
IEEE TRANSACTIONS ON EMERGING TOPIC IN COMPUTING, VOL. XX, NO. X, AUGUST 2022 1

A Privacy Enforcing Framework for Data
Streams on the Edge

Boris Sedlak, Ilir Murturi, Member, IEEE, Praveen Kumar Donta, Senior Member, IEEE, Schahram
Dustdar, Fellow, IEEE

Abstract—Recent developments in machine learning (ML) allow for efficient data stream processing and also help in meeting various
privacy requirements. Traditionally, predefined privacy policies are enforced in resource-rich and homogeneous environments such as
in the cloud to protect sensitive information from being exposed. However, large amounts of data streams generated from
heterogeneous IoT devices often result in high computational costs, cause network latency, and increase the chance of data
interruption as data travels away from the source. Therefore, this paper proposes a novel privacy-enforcing framework for transforming
data streams by executing various privacy policies close to the data source. To achieve our proposed framework, we enable domain
experts to specify high-level privacy policies in a human-readable form. Then, the edge-based runtime system analyzes data streams
(i.e., generated from nearby IoT devices), interprets privacy policies (i.e., deployed on edge devices), and transforms data streams if
privacy violations occur. Our proposed runtime mechanism uses a Deep Neural Networks (DNN) technique to detect privacy violations
within the streamed data. Furthermore, we discuss the framework, processes of the approach, and the experiments carried out on a
real-world testbed to validate its feasibility and applicability.

Index Terms—Edge Computing, Privacy Models, Data Stream Transformations, Data Anonymization

✦

1 INTRODUCTION

IN recent years, the number of Internet of Things (IoT) de-
vices has significantly expanded in multiple applications

such as smart cities, autonomous vehicles, smart factories,
etc. These applications produce enormous volumes of data,
including continuously streaming high-quality videos or
images and sending them to a central cloud service for
further analytics. Since these applications are time-critical,
analytical results are required rapidly [1]. Nevertheless, the
massive amount of data streams, heterogeneous devices,
and networks involved causes high traffic, which in turn
affects the overall latency [2].

One well-known strategy that has gained attention re-
cently suggests using distributed computing devices (also
known as edge devices) close to end-users at the edge
of networks. Dedicated edge servers, network routers,
telecommunications stations, or edge gateways make up
edge networks [3]. Edge networks or edge infrastructures
are characterized as heterogeneous, volatile, and dynamic
environments. The computing devices within such infras-
tructures can be leveraged to process multiple data or work-
loads instead, and as such, the edge emerges as a central
architectural entity. More specifically, utilizing edge devices
provides several benefits and overcomes many challenges
[4]. First, it decreases user-perceived latency and reduces
the need to transfer data to the cloud. Second, it enhances
privacy by analyzing released information by users without
their consciousness or information that can violate pri-
vacy policy requirements defined by a stakeholder (e.g.,

I. Murturi is the Corresponding author
Authors are with Distributed Systems Group, TU Wien, 1040, Austria
Email: boris.sedlak@tuwien.ac.at, {imurturi, pdonta, dust-
dar}@dsg.tuwien.ac.at

company, school, etc.). In this context, edge devices are
essential to support network affairs and improve privacy
protection. To prevent the release of sensitive data (such as
user information, sensory data streams, etc.), edge devices
can operate as an intermediary entity to implement different
privacy policies and protect the information that has already
been exposed. For instance, a security camera may capture
sensitive information from laptop screens in the smart fac-
tory and violate privacy requirements. Therefore, an edge-
based mechanism aims to prevent sensitive information
from being released and ensure that third parties vendors
cannot identify individuals or discover sensitive content
without their consent.

To overcome the above-mentioned challenges, we ad-
vocate that data streams must be transformed based on
rule-based procedures to ensure the desired privacy level.
Additionally, transformations should occur in a uniform
runtime environment to eliminate the need to implement
a policy multiple times for different edge devices. We refer
to transformations as modifications of data or metadata - an
operation that arbitrarily combines or discards information
based on predefined privacy policies. More precisely, trans-
formations derive from privacy policies which comprise
a set of rules to transform data and ensure privacy. We
assume that the closest edge device should first analyze data
streams, transform data if privacy policies are violated, and
release the data for further usage. For instance, a roaming
mobile IoT device may capture personal or confidential
data in a smart factory. Before leaving the local network,
data streams can be first forwarded and transformed by
an arbitrary device on the edge network. Any edge device
in proximity may analyze and transform the data stream
according to the predefined set of privacy policies. However,
we still lack a human-readable representation for specifying

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2023.3315131

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 28,2023 at 13:16:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON EMERGING TOPIC IN COMPUTING, VOL. XX, NO. X, AUGUST 2022 2

such a model, as well as a compiler and execution environ-
ment that enforces privacy policies.

In this paper, we extend and validate our novel privacy-
enforcing framework [5] for transforming data streams ac-
cording to predefined privacy policies close to the data
source - at the edge. A central trusted entity manages edge
devices and privacy policies for the entire data pipeline.
Such a central entity is a trustable cloud platform that
ensures exactly how and when privacy is enforced. As a
result, anytime an IoT device records sensitive or private in-
formation, an edge gateway (also known as an edge device)
nearby analyzes and adjusts the data stream in accordance
with a predetermined set of rules. Such rules build up pri-
vacy models, representing an enterprise’s privacy policies.
Models consisting of trigger and transformation functions
describe how data has to be modified before it can be
released to stream subscribers. Our concrete contributions
are as follows:

• We enable domain experts to specify high-level pri-
vacy policies in a human-readable format, expressed
through chains of privacy-violating constraints and
countermeasures to cope with data that does not
comply with these policies. Furthermore, we devel-
oped an edge-based runtime system for controlling
and interpreting privacy policies deployed on edge
devices.

• We use Deep Neural Network (DNN) to detect pri-
vacy violations within the streamed data. Our ap-
proach is extendable with publicly available and self-
trained DNN models to adapt to changing policies
and support custom use cases.

• We perform an extensive evaluation via several ex-
periments regarding the latency that our framework
introduces to the network. The results underline the
feasibility and applicability of the approach to run on
edge and ensure privacy.

The remaining paper is structured as follows. Related
work is considered in Section 2. Section 3 shows the mo-
tivating example used throughout the paper. In Section 4,
we describe in detail the framework. The processes and
details of the proposed architecture are discussed in Section
5. Evaluation and results are discussed in Section 6. Finally,
Section 7 concludes the paper and outlines future work
directions.

2 RELATED WORK

One way to preserve the contributors’ privacy is to
anonymize the streaming data. In [6], the authors propose
data collection schemes for IoT sensors that do not provide
proof of the data source. By doing this, the relationship
between an IoT sensor and the measured data is obscured,
yet, it is still difficult to remove sensitive information from
the data. In [7], the authors demonstrated an edge-based
solution that removes private attributes from sensor infor-
mation. Their research provides a machine learning model
that determines which attributes to remove throughout the
transformation process. However, their strategy does not
allow more complex privacy settings beyond just removing
single attributes. This is similar to the work of [8], which

focuses on enforcing privacy policies on the data based on
the edge device’s context (e.g., proximity, role, network).
The authors limited their work to role-based access schemes,
where policies represented precise rules on which role can
consume the data type. This approach seamlessly does not
require any moderating entity in the architecture but is very
restricted to the type of privacy policies it can represent.

A fundamental problem when enforcing differential pri-
vacy on streams is that data is non-stationary, meaning that
structural attributes might evolve until privacy violations
cannot be detected anymore. To that extent, the authors
in [9] discuss monitoring stationary shifts in the data and
adjusting the data release process accordingly. Their answer
ensures k-anonymity on the resulting data, which is also
the content of [10] where the authors proposed a novel
approach to ensure privacy on data streams without any
delay. A notable improvement for latency-aware systems
that need to provide an applicable latency; however, they
do not consider stationary shifts in their work. Baniya et
al. [11] explore the use of privacy models to express role-
based access control strategies. The authors implemented
an edge-based system where data is consumed over a mes-
sage broker after transformation. More generally, in [12],
Tsigkanos et al. investigates privacy issues on edge, including
stream processing and anonymization techniques that can
be applied, e.g., like the aforementioned z-anonymity. The
authors discuss how federated learning preserves privacy
by keeping training data at the edge level, an idea that is
pursued by [13] for deep learning image recognition. Yi et
al. [14] present solution for transforming video streams on
edge. The proposed solution enables scaling up to many
transformation workers when the incoming stream latency
decreases due to the increased computation on the edge de-
vice. Such methods are undoubtedly a beneficial extension
for stream transformation scenarios for maintaining low and
stable latency.

Several works address open challenges in modeling
privacy requirements. The authors in [15] contribute in
many regards toward the specification of privacy or secu-
rity requirements. They investigated possibilities to enable
the specification of privacy requirements through modeling
languages. However, they remain to provide an underlying
privacy-enforcing environment that supports the transfor-
mations imposed by the privacy models. Furthermore, the
authors in [16] have discussed the efficiency of using edge
computing environments for data collection in IoT systems.
Protecting sensor data from undesired access is crucial to
any modern system. Cao et al. [17] advertise edge com-
puting facilities for latency-aware tasks. The authors give
a broad outlook to fields that will benefit from processing
IoT data at the edge without involving any central cloud
server. However, they do not consider securing data ac-
cording to privacy requirements. In [18], the authors show
the advantages of edge computing for collecting geospatial
data, which is related to numerous papers in the context of
data collection [19].

The aforementioned research demonstrates that the edge
has drawn significant interest for several purposes, includ-
ing enforcing privacy policies. According to research litera-
ture, transformations on edge have only ever been used for
specific and selected operations (e.g., image removal, etc.).

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2023.3315131

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 28,2023 at 13:16:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON EMERGING TOPIC IN COMPUTING, VOL. XX, NO. X, AUGUST 2022 3

As previously indicated, numerous research studies define
enterprise privacy requirements. These efforts, however, are
more concerned with business operations than low-level
issues like deleting private information from a continuous
data stream. Therefore, we introduce a novel framework for
transforming data streams on the edge.

3 MOTIVATIONAL EXAMPLE

As a simple, motivating scenario for a privacy-enforcing
system, consider a modern smart manufacturing environ-
ment containing various appliances and field technicians
monitoring and operating them. Several privacy policies
may be applied to protect the organization’s legitimate
interests in these environments. We consider a situation
where field technicians aided by Augmented Reality (AR)
applications running on mobile devices perform mainte-
nance or repair tasks of appliances. Such an AR-based
application uses a mobile device camera to discover and
visualize which appliance is running correctly and which
requires calibration. Once a defective machine is found,
the data, including visual content is automatically shared
with the corresponding appliance producer responsible for
the maintenance or calibration of the machine. However,
the visual content shared may contain various information
which may violate the organization’s privacy policies.

Confidential information might be leaked by somebody
who gets hold of the live stream or a recording. Privacy
breaches are prevented by either securing data appropri-
ately or removing confident information entirely; thus, it
is evident that the data should be transformed before it
is released to third parties. In this sense, edge devices in
proximity to end-users (e.g., field technicians) can transform
such data streams by enforcing predefined privacy policies
at design time.

4 THE FRAMEWORK

The proposed framework describes three aspects: (i) the
structure of the privacy model, (ii) the execution of these
models on data streams, and (iii) managing the structure of
the edge networks. The last aspect concerns data transmis-
sion between IoT nodes and edge gateways, including how
to consume the privacy-preserved output data.

Fig. 1: General privacy model with triggers and transforma-
tions functions (λ).

The privacy model is represented using an acyclic graph
in which each node and its relations are embedded with
rules. Figure 1 illustrates how trigger and transformation
functions can be used to secure IoT streams; these (cause-
and-effect) rules can also be chained to apply only once the

previous rule has been met. The grammar is validated using
a model compiler on the edge before running the privacy
model.

Static analysis of images containing a particular pattern
is one example of a trigger and transformation that does
not require a state. Stateless λ-functions can be chained
together in the aforementioned acyclic graph, passing the
results from one step to the next before returning to the
stream subscribers. Some cases would require maintaining
a state, like z-anonymity. The λ-functions can address such
matters when temporary storage is available. In almost
all cases, functions are combined through a UI in similar
environments, such as AWS lambdas [20] and NVIDIA Deep
Stream1.

From a central cloud application, a model graph is de-
fined and deployed to all edge gateways. Input data streams
are analyzed and transformed based on the specified criteria
once the model has been compiled. It is separated from the
stream processing to keep lambda functions and the privacy
model separate. When a new privacy model or λ-function
is received, the gateway can continuously transform a data
stream without resetting active connections. The λ-functions
and privacy models are updated as lightheartedly as pos-
sible to maintain stable stream latency and not impact
performance.

Fig. 2: The privacy-enforcing framework for transforming
data streams on the edge.

In addition to receiving and transmitting data streams,
edge gateways must decode stream data after performing
transformations required by the privacy model and reen-
code it at the end of the transformation process. Streaming
of videos and other data over the Internet using WebRTC2

is a real-time communication protocol for the web. Nev-
ertheless, an edge gateway can be extended to be a Se-
lective Forwarding Unit (SFU) that receives and forwards
data streams between multiple clients. Figure 2 shows all
the major components of the privacy-enforcing framework.
Those parts are summarized as follows:

1) A cloud application, which is used by a policy manager
to define new λ-functions and privacy models. The ap-
plication communicates with the edge gateway through
an exposed REST endpoint for configuration.

2) There are multiple stream producers (such as IoT de-
vices) that send data using the WebRTC protocol to the
edge gateway.

1. DeepStream, https://developer.nvidia.com/deepstream-sdk
2. Real-time communication for the web, https://webrtc.org/

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2023.3315131

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 28,2023 at 13:16:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON EMERGING TOPIC IN COMPUTING, VOL. XX, NO. X, AUGUST 2022 4

3) A variety of stream consumers are available, including
consumer devices or recorders. WebRTC must be sup-
ported by all devices, regardless of their purpose.

4) The SFU is deployed at the edge gateway as the core
of the topology. A REST endpoint receives new mod-
els and functions without interfering with the ongo-
ing stream connection. Before streams are streamed
to peers, incoming stream packages are decoded and
transformed in compliance with a privacy model.

The SFU uses a dedicated Session Description Protocol
(SDP) to establish connections between producer and a
consumer based on session identifier, data type, etc. The
connection between these peers is established once both the
peers have agreed. WebRTC can provide multiple channels
to communicate among peers: media stream for audio or
video, and data channel for data encoded in text or byte
arrays. In both media stream and data channel, the data
transformation and analysis are always in terms of frames.
Because of this, it can not detect the privacy violations that
emerge in consecutive frames. Upon receiving frames from
each channel, the SFU analyzes them and transforms them
based on the privacy model.

The SFU environment has to provide the analysis ac-
cording to the data arrived through input frames. For
instance, when streaming video frames over the SFU, a
suitable environment that supports video operation, such
as OpenCV, will be used to analyze incoming frames. We
can then use our privacy model to execute an algorithm that
detects privacy-violating patterns in video frames (triggers).
Once a face is detected in this frame, the frame is blurred
(transformation) before being sent to consumer devices. In
addition, the SFU can be extended with other environments
in order to perform various analyses and transformations
on data frames.

5 THE PROCESS

This section describes the process for transforming data
streams on edge. We first explain the data flow from pro-
ducer to consumer devices. Later we show how we detect
privacy-violating patterns within frames and explain how to
transform them based on policies. Lastly, we discuss privacy
requirements specifications and how to enforce the model.

5.1 Data Provision and Consumption

The SFU running on an edge device manages peer con-
nections to the producer- and consumer devices. Each new
client must establish a peer connection through SDP. The
SFU interacts with producers and consumers to create peer
connections, as shown in Figure 3.

A peer connection is established after the producer or
consumer receives the SDP response. At this point, producer
and consumer can still choose what type of data to transfer
over the stream - in our case, they can provide and consume
video data from the SFU. After the track is added to the peer
connection, video frames flow from the producer to the SFU.
Afterward, they are routed to their destination, respectively,
to the consumers. For consuming the data stream, we make
use of a Media Relay3, which ensures that each frame is
transferred with the same frequency to a list of consumers.

Fig. 3: Establishing peer connections between producer,
SFU, and consumer.

Frames are thus relayed to consumers, i.e., whatever content
the SFU provides, is copied and sent to each consumer.
Contrary to the presented framework, our prototype is
limited to process a single stream. This limitation should
be addressed in future work.

5.2 Pattern Detection and Transformations
We leverage Convolutional Neural Networks (CNN) to find
patterns in streamed data; however, we did not train any
networks ourselves since this was not the main goal of
our research. Instead, we apply existing models created
with ML frameworks like PyTorch4 or Tensorflow5. As a
consequence, existing types of models by design lack in-
teroperability between different environments. Each model
requires its runtime environment to support its execution.
Nevertheless, executing multiple runtime environments on
edge devices is resource intensive and not feasible in terms
of performance. Therefore, we suggest converting all models
to the Open Neural Network eXchange (ONNX) format6.
More specifically, we deploy the ONNX runtime on edge
devices which will serve as the core runtime platform for
pattern detection.

Fig. 4: ONNX model lifecycle from conversion to execution.

Figure 4 depicts the conversion of a PyTorch-trained
model to the ONNX standard. The resulting model can then
be executed with the ONNX runtime on edge devices like
the NVIDIA Jetson or any conventional device that supports
Python3. An essential feature of the ONNX runtime is the
ability to facilitate GPU-accelerated image processing on
edge devices through NVIDIA Cuda®7. After the execution
process, the model yields a set of labels, probabilities, and

3. MediaRelay, https://aiortc.readthedocs.io/en/latest/helpers.html
4. PyTorch, https://www.pytorch.org
5. Tensorflow, https://www.tensorflow.org/?hl=es-419
6. ONNX, https://onnx.ai/
7. Cuda, https://developer.nvidia.com/cuda-toolkit

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2023.3315131

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 28,2023 at 13:16:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON EMERGING TOPIC IN COMPUTING, VOL. XX, NO. X, AUGUST 2022 5

boxes, i.e., where boxes represent a detected pattern, a label
(i.e., detected object), and the probability value.

5.2.1 Video Stream Function
Video frames that the SFU receives contain metadata such
as image characteristics (i.e., width, height, and video codec)
and a time base (i.e., which relates to the video frame rate).
A typical video frame could have a resolution of 640x480
pixels and is encoded in yuv420p (i.e., an image codes,
more commonly known as H.264). Depending on these
specs, specific image recognition models might not even
be applicable because they require a higher resolution to
process the image. We can always resize video frames to a
lower resolution, but we can not scale them up arbitrarily; in
either case, a video frame has to conform to a precise format
that the ONNX model can process.

TABLE 1: Applied ONNX models for pattern detection

Name Description

Face Detection 320 [21] Lightweight face detection for edge devices
Face Detection 640 [21] As above, higher accuracy through resolution
Age Classification [22] Returns age range (e.g., 25-32) and probability
Gender Clsf. [22], [23] Returns gender (male/female) and probability

We wrap ONNX models in a uniform method structure
and refer to them as trigger functions. In Table 1, we show
the four trigger functions used in our implementation. Fur-
thermore, we implemented three privacy-enforcing trans-
formations based on the OpenCV Python package8. Table 2
contains all transformation functions together with a short
description.

TABLE 2: Overview of OpenCV transformation functions

Name Description

Blur Area Pixelate [24] Blurs an area with a pixel grid of x*x rectangles
Fill Area Box Replaces a frame area with a colored box
Max Spec Resize Resizes a frame if it exceeds given boundaries

As mentioned previously, transformations are counter-
measures to ensure privacy once a privacy violation is
detected. To that extent, every frame routed through the
SFU must be processed before relaying it to consumers.
Our implementation can easily be extended with other
ONNX models and OpenCV transformations; for instance,
we might as well train a custom model and supply it to
the framework. We provided an abstract interface that all
trigger and transformation functions must implement, thus
maintaining a uniform function structure. The presented
transformation and trigger functions do not keep any state;
they represent static operations on the input data that return
labels, boxes, and probabilities, as shown in Figure 4. A
limitation that emerges from this static nature is that we
can only detect privacy violations that appear from a single
data frame, i.e., our approach can not detect any movements
or transitions between frames.

Although the SFU receives video frames from the pro-
ducer with an overall stable frame rate, individual frames
might arrive faster or slower due to minor network insta-
bilities. To re-stabilize the stream’s frame rate and relay a

8. Opencv-python: Wrapper package for OpenCV python bindings,
https://github.com/skvark/opencv-python

frame exactly every 1/fps seconds to connected consumers,
we implemented a frame queue between the SFU and the
video transformation track. Whenever the SFU receives
video frames from a producer, the frames are appended to
a thread-safe queue, where a second thread retrieves them
for running trigger and transformation functions. After a
consumer connects through the peer-to-peer protocol, the
second thread consumes the enqueued frames and executes
the configured trigger and transformation functions. The
second thread operates through the queue with exactly the
rate 1/fps, and thus, reestablishes the original frame rate
of the stream before frames are relayed to consumers. This
aids in masking minor timing issues in the transmission of
video frames between SFU and the producer.

5.3 Privacy Model Specification
To model privacy requirements, we advocate the principle
of procedural abstraction: specifying several parameters of
function internals may be impractical for developers/end-
users, but considering the effects of function processes is
feasible. For instance, one does not need to know how our
Face Trigger function detects faces in a video stream on
a technical scale, but only by invoking our service face
patterns and other information are obtained. Similarly, a
specific transformation must be executed once face patterns
are detected to hide the sensitive information. To this end,
we advocate that trigger functions and transformation func-
tions can chain together to form a privacy-enforcing model.

A privacy enforcing model is a set of chains of functions
given in a textual representation, where individual chain
links represent the trigger and transformation functions de-
fined earlier. Chain links are connected with one-directional
arrows (”→”) and could as well be described as linked lists.
We argue that this follows the logical order of execution and
is well applicable to developers/end-users who are unaware
of technical implementations hidden behind the function
names. For instance, a privacy enforcing model for blurring
human faces on a surveillance camera can be represented as
in the given model (see Listing 1):

video : {′tag′ :′ webcam′} → Face Trigger : {}
→ Blur Area P ixelate : {′blocks′ : 5}

Listing 1: An example of a privacy enforcement model.

The first link in the chain defines the media source
to which a privacy chain should be applied. The above
example uses the provided chain for ’video’ streams. Even
though the current framework only supports video stream
processing, the detection and transformation of streaming
data follow the same pattern for all data types. Further-
more, we developed a whitelist mechanism: in case the
SFU does not have active privacy chains for an incom-
ing data type, clients cannot consume it. An empty chain
that does not contain any triggers or transformations (e.g.,
video:{’tag’:’webcam’}) is a configured rule that allows the
data to be consumed without applying further operations.

The two remaining links in Listing 1 describe the opera-
tions executed on every video frame that the SFU processes.
First, we detect whether or not there are human faces in

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2023.3315131

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 28,2023 at 13:16:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON EMERGING TOPIC IN COMPUTING, VOL. XX, NO. X, AUGUST 2022 6

the video frame (Face Trigger:{}), and for every detected
face, a blur transformation (Blur Area Pixelate:{’blocks’:5})
is applied to the respective region. The curly braces con-
tain parameters passed to the functions; the only given
parameter represents the number of pixelated squared in
the blurred area. Such a chain can be quickly converted into
a flow diagram and vice-versa: Figure 5 contains a graphical
representation of the face blurring function presented above.

Fig. 5: Privacy chain as a figure for blurring faces.

In the below Figure 6, we show the effect that the ’blocks’
parameter has on the blurred images. A value like five
blocks produces a prettier result, but with an increasing
number of blocks, the processing time rises equally; this will
be evaluated later. A high number of blocks in fact results
in a decreased anonymization effect, as we see in the last
image with a number of 30 ∗ 30 = 900 blocks calculated.

Fig. 6: Blurred face with a number of 1 ∗ 1, 5 ∗ 5, or 30 ∗ 30
blocks calculated.

5.3.1 Model Syntax and Compilation
Privacy chains are compiled internally by splitting a model
string along the arrows and processing the links of the chain
in sequence: the first link must define a valid media source;
every further link must be correctly resolved through a
function map. The conversion map translates a function
name as a string (e.g., ’Face Trigger’) to a Python function
(e.g., Face Trigger()) from Section 5.2.1. Parameters attached
to functions must be specified in curly braces and describe
a valid Python dictionary; otherwise, the compilation will
fail and indicate where the syntax is invalid. Depending on
whether a function string is resolved to a trigger or transfor-
mation function, the internal method signature is different;
we will discuss below what methods can be chained to-
gether without compilation errors. To save execution time,
a chain is processed up to the nth element that yields a
result. If a link n resolves to a trigger function that does not
detect any pattern in the frame, the remaining chain links
n+ 1, n+ 2, .. are skipped.

The last aspect of specifying privacy chains is related to
the ”tag” parameter included in the above chain and Figure
5. Through tags, it becomes possible to define many chains
in only one privacy model deployed on the SFU. A privacy

model could thus consist of two or more chains, e.g., one
for anonymizing car plates (’road scene’), and another for
blurring faces (’video vigilance’), which use entirely differ-
ent trigger and transformation functions. Now whenever a
producer connects to the SFU, it supplies a tag (e.g., ’road
scene’), which is stored alongside the peer connection on
the SFU. Before the SFU starts to process any provided data,
it browses the list of available privacy chains and selects
the one most fitting, i.e., the one with the same tag or at
least with a matching data type. The SFU now processes the
data according to the ’road scene’ chain, applying only the
triggers and transformations specified for this chain.

5.3.2 Trigger and Transformation Functions
The method signature of the trigger function describes the
expected parameters and the function’s return values. For
some triggers, we also provide a list of labels that the func-
tion returns (e.g., ’male’ when using the Gender Trigger). A
developer/end-user must specify a label parameter in the
privacy chain string for these functions.

We introduce the term ’boxes’ as a parameter and
return type: a box is precisely a tuple of two points in
the video frame that spans a rectangular area between
them. So one box would be, for example, [0, 0, 640, 480],
where [0,0] and [640,480] represent points on the plain,
and we define the area between them as the content of the
box. A single box b1 has the structure of [x1, y1, x2, y2],
while a set of boxes is encoded as [b1, b2, b3, . . . , bn] and
can be used to pass sections of image frames between
trigger and transformation functions. We can chain the
above trigger functions arbitrarily to detect patterns in
the video frame (see Listing 2). All of them accept boxes
as parameters to restrict the area of the trigger processes;
they can either be specified explicitly or passed between
functions anonymously. This means that we can specify a
sub-chain of two trigger functions linked together where
the results (i.e., video frame & list of boxes) of chain c1 are
passed internally to chain c2.

X → Face Trigger : {}
→ Age Trigger : {′label′ : (25− 32)} → Y

Listing 2: Face and Age trigger functions in a privacy
enforcement model.

Notice that a trigger function cn is not executed if a previous
trigger cn−1 does not return any boxes. This indicates that
cn did not detect any privacy-violating pattern and released
the frame without transformation. Furthermore, boxes also
play a central role in transformations. Each transformation
requires at least a box or a set of boxes to specify explicitly
which areas in the video frame should be processed.

6 EVALUATION

To evaluate the performance of the proposed solution, we
focus on two central metrics that concern the streaming
capabilities of the implementation: the latency to/from the
SFU, and the SFU’s performance. In this context, we define
the overall streaming latency as the time it takes to transfer
a frame from the producer, over the SFU, to the consumer.

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2023.3315131

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 28,2023 at 13:16:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON EMERGING TOPIC IN COMPUTING, VOL. XX, NO. X, AUGUST 2022 7

Since our frames only flow in one direction, from the pro-
ducer to the consumer, we use the term Round Trip Time
(RTT) interchangeably.

The latency between the stream producer and SFU and
from the SFU to the stream consumer is supposedly re-
lated to the network architecture in which we deploy the
framework. An intuitive assumption is that the latency is
lower if the SFU is close to the producer/consumer client
instead of a cloud center. We do not expect a cloud setup
to yield better results than an edge architecture, but we will
evaluate how big the difference between both architectures
is for our WebRTC streaming setup. We estimate that the
first share of the RTT, producer → SFU, does not diverge
significantly from the share SFU → consumer, at least not
based on the edge or cloud architecture. In that context, we
provide results on the latency from producer → SFU for the
cloud setup and from SFU → consumer for the edge setup.
In Figure 7, we visualized how the overall RTT is related to
the latency between SFU, producer, and consumer (Label 1
& 3). Their share of the RTT is evaluated through metrics
together with the SFU’s performance (Label 2).

Fig. 7: Evaluating three shares of the prototype’s RTT.

6.1 Privacy Models for Evaluation
In Figure 8, we give an overview of the four privacy models
that will be evaluated. Each model contains a reasonable
combination of trigger and transformation functions, where
a sequence of colored arrows represents one model. For
example, the orange chain, which describes Model #1, reads
as follows: receiving data from a video source, applying a
face trigger, and finally blurring all detected faces. We eval-
uate the overall RTT (i.e., total streaming latency) and the
function’s execution time in the SFU. The remaining chains
(purple, green, gray) describe equally a privacy model and
can be read the same way.

Fig. 8: Evaluated models (orange, purple, green, and grey).

Our evaluation goes further than comparable research
on privacy policy enforcement [8], [11], where streams were
merely secured through access-control restrictions. The pri-
vacy models submitted to the SFU facilitate finer-grained
configurability for privacy policies, greatly increasing the
variety of tools a developer/end-user has available.

We provide two prerecorded videos streamed from the
producer to the SFU to evaluate the SFU’s performance

processing the stream. Using prerecorded videos instead of
live streams prevents outer influences from distorting the
measurement sessions. The second video originates from
the first one; the difference is in its resolution and frame rate
decreased. Therefore, there are no substantial differences in
the content of the videos, only that some details of the video
stream might be lost when decreasing the frame rate. Table 3
provides a summary of the specifications mentioned for the
recorded videos.

TABLE 3: List of two recorded videos that are used to
evaluate the prototype

ID Width Height Duration Frame Rate

Video #1 1280px 720px 00:00:10 30 FPS
Video #2 640px 320px 00:00:10 16 FPS

A central aspect of choosing a frame rate when providing
a certain media type is that it directly affects the time frame
for processing a data frame. With a growing frame rate, i.e.,
we transfer a higher number of frames per second (FPS), the
available time frame for processing is decreased.

6.2 Hardware Setup
The RTT in our framework consists of three major shares:
the latency of the peer connection between the producer
and SFU, the performance of the SFU, and the latency
between SFU and consumer clients. We evaluated the SFU’s
performance on a single edge device with the given privacy
models. For the remaining share of the RTT, we conducted
two further measurements: the influence on the producer’s
latency depending on whether the SFU is deployed on the
edge or the cloud and the influence of the consumer’s
latency depending on the consumer device type.

The hardware specifications of the device we used to
evaluate the SFU is depicted in Table 4. Our edge de-
vice has an NVIDIA graphic card installed which supports
NVIDIA Cuda for GPU-accelerated graphic processing of
video streams.

TABLE 4: Hardware specifications of the device used to
evaluate the prototype

OS Version CPU RAM GPU Cuda

Windows 10 AMD FX-6300 16 GB NVIDIA GTX 960 11.4.3

All the entities used for the evaluation scenario are re-
flected in Figure 9, which contains a Python producer client
application that connects to the SFU through SDP. Once a
stable connection exists, the producer client starts streaming
the prerecorded videos from Table 3 with the respective
frame rate and resolution. The SFU processes the received
stream according to the supplied privacy model from Figure
8, and the transformed stream is then streamed to consumer
devices. The consumer devices connect themselves to the
SFU through a web application hosted on the edge device.
The application simplifies consumer connection progress
and takes charge of the SDP handling in the background. For
clarification, the consumer app is merely supplied through
the SFU but is executed on consumer devices. Therefore it
supposedly does not affect the performance of the SFU. The

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2023.3315131

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 28,2023 at 13:16:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON EMERGING TOPIC IN COMPUTING, VOL. XX, NO. X, AUGUST 2022 8

edge device that hosts the SFU and the consumer app has
the device specifications we presented in Table 4. This is the
environment we used to evaluate the performance of the
privacy models and individual trigger and transformation
functions.

Fig. 9: Streaming architecture for prototype evaluation.

To compare the latency from the producer to the SFU
instances in an edge/cloud environment, we deployed the
SFU once on the edge device from Table 4, and once on AWS.
To simplify the deployment on AWS, we created a Docker
image of the SFU, including all respective dependencies.
The image was shared through Docker Hub and can be
pulled and executed on an arbitrary Docker instance. The
AWS server we used to evaluate the latency in cloud setups
was an EC2 instance, namely the t2.micro, with a single
vCPU and 1 GB of RAM. The cloud setup is evidently not as
powerful as the edge device we use for evaluating the SFU’s
performance, but this is negligible since we do not process
video frames within AWS but solely measure the latency
between the producer client and AWS.

The remaining part, evaluating the latency between the
SFU and different consumer device types, was conducted
using a set of three devices. All of those devices connected
themselves to the SFU as described through the web appli-
cation hosted on the edge device, and they were connected
one each during a measurement session. However, our SFU
can relay video frames to multiple destinations in parallel.
The different consumer devices were as follows:

1) A smartphone is a useful choice if we want to consume
streams on the go. We used the Samsung Galaxy S9
(SM-G960F/DS) as a mobile device.

2) A laptop, which can be seen as a hybrid solution for
consuming streams on the go or as well in an office
scenario. We consumed the stream on the Lenovo Yoga
530-14IKB. Due to the absence of a 4G/5G module,
we connect to the SFU through the available Wi-Fi
connection.

3) Consuming the stream locally on the edge device is a
special case because we do not transfer frames between
different devices.

6.3 Streaming Latency

This section focuses on the latency between the producer
and SFU and SFU towards the consumer.

In both cases, the producer streamed Video #1 over the
SFU to the consumer, which has a frame rate of 30; this is rel-
evant because the frame rate defines how often the latency
can be calculated. We did not calculate the latency ourselves
but accessed it through the peer-to-peer connection statistics
maintained by the SFU. These statistics are updated and
accessed for evaluation; however, we cannot measure the
latency more often than 30 times a second.

We measured the latency over a total time of 60 seconds,
retrieving the latency once a second (i.e., 60 values for each
session that we can compare to each other). Within the SFU,
we always had Model #1 executed, though this supposedly
does not make any difference for the producer’s or con-
sumers’ latency. The producer client was always executed
on the same IoT device, the laptop from Section 6.2. Three
consumer devices were used to compare their results to
retrieve the transformed stream. Consumer and producer
streams were started simultaneously, and the results were
captured from the beginning of the connection. We wanted
to capture a possible unstable streaming latency at the
beginning of the established connection. Therefore, within
60 seconds, we would supposedly already arrive in a stable
state where we have less fluctuation in the latency.

Fig. 10: Producer latency over 60 seconds for cloud and edge
setups with mean values.

In Figure 10, we visualized the edge and cloud setup
latency in comparison over 60 seconds. The average values
provided in the right sub-graphic are for the same respective
time frame. It is clearly visible that the evaluated deploy-
ment environments greatly influence the latency between
the producer and the SFU. Transferring streaming data to a
distant cloud server increases the RTT considerably, whereas
processing it directly on edge helps maintain the low latency
and thus supports time-critical tasks.

Fig. 11: Latency of different consumer devices over 60 sec-
onds with mean values.

In Figure 11, we evaluated the latency between multiple
consumer devices and the SFU deployed on edge. The
three devices used are the ones described previously in the
hardware setup. We recall that the first consumer device was
a smartphone, the second a laptop, and the last consumer
was executed locally on the SFU’s device. We tracked the
latency over 60 seconds and provided the respective mean
values in the right sub-graphic. We deduce from the results
that the WIFI-equipped laptop has lower latency than the

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2023.3315131

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 28,2023 at 13:16:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON EMERGING TOPIC IN COMPUTING, VOL. XX, NO. X, AUGUST 2022 9

smartphone running over 5G, indicating that a fast transi-
tion from wireless transmission to wired one can slightly
improve the latency. Directly consuming the data locally on
the edge device (yellow line) is unarguably the fastest way
because there is no need to transfer it to another device,
however, there might only be limited use cases where this is
applicable.

6.4 Privacy Model Performance
In Figure 8, we introduced the four privacy models
that are used for evaluating the SFU’s performance. For
each of them, we provide the overall execution time
alongside the individual functions’ performance. The time
to process frames on the SFU will be evaluated with the
GPU-acceleration enabled, only for Section 6.6 we will
visualize for two privacy models the different performances
with/without GPU support.

Fig. 12: Resulting stream with multiple faces transformed.

An important detail is that the last third of the produced
stream contains a printed photo with three additional hu-
man faces. To give a precise idea of what the transformed
stream looks like under these circumstances, we included
Figure 12. We mention this because the larger number of
human faces may lead to a different result for the trigger
and transformation functions. On the other hand, the frame
size stays mostly unchanged, so we would not expect the
latency to vary throughout the video stream.

6.5 Triggers and Transformations
Figure 13 visualizes the performance on the SFU when
processing the four defined privacy models, while Video
#1 is streamed from the producer. The colored lines refer
to the individual functions’ performances, while the black
line always represents the accumulated chain processing
time. Because a higher resolution is desired for evaluating
the computation time, we evaluated the processing time
once every frame, instead of only every 30 frames like in
Section 6.3. However, to avoid an increasingly dense x-
axis, we stopped the replay of the demo video after 10
seconds. We evaluate 10 seconds of Video #1, which was
recorded and replayed by the producer at its default frame
rate of 30. By multiplying 30 FPS ∗ 10 Seconds we end
up with exactly 300 values for individual performances and
overall execution time. On the x-axis of the given figure, we
iterate over the processed frames and the performance of the

functions for frame X, frame 1 is the first streamed frame,
and frame 300 is the last one transferred.

(a) (b)

(c) (d)

Fig. 13: Individual performance of functions for Video #1 and
the 4 privacy models.

In Figure 14, we use the exact same setup to visualize the
performance for processing Video #2. As presented in Section
6.2, the differences are the resolution and the decreased
frame rate for the second video. We included the overall
performance in combination with the individual results to
give a precise idea of how the accumulated processing
time is based on the distinct triggers and transformations.
Since Video #2 and the resulting video stream only have a
frame rate of 16, the overall number of values is reduced
equivalently to 160 instead of 300.

Figure 15 describes the overall distribution of the values.
We used a standard representation where the interquartile
range around the median is 50% and the upper and lower
whiskers occupy a further 45% of the distribution. The
remaining 5% of the values are represented as outliers, i.e.,
dots beyond the upper and lower whiskers.

In Figure 16, we show the overall chain performances.
The left subgraph contains the computed result for Video
#1 and the right one the results for Video #2. Both were
applied to the exact same set of privacy models. We iterate
again over the whole set of values that we captured when
processing every frame of the stream. The x-axis of the two
figures is not identical because the two videos have different
frame rates. We deduce that decreasing the frame resolution
significantly reduces the time required to process a video
frame. However, the result depends on the privacy chain
and the contained trigger and transformation functions. The
time required to process Model #1 & #4 becomes almost
negligible, while Model #2 and #3 only receive a small
performance boot by decreasing the stream’s resolution.

6.6 Parameter Tuning & GPU Acceleration
Another critical aspect to further evaluate is the configura-
tion of privacy functions and their tuning, as well as their

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2023.3315131

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 28,2023 at 13:16:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON EMERGING TOPIC IN COMPUTING, VOL. XX, NO. X, AUGUST 2022 10

(a) (b)

(c) (d)

Fig. 14: Individual performance of functions for Video #2 and
the 4 privacy models.

(a) (b)

Fig. 15: Statistical distribution of function’s performances for
Video #1 & # 2.

dependence on their environment for accelerated process-
ing. To segregate the effects of different parameter values
and the GPU-acceleration, we will only evaluate Video #1
and the first two privacy models, but with different settings
to highlight diverging results. We will only process the first
10 seconds of the video to increase the detail on the x-axis.
With the given video, we will iterate over 300 frames and
measure the performance of the individual function and the
overall processing time.

Figure 17 visualizes the results of the SFU’s performance
with the tuned blocks parameter of the Blur Area Pixelate
function, as described in the evaluated scenario. The left
subfigure contains the performance with blocks: 1 and the
right one with blocks: 50. We recall that according to Figure 6
an increasingly large blocks parameter will not improve
the anonymization effect of the transformation. The tuned
parameters can be compared with the unmodified results
of Video #1 and Model #1 in Figure 13; the last third of the
frames processed contains an image likewise with multiple
human faces.

The results without GPU-acceleration are provided

(a) (b)

Fig. 16: Overall performance of evaluated privacy models
on Video #1 & #2.

(a) (b)

Fig. 17: Performance of Blur Area Pixelate for blocks values
{1, 50}.

through Figure 18. The x-axis contains all frames processed
on the SFU when streaming Video #1. The colored lines
likewise represent the individual performances of the trig-
ger and transformation functions; the black line depicts the
time elapsed for processing the privacy chain. Performance
was evaluated on the same device with the exact hardware
specifications to avoid external factors interfering with the
results. To deactivate the GPU support, we implemented a
configuration parameter that allows switching between the
available providers (CPU or GPU) for the ONNX model.

6.7 Discussion

From Figure 13, we can obtain numerous details about the
performance for processing Video #1 with the evaluated
privacy models. The stream resembled a video source with
a resolution of 1280x720px and a frame rate of 30 FPS, which
could contain sufficient details for a surveillance camera
or an AR device similar to Section 3. We observe that
the overall performance for processing the privacy chains
is relatively constant for Model #1 & #4, which applied a
Face Trigger without consecutive Age- or Gender Trigger.
Both models sporadically showed high peak execution
time, mainly due to abnormalities in the execution of the
Face Trigger. Nevertheless, over the full measurement, both
models maintained a latency close to their mean value of
15ms. The overall latency depended entirely on the re-
sult of the Face Trigger, as we can observe from the box
plot in Figure 15. We could not detect any impact on the
overall performance depending on whether we applied the
Blur Area Pixelate or Fill Area Box function.

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2023.3315131

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 28,2023 at 13:16:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON EMERGING TOPIC IN COMPUTING, VOL. XX, NO. X, AUGUST 2022 11

(a) (b)

(c) (d)

Fig. 18: Individual performance of functions for Video #1
without GPU-acceleration.

We showed how tuning parameters (i.e., we varied the
number of blocks in the Blur Area Pixelate function) affect
the model’s performance. Figure 17 contains the results for
processing Video #1 and Model #1 with 1 or 50 blocks. We
remember from Figure 6 that a higher number of blocks
is not necessarily a guarantee of better anonymization; thus,
we see it more as a general experiment on parameter tuning.
We can observe that using only one block provides similar
results to applying Blur Area Pixelate with five blocks in
Figure 13. However, a notable fact is that the streaming
session with five blocks had more peak times caused by
the Blur Area Pixelate function, so we suspect that a lower
parameter reduces the frequency of peaks, which should
be affirmed with further evaluations. The quality of the
stream is critical to the resulting performance, as we can
see in the different results of the evaluated video streams in
Figure 13 and 14. We may either decrease the time it requires
to process a frame by decreasing its quality (e.g., resolution),
or increase the available time frame for the computation
by decreasing the FPS of the stream. It further showed, by
comparing Figure 13 and Figure 18, that a GPU provides
significantly lower latency for video trigger functions, while
transformation functions maintained unaffected.

7 CONCLUSION & FUTURE WORK

We have presented a privacy-enforcing framework for trans-
forming data streams on edge. Our first contribution in-
troduced a novel approach that enables domain experts to
specify high-level privacy policies in a human-readable way.
The introduced edge-based runtime mechanism controls
and interprets privacy policies deployed on edge devices.
Throughout various experiments, we show the applicability
and feasibility of the approach. The latency and network

overhead are within acceptable boundaries, while the in-
troduced method offers several benefits over a centralized
cloud-based system. Our prototype provided promising re-
sults and led to a multitude of open challenges that should
be addressed in future work: (i) We proved the abstract con-
cept for video stream; nonetheless, it remains to extend and
evaluate our prototype with other data types (e.g., audio
streams) to underline the universality of our framework (ii)
We evaluated the performance on a single-edge powerful
device (i.e., deploying the SFU on the NVIDIA Jetson). In
future work, we plan to evaluate privacy models with dif-
ferent complexities and show the framework’s applicability
on low-powered edge devices.

ACKNOWLEDGMENT

Research has partially received funding from EU Horizon
Framework grant agreements No. 871525 (FogProtect), No.
101079214 (AIoTwin), and No. 101070186 (TEADAL).

REFERENCES

[1] I. Murturi, C. Jia, B. Kerbl, M. Wimmer, S. Dustdar,
and C. Tsigkanos, “On provisioning procedural geom-
etry workloads on edge architectures,” in Proceedings
of the 17th International Conference on Web Information
Systems and Technologies, WEBIST 2021, pp. 354–359.

[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge
computing: Vision and challenges,” IEEE internet of
things journal, vol. 3, no. 5, pp. 637–646, 2016.

[3] I. Murturi and S. Dustdar, “A decentralized approach
for resource discovery using metadata replication in
edge networks,” IEEE Transactions on Services Comput-
ing, 2021.

[4] I. Murturi, A. Egyed, and S. Dustdar, “Utilizing
ai planning on the edge,” IEEE Internet Computing,
vol. 26, no. 2, pp. 28–35, 2022.

[5] B. Sedlak, I. Murturi, and S. Dustdar, “Specification
and operation of privacy models for data streams on
the edge,” in 2022 IEEE 6th International Conference on
Fog and Edge Computing (ICFEC), 2022, pp. 78–82. DOI:
10.1109/ICFEC54809.2022.00018.

[6] A. Wang, J. Shen, C. Wang, H. Yang, and D. Liu,
“Anonymous data collection scheme for cloud-aided
mobile edge networks,” en, Digital Communications
and Networks, vol. 6, no. 2, pp. 223–228, May 2020,
ISSN: 2352-8648. DOI: 10.1016/j.dcan.2019.04.001.

[7] O. Hajihassani, O. Ardakanian, and H. Khazaei,
“Anonymizing Sensor Data on the Edge: A Represen-
tation Learning and Transformation Approach,” en,
arXiv:2011.08315 [cs], Aug. 2021, arXiv: 2011.08315.

[8] C. Lachner, T. Rausch, and S. Dustdar, “Context-
Aware Enforcement of Privacy Policies in Edge
Computing,” Jul. 2019, pp. 1–6. DOI: 10 . 1109 /
BigDataCongress.2019.00014.

[9] M. Khavkin and M. Last, “Preserving Differential
Privacy and Utility of Non-stationary Data Streams,”
in 2018 IEEE International Conference on Data Min-
ing Workshops (ICDMW), ISSN: 2375-9259, Nov. 2018,
pp. 29–34. DOI: 10.1109/ICDMW.2018.00012.

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2023.3315131

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 28,2023 at 13:16:13 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON EMERGING TOPIC IN COMPUTING, VOL. XX, NO. X, AUGUST 2022 12

[10] N. Jha, T. Favale, L. Vassio, M. Trevisan, and M. Mellia,
“Z-anonymity: Zero-Delay Anonymization for Data
Streams,” en, 2020 IEEE International Conference on Big
Data (Big Data), pp. 3996–4005, Dec. 2020. DOI: 10 .
1109/BigData50022.2020.9378422.

[11] P. Baniya, G. Bajaj, J. Lee, A. Bastani, C. Francis,
and M. Agumbe Suresh, “Towards Policy-aware Edge
Computing Architectures,” in 2020 IEEE International
Conference on Big Data (Big Data), Dec. 2020, pp. 3464–
3469. DOI: 10.1109/BigData50022.2020.9377982.

[12] C. Tsigkanos, C. Avasalcai, S. Dustdar, and S. Dust-
dar, “Architectural Considerations for Privacy on the
Edge,” en, IEEE Internet Computing, vol. 23, no. 4,
pp. 76–83, Jul. 2019, ISSN: 1089-7801, 1941-0131. DOI:
10.1109/MIC.2019.2935800.

[13] Y. Mao, J. Feng, F. Xu, and S. Zhong, “A Privacy-
Preserving Deep Learning Approach for Face Recog-
nition with Edge Computing,” HotEdge, 2018.

[14] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and
Q. Li, “LAVEA: Latency-aware video analytics on
edge computing platform,” in Proceedings of the Second
ACM/IEEE Symposium on Edge Computing, ser. SEC
’17, New York, NY, USA: Association for Computing
Machinery, Oct. 2017, pp. 1–13, ISBN: 978-1-4503-5087-
7. DOI: 10.1145/3132211.3134459.

[15] M. M. Peixoto and C. Silva, “Specifying privacy re-
quirements with goal-oriented modeling languages,”
in Proceedings of the XXXII Brazilian Symposium on
Software Engineering, ser. SBES ’18, New York, NY,
USA: Association for Computing Machinery, Sep.
2018, pp. 112–121, ISBN: 978-1-4503-6503-1. DOI: 10 .
1145/3266237.3266270.

[16] P. Maiti, J. Shukla, B. Sahoo, and A. K. Turuk, “Effi-
cient Data Collection for IoT Services in Edge Com-
puting Environment,” in 2017 International Conference
on Information Technology (ICIT), Dec. 2017, pp. 101–
106. DOI: 10.1109/ICIT.2017.40.

[17] K. Cao, Y. Liu, G. Meng, and Q. Sun, “An Overview
on Edge Computing Research,” IEEE Access, vol. 8,
pp. 85 714–85 728, 2020, Conference Name: IEEE Ac-
cess, ISSN: 2169-3536. DOI: 10 . 1109 / ACCESS . 2020 .
2991734.

[18] X. Cao and S. Madria, Efficient Geospatial Data Collec-
tion in IoT Networks for Mobile Edge Computing. Oct.
2019. DOI: 10.1109/NCA.2019.8935061.

[19] Y. Du, “Collaborative Crowdsensing at the Edge,”
Ph.D. dissertation, Jul. 2020.

[20] A. Sabbioni, L. Rosa, A. Bujari, L. Foschini, and
A. Corradi, “A Shared Memory Approach for Func-
tion Chaining in Serverless Platforms,” in 2021 IEEE
Symposium on Computers and Communications (ISCC),
ISSN: 2642-7389, Sep. 2021, pp. 1–6. DOI: 10 . 1109 /
ISCC53001.2021.9631385.

[21] linzai, Ultra-Light-Fast-Generic-Face-Detector-1MB, Feb.
2022. [Online]. Available: https : / / github . com /
Linzaer / Ultra - Light - Fast - Generic - Face - Detector -
1MB (visited on Feb. 9, 2022).

[22] asiryan, Age and Gender Classification using Convolu-
tional Neural Networks, en, 2021. [Online]. Available:
https://github.com/onnx/models (visited on Feb. 9,
2022).

[23] R. Rothe, R. Timofte, and L. V. Gool, “DEX: Deep
EXpectation of Apparent Age from a Single Image,”
en, in 2015 IEEE International Conference on Computer
Vision Workshop (ICCVW), Santiago, Chile: IEEE, Dec.
2015, pp. 252–257, ISBN: 978-1-4673-9711-7. DOI: 10 .
1109/ICCVW.2015.41.

[24] A. Rosebrock, Blur and anonymize faces with OpenCV
and Python, en-US, Apr. 2020. [Online]. Available:
https://www.pyimagesearch.com/2020/04/06/blur-
and - anonymize - faces - with - opencv - and - python/
(visited on Feb. 9, 2022).

Boris Sedlak is currently a Ph.D. student of the
Distributed Systems Group at TU Wien, Austria.
He received his B.Sc. in Media Informatics at
the University of Applied Sciences in St. Pölten,
and his M.Sc. in Software Engineering & Internet
Computing at the TU Wien. He was working four
years in the field of software engineering before
focusing on his current research interests: edge
computing, data transformations, and software
architecture.

Ilir Murturi is currently a Postdoctoral re-
searcher with the Distributed Systems Group,
TU Wien, Vienna. He received his M.Sc. degree
in Computer Engineering from the University of
Prishtina, Kosova. He received his Ph.D. from
TU Wien in 2022. Previously, he worked as a
University Assistant at TU Wien and the Univer-
sity of Prishtina. His current research interests
include the Internet of Things, Edge Computing,
EdgeAI, and privacy in distributed, self-adaptive
and cyber-physical systems.

Praveen Kumar Donta(SM’22) is a Post-
doctoral researcher in the Distributed Systems
Group, TU Wien, Austria since July 2021. He
received his Ph.D. from the Department of CSE
in IIT (ISM), Dhanbad, India in June 2021. He
was a visiting Ph.D. student during his Ph.D.
at the University of Tartu, Estonia. He received
his M.Tech and B.Tech from JNTU Anantapur,
India in 2014, and 2012. His current research
on Learning-driven distributed computing contin-
uum systems.

Schahram Dustdar (F’16) is Full Professor of
Computer science heading the Research Divi-
sion of Distributed Systems at the TU Wien,
Austria. He is founding Co-Editor-in-Chief of the
new ACM Transactions on Internet of Things
(ACM TIoT) as well as Editor-in-Chief of Com-
puting (Springer). He is an Associate Editor
of IEEE Transactions on Services Computing,
IEEE Transactions on Cloud Computing, ACM
Transactions on the Web, and ACM Transactions
on Internet Technology, as well as on the edito-

rial board of IEEE Internet Computing and IEEE Computer. Dustdar is
Recipient of the ACM Distinguished Scientist Award (2009), the ACM
Distinguished Speaker ward (2021), the IBM Faculty Award (2012), an
Elected Member of the Academia Europaea: The Academy of Europe,
where he is Chairman of the Informatics Section, as well as an IEEE
Fellow. In 2021 Dustdar was elected President for Asia-Pacific Artificial
Intelligence Association (AAIA).

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2023.3315131

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 28,2023 at 13:16:13 UTC from IEEE Xplore. Restrictions apply.

