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AbstrAct

Real-time holographic video communications 
enable immersive experiences for next-generation 
video services in the future metaverse era. How-
ever, high-fidelity holographic videos require high 
bandwidth and significant computation resourc-
es, which exceed the transferring and comput-
ing capacity of 5G networks. This article reviews 
state-of-the-art holographic point cloud video 
transmission techniques and highlights the critical 
challenges of delivering such immersive services. 
We further implement a preliminary prototype of 
an AI-driven holographic video communication 
system and present critical experimental results 
to evaluate its performance. Finally, we identify 
future research directions and discuss potential 
solutions for providing real-time and high-quality 
holographic experiences.

IntroductIon
Holographic video provides users with an immer-
sive six degrees of freedom (6-DoF) viewing expe-
rience rather than traditional virtual reality (VR), 
360°, and other 3-DoF videos [1]. 6-DoF videos 
are characterized by having depth information 
for each frame, providing 3-DoF of translation-
al movement (X, Y, Z) and 3-DoF of rotational 
movement (yaw, pitch, roll). 6-DoF videos allow 
users to walk around an object in a circle and 
view it from the top and the bottom. Point cloud 
video (PCV), as a representative holographic 
6-DoF video service, describes the objects using a 
set of disordered 3D points with coordinates and 
color. Figure 1 compares the PCV transmission 
with different video services. PCV stream (e.g., 
capturing 1 s of raw PCV with one depth cam-
era at 30 FPS produces 2.06 Gb of data) is highly 
time- and resource-consuming for encoding and 
decoding, requiring at least an hour for a com-
mon computer compared to 3-DoF videos.

More importantly, PCV transmission requires a 
bandwidth capacity of more than gigabit-per-sec-
ond level, far beyond the current transmission 
capacity of 5G networks. Undoubtedly, holograph-
ic video introduces requirements far exceeding tra-
ditional video streaming services regarding network 
bandwidth, transmission latency, and computing 
complexity. We investigate the transmission tech-
niques for PCV, including point cloud compression 
and video streaming optimization. For compres-

sion, traditional methods include Kdtree-based 
and Octree-based solutions, such as the popular 
Point Cloud Library (PCL) [2] and Draco [3]. ISO/
IEC Moving Picture Experts Group (MPEG) is stan-
dardizing Video-based Point Cloud Compression 
(V-PCC) and Geometry-based PCC (G-PCC) for 
PCV. However, these methods require higher 
computing resources and costs than 3-DoF videos. 
Besides, although some deep-learning-based com-
pression techniques provide lower accuracy loss 
and higher compression ratios [4, 5], they are only 
applicable for offline holographic video pre-pro-
cessing due to high computing overhead and infer-
ence latency. For video streaming optimization, 
most point video steaming techniques expand 
3-DoF video streaming methods such as tiling and 
view angle prediction. Since PCV adds extra 3-DoF 
information, it requires more adaptive adjustment 
of streaming than 3-DoF with the dynamic change 
in the physical distance between the user and the 
scene. Some research investigates the combina-
tion of point cloud compression and transmission 
optimization [6, 7]. For streaming quality of service 
(QoS) management, Zhang et al. [8] proposed a 
covering-based quality prediction method to accu-
rately predict the QoS, along with the query of 
quality correlation (Q2C) model [9] for the QoS 
guarantee. However, these solutions cannot be run 
in real time on mobile devices due to the massive 
cost of video compression and codecs.

We review related surveys, tutorials, and mag-
azine publications on PCV, holographic video, 
and immersive video. Liu et al. [1] discuss the 
challenges and solutions to adaptive point cloud 
streaming and provide a prototype of extending 
MPEG Dynamic Adaptive Streaming over HTTP 
(DASH). Clemm et al. [10] articulate the network-
ing challenges to enable immersive holographic 
videos and propose new network architecture for 
optimizing the coordination and synchronization 
of concurrent streams. Hooft et al. [11] present 
the status and challenges of 6-DoF media, and 
Taleb et al. [12] provide an overview of immer-
sive services as well as the relevant industry and 
standardization activities. These works highlight 
the gap between existing streaming solutions and 
implementing PCV transmission. Most solutions 
extend from 3-DoF video compression or adap-
tive streaming techniques and fail to involve an 
artificial intelligence (AI)-native PCV streaming.

This article introduces the landscape and 
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requirements of holographic PCV communication 
and analyzes the technical challenges associated 
with supporting PCV services. We propose an 
advanced AI-driven transmission solution as a pro-
totype for preliminary exploration and verify its 
performance. Our contributions pertain to:
1. A novel transmission mechanism for holo-

graphic PCV
2. The end-to-end network design that joins the 

encoder and decoder
3. Adaptive streaming technology for the pro-

posed AI-driven video transmission
We further discuss the proposed AI-driven com-
munication technique and identify future direc-
tions for high-quality PCV services.

reQuIrements And chAllenges

reQuIrements
Holographic PCV streaming poses significant 
demands on network transmission infrastructure in 
terms of ultra-low delay and reliable network, heavy 
computation, and device mobility and portability.

Ultra-Low-Delay and Reliable Networks: 6-DoF 
movement and orientation features of PCV are 
more sensitive to delay than 3-DoF video services, 
whose ideal delay requirement is less than 5 ms 
and is more stringent than that of traditional 3-DoF 
videos (i.e., <20 ms) [13]. Since PCV requires 
numerous depth cameras to capture data, this fur-
ther increases data volume compared to other 
types of videos. Therefore, continuous and reliable 
transmission of multi-view captured PCV streams 
requires a reliable network and lower network jit-
ter than 3-DoF video transmission.

Heavy Computation: Encoding and decoding 
a PCV using the MPEG standard are computa-
tionally intensive, even if we ignore the computa-
tions used for capturing. For example, encoding 
a 1 s video from the longdress dataset with lossy 
compression requires 11 to 42 min using MPEG 
V-PCC on a generic computer [14]. Although we 
can use high-performance GPU servers to accel-
erate the encoding of PCV at the sender, the 
computing capability of mobile devices, such as 
augmented/virtual reality (AR/VR) glasses, does 
not fulfi ll the requirements of real-time decoding. 
Thus, massive encoding and decoding computa-

tion requirements are one of the primary factors 
that hinder the provision of a 6-DoF experience 
on mobile devices.

Device Mobility and Portability: Holographic 
PCV introduces higher demands on device mobil-
ity and portability. We can use cable-connected 
VR terminals or large display screens to enable 
immersive experiences in panoramic and 360° 
VR videos, which is currently one of the prima-
ry methods of immersive interactions. However, 
PCV will significantly reduce the 6-DoF experi-
ence if users are not free and fl exible to move and 
interact. Therefore, interactive devices for holo-
graphic PCV need to provide free mobility. Por-
table devices are crucial to providing a satisfying 
holographic PCV experience.

chAllenges
Disordered Point Cloud Points and Massive 

Computing Demands Challenge the Traditional 
Streaming Pipeline: Point clouds are represented 
by massive disordered 3D points (X, Y, Z) and col-
ors (R, G, B). It requires hundreds of thousands of 
points to clearly represent 6-DoF contents, which 
makes the data volume of PCV much larger than 
that of 3-DoF videos. In addition to the intuitive 
increase in data volume, we have to address the 
challenges of compression, encoding, and decod-
ing for real-time PCV transmission. However, 
existing encoding and decoding methods extend-
ing MPEG standards are mainly for offline video 
services, which cannot provide real-time decod-
ing on mobile devices. Although some AI-based 
compression techniques extract point cloud fea-
tures and acquire a better compression rate than 
traditional methods, they require extensive GPU 
resources. Also, they have to train another heavy 
neural network to reconstruct the original point 
cloud, which also cannot provide real-time decod-
ing for PCV transmission. Hence, there is no exist-
ing end-to-end lightweight AI network designed 
for point cloud transmission from the original 
point cloud to the fi nal rendering point cloud.

Intensive 6-DoF Point Cloud Decoding Chal-
lenges Resource-Constrained Mobile Devices:
Compared to the existing mature 3-DoF VR or 
360° video, 6-DoF PCV lacks efficient decoding 
algorithms. The computing capability and mobile 

FIGURE 1. Comparisons between holographic point cloud video with conventional video.
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energy consumption limit the usage of existing 
decoding solutions, especially for resource-con-
strained devices. This introduces the need for the 
existing 6-DoF PCV to compromise using 3-DoF 
delivery and only providing a VR video-like ser-
vice. When using AI-based methods to extract 
key features for transmission, running real-time 
model inference for reconstructing point clouds on 
mobile devices is a significant challenge. Current-
ly, the AI-based reconstruction method for point 
clouds such as PU-GAN [5] requires intensive com-
putation and GPU resources to support a satisfying 
experience on the high-performance server. There-
fore, implementing AI-based decoding on mobile 
devices is still a big challenge for 6-DoF PCV.

Adaptive Delivery Challenges AI-Driven 
Video Streaming: 6-DoF PCV can initially pro-
vide adaptive delivery by extending MPEG DASH 
and dynamic tiling strategies of 3-DoF videos. 
Also, some efforts apply deep reinforcement 
learning (DRL) algorithms to improve transmis-
sion performance. However, these methods pro-
vide adaptive streaming based on a traditional 
video transmission pipeline, including compres-
sion, encoding, transmission, and decoding. Such 
adaptive methods are difficult to be applied to 
AI-driven methods that extract key features for 
transmission. More importantly, the traditional 
adaptive streaming mainly considers the network 
environment, while the decoding involves inten-
sive computation on the mobile device. Thus, 
incorporating the device computing capability 
into adaptive streaming delivery and designing 
an appropriate DRL is a significant challenge for 
AI-driven PCV transmission.

ProgressIve reAl-tIme delIvery: 
A novel AI-drIven solutIon

We propose a novel AI-driven solution that makes 
PCV streaming an end-to-end neural network train-
ing problem. Existing end-to-end designs for point 
clouds either extract key feature points from the 
original point cloud for object detection or com-
plete the point cloud with the generative adver-
sarial network (GAN) technique. Unlike those 
solutions, we radically design the point cloud fea-
ture extraction and reconstruction as an end-to-
end process for training to obtain better feature 
extraction capability and reconstruction results. To 
address the first challenge, we design the encod-
ing and decoding process as an end-to-end train-
able neural network and transfer the encoder’s 
key features instead of the compressed point 
cloud. Based on this design, AI-driven PCV delivery 
evolves from the traditional pipeline to use trained 
point cloud feature extraction for encoding and 
point cloud reconstruction for decoding.

To address the second challenge, we first opti-
mize the point cloud downsampling process, 
which has high computational complexity in the 
reconstruction of decoding. Then we design a 
pruning and quantization joint method to reduce 
model parameters and size and speed up online 
decoding for mobile devices. To address the third 
challenge, we propose an adaptive control meth-
od for dynamic AI-driven point cloud transmis-
sion. By sensing dynamic contexts, we propose 
a DRL-based adaptive transmission method with 
user quality of experience (QoE) as the optimi-

zation goal, considering the transmission latency 
and reconstruction accuracy. It can adaptively 
and dynamically match the optimal point cloud 
encoder-decoder models to obtain the optimal 
transmission experience according to the used 
mobile devices and the network condition.

Figure 2 presents the overall AI-driven trans-
mission architecture for PCV service, consisting of 
PCV generation, training end-to-end encoder-de-
coder models, online transmission, and adaptive 
streaming.

Point Cloud Video Generation: We first imple-
ment a point cloud generation to get a real-time 
PCV stream. As shown in Fig. 2, we deploy mul-
tiple-depth cameras at different angles to cap-
ture PCV frames. Then we convert them to point 
clouds and fuse them into a complete 6-DoF PCV 
stream with generative learning algorithms, which 
is out of the scope of this article. Instead, we 
focus on how to provide efficient and adaptive 
transmission services for PCV.

Offline End-to-End Design and Model Training: 
As shown in Fig. 2, the proposed end-to-end encod-
er-decoder design takes the original point cloud as 
input and outputs a reconstructed point cloud iden-
tical to the original point cloud. This AI-driven mech-
anism transmits key features instead of compressed 
PCV, reducing redundant data transmission. Then 
it uses a lightweight and efficient model to recon-
struct the point cloud on mobile devices. For the 
design of the encoder, we use the hierarchical 
extraction structure of PointNet++ [4] and employ 
an ensemble abstraction layer to capture the local 
structure from the original point cloud. In detail, 
we use several Sampling layers, a Grouping layer, 
and a Mini-PointNet layer to encode local region 
patterns into feature vectors. Then- the raw input 
frame is represented by fewer points and features 
when outputting a point-by-point feature matrix. For 
the decoder, since the conventional GAN-based 
reconstruction model has a large model size and a 
long inference time on mobile devices, we cannot 
directly use the GAN-based approach as the design 
of the decoder. To reduce the model size and 
improve the inference efficiency of the decoder, 
we propose a lightweight GAN-based point cloud 
reconstruction network using the model pruning 
and quantification techniques. We start with using 
the generator of the PU-GAN network as the back-
bone of the decoder. We generate more diverse 
point distributions to enhance the feature variations 
rather than a simple duplication strategy by intro-
ducing the upsampling-downsampling-upsampling 
layer [5]. Then we join the encoder with the above 
basic decoder for end-to-end training and obtain a 
basic encoder-decoder model with optimal accura-
cy. Next, we perform a weight pruning operation 
on the trained decoder model and then propose an 
8/16-bit quantization acceleration. Finally, we joint-
ly fine-tune the parameters with the encoder during 
pruning and quantization to obtain the optimal 
lightweight decoder model. Note that we do not 
aggressively use the binary quantization technique 
because we need to guarantee the reconstruction 
accuracy as much as possible.

To train the designed novel neural network, the 
repulsion loss and uniform loss commonly used 
are not effective [5]. This is because the repulsion 
loss avoids the generated points near the original 
points, and the uniform loss ensures generating 

Existing end-to-end designs 
for point clouds either 

extract key feature points 
from the original point cloud 
for object detection or com-

plete the point cloud with 
the generative adversarial 
network (GAN) technique. 
Unlike those solutions, we 
radically design the point 

cloud feature extraction and 
reconstruction as an end-
to-end process for training 

to obtain better feature 
extraction capability and 

reconstruction results.
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point sets in a uniform distribution. However, our 
AI-driven transmission network aims to reduce the 
distance between the original and generated point 
cloud as much as possible. Thus, we use the earth 
mover’s distance (EMD) as the loss function to pro-
duce generated points on the target surface, which 
are similar to the original input. EMD can measure 
the distance between the original and generated 
point cloud distributions. We decompose the orig-
inal point cloud into 200 patches and employ the 
patch-based training strategy for input with a large 
number of points.

It is important to provide lightweight models 
in various contexts, such as network conditions 
and diff erent mobile devices. This also means that 
such an AI-driven approach requires adaptive 
online delivery streaming techniques. Hence, we 
train and cache encoder-decoder models for dif-
ferent contexts offline to match different device 
computing capabilities and network conditions. 
Also, we can retrain and update encoder-decoder 
models as the context changes.

Online Transmission and Streaming Con-
troller: The online adaptive streaming controller 
requires choosing the optimal encoder-decoder 
model for dynamic contexts, including the net-
work condition and the device computing capa-
bility. For each trained encoder-decoder model, 
we define a hyperparameter to represent the 
compression ratio between the original point 
cloud frame and the feature vector output by the 
encoder. Hence, the online adaptive streaming 
controller aims to select the best encoder-de-
coder model by adjusting different hyperparam-
eters to obtain the maximum compression ratio 
while satisfying the accuracy of the reconstructed 
PCV. To implement adaptive streaming for the 
proposed AI-driven transmission, we propose 

an online self-learning controller based on DRL, 
providing optimal encoder-decoder model selec-
tion for dynamic contexts. As shown in Fig. 2, 
we construct the self-learning streaming control-
ler by taking the current network condition, the 
device computing capability, and the demands as 
the state, defining the reward, and selecting the 
encoder-decoder model as the action for DRL 
policy network training. We show the state, the 
action, and the reward defi ned in the DRL-based 
online streaming controller. The reward is essen-
tial in achieving fast convergence and obtaining 
the optimal global solution. We use the QoE as 
the reward, which considers both transmission 
latency and reconstruction accuracy to optimize 
the DRL training. Typically, rate-distortion optimi-
zation (RDO) is used to measure and optimize 
the compression performance for traditional vid-
eos or images. RDO considers the performance 
of the lossy (image quality) and bit rate (the 
amount of data required to encode). Similarly, this 
is also useful for compressed transmission of PCV. 
Hence, we defi ne the QoE from the reconstruc-
tion accuracy and transmission time, representing 
distortion rate and bit rate, respectively. This also 
means the smaller the amount of data, the smaller 
the transmission time, and the smaller the FPS and 
delay of user experience. Specifi cally, we formu-
late the QoE through the F1-Score, the harmonic 
mean of the precision and recall, to achieve an 
optimal value on these two indicators. In sum-
mary, online streaming controls the hyper-pa-
rameter according to the dynamic network and 
device computing capability and obtains diff erent 
encoder-decoder transmission models, dynamical-
ly adjusting the compression rate on the mobile 
device. In our implementation, we consider four 
network conditions — 3G, 4G, WiFi, and 5G — 

FIGURE 2. Proposed AI-driven end-to-end transmission architecture.
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and four levels of device computing capabilities 
by controlling the number of CPU cores.

eXPerImentAl AnAlysIs
The deep neural network described earlier is a 
high-level framework. Our specific architecture 
adopts the hierarchical extraction module based 
on the backbone of PointNet++ [4] as the encod-
er, and adopts the feature expansion component 
and point set generation component in the gen-
erator of PU-GAN [5]. We fi rst implement a basic 
AI-driven transmission model using PointNet++ [4] 
as the encoder’s backbone and join the generator 
as the decoder. Then we describe the implemen-
tation of the lightweight decoder model, including 
the high-precision pruning and quantization. Spe-
cifi cally, we adopt the weight pruning strategy to 
remove some of the weights from convolutional 
neural network layers and make the model fast-
er and smaller. Last, we use 8/16-bit quantiza-

tion operation and fi ne-tune model parameters to 
obtain the optimal lightweight decoder model for 
diff erent devices.

To improve the generalization of the AI-driven 
model, we train our end-to-end neural network 
by utilizing 147 3D point cloud objects [5]. The 
dataset includes a rich variety of objects, from 
simple objects (e.g., Icosahedron) to highly 
detailed objects (e.g., Statue). In addition, we use 
four real-world PCV sequences for testing [15], 
each of which is a human body captured by 42 
RGB cameras at 30 FPS over a 10 s period. Due 
to space constraints, we select the two typical 
longdress and redandblack datasets to show the 
reconstruction performance in Fig. 3. Note that 
we decompose each point cloud frame into mul-
tiple patches of the same size in advance to unify 
the input dimensions. In particular, we group each 
patch with 256 points and normalize them in a 
unit sphere. Then we compress the patch (256,3) 
(i.e., 256 points with 3D coordinates) into a (5,5) 
feature vector matrix. We compare our method 
with Draco [3] by setting the compression level 
parameter (cl) as ten and the quantization param-
eter (qp) as eight. Figure 3 shows that Draco per-
forms a nonuniform and “blocky” phenomenon 
when compressing the raw point cloud frame by 
11x and 13. The quantization bits are not pre-
cise enough to represent the coordinate informa-
tion. Moreover, our AI-driven solution achieves a 
maximum compression ratio of 30 while ensur-
ing impressive reconstruction results.

We evaluate the performance of the AI-driven 
method with popular Draco compression. Figure 
4 presents quantitative experimental results for 
evaluating the transmission latency and QoE in 
various network conditions. We find that trans-
ferring a point cloud frame using the proposed 
AI-driven framework significantly reduces laten-
cy compared to Draco. Meanwhile, our method 
achieves higher QoE than Draco on both selected 
datasets. The results illustrate the superiority and 
robustness of the AI-driven framework. Further-
more, to verify whether the online controller can 
provide adaptive transmission under a dynamic 
network environment, we have trained several 
encoder-decoder models whose transmitted fea-
ture vector matrix sizes are represented as (06, 
06) to (20, 20). We further evaluate AI-driven 
reconstruction with Draco under various comput-
ing capabilities in Fig. 5. Note that we set the net-
work as WiFi, and both methods have similar QoE 
performance. The results show that our method 
achieves a high FPS performance without qual-
ity loss and supports real-time immersive recon-
struction and rendering. Our approach provides 
different encoder-decoder models according 
to computing capability. In particular, AI-driven 
shows a signifi cant advantage with 2 CPU cores.

To evaluate the performance of the online con-
troller, we have trained the asynchronous advan-
tage actor-critic (A3C) network and used the 
trained actor-network to select the transmission 
model. The accumulative discount rewards reach 
convergence at about 700 episodes in the training 
phase. We also show the model selection results in 
the testing phase in Fig. 6, illustrating the eff ective-
ness of a DRL-based online controller. In addition, 
the red curve represents the bandwidth change 
over time, and the blue bars represent the infer-

FIGURE 3. Qualitative comparisons on the reconstruction results.
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ence models over time outputted by the online 
adapter. The adaptive adjustment of the inference 
models has the same trend as the dynamic chang-
es of network conditions, which demonstrates the 
effectiveness of the online adapter.

Future dIrectIons
AI-driven point cloud streaming addresses fun-

damental challenges of efficient holographic trans-
mission. We further discuss important research 
directions for AI-driven PCV delivery and point 
out potential solutions.

Interest-Aware PCV capturing: Real-time and 
high-quality PCV capturing is important in achiev-
ing holographic communication and interaction. 
We provide a preliminary real-time PCV capturing 
system to implement the proposed AI-driven trans-
mission. However, existing capturing schemes 
cannot obtain the same video quality as a 3-DoF 
video with a low FPS of around 1015. Also, the 
larger range of point cloud capturing increases 
pressure on network bandwidth and computation. 
Encoding all captured PCV is very computational-
ly intensive, but not all the PCV content is within 
the user’s viewpoint and interest. Therefore, an 
important future research direction is to achieve 
real-time, high-quality PCV capturing, especially 
for AI-driven transmission methods. A potential 
solution can dynamically capture the area of the 
user’s interest and the user’s viewpoint instead of 
full-field capturing. This can greatly improve the 
capturing efficiency and reduce the transmission 
data volume of the PCV.

Extending AI-Driven Transmission with 
MPEG: The proposed AI-driven model only con-
siders encoding and decoding each raw input 
frame. This means that two adjacent frames are 
transmitted similarly without considering the 
motion and spatial relationships between frames. 
Although the AI-driven transmission method is 
hard for extending MPEG directly, it is a future 
research direction to extend the AI-driven trans-
mission by incorporating some advantages from 
MPEG standards. One potential approach is intro-
ducing keyframe and dynamic frame concepts for 
improving AI-driven transmission. For example, 
a high-precision encoder-decoder transmission 
model can be used for keyframes and dynamic 
frames, while a low-precision and encoder-decod-
er transmission model can be used for non-key 
and static frames.

Balance between Communication, Compu-
tation, and Storage: AI-driven PCV transmission 
requires significant computational and storage 
resources by offline training of encoder-decod-
er models matching different contexts. Tradition-
al adaptive bit rate (ABR) streaming algorithms 
require extensive storage resources to cache 
videos of different resolutions for dynamic trans-
mission. However, AI-driven transmission is more 
complex in adaptive streaming, consuming mas-
sive computing resources for training and execut-
ing encoder-decoder models. Also, the proposed 
method requires storage resources for cach-
ing offline trained models. Therefore, one future 
research direction is balancing communication, 
computation, and storage resources to optimize 
multidimensional network resources. Moreover, a 
potential approach is to make the flexible adjust-
ment between computation and caching accord-

ing to the scenarios and QoS requirements. For 
example, we may train fewer low-precision models 
when computing resources are abundant. When 
storage resources are abundant, we can appro-
priately increase training low-precision models to 
match weak computing capability or network con-
ditions.

Quality Assessment of AI-Driven Transmis-
sion: The AI-driven transmission method uses the 
QoE metrics that consider the transmission time 
and reconstruction accuracy. We have validated 
that the proposed QoE can help provide adaptive 
streaming and measure the performance of the 
AI-driven method on several datasets. Howev-
er, it is an important direction to explore com-
prehensive assessment methods from involved 
environmental factors rather than only from the 
reconstruction accuracy and transmission laten-
cy. For example, we will study a comprehen-
sive, objective assessment model by considering 
user behavior. Also, considering the correlation 
between complex environmental factors such as 
networks, media, and the device enables a more 
objective quality evaluation.

conclusIon
This article reviews the landscape of hologram 
video in the form of point clouds, clarifies the 

FIGURE 5. FPS performance of various computing capabilities.
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differences between PCV with conventional vid-
eos, and reveals that existing technologies are still 
far from supporting real-time holographic video 
streaming. We discuss the critical challenges of 
enabling holographic communication and provid-
ing immersive services in transmission technolo-
gy, computing, mobility, and ubiquity. We further 
propose a novel point cloud streaming method 
that is completely different from existing delivery 
mechanisms from an AI perspective, extracting 
key semantic features for delivery and rendering. 
Finally, we point out some future directions to 
facilitate research in PCV and immersive services.
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