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Abstract—Running computer vision applications, such as 3-
D simultaneous localization and mapping (SLAM), on mobile
devices requires low-latency responses and a massive amount of
computation. Edge computing has been introduced to move Cloud
features closer to end users, providing necessary computing
and network resources for end devices. The heterogeneous edge
devices, with different hardware architectures (e.g., CPUs and
GPUs) and runtime environments, provide diverse resources to
support processing tasks from end devices, resulting in different
costs and quality of services. How to partition these computing
tasks and distribute them over these heterogeneous hardware
nodes is still an open research question. Considering these inher-
ently heterogeneous hardware architectures, new approaches for
service orchestration and task scheduling are required to meet the
service-level agreement and reduce the overall cost of the system
(e.g., facility utilization cost). This article presents a system
framework, EDGEVISION, for computer vision applications par-
titioning and orchestration on heterogeneous edge computing
platforms considering both CPUs and GPUs. EDGEVISION
abstracts the heterogeneous hardware resources and the task
runtime environments and divides the application into separate
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tasks to be orchestrated and deployed into the heterogeneous
edge nodes. We also propose two scheduling algorithms in our
framework, minimum latency task scheduling and minimum
cost task scheduling, aiming to minimize the processing latency
and the overall system cost. We evaluate our framework by
implementing the edge-based 3-D SLAM application in our real
testbed with ten heterogeneous edge devices. Evaluations show
that EDGEVISION can efficiently minimize the processing latency
and the system overall cost and achieve up to 30% decrease in
task processing latency and 15% more cost saving compared to
the State-of-the-Art baselines.

Index Terms—3-D simultaneous localization and mapping
(SLAM), application partitioning, computer vision, heteroge-
neous edge computing, orchestration.

I. INTRODUCTION

IN THE last decade, Cloud computing has been serving
well for the Internet of Things (IoT) and data processing

applications with abundant computing and storage resources,
on-demand self-service, and broad network access [1]. With
the coming era of 5G, emerging mobile applications with
video processing tasks, such as VR/AR, autonomous driv-
ing, and 3-D simultaneous localization and mapping (SLAM),
demand more computing resources with low-latency process-
ing requirements [2], [3]. Nowadays Cloud-centric architec-
tures that host most computing jobs in data centers, cannot
satisfy such requirements. Edge (also known as fog) comput-
ing has been a new paradigm shifting the Cloud characteristics
to the network edge, closer to the field of applications [4]–[6].
Although both edge computing and fog computing move com-
puting and storage to the edge of the network and closer to
end devices, these paradigms are not the same [7]. Fog seeks
to realize seamless and continuous computing services from
the cloud to end devices, while edge computing tends to be
limited to computing at the edge [8]. We focus on edge com-
puting in this article. In this way, the end devices can offload
computing tasks to the nearby edge devices and receive fast
response results without edge-to-core network communication
delays [9].

Computation offloading in edge computing requires par-
titioning an application into different tasks and scheduling
these tasks over the edge devices, which poses many research
challenges [10]. Application partitioning means to separate
the components of the mobile applications in the distributed
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environments [11]. Liu et al. [12] have provided a taxon-
omy of application partitioning algorithms in mobile cloud
computing, including portioning granularity (task, component,
method, etc.), objectives (improving performance, saving cost,
etc.), partitioning models (graph, liner, etc.), allocation deci-
sions (offline, online, etc.), and so on. Some works [13]–[15]
have studied partitioning the application between the mobile
devices and the Cloud, e.g., MAUI [13] offloads some parts of
the application execution from the phone to the Cloud. A few
works [16], [17] considered application partitioning in mobile-
edge computing, e.g., Wu et al. [16] proposed a dynamic
algorithm to find the optimal partitioning plan between the
edge and the Cloud. However, these State-of-the-Art (SotA)
works only consider homogeneous computing resources and
fail to consider the heterogeneous characteristics of hardware
architectures (e.g., CPUs and GPUs). In this article, we focus
on the software component level of application partitioning,
but our methods can also be extended to the method and
module levels.

Heterogeneous edge computing platforms face many chal-
lenges concerning orchestration frameworks, requiring more
dynamic task schedulers than for cloud platforms. For exam-
ple, one challenge is the heterogeneity of edge devices that
have various hardware architectures and runtime environments.
However, today’s frameworks or architectures do not consider
the heterogeneous characteristics of hardware architectures
(such as CPUs and GPUs) and the service-level agreement
(SLA) with minimum cost, when deploying and orchestrating
tasks. Deploying tasks into different hardware architectures
will result in different costs and latency. For instance, using
GPUs to calculate artificial intelligence (AI) tasks will be 10
to 100 times faster than only using CPUs. Besides, orchestrat-
ing the tasks without considering the resource metrics (such
as computing resources and network resources like bandwidth)
will result in suboptimal resource allocations and suboptimal
SLAs.

The above challenges motivate us to devise a novel system
framework considering the heterogeneous aspects of hard-
ware architectures and introduce a dynamic orchestration of
computing and networking resources to guarantee the Quality
of Service (QoS) and reduce the system overall cost. We
summarize our contributions as follows.

1) We have designed and implemented a vision applica-
tion partitioning and orchestration framework, called
EDGEVISION, for heterogeneous edge computing.
EDGEVISION abstracts the heterogeneous hardware
resources and the runtime environments of tasks, con-
sidering both CPU and GPU computing platforms.

2) We have devised a dynamic task topology generation
scheme and two scheduling algorithms: task scheduling
with minimum latency and minimum cost, which, when
combined, can proactively minimize the task process-
ing latency and the system overall cost in heterogeneous
edge computing platforms.

3) We have evaluated EDGEVISION by implementing the
edge-based 3-D SLAM application on a real testbed con-
sisting of ten heterogeneous edge devices. The results
of the evaluation show that EDGEVISION can efficiently

achieve 30% decrease in latency for processing the tasks
and 15% decrease of the system overall cost, compared
to the SotA baselines.

The remainder of this article is organized as follows.
Section II discusses the related work on application parti-
tioning in edge computing, orchestration for edge computing,
and distributed systems and heterogeneous computing. We
present the detailed design of the vision application partition-
ing and orchestration framework, EDGEVISION, in Section III.
In Section IV, we describe the details of the problem formu-
lation. Finally, the performance of our proposed framework is
evaluated in Section VI. We conclude this article and discuss
the future work in Section VII.

II. RELATED WORK

In this section, we split the related work into two major
branches: 1) application partitioning and orchestration in edge
computing and 2) task allocation in heterogeneous computing.
Table I summarizes the comparison of existing related work.

A. Application Partitioning and Orchestration in Edge
Computing

Application portioning has been well studied in the context of
mobile cloud computing [12]–[15]. Some works [16], [17] have
adapted the application partitioning techniques from mobile
cloud computing to mobile-edge computing that has more
heterogeneous resources and dynamic environment changes.
Wu et al. [16] designed a dynamic algorithm to find the
optimal partitioning plan between the edge and the cloud
while reducing the total cost to the most possible degree.
Cao et al. [17] presented a partitioning model that paral-
lelizes the computations and fully utilizes the computational
resources at the edge and end devices, in the context of future
5G-based edge computing. Some other works proposed totally
new edge computing frameworks that partly deal with appli-
cation partitioning. For instance, Cheng et al. introduced the
FogFlow framework in [18] for cloud and edge platforms,
dividing the application into edge and cloud by extending the
dataflow programming model and utilizing the NGSI standard.
Han et al. [19] introduced a learning-based scheduling frame-
work for Kubernetes-oriented edge-cloud systems that leverages
the multiagent actor–critic algorithm and deduced the orches-
tration dimensionality by stepwise scheduling. However, these
works are built upon homogeneous hardware architectures and
failed to consider the heterogeneous characteristics of hard-
ware architectures (e.g., CPUs and GPUs) to provide a practical
application partitioning and service orchestration solution.

B. Task Allocation and Heterogeneous Computing

Dealing with heterogeneity among various computing nodes
has been identified as a critical challenge in distributed com-
puting systems. Some solutions have been proposed in the
past targeting either network heterogeneity or resource hetero-
geneity. For instance, Yang et al. [20] introduced a multitask
and multihelper framework in heterogeneous fog networks and
utilized a game theory method called paired offloading of
multiple tasks to solve the optimization problem. However, the
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TABLE I
COMPARISON OF EXISTING RELATED WORK

above work suffers from two major limitations: 1) it assumes
that tasks require only homogeneous computing resources
which is not true in nowadays’ emerging edge computing
applications and 2) it assumes the tasks are always compati-
ble with the edge devices which is not necessarily true in edge
devices with multiple runtime environments, such as operating
systems (OSs) and library dependencies.

We can see that most of the current GPU frameworks are
being researched in a high-performance computing context.
Some other GPU frameworks focus on different partitioning
methods and applications fields. For instance, Barak et al. [22]
proposed many GPUs package (MGP) which allows paral-
lel OpenMP, C++, and unmodified OpenCL applications to
operate transparently on several heterogeneous GPU devices
in a cluster. Reference [23] provides an OpenCL-enabled data
movement mechanism for accessing the GPU’s global memory

directly and demonstrates how to use it to build cooperative
GPU-FPGA computing. However, these works focus on code
level and assume the heterogeneous CPUs/GPUs are deployed
in a data center rather than in an edge computing environ-
ment. A few works consider the heterogeneous computing
resources (e.g., GPUs), such as the work by Jiang et al. [11],
who presented a new distributed deep neural network (DNN)
training architecture leveraging sparing CPU, GPU, and band-
width resources. However, it focuses on only the DNN training
field and differs from our work which focuses on application
partitioning and orchestration intending to minimize the over-
all system cost. The most recent and similar work to ours
is [21], which presents Delta, a system that unifies heteroge-
neous computing environments while also controlling the flow
of various function execution requests. However, this work is
focused on the functional level of the program and on the three
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Fig. 1. Our use case 3-D SLAM, a computer vision application running on
edge devices.

applications: 1) a parallel counter (ParCount); 2) a matrix mul-
tiplication (MatMul); and 3) an I/O heavy application (FileIO),
while we focus on tasks running on containers, and the vision
application.

To the best of our knowledge, we are the first considering
both application partitioning and orchestration on heteroge-
neous edge computing platforms with CPUs and GPUs, and
also evaluating the framework in a real testbed rather than by
simulation, which contributes valuable inputs to the related
research fields.

III. DETAILED EDGEVISION DESIGN

In this section, we first introduce our use case, the 3-D
SLAM application, which serves as an example for the
EDGEVISION design. Then, we introduce the details of the
EDGEVISION framework.

A. Use Case

We use the 3-D SLAM application shown in Fig. 1 to
better illustrate the partitioning and orchestration framework.
The 3-D SLAM application utilizes a camera, light detection
and ranging (LiDAR) sensors, and inertial measurement unit
(IMU) readings to rebuild the environment in a 3-D map and
also uses machine learning (ML) to recognize the objects in
the video. Combining the 3-D map and object recognition,
this 3-D SLAM application aims for semantic maps, environ-
ment detection, and point cloud learning. This application can
be partitioned into several tasks: 1) reading the video data
from camera sensor; 2) reading the data from LiDAR sen-
sor; 3) preprocessing the images; 4) object detection using
the YOLO algorithm [24]; 5) 3-D map construction by using
the data from the camera, LiDAR, and odometer; etc. Due
to the heterogeneous nature of these tasks, the limitation of
a single device, and QoS requirements, these tasks need to
be distributed into multiple edge nodes. For instance, a unit
control board (UCB) is used for collecting the raw data from
the camera, LiDAR, and IMU and preprocessing the sensor
data, but it cannot process the tasks like object detection effi-
ciently due to insufficient GPU power. Therefore, the UCB
offloads the tasks of object detection to a nearby edge node for
further processing. In this case, the edge node and the UCB
complement each other and collectively run the 3-D SLAM
application.

B. Components of EDGEVISION Framework

Fig. 2 shows the design of our proposed vision application
partitioning and orchestration framework for heterogeneous
edge computing platforms. The framework mainly consists of
three parts: 1) Orchestrator; 2) Directed acyclic graph (DAG);
and 3) Edge cluster.

The Orchestrator module is mainly responsible for parti-
tioning the application into various tasks according to the
application properties, SLA, resources profiler, and schedul-
ing algorithm. The processing application can be made of
different kinds of computing tasks. In our use case, the
3-D SLAM application contains the tasks of camera process,
LiDAR process, objection detection, 3-D map construction,
and coordination. The SLA component defines the service
requirements or QoS requirements such as the application
processing latency. The resource profiler component handles
the computing and communication resources of the systems.
The computing resources consist of the computing resource
availability, the processor types and capacities, and costs
for using such computing resources. The communication
resources consist of network information, such as bandwidth,
latency between each edge node, and costs for using com-
munication resources. The scheduling algorithm component
decides how to arrange the tasks to fulfill the SLAs under
the constraints of computing and network resources and to
minimize the system’s overall cost.

The DAG module receives the scheduling tasks and topol-
ogy from Orchestrator and constitutes the DAG in the data
flow process format, as shown in Fig. 2. The DAG mod-
ule consists of the input component, data flow processes,
and the output component. The input component receives the
input information for the tasks. The data flow processes, i.e.,
S1, S2, . . . , S7 in the figure represent tasks partitioned from
the processing application. The relation among these tasks can
be parallel or sequential. These tasks are usually dependent.
Therefore, if there is one task being processed at a slow speed,
the whole system can be influenced.

The Edge cluster module consists of a master node and
various kinds of slave nodes, all running KubeEdge [25] and
forming a KubeEdge Cluster. The master node runs the cloud-
core component from KubeEdge and is the central controller
for the Edge Cluster. The slave nodes run edgecore component
from KubeEdge and are equipped with heterogeneous hard-
ware resources for computing, communication, and storage.
By utilizing the orchestration feature of KubeEdge, the tasks
run inside the container in different pods in these slave nodes.
The master node receives the deployment information from
the DAG module that consists of the topologies, all tasks, and
deployment plans. The master node then further deploys the
tasks into different slaves nodes in a container format managed
by KubeEdge.

The above modules create a framework to partition the
application and orchestrate the tasks in a heterogeneous edge
computing cluster. However, mapping these tasks into the
heterogeneous edge nodes graph is still a challenge, consid-
ering: 1) the devices have different runtime environments and
libraries to support the tasks; 2) the edge nodes hardware
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Fig. 2. EDGEVISION framework.

resources are also heterogeneous (e.g., some edge nodes are
equipped with GPUs while others may not); 3) tasks are com-
plex in terms of their resource requirements, such as CPU,
GPU, memory, and network resources; and 4) various parti-
tioning choices for the application with diverse task topologies
and various task allocation strategies with a tradeoff between
the SLA and resource utilization. In this section, we introduce
some features of our framework in detail to deal with the first
two challenges. Solutions to the last two challenges will be
discussed in Sections IV and V.

C. Runtime Abstraction Feature

One important factor in edge computing and in our frame-
work is the heterogeneity of the runtime environments. The
edge nodes have a variety of runtime environments that may
not be able to host and run the application tasks. Some edge
nodes may lack the necessary dependencies or compatible OS
to run the tasks such as video processing with ML libraries
(Tensorflow or CUDA). We address this issue by leverag-
ing container technologies, such as Docker [26]. Docker is
an operational level virtualization technique that abstracts the
lower layers with hardware device details. Docker offers a
lightweight, and portable method to host various applica-
tions [26]. Dockers are being used in both industries and
academia [27]–[29], such as in smart cities and Internet of
vehicles. The work in [28] shows that a docker container can
be turned on or off speedily, within near 50 ms. In our appli-
cation scenario, the docker wraps different tasks with their
library dependencies and OS into Docker images, which can
be uploaded to a Docker repository (either in a local server
or a remote server). In this case, any edge devices with the
Docker engine can fetch the Docker images from the Docker
repository and run the task at a local place. The users do not
have to consider the low-level hardware resources and runtime
environments because of Docker’s feature “write once and run
anywhere.” There will be some differences when the appli-
cations run on Edge host and Edge container platforms. The
added cost in terms of resources in this particular scenario and
setup has been analyzed and discussed in a previous work [27].
In our previous work [27], a comprehensive performance eval-
uation of docker container-based virtualization in terms of

resource usage and performance in this context has been con-
ducted and revealed a negligible added workload compared to
the added benefits in terms of flexibility and scalability. In a
comparison of resource utilization between the edge host OS
and the edge container with regard to executing the long short-
term memory-based encoder–decoder (LSTM-ED) model, we
observed sufficiently similar performance, 27.03% and 27.69%
for the CPU usage and 93.84% and 94.63% for the memory
one, respectively. The results suggest that, compared to run-
ning ML on the host OS, the container-based virtualization
does not introduce a considerable performance downgrade but
offers additional flexibility and scalability to the deployment
of applications, which is a complement to the computing and
intelligence features in the edge computing paradigm. For the
complete details of the evaluation results, refer to our previous
work [27].

D. Hardware and Resource Abstraction Feature

We further introduce the hardware and resource abstrac-
tion feature to hide the underlying hardware heterogeneity
and to provide a homogeneous resource interface. As Fig. 2
shows, we utilize KubeEdge in our architecture and divide
the devices into two categories: the master node and the slave
nodes. According to the functionalities of KubeEdge, users
can define the common hardware resource capacities (CPU,
RAM, etc.) and external resource capacities (sensors, actu-
ators, etc.) during the configuration phase. These resources
are represented as resource units in Kubernetes [30], which
can be represented as a YAML file during the configuration
phase. Therefore, we define N tasks and E edge nodes in the
system, and we define all the edge nodes with vertex Ri

e ∈ RN
E ,

(∀1 ≤ i ≤ N ∀1 ≤ e ≤ E). We further define a capabil-
ity description for our processing task i in edge node e with
notation Ri

e : {Ri
e,cpu, Ri

e,gpu, Ri
e,ram, Ri

e,net, Ri
e,sen, Ri

e,other, Ue},
where Ri

e,cpu, Ri
e,gpu, Ri

e,ram, Ri
e,net, and Ri

e,sen denote the CPU,
GPU, RAM, network, and sensor/actuators resources situations
when processing task i in edge node e, respectively. Ri

e,other
defines the other resources and can be flexibly adjusted accord-
ing to the applications. Ue denotes the unit cost for using
the edge node e, consisting of the unit cost for using CPU:
Ue,cpu, GPU: Ue,gpu, RAM: Ue,ram, network resources: Ue,net,
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Fig. 3. Latency breakdown of the 3-D SLAM application under different
configurations.

and other customized resources by edge server providers (usu-
ally from the telecommunication companies [31]). Inside the
nodes, we can further divide the resources into different pods
with different resource constraints. Users can regard pods in
nodes as subnodes using the similar resource notation above,
but the communication cost inside the nodes can be neglected.

The benefits for using such a hardware and resources
abstraction feature are threefold: 1) the heterogeneous devices
form a homogeneous resource pool by mapping the devices
into nodes; 2) the end users can configure and adjust the
device resources according to the applications need; and 3) the
edge devices can easily monitor the resources and dynamically
adjust the resource usages. In the next section, we formulate
the scheduling problem.

IV. PROBLEM FORMULATION

In this section, to formulate the problem and deploy the
tasks into the EDGEVISION framework, we introduce the
process of preanalyzing the application and the task model.

A. Preanalysis of the Application

Before presenting the task model, we first look into the
3-D SLAM application and break it down into several tasks:
camera process, LiDAR process, object detection, real-time
appearance-based mapping (rtabmap), and coordination. We
profile the processing latency of these tasks with different con-
figurations in both edge nodes with CPU (Intel Core i7) and
edge nodes with GPU (Jetson AGX with 512-core GPU) [32],
as shown in Fig. 3. We can see that the object detection
task module is the predominant bottleneck for application
performance with respect to latency, which becomes worse
as the video resolution increases. Furthermore, executing the
object detection task module in a GPU reduces the latency sig-
nificantly with more than 90% latency reduction in the case of
resolution 640 × 480. By knowing the latency information of
each module in the application, we can better make scheduling

decisions. In the following sections, we will discuss the task
model and SLAs for the application.

B. Task Model

In this section, we discuss the task model in our framework.
We assume an application A that can be partitioned into N
tasks in the system (our system model can be easily extended
to multiple applications at the same time), with a set of tasks
{T1, T2, T3, . . . , TN}. We assume that the system optimizes the
task scheduling and dispatching in each time cycle Tcycle. Each
task Ti can be represented as (Di

I, Di
O, τi, Rewardi), where Di

I
denotes the size of data input, Di

O means the size of data
output, τi means the worst case execution deadline for the
task Ti, and Rewardi means the reward for any edge node
that hosts the task Ti. The reason for introducing the reward
parameter Rewardi is to motivate edge nodes to participate in
the resources exchange market and hence increase the resource
usage efficiency in the system. These partitioned tasks form
the application as a DAG way. In our evaluation, each task
is represented as a job in Kubernetes by using the YAML
script [33].

We further define the task dependency graph and edge nodes
communication graph in the following.

1) Task Dependency Graph: The task dependency can be
presented as a DAG: Gtask = (Ttask, Ltask), where vertex Ti ∈
Ttask, (∀1 ≤ i ≤ N) represents all the partitioned tasks and
Ltask denotes the data communication flow among tasks: link
(Ti → Tj) ∈ Ltask denotes the output of task Ti is transferred
as the input of Tj.

2) Edge Nodes Communication Graph: The connection of
edge nodes can be expressed as a graph Gcom = (Ecom, Lcom)

where Ee ∈ Ecom (for e = 1, . . . , K) represents the set of all
edge nodes and Lcom denotes communication link connections
between edge nodes: link (Ee, Ef ) ∈ Lcom denotes the edge
nodes Ee and Ef can communicate with each other.

3) Service-Level Agreement: Given a set of tasks from
the 3-D SLAM application and a set of heterogeneous edge
nodes with different resources and connections, the design
goal of the system is to orchestrate these tasks into the edge
nodes and efficiently perform the tasks and guarantee the
QoS. Each application has its own SLAs or QoS require-
ment. We consider an end-to-end delay in this article (the
SLA can be easily extended to other metrics, which we will
discuss in Section VII). The end-to-end delay for application
A can be expressed as DA, which consists of computing and
communication latency from all the tasks Ttask.

Based on the above QoS requirement, we can formu-
late the optimization problem as a multiobjective constrained
optimization problem

min CA =
K∑

e=1

Ce
usage

min DA =
N∑

i=1

Di
compu +

N∑

i=1

Di
commu

s.t.: Gtask, Gcom are satisfied (1)
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where CA is the total cost for processing the application A cal-
culated as the sum of the usage cost for each edge node Ce

usage,
consisting of CPU/GPU, RAM, and network resources usage.
DA is the total delay for processing the application A consisting
of two parts, computing latency Di

compu and communication
latency Di

commu for all the partitioned tasks.
Finally, we summarize some additional assumptions for our

system model: 1) we assume that there are no malicious nodes
that attempt to give false results; 2) we assume that edge
nodes are willing to contribute their resources to the tasks
from users for receiving incentives; 3) we assume that there
are no resource contentions which will cause interruption of
ongoing tasks; and 4) we assume that the edge nodes are sta-
ble during each scheduling cycle, which means that no edge
node joins or leaves the system during the cycle.

We are now supporting offline allocation decisions specified
in some configuration files or in the form of annotations within
the mobile applications. Note that our proposed EDGEVISION

framework is also suitable for other kinds of vision applica-
tions, such as robotic vision applications, augmented reality,
and intelligent drone applications, because these new applica-
tions can also run on heterogeneous edge computing platforms
with both CPUs and GPUs. In order to extrapolate our frame-
work to other scenarios, we need to perform a preanalysis
of the application, generate the Task Dependency Graph and
the Edge Nodes Communication Graph, and define the SLA.
There are some expertise needed in the process of perform-
ing a preanalysis of the application in order to decide if the
applications belong to vision applications in heterogeneous
edge platforms and decide the task partitioning granularity.
We also need to profile the processing latency of these tasks
with different configurations in both edge nodes with CPU
and edge nodes with GPU because by knowing the latency
information of each module in the application, we can better
make the scheduling decisions. To reduce manual interac-
tions, automatic task profiling algorithms can be designed.
For automatic task allocation or online allocation decisions,
we need further dynamic context-based scheduling algorithms.
In this study, we limit our scope to have a real implementa-
tion for task partitioning and orchestration for heterogeneous
edge platforms with offline allocation decisions. However, the
automatic task profiling algorithms and dynamic context-based
scheduling algorithms are part of our future works.

V. SOLUTION METHODOLOGY

Having the problem formulated, in this section, we pro-
pose the solutions of how to construct the task topology and
introduce the task scheduling processes.

A. Task Topology Construction

Given the above functional explanation of the DAG mod-
ule, we consider the following two practical topologies for
the application of video processing when equipped with het-
erogeneous hardware resources (CPUs and GPUs), as shown
in Fig. 4.

1) Serial DAG: In a serial DAG, we can either put all the
tasks into a single node for the benefit of less communication

(a) (b)

Fig. 4. Two types of task topologies: (a) serial-DAG and (b) parallel-DAG.

overhead or assign the individual tasks to different nodes in
a serial way, generating a pipeline flow to reduce the queu-
ing time, as shown in Fig. 4(a). When processing images or
videos, it is faster to compute the bottleneck function on a
GPU than on a CPU. The nonbottleneck functions can be
scheduled either on the same host node or on other remote
CPUs.

2) Parallel DAG: The application can also be partitioned
into parallel tasks running as a DAG, leveraging both data par-
allelism and task parallelism. The DAG module in Fig. 2 shows
a DAG-based parallel task execution model where the data
flow is divided into different branches and grouped together at
the output module. Fig. 4(b) shows a parallel DAG model for
video applications where the video data is separated into differ-
ent pieces (frames) and being processed in different branches.
Depending on the applications, users can use different par-
titioning strategies, e.g., hash partition, composite partition,
or range partition. In our 3-D SLAM application, we utilize
functional module partitioning of the application and frame
partitioning of the video stream. In the next section, we dig
into details on how we schedule these partitioned tasks and
how we deploy them.

B. Task Scheduling

How to arrange the tasks over the edge nodes according to
tasks topologies is also a challenge due to the heterogeneity of
tasks, edge nodes, and user requirements. We first introduce
three common task schedulers from Kubernetes: 1) the least
requested priority (LRP) scheduler; 2) the balanced resource
allocation (BRA) scheduler; and 3) the service spreading prior-
ity (SSP). The LRP scheduler allocates the tasks to the edge
nodes with maximum CPU and memory resources percent-
ages (rather than the amounts). The BRA scheduler chooses
the edge nodes with the most balancing resource with CPU
and memory, which avoids all the tasks being assigned to a
node consuming most of the CPU resources so as to avoid
unbalanced consumption of CPU and memory resources. The
SSP scheduler tries to spread the tasks within the same service
to as many edge nodes as possible, to have better redundancy.
However, these three schedulers do not consider the demand
for resources of the tasks and how to match these tasks with the
available resources while satisfying QoS requirements. These
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Fig. 5. Estimated processing latency versus CPU utilization.

schedulers also do not have a reliable estimation mechanism,
which may also lead to resource waste by overestimating or
underestimating the needed resources. Furthermore, they do
not consider GPU computing resources.

The scheduler is composed of three modules to accom-
modate the application partitioning and QoS requirements:
1) the task resource estimation module estimates the resources
requirements for executing the tasks; 2) the edge node resource
monitoring module monitors the available resources for the
edge nodes and can be placed in the master node (in edge
server or in the Cloud); and 3) the task scheduling algorithm
module deploys the tasks into edge nodes depending on the
requirements of the applications or users. In our use cases, we
propose two algorithms: 1) the minimum latency algorithm
and 2) the minimum cost algorithm. Below we describe these
modules one by one.

1) Task Resource Estimation: Before dispatching the tasks
to the edge nodes, we first estimate the task performance (i.e.,
processing latency) and resource requirements (i.e., CPU/GPU
usage, memory usage, and network usage). The task consumes
the same memory and network resources no matter on which
hardware device the task is executed. The memory resource
consumption can be captured by the top utility [34] while the
network resource consumption can be calculated by counting
the byte array length of output stream Di

O. The CPU/GPU
usage and processing latency metrics depend not only on task
properties but also on the workload of the edge nodes. In
this case, we implemented a profiling phase that we execute
each partitioned task on every edge node (including both CPUs
and GPUs) at different workloads from 10% to 90% with an
interval of 10%. Fig. 5 shows the processing latency versus
the CPU workload of each module in 3-D SLAM with video
resolution 1280 × 720, running on the edge node with Intel
i7 processor. We use the quadratic model to fit the measuring
points inspired by the work [35] which provides the satisfied
predictive mean value. In this model, we use the processor
CPU resource utilization and the task as input and give an
estimation of the processing latency of the task.

2) Edge Node Resource Monitoring: This module periodi-
cally collects the available resources for each edge node. We
use the iPerf/scp utility [36] to collect the port bandwidth
information of the edge nodes. The CPU and memory utiliza-
tion and available resources on the edge nodes are collected
by the top utility while GPU utilization is collected by the
nvidia-smi utility [37].

3) Task Scheduling Algorithm: For our use case, we pro-
pose two algorithms: 1) the minimum latency task scheduling
(MLTS) algorithm and 2) the minimum cost task scheduling
(MCTS) algorithm. Considering the different aspects of serial-
DAG and parallel-DAG, we analyze both topologies when
deploying the tasks. For serial-DAG, we need to analyze the
bottleneck tasks and place them to the edge node with a GPU
for acceleration. As shown in Fig. 1, in our use case, the
object detection module using the YOLO library can actually
be placed to the edge node with a GPU. The other nonbottle-
neck tasks will be scheduled on the edge nodes with a CPU
as these tasks usually require much lower computing speed.

We first discuss how the CPU tasks are scheduled by using
our proposed algorithms: MLTS and MCTS. Scheduling the
GPU tasks can use similar strategies. For MLTS, given a batch
of partitioned tasks to be deployed into the edge nodes, these
tasks are first ranked in descending order of the required CPU
computing time that can be calculated on the same processor.
Then the tasks from the task list are scheduled one by one. In
order to get the overall latency, we need to measure and cal-
culate the computing latency and communication latency. The
details of the algorithm MLTS are introduced in Algorithm 1.
For the MCTS algorithm, the primary goal is to reduce the cost
to the lowest level while satisfying the worst case execution
time τi of the task. In this case, we filter the edge nodes which
can fulfill the requirement Di

e,commu ≤ τi and choose the edge
node with minimum Ci

e,A. The details of the algorithm MCTS
are introduced in Algorithm 2.

4) Task Scheduling Algorithm Analysis: We further present
the performance of the two algorithms, in terms of complexity
(worst case performance, best case performance, and upper
bound), and application scenarios.

Complexities: For Algorithm 1, the decisive variables are
the number of tasks N in step 3 and the number of Edge
nodes E in step 4, controlling the two For loops. The main
purpose of this algorithm is to find the optimal edge node
with the lowest latency in step 9, which decides the worst
case performance and best case performance for the algo-
rithm. For the worst case scenario, the algorithm needs to
iterate the two For loops in order to find the optimal edge
node. Therefore, from steps 4 to 8, it costs 5∗N ∗E time exe-
cutions while steps 3 and 9 take N executions for each step.
Thus, we can estimate the complexities for Algorithm 1 in the
worst case scenario: W(5 ∗ N ∗ E + 2 ∗ N). For the best case
performance, the algorithm chooses the optimal edge node in
the first trial. Thus, the complexities for Algorithm 1 in the best
case scenario is B(N + E). From the worst case performance
(W(5 ∗ N ∗ E + 2 ∗ N)), we can obtain the upper bound for
the algorithm: O(N ∗ E).

Similarly, we obtain the complexities for Algorithm 2. From
steps 4 to 9, it costs 6 ∗ N ∗ E time executions while steps 3
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Algorithm 1: MLTS Algorithm

Input: Ttask, Ecom, RN
E ;

Output: Tasks deployment plan for application A: PA;
1 N = numof (Ttask) , where Ttask ∈ Gtask;

E = numof (Ecom), where Ecom ∈ Gcom;
2 Function MLTS (Ttask, RN

E ):
3 For all i ∈ [1, N]:
4 For all e ∈ [1, E] :
5 Measure the edge node’s CPU utilization to get

Ri
e,cpu

6 Use the latency estimation model in Figure 5 to
estimate the processing latency Di

e,compu
7 Use the byte array length of output stream Di

O
and the network bandwidth of edge node
Ri

e,net to estimate the communication latency
Di

e,commu = Di
O/Ri

e,net,
(Di

O ∈ Ttask, Ri
e,net ∈ RN

E )
8 Calculate the total latency for this task by

Di
e,A = Di

e,compu + Di
e,commu

9 Select the node with the lowest latency for task i:
minimum Di

e,A
10 end Function

and 10 take N executions for each step. For the worst case
scenario complexities: W(6 ∗ N ∗ E + 2 ∗ N). For the best case
performance, the algorithm chooses the optimal edge node for
the first trail. Thus, the complexities for Algorithm 2 in the best
case scenario are B(N +E). From the worst case performance
(W(6 ∗ N ∗ E + 2 ∗ N)), we can obtain the upper bound for
the algorithm: O(N ∗E). As we can see, the more the number
of tasks and edge nodes, the more steps the system needs to
execute.

The reason for not choosing heuristic algorithms is based on
our real case scenarios where the number of edge nodes and
tasks will not be very large in a single application, for instance,
the value of N and E are less than ten (like in our 3-D SLAM
application). In this case, our algorithms can find the best
optimal solution with low execution time. Furthermore, we
profile the processing latency of these tasks with different con-
figurations in both edge nodes with CPU and edge nodes with
GPU. By knowing the latency information of each module in
the application, we can guarantee the best optimal solutions.
Therefore, our best optimal solutions are obtained from some
context information (gained from engineering work) and our
proposed algorithms based on real applications, rather than
purely mathematical analysis. Indeed, when the value of N
and E grows, we need to find a better algorithm with lower
complexity, which may obtain a suboptimal solution. Our work
has some limitations in scalability that deserve further research
and we explain this in the Conclusion section (cf. Section VII).

VI. EVALUATION

In this section, we evaluate our proposed partitioning and
orchestration framework for heterogeneous edge computing in
our 3-D SLAM use case. The results show that our framework

Algorithm 2: MCTS Algorithm

Input: Ttask, Ecom, RN
E ;

Output: Tasks deployment plan for application A: PA;
1 N = numof (Ttask) , where Ttask ∈ Gtask;

E = numof (Ecom), where Ecom ∈ Gcom;
2 Function MCTS (Ttask, RN

E ):
3 For all i ∈ [1, N] :
4 For all e ∈ [1, E] :
5 Measure the edge node’s CPU utilization to get

Ri
e,cpu

6 Use the latency estimation model in Figure 5 to
estimate the processing latency Di

e,compu
7 Use the byte array length of output stream Di

O
and the network bandwidth of edge node
Ri

e,net to estimate the communication latency
Di

e,commu = Di
O/Ri

e,net,(D
i
O ∈ Ttask, Ri

e,net ∈
RN

E )
8 Calculate the total latency for this task by

Di
e,A = Di

e,compu + Di
e,commu

9 Calculate the total cost for this task by
Ci

e,A = Ci
e,cpu + Ci

e,ram + Ci
e,net, where

Ci
e,cpu = Di

e,compu ∗ (Ue,cpu + Ue,ram) and
Ci

e,net = Ue,net ∗ Di
O

10 For task i, among the edge nodes that satisfy
required deadline: Di

e,A ≤ τi, select the node
with minimum Ci

e,A
11 end Function

can efficiently achieve significant performance gains in terms
of QoS and cost-efficiency compared to the SotA baselines.

A. Evaluation Platform

We implement our framework on a real-world testbed run-
ning the 3-D SLAM application. Our testbed consists of ten
heterogeneous edge devices. In particular, we use a worksta-
tion that is equipped with 3.5-GHz Dual-Core Intel Core i7
CPU and 16-GB RAM running Ubuntu 18.04 as the local
server. The local server acts as the master node and runs the
scheduling algorithms. This heterogeneous edge computing
platform contains four Jetson AGX Xavier [32] and one Jetson
Nano [38], from Nvidia (commonly used in autonomous driv-
ing, video processing, and portable computation applications),
three Raspberry Pi3 Model B boards [39], and two personal
computers. Fig. 6 shows the implemented hardware plat-
form for the edge devices. These devices represent different
hardware architectures, runtime environments, and hardware
capacities. We summarize their parameters in Table II. All
edge devices and the local server are connected via a local
router.

In order to schedule and deploy the tasks to different edge
devices, we follow the processes described in Section III and
perform a preanalysis of the application. The preanalysis of the
3-D SLAM application is described in Sections IV-A and V-B,
and the results are shown in Figs. 3 and 5. We use Docker
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TABLE II
HETEROGENEOUS EDGE COMPUTING TESTBED SPECIFICATIONS

Fig. 6. Heterogeneous edge computing platform testbed.

Buildx [40] feature to create customized Dockers for our com-
ponents. After that, we use our DAG module and Edge cluster
module in Section IV-A to compose the tasks running on the
cluster crossing the master node and edge nodes. The mas-
ter node receives the deployment information from the DAG
module that consists of the topologies, all tasks, and deploy-
ment plans. The master node then further deploys the tasks
into different slaves nodes in a container format managed by
KubeEdge. We wrap the components by a YAML script, which
defines where the service is deployed, how much resource
is utilized by each service, and the connection between the
services and network configurations.

B. Experiments

We use the three common task schedulers mentioned in
Section V-B as representative baselines: 1) LRP scheduler;
2) the BRA scheduler; and 3) the SSP scheduler. There
exist some systems that are also related to harnessing het-
erogeneous computing resources, such as HTCondor [41],
CoGTA [42], and FemtoCloud [43]. However, the homoge-
neous task assumption in these systems does not hold in our
problem setting. Therefore, we do not include them as base-
lines. We choose the LRP, BRA, and SSP scheduler algorithms
because they are commonly used in real industries for task
scheduling. They are also chosen as baselines in other aca-
demic works as SotA algorithms [44]–[46]. Actually, these
three algorithms optimize resource usage in different ways.

1) LeastRequestedPriority: A node is scored according to
the fraction of CPU and memory (free/allocated). The
node with the highest free fraction is the most preferred
for the deployment. This priority function spreads the
tasks across the cluster based on resource consumption.
The LeastRequestedPriority strategy balances workloads
based on their required resources, and the resources used
among nodes are balanced.

2) BalancedResourceAllocation: The BRA scheduler first
chooses the edge nodes with the most balancing resource
with CPU and memory, which avoids all the tasks
being assigned to a node consuming most of the CPU
resources to avoid unbalanced consumption of CPU
and memory resources. The purpose is to balance the
resource allocation within each node.

3) Service Spreading Priority: SSP aims to ensure that the
tasks of the service run on different nodes. It favors
scheduling onto nodes that do not have tasks of the
service already assigned there. The overall outcome is
that the Service becomes more resilient to single node
failures.

Therefore, comparing our algorithms with these three baselines
used in industries can provide insightful information about the
performance of our system on real deployments.

Our evaluation has the following three parts: 1) evaluating
the scheduling algorithms for the 3-D SLAM application in
edge nodes without using GPUs; 2) evaluating these schemes
using edge nodes with both CPUs and GPUs; and 3) according
to the two evaluations above, optimize the design for choosing
CPU/GPU for this specific 3-D SLAM use case.

1) Evaluating the Scheduling Schemes Without Using
GPUs: We first evaluate how different scheduling schemes
handle resource heterogeneity. We only use a low frame rate,
i.e., 1 frame/s, with the image resolution 1280 × 720, in order
to focus on evaluating the latency performance. As Fig. 7(a)
shows, MLTS performs the best with more than 30% shorter
latency than all the other schemes. MLTS takes the latency
of each task execution as the first priority, which leads to a
shorter end-to-end delay. Instead, the other algorithms fail to
consider the latency of the tasks. The primary goal of the
MCTS approach is to reduce the cost while satisfying the
task latencies. The MCTS approach works very similarly to
the BRA approach, with a near-average 950-ms latency. The
reason is that the BRA approach balances the resource alloca-
tion within each node (CPU and memory resources) while the
MCTS approach is also trying to place the tasks into nodes
with balanced resources in order to reduce the overall cost.
Similar results are also shown in Fig. 8 when the frame rate is
low. The LRP approach pushes the tasks to the edge nodes with
maximum CPU and memory resources percentages and tries to
balance the resource usage among nodes, with a near-average
1100-ms latency, neglecting the diverse hardware properties.
For instance, a personal computer with a higher CPU utiliza-
tion percentage can execute tasks faster than a Pi 3 with a
lighter load. The SSP scheme splits the tasks randomly to
reach a wider task deployment but causes extra communica-
tion delay with the most considerable latency near 1200 ms.
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(a) (b)

Fig. 7. (a) Comparing the latency of different tasks schedulers at a low frame
rate of 1 frames/s in the heterogeneous edge platform. (b) Comparing the
cost of different tasks schedulers at a low frame rate of 1 frames/s in the
heterogeneous edge platform.

Fig. 8. Comparing the average latency for different scheduling algorithms
without using GPUs.

Fig. 7(b) shows the cost for processing these tasks under dif-
ferent scheduling schemes. The unit cost for using different
hardware resources depends on the hardware devices and we
refer to Amazon EC2 on-demand pricing [47]. Fig. 7(b) shows
that MCTS performs better than other schemes as the primary
goal of this algorithm is to reduce the cost while satisfying
the task latencies. The other schemes do not take the cost
into considerations, resulting in inefficient resources utiliza-
tion. Actually, an algorithm combining MLTS and MCTS can
be designed according to the user’s requirements. We discuss
this in Section VI-B3.

We next evaluate the performance of these scheduling algo-
rithms under different system loads. In this experiment, we
have a single stream of video input and we increase the frame
rate of the stream from 10 to 60 frames/s with an increasing
interval of 10 frames/s. Then, we measure the average latency
of the video processing. The image resolution is 640 × 480.
The results are shown in Fig. 8. We observe that MLTS out-
performs the other schedulers under different frame rates by
more than 30%. In Fig. 9, we compare the average cost of
different scheduling algorithms without using GPUs. We find
that MCTS has the minimum cost and is less influenced by the

Fig. 9. Comparing the average cost for different scheduling algorithms
without using GPUs.

system workloads. On average, MCTS saves more than 15%
system cost than the other schemes under different system
workloads. MLTS also performs better than the BRA and SSP
algorithms because MLTS has less task processing latency
resulting in less cost for using the edge devices. In the next
section, we evaluate the performance of the schedulers on edge
nodes with GPUs.

2) Evaluating the Scheduling Schemes Using Both CPUs
and GPUs: Next, we consider edge nodes that have both het-
erogeneous CPUs and GPUs. According to our analysis in
Fig. 3, the bottleneck in the 3-D SLAM application is the
object detection task that consumes most of the computation.
To process this object detection task, three kinds of GPUs can
be utilized as shown in Table II. Fig. 10 shows the average
latency of the application when applying different schedul-
ing algorithms on edge nodes with both CPUs and GPUs.
The result shows that using GPUs considerably decreases
the task latency. Furthermore, the MLTS scheme outperforms
the other schemes with an average latency near 240 ms. We
also notice that MLTS is only little affected by the system
workloads as the latter always searches for the best latency
performance scheduling method. The system workloads affect
the SSP schemes significantly as SSP tries to deploy the tasks
to as many edge nodes as possible, which increases the system
communication delay and inefficiently makes use of the GPU
nodes. We further compare the average cost of the schedul-
ing algorithms using both CPUs and GPUs in Fig. 11. We
observe that MCTS has the least average cost compared to
the baselines. The results further demonstrate the effective-
ness of MCTS for saving the system cost while meeting the
QoS requirements of the application. Furthermore, MLTS has
the highest cost among all the schemes when the frame rate is
higher than 20. To guarantee the lowest latency performance,
the MLTS scheduler first chooses the GPUs to have the best
performance, which results in higher cost in the system.

3) Optimize Design: After evaluating each technique in
different settings, we highlight some observations from
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Fig. 10. Comparing the average latency for different scheduling algorithms
using both CPUs and GPUs.

Fig. 11. Comparing the average cost for different scheduling algorithms
using both CPUs and GPUs.

the results. First, suggested by the results reported in
Figs. 8 and 10, we conclude that employing GPU for vision
applications brings significant performance improvements in
latency without increasing the cost too much. We can adopt the
policy described in Fig. 12, to speed up the decision process
than purely going through our MLTS and MCTS schedulers.

Second, we noticed that depending on user requirements,
it is possible to combine MLTS and MCTS to provide bet-
ter scheduling performance for the system. We define a new
cost function considering both the system latency and resource
monetary cost

Ki
e,A = λt ∗ Di

e,A + λe ∗ Ci
e,A. (2)

Note that λt represents the weight of latency and λe repre-
sents the weight of resource cost, with constraint λt + λe =
1, λt, λe ∈ [0, 1]. To improve the flexibility of the model, we

Fig. 12. Optimize the decision process for vision application partitioning.

set a constraint for λt and λe so that we can adjust the weights
according to different system requirements. In practice, we
can apply multiple criteria decision making and multiattribute
utility theory [48] to decide about appropriate weights. To eval-
uate this new scheduler, we use the new cost function Ki

e,A to
replace Ci

e,A step 10 in Algorithm 2. In this step, this new
scheduler will choose the edge node with minimum cost Ki

e,A
for deploying task i considering both the latency and resource
cost while still satisfying the deadline τi. Note that the units of
latency and resource monetary cost are different and we can
normalize the values of both latency and monetary cost into
range [0, 1]. We normalize the latency as follows:

normalized
(
Di

e,A

) = Di
e,A

Di
max,A

, 1 ≤ i ≤ N (3)

where Di
max,A is the maximum latency for running task i in

the edge clusters. We can also have

normalized
(
Ci

e,A

) = Ci
e,A

Ci
max,A

, 1 ≤ i ≤ N (4)

where Ci
max,A is the maximum resource cost for running task

i in the edge clusters. For convenience, we set λt = 0.5 and
λe = 0.5 in our system and evaluate this new scheduler.

Fig. 13 shows the normalized total cost of different schedul-
ing algorithms for the new scheduler MLTS/MCTS. The
normalized total cost includes both the latency and resource
monetary cost. We observe the scheduler combining both
MLTS and MCTS outperforms the other schemes, because the
new scheduler considers the properties of both the tasks and
the heterogeneous edge nodes, matching them in an optimal
way.

Fig. 14 shows the normalized latency of different scheduling
algorithms for the new scheduler MLTS/MCTS. We observe
that the scheduler combining both MLTS and MCTS causes
less latency than other approaches except for the LRP approach
when the frame rate is less than 30 frames/s. This is because
the LRP approach chooses CPU/GPU with the highest free
fraction for the deployment without considering the resource
monetary cost. However, when the frame rate increases and
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Fig. 13. Comparing the normalized total cost for different scheduling
algorithms using both CPUs and GPUs.

Fig. 14. Comparing the normalized latency for different scheduling
algorithms using both CPUs and GPUs.

the edge platforms are under heavy load, our scheduler
MLTS/MCTS taking latency into consideration outperforms
LRP approaches.

VII. CONCLUSION AND FUTURE WORK

In this article, we proposed an application partitioning
and orchestration framework, called EDGEVISION, for video
processing applications on heterogeneous edge computing
platforms. EDGEVISION abstracts the heterogeneous hard-
ware resources and the runtime environments, considering

both CPU and GPU computing resources. We devised two
scheduling algorithms: 1) MLTS and 2) MCTS, which, when
combined, can proactively minimize the overall latency and
system cost in heterogeneous edge computing platforms. We
evaluated our framework and scheduling algorithms on an
edge-based 3-D SLAM application in a real testbed consisting
of ten heterogeneous edge devices. The result shows that our
scheduling algorithms can efficiently reduce more than 30% of
the task processing latency and 15% of the system cost, com-
pared with other scheduling schemes on heterogeneous edge
clusters.

Our work has some limitations that deserve further research.
First, we assume the edge cluster is stable and cooperative
(e.g., no churn). However, this assumption may not hold in
some scenarios, such as autonomous driving. This issue can
be mitigated by adding dynamic scheduling algorithms lever-
aging AI. Currently, EDGEVISION supports offline allocation
decisions specified in some configuration files or in the form of
annotations within the mobile applications. For automatic task
profiling and dynamic online allocation decisions for task dis-
tribution, we need further dynamic context-based scheduling
algorithms. Second, our current experiment platform consists
of a limited number of edge devices and the scalability of
EDGEVISION needs further investigation. This issue can be
handled by performing additional simulation studies using
simulators.
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