defined Networks and Named Data Networks in Vehicular Ad Hoc
Network Routing: Comparative Study and Future Directions. Secur. Commun. Netw. 2022, 2022, 1270180. [CrossRef]

81. Ghonge, M.M. Software-defined network-based vehicular ad hoc networks: A comprehensive review. In Software Defined
Networking for Ad Hoc Networks; Springer: Berlin/Heidelberg, Germany, 2022; pp. 33–53.

82. Aljeri, N.; Boukerche, A. A novel proactive controller deployment protocol for 5G-enabled software-defined Vehicular Networks.
Comput. Commun. 2022, 182, 88–97. [CrossRef]

83. Alaya, B.; Sellami, L. Towards the Design of an Efficient and Secure System based on the Software-Defined Network Paradigm
for Vehicular Networks. IEEE Access 2023, 11, 43333–43348. [CrossRef]

84. Wijesekara, P.A.D.S.N.; Sudheera, K.L.K.; Sandamali, G.G.N.; Chong, P.H.J. An Optimization Framework for Data Collection in
Software Defined Vehicular Networks. Sensors 2023, 23, 1600. [CrossRef] [PubMed]

85. Nahar, A.; Das, D.; Das, S.K. SpTFrame: A Framework for Spatio-Temporal Information Aware Message Dissemination in
Software Defined Vehicular Networks. In Proceedings of the 24th International Conference on Distributed Computing and
Networking, Kharagpur, India, 4–7 January 2023; pp. 254–261.

86. Bilen, T.; Canberk, B.; Duong, T.Q. Digital Twin Evolution for Hard-to-Follow Aeronautical Ad-Hoc Networks in Beyond 5G.
IEEE Commun. Stand. Mag. 2023, 7, 4–12. [CrossRef]

87. Qureshi, H.N.; Masood, U.; Manalastas, M.; Zaidi, S.M.A.; Farooq, H.; Forgeat, J.; Bouton, M.; Bothe, S.; Karlsson, P.;
Rizwan, A.; et al. Towards Addressing Training Data Scarcity Challenge in Emerging Radio Access Networks: A Survey
and Framework. IEEE Commun. Surv. Tutor. 2023. . [CrossRef]

88. Xu, Y.; Liu, X.; Cui, J.; Zhong, H.; Zhang, J. L-TCM: A Lightweight Privacy-Preserving Traffic Condition Monitoring Scheme with
Source Authentication in Cloud-Assisted VANETs. IEEE Syst. J. 2023, early access.

89. Matiuzzi Stocchero, J.; Dexheimer Carneiro, A.; Zacarias, I.; Pignaton de Freitas, E. Combining information centric and software
defined networking to support command and control agility in military mobile networks. Peer-to-Peer Netw. Appl. 2023, 16,
765–784. [CrossRef]

90. Guo, F.; Peng, M. Efficient Mobility Management in Mobile Edge Computing Networks: Joint Handover and Service Migration.
IEEE Internet Things J. 2023, Early Access. [CrossRef]

http://dx.doi.org/10.1145/3403953
http://dx.doi.org/10.1016/j.comnet.2020.107380
http://dx.doi.org/10.1109/TII.2020.3016320
http://dx.doi.org/10.1109/TITS.2020.2973878
http://dx.doi.org/10.1109/TNET.2020.2968746
http://dx.doi.org/10.1109/TVT.2021.3049678
http://dx.doi.org/10.1109/MNET.011.2000214
http://dx.doi.org/10.1109/TII.2021.3088407
http://dx.doi.org/10.1109/TITS.2021.3058452
http://dx.doi.org/10.1109/MCOM.001.2000343
http://dx.doi.org/10.1109/JIOT.2021.3079510
http://dx.doi.org/10.1109/JIOT.2022.3189975
http://dx.doi.org/10.1016/j.vehcom.2021.100453
http://dx.doi.org/10.1109/JSAC.2022.3213317
http://dx.doi.org/10.1109/TMC.2022.3179254
http://dx.doi.org/10.1155/2022/1270180
http://dx.doi.org/10.1016/j.comcom.2021.09.024
http://dx.doi.org/10.1109/ACCESS.2023.3264808
http://dx.doi.org/10.3390/s23031600
http://www.ncbi.nlm.nih.gov/pubmed/36772639
http://dx.doi.org/10.1109/MCOMSTD.0001.2200040
http://dx.doi.org/10.1109/COMST.2023.3271419
http://dx.doi.org/10.1007/s12083-022-01443-z
http://dx.doi.org/10.1109/JIOT.2023.3279842.


Computers 2023, 12, 162 32 of 34

91. Thangaraj, J.; Ravi, B.; Kumari, S. Performance analysis of collision avoidance routing protocol for inter-vehicular communication.
Clust. Comput. 2019, 22, 7769–7775. [CrossRef]

92. Lin, D.; Lin, Z.; Kong, L.; Guan, Y.L. CMSTR: A Constrained Minimum Spanning Tree Based Routing Protocol for Wireless Sensor
Networks. Ad Hoc Netw. 2023, 146, 103160. [CrossRef]

93. Benmir, A.; Korichi, A.; Bourouis, A.; Alreshoodi, M.; Al-Jobouri, L. GeoQoE-Vanet: QoE-aware geographic routing protocol for
video streaming over vehicular ad-hoc networks. Computers 2020, 9, 45. [CrossRef]

94. Wu, C.; Liu, Z.; Liu, F.; Yoshinaga, T.; Ji, Y.; Li, J. Collaborative learning of communication routes in edge-enabled multi-access
vehicular environment. IEEE Trans. Cogn. Commun. Netw. 2020, 6, 1155–1165. [CrossRef]

95. Li, Y.; Wang, X.; Zeng, R.; Donta, P.K.; Murturi, I.; Huang, M.; Dustdar, S. Federated Domain Generalization: A Survey. arXiv
2023, arXiv:2306.01334.

96. Ravi, B.; Thangaraj, J.; Petale, S. Data Traffic Forwarding for Inter-vehicular Communication in VANETs Using Stochastic Method.
Wirel. Pers. Commun. 2019, 106, 1591–1607. [CrossRef]

97. Wei, L.; Cui, J.; Zhong, H.; Bolodurina, I.; Gu, C.; He, D. A Decentralized Authenticated Key Agreement Scheme Based on Smart
Contract for Securing Vehicular Ad-hoc Networks. IEEE Trans. Mob. Comput. 2023, early access.

98. Urmonov, O.; Kim, H. A multi-hop data dissemination algorithm for vehicular communication. Computers 2020, 9, 25. [CrossRef]
99. Ravi, B.; Thangaraj, J. Stochastic traffic flow modeling for multi-hop cooperative data dissemination in VANETs. Phys. Commun.

2021, 46, 101290. [CrossRef]
100. Shari, N.F.M.; Malip, A. Blockchain-based decentralized data dissemination scheme in smart transportation. J. Syst. Archit. 2023,

134, 102800. [CrossRef]
101. Cong, Y.; Xue, K.; Wang, C.; Sun, W.; Sun, S.; Hu, F. Latency-Energy Joint Optimization for Task Offloading and Resource

Allocation in MEC-Assisted Vehicular Networks. IEEE Trans. Veh. Technol. 2023 . [CrossRef]
102. kumar Pulligilla, M.; Vanmathi, C. An authentication approach in SDN-VANET architecture with Rider-Sea Lion optimized

neural network for intrusion detection. Internet Things 2023, 22, 100723. [CrossRef]
103. Sharma, A.; Awasthi, L.K. Ob-EID: Obstacle aware event information dissemination for SDN enabled vehicular network. Comput.

Netw. 2022, 216, 109257. [CrossRef]
104. Yu, S.; Cao, Q.; Wang, C.; Xu, G.; Ma, H.; Zhu, Y.; Peng, Y.; Jia, Y. Efficient ECC-based Conditional Privacy-preserving Aggregation

Signature Scheme in V2V. IEEE Trans. Veh. Technol. 2023, early access.
105. Chen, C.; Yao, G.; Liu, L.; Pei, Q.; Song, H.; Dustdar, S. A Cooperative Vehicle-Infrastructure System for Road Hazards Detection

With Edge Intelligence. IEEE Trans. Intell. Transp. Syst. 2023, 24, 5186–5198. [CrossRef]
106. Shen, H.; Tian, Y.; Wang, T.; Bai, G. Slicing-Based Task Offloading in Space-Air-Ground Integrated Vehicular Networks. IEEE

Trans. Mob. Comput. 2023, early access.
107. Silva, F.A.; Boukerche, A.; Silva, T.R.; Cerqueira, E.; Ruiz, L.B.; Loureiro, A.A. Information-Driven Software-Defined Vehicular

Networks: Adapting Flexible Architecture to Various Scenarios. IEEE Veh. Technol. Mag. 2019, 14, 98–107. [CrossRef]
108. Chen, S.; Liu, Y.; Ning, J.; Zhu, X. BASRAC: An efficient batch authentication scheme with rule-based access control for VANETs.

Veh. Commun. 2023, 40, 100575. [CrossRef]
109. Li, P.; Liu, G.; Guo, S.; Zeng, Y. Traffic-aware efficient consistency update in NFV-enabled software defined networking. Comput.

Netw. 2023, 228, 109755. [CrossRef]
110. Ahmed, U.; Lin, J.C.W.; Srivastava, G.; Yun, U.; Singh, A.K. Deep active learning intrusion detection and load balancing in

software-defined vehicular networks. IEEE Trans. Intell. Transp. Syst. 2022, 24, 953–961. [CrossRef]
111. Chen, C.; Qiu, T.; Hu, J.; Ren, Z.; Zhou, Y.; Sangaiah, A.K. A congestion avoidance game for information exchange on intersections

in heterogeneous vehicular networks. J. Netw. Comput. Appl. 2017, 85, 116–126. [CrossRef]
112. Ravi, B.; Thangaraj, J. Performance evaluation of multi service provisioning for multi-hop cooperative data dissemination in

SDHVN. J. Ambient Intell. Humaniz. Comput. 2021, 13, 4773–4786. [CrossRef]
113. Song, Y.; Luo, W.; Xu, P.; Wei, J.; Qi, X. An improved Lagrangian relaxation algorithm based SDN framework for industrial

internet hybrid service flow scheduling. Sci. Rep. 2022, 12, 3861. [CrossRef] [PubMed]
114. Gillani, M.; Niaz, H.A.; Farooq, M.U.; Ullah, A. Data collection protocols for VANETs: A survey. Complex Intell. Syst. 2022,

8, 2593–2622. [CrossRef]
115. Debalki, Y.A.; Hou, J.; Ullah, H.; Adane, B.Y. Multi-hop data dissemination using a multi-metric contention-based broadcast

suppression strategy in VANETs. Ad Hoc Netw. 2023, 140, 103070. [CrossRef]
116. Xiao, K.; Liu, K.; Xu, X.; Zhou, Y.; Feng, L. Efficient fog-assisted heterogeneous data services in software defined VANETs.

J. Ambient Intell. Humaniz. Comput. 2021, 12, 261–273. [CrossRef]
117. Lv, Y.; Zhai, Y.; Li, P.; Cui, J.; Zhou, W. Research on SDN-Based New In-vehicle Network Packet Scheduling Technology. In

Advanced Manufacturing and Automation XI; Springer: Berlin/Heidelberg, Germany, 2022; pp. 214–222.
118. Karakoç, N.; Scaglione, A.; Reisslein, M.; Wu, R. Federated edge network utility maximization for a multi-server system:

Algorithm and convergence. IEEE/ACM Trans. Netw. 2022, 30, 2002–2017. [CrossRef]
119. Zhou, W.; Xia, J.; Zhou, F.; Fan, L.; Lei, X.; Nallanathan, A.; Karagiannidis, G.K. Profit Maximization for Cache-Enabled Vehicular

Mobile Edge Computing Networks. IEEE Trans. Veh. Technol. 2023, early access. [CrossRef]
120. Gu, L.; Zeng, D.; Tao, S.; Guo, S.; Jin, H.; Zomaya, A.Y.; Zhuang, W. Fairness-aware dynamic rate control and flow scheduling for

network utility maximization in network service chain. IEEE J. Sel. 2019, 37, 1059–1071. [CrossRef]

http://dx.doi.org/10.1007/s10586-017-1381-7
http://dx.doi.org/10.1016/j.adhoc.2023.103160
http://dx.doi.org/10.3390/computers9020045
http://dx.doi.org/10.1109/TCCN.2020.3002253
http://dx.doi.org/10.1007/s11277-019-06231-2
http://dx.doi.org/10.3390/computers9020025
http://dx.doi.org/10.1016/j.phycom.2021.101290
http://dx.doi.org/10.1016/j.sysarc.2022.102800
http://dx.doi.org/10.1109/TVT.2023.3289236
http://dx.doi.org/10.1016/j.iot.2023.100723
http://dx.doi.org/10.1016/j.comnet.2022.109257
http://dx.doi.org/10.1109/TITS.2023.3241251
http://dx.doi.org/10.1109/MVT.2018.2867356
http://dx.doi.org/10.1016/j.vehcom.2023.100575
http://dx.doi.org/10.1016/j.comnet.2023.109755
http://dx.doi.org/10.1109/TITS.2022.3166864
http://dx.doi.org/10.1016/j.jnca.2016.12.014
http://dx.doi.org/10.1007/s12652-021-03227-4
http://dx.doi.org/10.1038/s41598-022-07125-3
http://www.ncbi.nlm.nih.gov/pubmed/35264595
http://dx.doi.org/10.1007/s40747-021-00629-x
http://dx.doi.org/10.1016/j.adhoc.2022.103070
http://dx.doi.org/10.1007/s12652-019-01507-8
http://dx.doi.org/10.1109/TNET.2022.3156530
http://dx.doi.org/10.1109/TVT.2023.3275365.
http://dx.doi.org/10.1109/JSAC.2019.2906746


Computers 2023, 12, 162 33 of 34

121. Liu, R.W.; Guo, Y.; Lu, Y.; Chui, K.T.; Gupta, B.B. Deep Network-Enabled Haze Visibility Enhancement for Visual IoT-Driven
Intelligent Transportation Systems. IEEE Trans. Ind. Inform. 2023, 19, 1581–1591. [CrossRef]

122. Parveen; Kumar, S.; Singh, R.P.; Kumar, A.; Yaduwanshi, R.; Dora, D.P. TS-CAGR: Traffic sensitive connectivity-aware geocast
routing protocol in internet of vehicles. Ad Hoc Netw. 2023, 147, 103210. [CrossRef]

123. Liu, J.; Peng, C.; Sun, R.; Liu, L.; Zhang, N.; Dustdar, S.; Leung, V.C. CPAHP: Conditional Privacy-Preserving Authentication
Scheme With Hierarchical Pseudonym for 5G-Enabled IoV. IEEE Trans. Veh. Technol. 2023, 72, 8929–8940. [CrossRef]

124. Ansari, F.; Rehman, R.A.; Arsalan, A. Reduced network forwarding with controller enabled named software defined Internet of
Mobile Things. Ad Hoc Netw. 2023, 149, 103235. [CrossRef]

125. Ravi, B.; Thangaraj, J.; Shandilya, S.K. Stochastic modelling and analysis of mobility models for intelligent software defined
internet of vehicles. Phys. Commun. 2022, 50, 101498. [CrossRef]

126. Bine, L.M.; Boukerche, A.; Ruiz, L.B.; Loureiro, A.A. IoDMix: A novel routing protocol for Delay-Tolerant Internet of Drones
integration in Intelligent Transportation System. Ad Hoc Netw. 2023, 148, 103204. [CrossRef]

127. Zhao, X.; Liu, M.; Li, M. Task offloading strategy and scheduling optimization for internet of vehicles based on deep reinforcement
learning. Ad Hoc Netw. 2023, 147, 103193. [CrossRef]

128. Pujol, V.C.; Donta, P.K.; Morichetta, A.; Murturi, I.; Dustdar, S. Edge Intelligence—Research Opportunities for Distributed
Computing Continuum Systems. IEEE Internet Comput. 2023, 27, 53–74. [CrossRef]

129. Li, Y.; Liang, W.; Li, J.; Cheng, X.; Yu, D.; Zomaya, A.Y.; Guo, S. Energy-Aware, Device-to-Device Assisted Federated Learning in
Edge Computing. IEEE Trans. Parallel Distrib. Syst. 2023, 34, 2138–2154. [CrossRef]

130. Murturi, I.; Dustdar, S. Decent: A decentralized configurator for controlling elasticity in dynamic edge networks. ACM Trans.
Internet Technol. (TOIT) 2022, 22, 1–21. [CrossRef]

131. Govori, E.; Murturi, I.; Dustdar, S. A Comprehensive Performance Evaluation of Procedural Geometry Workloads on Resource-
Constrained Devices. In Proceedings of the 2023 IEEE International Conference on Edge Computing & Communication (EDGE),
Chicago, IL, USA, 2–8 July 2023; pp. 1–9.

132. Murturi, I.; Egyed, A.; Dustdar, S. Utilizing AI planning on the edge. IEEE Internet Comput. 2022, 26, 28–35. [CrossRef]
133. Zhou, H.; Jiang, K.; He, S.; Min, G.; Wu, J. Distributed Deep Multi-Agent Reinforcement Learning for Cooperative Edge Caching

in Internet-of-Vehicles. IEEE Trans. Wirel. Commun. 2023, early access. [CrossRef]
134. Rizwan, S.; Husnain, G.; Aadil, F.; Ali, F.; Lim, S. Mobile Edge-based Information-Centric Network for emergency messages

dissemination in Internet of Vehicles: A Deep Learning Approach. IEEE Access 2023, 11, 62574–62590. [CrossRef]
135. Tung, H.Y.; Tsang, K.F.; Chui, K.T.; Tung, H.C.; Chi, H.R.; Hancke, G.P.; Man, K.F. The Generic Design of a High-Traffic Advanced

Metering Infrastructure Using ZigBee. IEEE Trans. Ind. Inform. 2014, 10, 836–844. [CrossRef]
136. Huang, Z.; Li, D.; Cai, J.; Lu, H. Collective reinforcement learning based resource allocation for digital twin service in 6G networks.

J. Netw. Comput. Appl. 2023, 217, 103697. [CrossRef]
137. Li, B.; Shi, Y.; Kong, Q.; Du, Q.; Lu, R. Incentive-Based Federated Learning for Digital Twin Driven Industrial Mobile Crowdsensing.

IEEE Internet Things J. 2023, early access. [CrossRef]
138. Li, J.; Liang, W.; Xu, Z.; Jia, X.; Zhou, W. Service Provisioning for Multi-source IoT Applications in Mobile Edge Computing.

ACM Trans. Sens. Netw. (TOSN) 2021, 18, 1–25. [CrossRef]
139. Chen, B.; Wang, Z.; Xiang, T.; Yang, J.; He, D.; Choo, K.K.R. BCGS: Blockchain-assisted privacy-preserving cross-domain

authentication for VANETs. Veh. Commun. 2023, 41, 100602. [CrossRef]
140. Wang, B.; Zheng, J.; Ren, Q.; Li, C. Analysis of IEEE 802.11p-Based Intra-platoon Message Broadcast Delay in a Platoon of Vehicles.

IEEE Trans. Veh. Technol. 2023, early access. [CrossRef]
141. Thiruvasagam, P.K.; Kotagi, V.J.; Murthy, C.S.R. The More the Merrier: Enhancing Reliability of 5G Communication Services

With Guaranteed Delay. IEEE Netw. Lett. 2019, 1, 52–55. [CrossRef]
142. Halabian, H.; Lambadaris, I.; Viniotis, Y. Optimal server assignment in multi-server queueing systems with random connectivities.

J. Commun. Netw. 2019, 21, 405–415. [CrossRef]
143. Singh, D.; Ng, B.; Lai, Y.C.; Lin, Y.D.; Seah, W.K. Modelling software-defined networking: Switch design with finite buffer and

priority queueing. In Proceedings of the 2017 IEEE 42nd Conference on Local Computer Networks (LCN), Singapore, 9–12
October 2017; pp. 567–570.

144. Liu, K.; Ng, J.K.; Lee, V.; Son, S.H.; Stojmenovic, I. Cooperative data scheduling in hybrid vehicular ad hoc networks: VANET as a
software defined network. IEEE/ACM Trans. Netw. (TON) 2016, 24, 1759–1773. [CrossRef]

145. Li, H.; Ou, D.; Rasheed, I.; Tu, M. A Software-Defined Networking Roadside Unit Cloud Resource Management Framework for
Vehicle Ad Hoc Networks. J. Adv. Transp. 2022, 2022, 5918128. [CrossRef]

146. Liu, L.; Yuan, X.; Zhang, N.; Chen, D.; Yu, K.; Taherkordi, A. Joint Computation Offloading and Data Caching in Multi-Access
Edge Computing Enabled Internet of Vehicles. IEEE Trans. Veh. Technol. 2023, early access.

147. Awada, U.; Zhang, J.; Chen, S.; Li, S.; Yang, S. Resource-aware multi-task offloading and dependency-aware scheduling for
integrated edge-enabled IoV. J. Syst. Archit. 2023, 141, 102923. [CrossRef]

148. Bilen, T.; Ayvaz, K.; Canberk, B. QoS-based distributed flow management in software defined ultra-dense networks. Ad Hoc
Netw. 2018, 78, 24–31. [CrossRef]

http://dx.doi.org/10.1109/TII.2022.3170594
http://dx.doi.org/10.1016/j.adhoc.2023.103210
http://dx.doi.org/10.1109/TVT.2023.3246466
http://dx.doi.org/10.1016/j.adhoc.2023.103235
http://dx.doi.org/10.1016/j.phycom.2021.101498
http://dx.doi.org/10.1016/j.adhoc.2023.103204
http://dx.doi.org/10.1016/j.adhoc.2023.103193
http://dx.doi.org/10.1109/MIC.2023.3284693
http://dx.doi.org/10.1109/TPDS.2023.3277423
http://dx.doi.org/10.1145/3530692
http://dx.doi.org/10.1109/MIC.2021.3073434
http://dx.doi.org/10.1109/TWC.2023.3272348.
http://dx.doi.org/10.1109/ACCESS.2023.3288420
http://dx.doi.org/10.1109/TII.2013.2280084
http://dx.doi.org/10.1016/j.jnca.2023.103697
http://dx.doi.org/10.1109/JIOT.2023.3279657.
http://dx.doi.org/10.1145/3484200
http://dx.doi.org/10.1016/j.vehcom.2023.100602
http://dx.doi.org/10.1109/TVT.2023.3274688.
http://dx.doi.org/10.1109/LNET.2019.2902720
http://dx.doi.org/10.1109/JCN.2019.000023
http://dx.doi.org/10.1109/TNET.2015.2432804
http://dx.doi.org/10.1155/2022/5918128
http://dx.doi.org/10.1016/j.sysarc.2023.102923
http://dx.doi.org/10.1016/j.adhoc.2018.05.002


Computers 2023, 12, 162 34 of 34

149. Mahmood, A. Towards Software Defined Heterogeneous Vehicular Networks for Intelligent Transportation Systems. In
Proceedings of the 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom
Workshops), Kyoto, Japan, 11–15 March 2019; pp. 441–442.

150. Kumar, A.; Abdelhadi, A.; Clancy, T.C. Design and Implementation of Practical Schedulers for M2M Uplink Networks: Using MATLAB;
Springer: Berlin/Heidelberg, Germany, 2018.

151. Ye, Q.; Zhuang, W.; Li, X.; Rao, J. End-to-end delay modeling for embedded VNF chains in 5G core networks. IEEE Internet
Things J. 2018, 6, 692–704. [CrossRef]

152. Zhang, X.; Chang, Z.; Hu, T.; Chen, W.; Zhang, X.; Min, G. Vehicle Selection and Resource Allocation for Federated Learning-
Assisted Vehicular Network. IEEE Trans. Mob. Comput. 2023, early access.

153. Kumar, A.S.; Zhao, L.; Fernando, X. Task Offloading and Resource Allocation in Vehicular Networks: A Lyapunov-based Deep
Reinforcement Learning Approach. IEEE Trans. Veh. Technol. 2023, early access. [CrossRef]

154. Basu, D.; Kal, S.; Ghosh, U.; Datta, R. DRIVE: Dynamic Resource Introspection and VNF Embedding for 5G using Machine
Learning. IEEE Internet Things J. 2023, early access.

155. Guo, H.; Wang, Y.; Liu, J.; Liu, C. Multi-UAV Cooperative Task Offloading and Resource Allocation in 5G Advanced and Beyond.
IEEE Trans. Wirel. Commun. 2023, early access. [CrossRef]

156. Khalfaoui, H.; Azmani, A.; Farchane, A.; Safi, S. Symbiotic Combination of a Bayesian Network and Fuzzy Logic to Quantify the
QoS in a VANET: Application in Logistic 4.0. Computers 2023, 12, 40. [CrossRef]

157. Yang, C.P.; Yen, C.E.; Chang, I.C. A Software-Defined Directional Q-Learning Grid-Based Routing Platform and Its Two-Hop
Trajectory-Based Routing Algorithm for Vehicular Ad Hoc Networks. Sensors 2022, 22, 8222. [CrossRef]

158. Gonçalves, D.M.; Puliafito, C.; Mingozzi, E.; Bittencourt, L.F.; Madeira, E.R. End-to-end network slicing in vehicular clouds using
the MobFogSim simulator. Ad Hoc Netw. 2023, 141, 103096. [CrossRef]

159. Tahmasebi, A.; Salahi, A.; Pourmina, M.A. Improvement of Software-Defined Network Performance Using Queueing Theory: A
Survey. Majlesi J. Telecommun. Devices 2021, 10, 33–43. [CrossRef]

160. Ju, Y.; Chen, Y.; Cao, Z.; Liu, L.; Pei, Q.; Xiao, M.; Ota, K.; Dong, M.; Leung, V.C. Joint secure offloading and resource allocation for
vehicular edge computing network: A multi-agent deep reinforcement learning approach. IEEE Trans. Intell. Transp. Syst. 2023,
24, 5555–5569. [CrossRef]

161. Nazari, A.; Kordabadi, M.; Mohammadi, R.; Lal, C. EQRSRL: An energy-aware and QoS-based routing schema using reinforce-
ment learning in IoMT. Wirel. Netw. 2023, 1–15. [CrossRef]

162. Boualouache, A.; Engel, T. A survey on machine learning-based misbehavior detection systems for 5g and beyond vehicular
networks. IEEE Commun. Surv. Tutor. 2023, 25, 1128–1172. [CrossRef]

163. Donta, P.K.; Sedlak, B.; Casamayor Pujol, V.; Dustdar, S. Governance and sustainability of distributed continuum systems: A big
data approach. J. Big Data 2023, 10, 1–31. [CrossRef]

164. Baccour, E.; Allahham, M.S.; Erbad, A.; Mohamed, A.; Hussein, A.R.; Hamdi, M. Zero Touch Realization of Pervasive Artificial
Intelligence as a Service in 6G Networks. IEEE Commun. Mag. 2023, 61, 110–116. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/JIOT.2018.2853708
http://dx.doi.org/10.1109/TVT.2023.3271613.
http://dx.doi.org/10.1109/TWC.2023.3277801.
http://dx.doi.org/10.3390/computers12020040
http://dx.doi.org/10.3390/s22218222
http://dx.doi.org/10.1016/j.adhoc.2023.103096
http://dx.doi.org/10.52547/mjtd.10.1.33
http://dx.doi.org/10.1109/TITS.2023.3242997
http://dx.doi.org/10.1007/s11276-023-03367-9
http://dx.doi.org/10.1109/COMST.2023.3236448
http://dx.doi.org/10.1186/s40537-023-00737-0
http://dx.doi.org/10.1109/MCOM.001.2200508

	Introduction
	Motivation for This Survey
	Organization

	Survey Method
	Inclusion Criteria
	Exclusion Criteria
	Objectives

	Background: iSDVN System
	Single-Hop and Multi-Hop Network Connectivity in SDVNs
	Mobility
	Routing
	Routing in a Multi-Access Environment with Learning Approaches
	Data Traffic Forwarding
	Data Dissemination
	Cooperative Communication
	Resource Optimization

	Integrating into VANET System Model for iSDVN 
	Systems under Test
	Software-Defined Internet of Vehicles
	Intelligent Digital Twin with SDVN

	Performance Evaluation of iSDVN
	Challenges of Multi-Service Provisioning of QoS for iSDVN and iSDHVN 
	Techniques Analyzed in iSDVN
	Integration of SDN with Other Technologies

	Open Issues
	Controller Placement Problem
	Resource Allocations
	Mobility Control
	End-to-End Delay 
	Quality of Service (QoS)
	Stochastic Learning
	Intelligent Networking
	Queue Learning
	Machine Learning
	Zero-Touch Provisioning

	Conclusions
	References

